1
|
Huang X, Steinmetz J, Marsh EK, Aravkin AY, Ashbaugh C, Murray CJL, Yang F, Ji JS, Zheng P, Sorensen RJD, Wozniak S, Hay SI, McLaughlin SA, Garcia V, Brauer M, Burkart K. A systematic review with a Burden of Proof meta-analysis of health effects of long-term ambient fine particulate matter (PM 2.5) exposure on dementia. NATURE AGING 2025:10.1038/s43587-025-00844-y. [PMID: 40119171 DOI: 10.1038/s43587-025-00844-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 02/27/2025] [Indexed: 03/24/2025]
Abstract
Previous studies have indicated increased dementia risk associated with fine particulate matter (PM2.5) exposure; however, the findings are inconsistent. In this systematic review, we assessed the association between long-term PM2.5 exposure and dementia outcomes using the Burden of Proof meta-analytic framework, which relaxes log-linear assumptions to better characterize relative risk functions and quantify unexplained between-study heterogeneity (PROSPERO, ID CRD42023421869). Here we report a meta-analysis of 28 longitudinal cohort studies published up to June 2023 that investigated long-term PM2.5 exposure and dementia outcomes. We derived risk-outcome scores (ROSs), highly conservative measures of effect size and evidence strength, mapped onto a 1-5-star rating from 'weak and/or inconsistent evidence' to 'very strong and/or consistent evidence'. We identified a significant nonlinear relationship between PM2.5 exposure and dementia, with a minimum 14% increased risk averaged across PM2.5 levels between 4.5 and 26.9 µg m-3 (the 15th to 85th percentile exposure range across included studies), relative to a reference of 2.0 µg m-3 (n = 49, ROS = 0.13, two stars). We found a significant association of PM2.5 with Alzheimer's disease (n = 12, ROS = 0.32, three stars) but not with vascular dementia. Our findings highlight the potential impact of air pollution on brain aging.
Collapse
Affiliation(s)
- Xinmei Huang
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Jaimie Steinmetz
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Elizabeth K Marsh
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Aleksandr Y Aravkin
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA
| | - Charlie Ashbaugh
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Christopher J L Murray
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA
| | - Fanghan Yang
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - John S Ji
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Peng Zheng
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA
| | - Reed J D Sorensen
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Sarah Wozniak
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Simon I Hay
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA
| | - Susan A McLaughlin
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Vanessa Garcia
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Michael Brauer
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA
- School of Population and Public Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Katrin Burkart
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA.
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Xie C, Xia X, Wang K, Yan J, Bai L, Guo L, Li X, Wu S. Ambient Air Pollution and Parkinson's Disease and Alzheimer's Disease: An Updated Meta-Analysis. TOXICS 2025; 13:139. [PMID: 39997954 PMCID: PMC11861764 DOI: 10.3390/toxics13020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025]
Abstract
BACKGROUND Previous epidemiological evidence regarding the associations between ambient air pollution and two major neurodegenerative diseases, Alzheimer's disease (AD) and Parkinson's disease (PD), remains inconclusive. OBJECTIVE This study aimed to evaluate the associations between long-term and short-term exposure to PM2.5 and PM10 (i.e., particulate matter with an aerodynamic diameter of, or smaller than, 2.5 μm or 10 μm), nitrogen dioxide (NO2), ozone, sulfur dioxide, and carbon monoxide and the risks of AD and PD. METHODS A random-effects model was used to summarize individual effect estimates in the meta-analysis. A subgroup meta-analysis was further conducted to explore the potential sources of heterogeneity. RESULTS In total, 42 eligible studies were included. For each 5 μg/m3 increase in long-term PM2.5 exposure, the odds ratios (ORs) were 1.16 (95% CI: 1.04, 1.30; I2 = 95%) and 1.10 (95% CI: 1.03, 1.17; I2 = 95%) for AD and PD, respectively. For each 5 μg/m3 increase in short-term PM2.5 exposure, the OR was 1.01 (95% CI: 1.002, 1.01; I2 = 77%) for PD. For each 1 ppb increase in long-term NO2 exposure, the OR was 1.01 (95% CI: 1.0002, 1.02; I2 = 79%) for PD. CONCLUSION Ambient air pollution, particularly PM2.5, may contribute to the increased risks of neurodegenerative diseases including AD and PD.
Collapse
Affiliation(s)
- Cuiyao Xie
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (C.X.); (X.X.); (K.W.); (J.Y.); (L.B.)
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases, Ministry of Health, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an Jiaotong University, Xi’an 710061, China
| | - Xi Xia
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (C.X.); (X.X.); (K.W.); (J.Y.); (L.B.)
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases, Ministry of Health, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an Jiaotong University, Xi’an 710061, China
| | - Kai Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (C.X.); (X.X.); (K.W.); (J.Y.); (L.B.)
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases, Ministry of Health, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an Jiaotong University, Xi’an 710061, China
| | - Jie Yan
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (C.X.); (X.X.); (K.W.); (J.Y.); (L.B.)
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases, Ministry of Health, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an Jiaotong University, Xi’an 710061, China
| | - Lijun Bai
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (C.X.); (X.X.); (K.W.); (J.Y.); (L.B.)
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases, Ministry of Health, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an Jiaotong University, Xi’an 710061, China
| | - Liqiong Guo
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China;
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
| | - Xiaoxue Li
- Disaster Medicine Research Center, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China
- 2021RU006 Research Unit of Disaster Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
- Beijing Key Laboratory of Disaster Medicine, Beijing 100039, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (C.X.); (X.X.); (K.W.); (J.Y.); (L.B.)
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases, Ministry of Health, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
3
|
Da L, Song X, Jia Z, Myers NGL, Sun J, Wei J, Jung D, Li F, Song S. Objectively measured environmental features and their association with cognition and dementia: A systematic review and meta-analysis. Ageing Res Rev 2025; 104:102630. [PMID: 39653153 DOI: 10.1016/j.arr.2024.102630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
Dementia affects millions of people worldwide. Since effective treatments are still lacking, it is important to identify factors that may help prevent dementia. Recent studies suggest environmental factors may affect dementia risk, but findings are inconsistent and often rely on subjective measures. This study evaluated the association between objectively measured environmental factors, such as air pollution and built environment features, and the risk of dementia and cognitive decline. We systematically reviewed studies that employed objective measures of environmental factors and reported their association with dementia risk and cognitive decline. Meta-analysis was performed to synthesize data on environmental exposures and the onset of dementia. Air pollution exposure was linked to higher dementia risk (PMx risk ratio 1.09; 95 % CI 1.06,1.12) (NOx risk ratio 1.10; 95 % CI 1.01,1.20) and cognitive decline, while exposure to park areas or green/blue spaces was generally associated with reduced dementia risk (risk ratio 0.94; 95 % CI 0.92,0.96) and slower cognitive decline. Living closer to major roads increased the risk of dementia (risk ratio 1.10; 95 % CI 1.06,1.13), and cognitive impairment. Street layouts with better connectivity and walkability are associated with a reduced risk of cognitive impairment. Access to local amenities, such as food stores, community centers, and healthcare amenities, supports cognitive health. These findings underscore the importance of considering environmental factors in dementia prevention and highlight the need for further research to clarify the role of urban design in supporting cognitive health.
Collapse
Affiliation(s)
- Linlin Da
- Department of Health Policy and Management, College of Public Health, University of Georgia, Athens, GA 30602, USA
| | - Xia Song
- Department of Traditional Chinese Medicine and Rehabilitation, The Fifth People's Hospital of Jinan, Jinan, Shandong 250000, China
| | - Zimu Jia
- School of Education, John Hopkins University, Baltimore, MD 21209, USA
| | | | - Jin Sun
- School of Computing, University of Georgia, Athens, GA 30602, USA
| | - Jingkai Wei
- Department of Family and Community Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Daniel Jung
- Department of Health Policy and Management, College of Public Health, University of Georgia, Athens, GA 30602, USA
| | - Feiyang Li
- Department of Health Policy and Management, College of Public Health, University of Georgia, Athens, GA 30602, USA
| | - Suhang Song
- Department of Health Policy and Management, College of Public Health, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
4
|
Oliveira M, Padrão A, Teodoro AC, Freitas A, Gonçalves H. Geospatial analysis of environmental atmospheric risk factors in neurodegenerative diseases: a systematic review update. Syst Rev 2024; 13:267. [PMID: 39449020 PMCID: PMC11515500 DOI: 10.1186/s13643-024-02637-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 08/19/2024] [Indexed: 10/26/2024] Open
Abstract
Following up the previously published systematic review on the same topic and realizing that new studies and evidence had emerged on the matter, we conducted an update on the same research terms. With the objective of updating the information relating environmental risk factors on neurodegenerative diseases and the geographic approaches used to address them, we searched PubMed, Web of Science and Scopus for all scientific studies considering the following three domains: neurodegenerative disease, environmental atmospheric factor and geographical analysis, using the same keywords as in the previously published systematic review. From February 2020 to February 2023, 35 papers were included versus 34 in the previous period, with dementia (including Alzheimer's disease) being the most focused disease (60.0%) in this update, opposed to multiple sclerosis on the last review (55.9%). Also, environmental pollutants such as PM2.5 and NO2 have gained prominence, being represented in 65.7% and 42.9% of the new studies, opposed to 9.8% and 12.2% in the previous review, compared to environmental factors such as sun exposure (5.7% in the update vs 15.9% in the original). The mostly used geographic approach remained the patient's residence (82.9% in the update vs 21.2% in the original and 62.3% in total), and remote sensing was used in 45.7% of the new studies versus 19.7% in the original review, with 42.0% of studies using it globally, being the second most common approach, usually to compute the environmental variable. This review has been registered in PROSPERO with the number CRD42020196188.
Collapse
Affiliation(s)
- Mariana Oliveira
- Center for Health Technology and Services Research (CINTESIS@RISE), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, s/n, Porto, 4200-450, Portugal.
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa s/n, 4200-450, Porto, Portugal.
| | - André Padrão
- Floradata - Biodiversidade, Ambiente e Recursos Naturais Lda, Campo 24 de Agosto, 129 - Escritório 704, 4300-504, Porto, Portugal
| | - Ana Cláudia Teodoro
- Department of Geosciences, Environment and Land Planning, Faculty of Sciences, University of Porto, Rua Do Campo Alegre 687, 4169-007, Porto, Portugal
- Earth Sciences Institute (ICT), Pole of the FCUP, University of Porto, 4169-007, Porto, Portugal
| | - Alberto Freitas
- Center for Health Technology and Services Research (CINTESIS@RISE), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, s/n, Porto, 4200-450, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa s/n, 4200-450, Porto, Portugal
| | - Hernâni Gonçalves
- Center for Health Technology and Services Research (CINTESIS@RISE), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, s/n, Porto, 4200-450, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa s/n, 4200-450, Porto, Portugal
| |
Collapse
|
5
|
Lim EY, Kim GD. Particulate Matter-Induced Emerging Health Effects Associated with Oxidative Stress and Inflammation. Antioxidants (Basel) 2024; 13:1256. [PMID: 39456509 PMCID: PMC11505051 DOI: 10.3390/antiox13101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Environmental pollution continues to increase with industrial development and has become a threat to human health. Atmospheric particulate matter (PM) was designated as a Group 1 carcinogen by the International Agency for Research on Cancer in 2013 and is an emerging global environmental risk factor that is a major cause of death related to cardiovascular and respiratory diseases. PM is a complex composed of highly reactive organic matter, chemicals, and metal components, which mainly cause excessive production of reactive oxygen species (ROS) that can lead to DNA and cell damage, endoplasmic reticulum stress, inflammatory responses, atherosclerosis, and airway remodeling, contributing to an increased susceptibility to and the exacerbation of various diseases and infections. PM has various effects on human health depending on the particle size, physical and chemical characteristics, source, and exposure period. PM smaller than 5 μm can penetrate and accumulate in the alveoli and circulatory system, causing harmful effects on the respiratory system, cardiovascular system, skin, and brain. In this review, we describe the relationship and mechanism of ROS-mediated cell damage, oxidative stress, and inflammatory responses caused by PM and the health effects on major organs, as well as comprehensively discuss the harmfulness of PM.
Collapse
Affiliation(s)
| | - Gun-Dong Kim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea;
| |
Collapse
|
6
|
Liu X, Zhang X, Chang T, Zhao Z, Zhang Y, Yang X, Lu M. Causal relationships between genetically predicted particulate air pollutants and neurodegenerative diseases: A two-sample Mendelian randomization study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116960. [PMID: 39208585 DOI: 10.1016/j.ecoenv.2024.116960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/12/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Accumulating observational studies have linked particulate air pollutants to neurodegenerative diseases (NDDs). However, the causal links and the direction of their associations remain unclear. Therefore, we adopted a two-sample Mendelian randomization (TSMR) design using the GWAS-based genetic instruments of particulate air pollutants (PM2.5 and PM10) from the UK Biobank to explore their causal influence on four common neurodegenerative diseases. Estimates of causative relationships were generated by the Inverse variance weighted (IVW) method with multiple sensitive analyses. The heterogeneity and pleiotropy tests were additionally performed to verify whether our findings were robust. Genetically predicted PM2.5 and PM10 could elevate the occurrence of AD (odds ratio [OR] = 2.22, 95 % confidence interval [CI] 1.53-3.22, PIVW = 2.85×10-5, PFalsediscovery rate[FDR]= 2.85×10-4 and OR = 2.41, 95 % CI: 1.26-4.60, PIVW = 0.008, PFDR=0.039, respectively). The results were robust in sensitive analysis. However, no evidence of causality was found for other NDDs. Our present study suggests that PM2.5 and PM10 have a detrimental effect on AD, which indicates that improving air quality to prevent AD may have pivotal public health implications.
Collapse
Affiliation(s)
- Xinjie Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xuening Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Tongmin Chang
- Department of Epidemiology and Health Statistics, School of Public Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zengle Zhao
- Department of Epidemiology and Health Statistics, School of Public Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yuan Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaorong Yang
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, Shandong, China; Clinical Research Center of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Ming Lu
- Department of Epidemiology and Health Statistics, School of Public Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, Shandong, China; Clinical Research Center of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
7
|
Mohammadzadeh M, Khoshakhlagh AH, Grafman J. Air pollution: a latent key driving force of dementia. BMC Public Health 2024; 24:2370. [PMID: 39223534 PMCID: PMC11367863 DOI: 10.1186/s12889-024-19918-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
Many researchers have studied the role of air pollutants on cognitive function, changes in brain structure, and occurrence of dementia. Due to the wide range of studies and often contradictory results, the present systematic review was conducted to try and clarify the relationship between air pollutants and dementia. To identify studies for this review, a systematic search was conducted in Scopus, PubMed, and Web of Science databases (without historical restrictions) until May 22, 2023. The PECO statement was created to clarify the research question, and articles that did not meet the criteria of this statement were excluded. In this review, animal studies, laboratory studies, books, review articles, conference papers and letters to the editors were avoided. Also, studies focused on the effect of air pollutants on cellular and biochemical changes (without investigating dementia) were also excluded. A quality assessment was done according to the type of design of each article, using the checklist developed by the Joanna Briggs Institute (JBI). Finally, selected studies were reviewed and discussed in terms of Alzheimer's dementia and non-Alzheimer's dementia. We identified 14,924 articles through a systematic search in databases, and after comprehensive reviews, 53 articles were found to be eligible for inclusion in the current systematic review. The results showed that chronic exposure to higher levels of air pollutants was associated with adverse effects on cognitive abilities and the presence of dementia. Studies strongly supported the negative effects of PM2.5 and then NO2 on the brain and the development of neurodegenerative disorders in old age. Because the onset of brain structural changes due to dementia begins decades before the onset of disease symptoms, and that exposure to air pollution is considered a modifiable risk factor, taking preventive measures to reduce air pollution and introducing behavioral interventions to reduce people's exposure to pollutants is advisable.
Collapse
Affiliation(s)
- Mahdiyeh Mohammadzadeh
- Department of Health in Emergencies and Disasters, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Climate Change and Health Research Center (CCHRC), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Khoshakhlagh
- Department of Occupational Health Engineering, School of Health, Kashan University of Medical Sciences, Kashan, Iran.
| | - Jordan Grafman
- Department of Physical Medicine & Rehabilitation, Neurology, Cognitive Neurology and Alzheimer's Center, Department of Psychiatry, Feinberg School of Medicine & Department of Psychology, Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, USA
| |
Collapse
|
8
|
Qiang N, Bao Y, Li Y, Zhang N, Zhou Y, Deng X, Han L, Ran J. Associations of long-term exposure to low-level PM 2.5 and brain disorders in 260,922 middle-aged and older adults. CHEMOSPHERE 2024; 362:142703. [PMID: 38925519 DOI: 10.1016/j.chemosphere.2024.142703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/22/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Long-term exposure to high-level ambient PM2.5 was associated with increased risks of brain disorders, while the associations remain uncertain when the exposure is lower than current air quality standards in numerous countries. This study aimed to assess the effects of PM2.5 exposure on the brain system in the population with annual mean concentrations ≤15 μg/m3. We analyzed data from 260,922 participants without preexisting brain diseases at baseline in the UK Biobank. The geographical distribution of PM2.5 in 2010 was estimated by a land use regression model and linked with individual residential address. We investigated associations of ambient PM2.5 with incident neurological (dementia, Parkinson's diseases [PD], epilepsy, and migraine) and psychiatric (major depressive disorder [MDD] and anxiety disorder) diseases through Cox proportional hazard models. We further estimated the links with brain imaging phenotypes by neuroimaging analysis. Results showed that in the population with PM2.5 concentrations ≤15 μg/m3, each interquartile range (IQR, 1.28 μg/m3) increment in PM2.5 was related to incidence risks of dementia, epilepsy, migraine, MDD, and anxiety disorder with hazard ratios of 1.08 (95% confidence interval [CI]: 1.03, 1.13), 1.12 (1.05, 1.20), 1.07 (1.00, 1.13), 1.06 (1.03, 1.09), and 1.05 (1.02, 1.08), respectively. We did not observe a significant association with PD. The association with dementia was stronger among the population with poor cardiovascular health (measured by Life's Essential 8) than the counterpart (P for interaction = 0.037). Likewise, per IQR increase was associated with specific brain imaging phenotypes, including volumes of total brain (β = -0.036; 95% CI: -0.050, -0.022), white matter (-0.030; -0.046, -0.014), grey matter (-0.030; -0.042, -0.017), respectively. The findings suggest long-term exposure to ambient PM2.5 at low-level still has an adverse impact on the neuro-psychiatric systems. The brain-relevant epidemiological assessment suggests that each country should update the standard for ambient PM2.5 following the World Health Organization Air Quality Guidelines 2021.
Collapse
Affiliation(s)
- Ne Qiang
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yujia Bao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yongxuan Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Na Zhang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yanqiu Zhou
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaobei Deng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lefei Han
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jinjun Ran
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
9
|
Zhang T, Liu W, Yang T, Zhai Y, Gu X, Xu L, Li F, Wu M, Lin J. Association between ambient fine particular matter components and subsequent cognitive impairment in community-dwelling older people: a prospective cohort study from eastern China. Aging Clin Exp Res 2024; 36:150. [PMID: 39060791 PMCID: PMC11282123 DOI: 10.1007/s40520-024-02793-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/19/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Fine particular matter (PM2.5) has been associated with dementia, but limited information is available regarding the association between PM2.5 components and dementia. AIMS We aimed to identify the major components of PM2.5 that affect cognitive function to further investigate its mechanism of action, and develop a prevention strategy for dementia. METHODS In this study, we included 7804 participants aged ≥ 60 years recruited from seven counties in Zhejiang province, eastern China. The participants completed the baseline survey between 2014 and 2015, and were followed up until the end of 2020. We adopted single-component robust Poisson regression models for analyses, and estimated relative risks and 95% confidence intervals describing associations between the chemical constituents of PM2.5 exposure and incident cognitive impairment in those who were free from cognitive impairment at baseline. RESULTS Significantly positive associations were observed between sulfate, nitrate, ammonium, and organic matter in PM2.5 and incident cognitive impairment across different exposure periods; the relative risks of 10-year exposure before enrollment ranged from 1.01 to 1.02. However, we did not find a significant association between black carbon and cognitive impairment. The point estimates of the relative risk values did not change substantially after performing the sensitivity analyses. CONCLUSIONS Our findings strengthen the idea that long-term exposure to PM2.5 mass and its chemical components is associated with an elevated risk of incident cognitive impairment among older adults.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Public Health Surveillance and Advisory, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Wenfeng Liu
- Office, Changshan Center for Disease Control and Prevention, Quzhou, Zhejiang, China
| | - Tao Yang
- Office, Yuhang Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Yujia Zhai
- Department of Public Health Surveillance and Advisory, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Xue Gu
- Department of Public Health Surveillance and Advisory, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Le Xu
- Department of Public Health Surveillance and Advisory, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Fudong Li
- Department of Public Health Surveillance and Advisory, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Mengna Wu
- Department of Public Health Surveillance and Advisory, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Junfen Lin
- Department of Public Health Surveillance and Advisory, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Oudin A, Raza W, Flanagan E, Segersson D, Jalava P, Kanninen KM, Rönkkö T, Giugno R, Sandström T, Muala A, Topinka J, Sommar J. Exposure to source-specific air pollution in residential areas and its association with dementia incidence: a cohort study in Northern Sweden. Sci Rep 2024; 14:15521. [PMID: 38969679 PMCID: PMC11226641 DOI: 10.1038/s41598-024-66166-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 06/27/2024] [Indexed: 07/07/2024] Open
Abstract
The aim of this study was to investigate the relationship between source-specific ambient particulate air pollution concentrations and the incidence of dementia. The study encompassed 70,057 participants from the Västerbotten intervention program cohort in Northern Sweden with a median age of 40 years at baseline. High-resolution dispersion models were employed to estimate source-specific particulate matter (PM) concentrations, such as PM10 and PM2.5 from traffic, exhaust, and biomass (mainly wood) burning, at the residential addresses of each participant. Cox regression models, adjusted for potential confounding factors, were used for the assessment. Over 884,847 person-years of follow-up, 409 incident dementia cases, identified through national registers, were observed. The study population's average exposure to annual mean total PM10 and PM2.5 lag 1-5 years was 9.50 µg/m3 and 5.61 µg/m3, respectively. Increased risks were identified for PM10-Traffic (35% [95% CI 0-82%]) and PM2.5-Exhaust (33% [95% CI - 2 to 79%]) in the second exposure tertile for lag 1-5 years, although no such risks were observed in the third tertile. Interestingly, a negative association was observed between PM2.5-Wood burning and the risk of dementia. In summary, this register-based study did not conclusively establish a strong association between air pollution exposure and the incidence of dementia. While some evidence indicated elevated risks for PM10-Traffic and PM2.5-Exhaust, and conversely, a negative association for PM2.5-Wood burning, no clear exposure-response relationships were evident.
Collapse
Affiliation(s)
- Anna Oudin
- Department of Public Health and Clinical Medicine, Sustainable Health, Umeå University, Umeå, Sweden.
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| | - Wasif Raza
- Department of Public Health and Clinical Medicine, Sustainable Health, Umeå University, Umeå, Sweden
| | - Erin Flanagan
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - David Segersson
- Swedish Meteorological and Hydrological Institute, Norrköping, Sweden
| | - Pasi Jalava
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Topi Rönkkö
- Aerosol Physics Laboratory, Physics Unit, Tampere University, Tampere, Finland
| | - Rosalba Giugno
- Computer Science Department, University of Verona, Verona, Italy
| | - Thomas Sandström
- Division of Medicine/Respiratory Medicine, Department of Toxicology and Molecular Epidemiology, Umeå University, Umeå, Sweden
| | - Ala Muala
- Division of Medicine/Respiratory Medicine, Department of Toxicology and Molecular Epidemiology, Umeå University, Umeå, Sweden
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - Johan Sommar
- Department of Public Health and Clinical Medicine, Sustainable Health, Umeå University, Umeå, Sweden
| |
Collapse
|
11
|
Jäntti H, Jonk S, Gómez Budia M, Ohtonen S, Fagerlund I, Fazaludeen MF, Aakko-Saksa P, Pebay A, Lehtonen Š, Koistinaho J, Kanninen KM, Jalava PI, Malm T, Korhonen P. Particulate matter from car exhaust alters function of human iPSC-derived microglia. Part Fibre Toxicol 2024; 21:6. [PMID: 38360668 PMCID: PMC10870637 DOI: 10.1186/s12989-024-00564-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 01/25/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Air pollution is recognized as an emerging environmental risk factor for neurological diseases. Large-scale epidemiological studies associate traffic-related particulate matter (PM) with impaired cognitive functions and increased incidence of neurodegenerative diseases such as Alzheimer's disease. Inhaled components of PM may directly invade the brain via the olfactory route, or act through peripheral system responses resulting in inflammation and oxidative stress in the brain. Microglia are the immune cells of the brain implicated in the progression of neurodegenerative diseases. However, it remains unknown how PM affects live human microglia. RESULTS Here we show that two different PMs derived from exhausts of cars running on EN590 diesel or compressed natural gas (CNG) alter the function of human microglia-like cells in vitro. We exposed human induced pluripotent stem cell (iPSC)-derived microglia-like cells (iMGLs) to traffic related PMs and explored their functional responses. Lower concentrations of PMs ranging between 10 and 100 µg ml-1 increased microglial survival whereas higher concentrations became toxic over time. Both tested pollutants impaired microglial phagocytosis and increased secretion of a few proinflammatory cytokines with distinct patterns, compared to lipopolysaccharide induced responses. iMGLs showed pollutant dependent responses to production of reactive oxygen species (ROS) with CNG inducing and EN590 reducing ROS production. CONCLUSIONS Our study indicates that traffic-related air pollutants alter the function of human microglia and warrant further studies to determine whether these changes contribute to adverse effects in the brain and on cognition over time. This study demonstrates human iPSC-microglia as a valuable tool to study functional microglial responses to environmental agents.
Collapse
Affiliation(s)
- Henna Jäntti
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steffi Jonk
- Division of Eye and Vision, Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Mireia Gómez Budia
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sohvi Ohtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ilkka Fagerlund
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | | | - Alice Pebay
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Šárka Lehtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jari Koistinaho
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pasi I Jalava
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Paula Korhonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
12
|
Bachand AM, Dell LD. Can Incorrect Analysis of Time-Dependent Exposure Explain Associations between PM2.5 Exposure and Risk of Dementia? J Alzheimers Dis 2024; 97:1931-1937. [PMID: 38339933 DOI: 10.3233/jad-231046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Background Epidemiological studies have reported positive associations between long-term exposure to particulate matter of 2.5 microns or less in diameter (PM2.5) and risk of Alzheimer's disease and other clinical dementia. Many of these studies have analyzed data using Cox Proportional Hazards (PH) regression, which estimates a hazard ratio (HR) for the treatment (in this case, exposure) effect on the time-to-event outcome while adjusting for influential covariates. PM2.5 levels vary over time. As air quality standards for PM2.5 have become more stringent over time, average outdoor PM2.5 levels have decreased substantially. Objective Investigate whether a Cox PH analysis that does not properly account for exposure that varies over time could produce a biased HR of similar magnitude to the HRs reported in recent epidemiological studies of PM2.5 and dementia risk. Methods Simulation analysis. Results We found that the biased HR can affect statistical analyses that consider exposure levels at event times only, especially if PM2.5 levels decreased consistently over time. Furthermore, the direction of such bias is away from the null and of a magnitude that is consistent with the reported estimates of dementia risk in several epidemiological studies of PM2.5 exposure (HR≈1.2 to 2.0). Conclusions This bias can be avoided by correctly assigning exposure to study subjects throughout the entire follow-up period. We recommend that investigators provide a detailed description of how time-dependent exposure variables were accounted for in their Cox PH analyses when they report their results.
Collapse
|
13
|
Lee J, Weerasinghe-Mudiyanselage PDE, Kim B, Kang S, Kim JS, Moon C. Particulate matter exposure and neurodegenerative diseases: A comprehensive update on toxicity and mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115565. [PMID: 37832485 DOI: 10.1016/j.ecoenv.2023.115565] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/30/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
Exposure to particulate matter (PM) has been associated with a range of health impacts, including neurological abnormalities that affect neurodevelopment, neuroplasticity, and behavior. Recently, there has been growing interest in investigating the possible relationship between PM exposure and the onset and progression of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. However, the precise mechanism by which PM affects neurodegeneration is still unclear, even though several epidemiological and animal model studies have provided mechanistic insights. This article presents a review of the current research on the neurotoxicity of PM and its impact on neurodegenerative diseases. This review summarizes findings from epidemiological and animal model studies collected through searches in Google Scholar, PubMed, Web of Science, and Scopus. This review paper also discusses the reported effects of PM exposure on the central nervous system and highlights research gaps and future directions. The information presented in this review may inform public health policies aimed at reducing PM exposure and may contribute to the development of new treatments for neurodegenerative diseases. Further mechanistic and therapeutic research will be needed to fully understand the relationship between PM exposure and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jeongmin Lee
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Poornima D E Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Bohye Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
14
|
Zhang B, Langa KM, Weuve J, D’Souza J, Szpiro A, Faul J, Mendes de Leon C, Kaufman JD, Lisabeth L, Hirth RA, Adar SD. Hypertension and Stroke as Mediators of Air Pollution Exposure and Incident Dementia. JAMA Netw Open 2023; 6:e2333470. [PMID: 37728927 PMCID: PMC10512106 DOI: 10.1001/jamanetworkopen.2023.33470] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/04/2023] [Indexed: 09/22/2023] Open
Abstract
Importance Fine particulate matter air pollution (PM2.5) has been consistently associated with cardiovascular disease, which, in turn, is associated with an increased risk of dementia. As such, vascular dysfunction might be a mechanism by which PM2.5 mediates dementia risk, yet few prior epidemiological studies have examined this potential mechanism. Objective To investigate whether hypertension and stroke serve as mediators and modifiers of the association of PM2.5 with incident dementia. Design, Setting, and Participants As part of the Environmental Predictors of Cognitive Health and Aging (EPOCH) Project, this cohort study used biennial survey data collected between 1998 and 2016 from respondents of the Health and Retirement Study (HRS), a nationally representative, population-based, cohort in the US. Eligible participants were those over 50 years of age who were free of dementia at baseline and had complete exposure, mediator, outcome, and demographic data from the HRS. Data analysis was conducted from August to November 2022. Exposures Exposure to PM2.5, calculated for the 10 years preceding each person's baseline examination according to residential histories and spatiotemporal models. Main Outcomes and Measures Incident dementia was identified using a validated algorithm based on cognitive testing and informant reports. The 4-way decomposition causal mediation analysis method was used to quantify the degree to which hypertension and stroke mediated or modified the association of PM2.5 with incident dementia after adjustment for individual-level and area-level covariates. Results Among 27 857 participants (mean [SD] age at baseline, 61 [10] years; 15 747 female participants [56.5%]; 19 249 non-Hispanic White participants [69.1%]), 4105 (14.7%) developed dementia during the follow-up period (mean [SD], 10.2 [5.6] years). Among participants with dementia, 2204 (53.7%) had a history of hypertension at baseline and 386 (9.4%) received a diagnosis of hypertension during the follow up. A total of 378 participants (9.2%) had a history of stroke at baseline and 673 (16.4%) developed stroke over the follow-up period. The IQR of baseline PM2.5 concentrations was 10.9 to 14.9 μg/m3. In fully adjusted models, higher levels of PM2.5 (per IQR) were not associated with increased risk of incident dementia (HR, 1.04; 95% CI, 0.98 to 1.11). Although there were positive associations of prevalent stroke (HR, 1.67; 95% CI, 1.48 to 1.88) and hypertension (HR, 1.15; 95% CI, 1.08 to 1.23) with incident dementia compared with those free of stroke and hypertension during follow-up, there was no statistically significant association of PM2.5 with stroke (odds ratio per IQR increment in PM2.5, 1.08; 95%CI, 0.91 to 1.29) and no evidence of an association of PM2.5 with hypertension (odds ratio per IQR increment in PM2.5, 0.99; 95%CI, 0.92 to 1.07). Concordantly, there was no evidence that hypertension or stroke acted as mediators or modifiers of the association of PM2.5 with incident dementia. Although the nonmediated interaction between PM2.5 and hypertension accounted for 39.2% of the total excess association (95% CI, -138.5% to 216.9%), the findings were not statistically significant. Conclusions and Relevance These findings suggest that although hypertension may enhance the susceptibility of individuals to air pollution, hypertension and stroke do not significantly mediate or modify the association of PM2.5 with dementia, indicating the need to investigate other pathways and potential mediators of risk.
Collapse
Affiliation(s)
- Boya Zhang
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | - Kenneth M. Langa
- Institute for Social Research, University of Michigan, Ann Arbor
- University of Michigan Medical School, Ann Arbor
- Institute for Healthcare Policy and Innovation, University of Michigan, Ann Arbor
- Veterans Affairs Center for Clinical Management Research, Ann Arbor, Michigan
| | - Jennifer Weuve
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
| | - Jennifer D’Souza
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | - Adam Szpiro
- Department of Biostatistics, University of Washington, Seattle
| | - Jessica Faul
- Institute for Social Research, University of Michigan, Ann Arbor
| | | | - Joel D. Kaufman
- Department of Epidemiology, University of Washington, Seattle
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle
- Department of Medicine, University of Washington, Seattle
| | - Lynda Lisabeth
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | - Richard A. Hirth
- Department of Health Management and Policy, University of Michigan School of Public Health, Ann Arbor
- Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Sara D. Adar
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| |
Collapse
|
15
|
Shim JI, Byun G, Lee JTT. Long-term exposure to particulate matter and risk of Alzheimer's disease and vascular dementia in Korea: a national population-based Cohort Study. Environ Health 2023; 22:35. [PMID: 37060077 PMCID: PMC10105439 DOI: 10.1186/s12940-023-00986-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/29/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND The prevalence of age-related neurodegenerative diseases has risen in conjunction with an increase in life expectancy. Although there is emerging evidence that air pollution might accelerate or worsen dementia progression, studies on Asian regions remains limited. This study aimed to investigate the relationship between long-term exposure to PM10 and the risk of developing Alzheimer's disease and vascular dementia in the elderly population in South Korea. METHODS The baseline population was 1.4 million people aged 65 years and above who participated in at least one national health checkup program from the National Health Insurance Service between 2008 and 2009. A nationwide retrospective cohort study was designed, and patients were followed from the date of cohort entry (January 1, 2008) to the date of dementia occurrence, death, moving residence, or the end of the study period (December 31, 2019), whichever came first. Long-term average PM10 exposure variable was constructed from national monitoring data considering time-dependent exposure. Extended Cox proportional hazard models with time-varying exposure were used to estimate hazard ratios (HR) for Alzheimer's disease and vascular dementia. RESULTS A total of 1,436,361 participants were selected, of whom 167,988 were newly diagnosed with dementia (134,811 with Alzheimer's disease and 12,215 with vascular dementia). The results show that for every 10 µg/m3 increase in PM10, the HR was 0.99 (95% CI 0.98-1.00) for Alzheimer's disease and 1.05 (95% CI 1.02-1.08) for vascular dementia. Stratified analysis according to sex and age group showed that the risk of vascular dementia was higher in men and in those under 75 years of age. CONCLUSION The results found that long-term PM10 exposure was significantly associated with the risk of developing vascular dementia but not with Alzheimer's disease. These findings suggest that the mechanism behind the PM10-dementia relationship could be linked to vascular damage.
Collapse
Affiliation(s)
- Jung-Im Shim
- College of Health Science, Korea University, Seoul, 02841, Republic of Korea.
- Division of Healthcare Technology Assessment Research, National Evidence-based Healthcare Collaborating Agency, Seoul, 04933, Republic of Korea.
| | - Garam Byun
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, Korea
| | - Jong-Tae T Lee
- College of Health Science, Korea University, Seoul, 02841, Republic of Korea.
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
16
|
Wilker EH, Osman M, Weisskopf MG. Ambient air pollution and clinical dementia: systematic review and meta-analysis. BMJ 2023; 381:e071620. [PMID: 37019461 PMCID: PMC10498344 DOI: 10.1136/bmj-2022-071620] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 04/07/2023]
Abstract
OBJECTIVE To investigate the role of air pollutants in risk of dementia, considering differences by study factors that could influence findings. DESIGN Systematic review and meta-analysis. DATA SOURCES EMBASE, PubMed, Web of Science, Psycinfo, and OVID Medline from database inception through July 2022. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Studies that included adults (≥18 years), a longitudinal follow-up, considered US Environmental Protection Agency criteria air pollutants and proxies of traffic pollution, averaged exposure over a year or more, and reported associations between ambient pollutants and clinical dementia. Two authors independently extracted data using a predefined data extraction form and assessed risk of bias using the Risk of Bias In Non-randomised Studies of Exposures (ROBINS-E) tool. A meta-analysis with Knapp-Hartung standard errors was done when at least three studies for a given pollutant used comparable approaches. RESULTS 2080 records identified 51 studies for inclusion. Most studies were at high risk of bias, although in many cases bias was towards the null. 14 studies could be meta-analysed for particulate matter <2.5 µm in diameter (PM2.5). The overall hazard ratio per 2 μg/m3 PM2.5 was 1.04 (95% confidence interval 0.99 to 1.09). The hazard ratio among seven studies that used active case ascertainment was 1.42 (1.00 to 2.02) and among seven studies that used passive case ascertainment was 1.03 (0.98 to 1.07). The overall hazard ratio per 10 μg/m3 nitrogen dioxide was 1.02 ((0.98 to 1.06); nine studies) and per 10 μg/m3 nitrogen oxide was 1.05 ((0.98 to 1.13); five studies). Ozone had no clear association with dementia (hazard ratio per 5 μg/m3 was 1.00 (0.98 to 1.05); four studies). CONCLUSION PM2.5 might be a risk factor for dementia, as well as nitrogen dioxide and nitrogen oxide, although with more limited data. The meta-analysed hazard ratios are subject to limitations that require interpretation with caution. Outcome ascertainment approaches differ across studies and each exposure assessment approach likely is only a proxy for causally relevant exposure in relation to clinical dementia outcomes. Studies that evaluate critical periods of exposure and pollutants other than PM2.5, and studies that actively assess all participants for outcomes are needed. Nonetheless, our results can provide current best estimates for use in burden of disease and regulatory setting efforts. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42021277083.
Collapse
Affiliation(s)
- Elissa H Wilker
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
- Department of Environmental Heath, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Marwa Osman
- Department of Environmental Heath, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Marc G Weisskopf
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
- Department of Environmental Heath, Harvard TH Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
17
|
Gong Y, Zhang X, Zhao X, Chang H, Zhang J, Gao Z, Mi Y, Chen Y, Zhang H, Huang C, Yu Z. Global ambient particulate matter pollution and neurodegenerative disorders: a systematic review of literature and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39418-39430. [PMID: 36763275 DOI: 10.1007/s11356-023-25731-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
Previous studies on particulate matter (PM) exposure and neurodegenerative disorders showed inconsistent results, and few studies systematically examined the long-term effect of PM on neurodegenerative diseases, including all-cause dementia, Alzheimer's disease, Parkinson's disease, vascular dementia, amyotrophic lateral sclerosis, and cognitive function decline. We systematically searched for published studies in PubMed, Embase, Cochrane Library, and Web of Science up to October 31, 2022. To facilitate a comparison of effect sizes from different studies, we standardized units across studies to a 10 μg/m3 increase for PM. Heterogeneity was assessed by Cochran's Q test and I2 statistic. Publication bias was evaluated using funnel plots and Egger's tests. Subgroup analysis, meta-regression, and sensitivity analysis were performed. The protocol for this review was registered with PROSPERO (CRD42021277112). Of the 3403 originally identified studies, a meta-analysis was finally performed in 49 studies. The results showed that there was a significant positive association between long-term PM2.5 exposure and all-cause dementia, Alzheimer's disease as well as Parkinson's disease, with pooled OR of 1.30 (95%CI: 1.14, 1.47, I2 = 99.3%), 1.65 (95%CI: 1.37, 1.94, I2 = 98.2%), and 1.17 (95%CI: 1.00, 1.33, I2 = 91.8%). A positive association between PM10 and vascular dementia was observed (OR = 1.12, 95%CI: 1.04, 1.21, I2 = 0.0%). Association between PM exposure and decreased cognitive function score was found. Our results highlight the important role of PM pollution, particularly PM2.5, in the risk of age-related neurodegenerative diseases and cognitive function decline.
Collapse
Affiliation(s)
- Yuting Gong
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiaoan Zhang
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Zhao
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Chang
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junxi Zhang
- NHC Key Laboratory of Birth Defects Prevention & Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Zhan Gao
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Mi
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yao Chen
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huanhuan Zhang
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Zengli Yu
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China.,NHC Key Laboratory of Birth Defects Prevention & Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| |
Collapse
|
18
|
Semmens EO, Leary CS, Fitzpatrick AL, Ilango SD, Park C, Adam CE, DeKosky ST, Lopez O, Hajat A, Kaufman JD. Air pollution and dementia in older adults in the Ginkgo Evaluation of Memory Study. Alzheimers Dement 2023; 19:549-559. [PMID: 35436383 PMCID: PMC9576823 DOI: 10.1002/alz.12654] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Growing evidence implicates air pollution as a risk factor for dementia, but prior work is limited by challenges in diagnostic accuracy and assessing exposures in the decades prior to disease development. We evaluated the impact of long-term fine particulate matter (PM2.5 ) exposures on incident dementia (all-cause, Alzheimer's disease [AD], and vascular dementia [VaD]) in older adults. METHODS A panel of neurologists adjudicated dementia cases based on extensive neuropsychological testing and magnetic resonance imaging. We applied validated fine-scale air pollutant models to reconstructed residential histories to assess exposures. RESULTS An interquartile range increase in 20-year PM2.5 was associated with a 20% higher risk of dementia (95% confidence interval [CI]: 5%, 37%) and an increased risk of mixed VaD/AD but not AD alone. DISCUSSION Our findings suggest that air pollutant exposures over decades contribute to dementia and that effects of current exposures may be experienced years into the future.
Collapse
Affiliation(s)
- Erin O. Semmens
- Center for Population Health Research, School of Public and Community Health Sciences, University of Montana, Missoula, Montana, USA
| | - Cindy S. Leary
- Center for Population Health Research, School of Public and Community Health Sciences, University of Montana, Missoula, Montana, USA
| | - Annette L. Fitzpatrick
- Departments of Family Medicine and Global Health, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Sindana D. Ilango
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Christina Park
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Claire E. Adam
- Center for Population Health Research, School of Public and Community Health Sciences, University of Montana, Missoula, Montana, USA
| | - Steven T. DeKosky
- Department of Neurology and McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Oscar Lopez
- Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Anjum Hajat
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Joel D. Kaufman
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
- Departments of Environmental and Occupational Health Sciences and Medicine, School of Public Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
19
|
Abolhasani E, Hachinski V, Ghazaleh N, Azarpazhooh MR, Mokhber N, Martin J. Air Pollution and Incidence of Dementia: A Systematic Review and Meta-analysis. Neurology 2023; 100:e242-e254. [PMID: 36288998 DOI: 10.1212/wnl.0000000000201419] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 08/31/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Studies of association between air pollution and incidence of dementia have shown discrepant results. The aim of this study was to evaluate the association between air pollution and dementia. METHODS In this systematic review and meta-analysis, PubMed, MEDLINE, EMBASE, PsycINFO, Scopus, and Web of Science were searched and updated in August 2021. Population-based cohort studies that reported on hazard ratio (HR) of dementia in association with exposure to fine particulate matter (PM2·5), nitrogen oxides (NOX), nitrogen dioxide (NO2), or ozone (O3) in those aged >40 years were included. Data were extracted by 2 independent investigators. The main outcome was the pooled HR for dementia per increment of pollutant, calculated using a random-effects model. Results were reported in accordance with PRISMA guidelines. The protocol was registered in PROSPERO (registration number: CRD42020219036). RESULTS A total of 20 studies were included in the systematic review, and 17 provided data for the meta-analysis. The total included population was 91,391,296, with 5,521,111 (6%) being diagnosed with dementia. A total of 12, 5, 6, and 4 studies were included in the meta-analyses of PM2·5, NOX, NO2, and O3, respectively. The risk of dementia increased by 3% per 1 μg/m3 increment in PM2·5 (HR, 1.03; 95% CI [1.02-1.05]; I2 = 100%). The association between dementia per 10 μg/m3 increment in NOX (HR, 1.05; 95% CI [0.99-1.13]; I2 = 61%), NO2 (HR, 1.03; 95% CI [1.00-1.07]; I2 = 94%), and O3 levels (HR, 1.01; 95% CI [0.91-1.11]; I2 = 82%) was less clear, although a significant association could not be ruled out, and there was high heterogeneity across studies. DISCUSSION Existing evidence suggests a significant association between exposure to PM2·5 and incidence of dementia and nonsignificant association between dementia and NOX, NO2, and O3 exposure. However, results should be interpreted in light of the small number of studies and high heterogeneity of effects across studies.
Collapse
Affiliation(s)
- Ehsan Abolhasani
- From the Department of Epidemiology and Biostatistics (E.A., V.H., M.R.A., J.M), Clinical Neurological Sciences (V.H., M.R.A.), and Neuroscience Program (N.G.), Schulich School of Medicine and Dentistry, Western University, London, ON; Department of Psychiatry (N.M.), Schulich School of Medicine and Dentistry, University of Western Ontario, London; and Department of Anesthesia and Perioperative Medicine (J.M.), MEDICI Centre, Western University, London, ON, Canada
| | - Vladimir Hachinski
- From the Department of Epidemiology and Biostatistics (E.A., V.H., M.R.A., J.M), Clinical Neurological Sciences (V.H., M.R.A.), and Neuroscience Program (N.G.), Schulich School of Medicine and Dentistry, Western University, London, ON; Department of Psychiatry (N.M.), Schulich School of Medicine and Dentistry, University of Western Ontario, London; and Department of Anesthesia and Perioperative Medicine (J.M.), MEDICI Centre, Western University, London, ON, Canada
| | - Nargess Ghazaleh
- From the Department of Epidemiology and Biostatistics (E.A., V.H., M.R.A., J.M), Clinical Neurological Sciences (V.H., M.R.A.), and Neuroscience Program (N.G.), Schulich School of Medicine and Dentistry, Western University, London, ON; Department of Psychiatry (N.M.), Schulich School of Medicine and Dentistry, University of Western Ontario, London; and Department of Anesthesia and Perioperative Medicine (J.M.), MEDICI Centre, Western University, London, ON, Canada
| | - Mahmoud Reza Azarpazhooh
- From the Department of Epidemiology and Biostatistics (E.A., V.H., M.R.A., J.M), Clinical Neurological Sciences (V.H., M.R.A.), and Neuroscience Program (N.G.), Schulich School of Medicine and Dentistry, Western University, London, ON; Department of Psychiatry (N.M.), Schulich School of Medicine and Dentistry, University of Western Ontario, London; and Department of Anesthesia and Perioperative Medicine (J.M.), MEDICI Centre, Western University, London, ON, Canada
| | - Naghmeh Mokhber
- From the Department of Epidemiology and Biostatistics (E.A., V.H., M.R.A., J.M), Clinical Neurological Sciences (V.H., M.R.A.), and Neuroscience Program (N.G.), Schulich School of Medicine and Dentistry, Western University, London, ON; Department of Psychiatry (N.M.), Schulich School of Medicine and Dentistry, University of Western Ontario, London; and Department of Anesthesia and Perioperative Medicine (J.M.), MEDICI Centre, Western University, London, ON, Canada
| | - Janet Martin
- From the Department of Epidemiology and Biostatistics (E.A., V.H., M.R.A., J.M), Clinical Neurological Sciences (V.H., M.R.A.), and Neuroscience Program (N.G.), Schulich School of Medicine and Dentistry, Western University, London, ON; Department of Psychiatry (N.M.), Schulich School of Medicine and Dentistry, University of Western Ontario, London; and Department of Anesthesia and Perioperative Medicine (J.M.), MEDICI Centre, Western University, London, ON, Canada.
| |
Collapse
|
20
|
Castellani B, Bartington S, Wistow J, Heckels N, Ellison A, Van Tongeren M, Arnold SR, Barbrook-Johnson P, Bicket M, Pope FD, Russ TC, Clarke CL, Pirani M, Schwannauer M, Vieno M, Turnbull R, Gilbert N, Reis S. Mitigating the impact of air pollution on dementia and brain health: Setting the policy agenda. ENVIRONMENTAL RESEARCH 2022; 215:114362. [PMID: 36130664 DOI: 10.1016/j.envres.2022.114362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Emerging research suggests exposure to high levels of air pollution at critical points in the life-course is detrimental to brain health, including cognitive decline and dementia. Social determinants play a significant role, including socio-economic deprivation, environmental factors and heightened health and social inequalities. Policies have been proposed more generally, but their benefits for brain health have yet to be fully explored. OBJECTIVE AND METHODS Over the course of two years, we worked as a consortium of 20+ academics in a participatory and consensus method to develop the first policy agenda for mitigating air pollution's impact on brain health and dementia, including an umbrella review and engaging 11 stakeholder organisations. RESULTS We identified three policy domains and 14 priority areas. Research and Funding included: (1) embracing a complexities of place approach that (2) highlights vulnerable populations; (3) details the impact of ambient PM2.5 on brain health, including current and historical high-resolution exposure models; (4) emphasises the importance of indoor air pollution; (5) catalogues the multiple pathways to disease for brain health and dementia, including those most at risk; (6) embraces a life course perspective; and (7) radically rethinks funding. Education and Awareness included: (8) making this unrecognised public health issue known; (9) developing educational products; (10) attaching air pollution and brain health to existing strategies and campaigns; and (11) providing publicly available monitoring, assessment and screening tools. Policy Evaluation included: (12) conducting complex systems evaluation; (13) engaging in co-production; and (14) evaluating air quality policies for their brain health benefits. CONCLUSION Given the pressing issues of brain health, dementia and air pollution, setting a policy agenda is crucial. Policy needs to be matched by scientific evidence and appropriate guidelines, including bespoke strategies to optimise impact and mitigate unintended consequences. The agenda provided here is the first step toward such a plan.
Collapse
Affiliation(s)
- Brian Castellani
- Durham Research Methods Centre, Durham University, Stockton Road, Durham, DH1 3LE, United Kingdom; Centre for the Evaluation of Complexity Across the Nexus, University of Surrey, Guildford, GU2 7XH, United Kingdom; Wolfson Research Institute for Health and Wellbeing, Durham University, Stockton Road, DH1 3LE, United Kingdom; Department of Sociology, Durham University, Stockton Road, Durham, DH1 3LE, United Kingdom.
| | - Suzanne Bartington
- Institute of Applied Health Research, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Jonathan Wistow
- Wolfson Research Institute for Health and Wellbeing, Durham University, Stockton Road, DH1 3LE, United Kingdom; Department of Sociology, Durham University, Stockton Road, Durham, DH1 3LE, United Kingdom
| | - Neil Heckels
- Research and Innovation Services, Durham University, Stockton Road, Durham, DH1 3LE, United Kingdom
| | - Amanda Ellison
- Wolfson Research Institute for Health and Wellbeing, Durham University, Stockton Road, DH1 3LE, United Kingdom; Department of Psychology, Durham University, Stockton Road, Durham, DH1 3LE, United Kingdom
| | - Martie Van Tongeren
- Centre for Occupational and Environmental Health, School of Health Sciences, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Steve R Arnold
- School of Earth & Environment, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Pete Barbrook-Johnson
- Centre for the Evaluation of Complexity Across the Nexus, University of Surrey, Guildford, GU2 7XH, United Kingdom; Environmental Change Institute, School of Geography and the Environment, University of Oxford, United Kingdom
| | - Martha Bicket
- Centre for the Evaluation of Complexity Across the Nexus, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Francis D Pope
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Tom C Russ
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, United Kingdom; Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom
| | - Charlotte L Clarke
- Department of Sociology, Durham University, Stockton Road, Durham, DH1 3LE, United Kingdom; School of Health in Social Science, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, United Kingdom
| | - Monica Pirani
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, Norfolk Place, W2 1PG, London, United Kingdom
| | - Matthias Schwannauer
- School of Health in Social Science, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, United Kingdom
| | - Massimo Vieno
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian, EH26 0QB, United Kingdom
| | - Rachel Turnbull
- Academic Health Sciences Network, North East and North Cumbria, Nuns' Moor Road, Newcastle Upon Tyne NE4 5PL, United Kingdom
| | - Nigel Gilbert
- Centre for the Evaluation of Complexity Across the Nexus, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Stefan Reis
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian, EH26 0QB, United Kingdom; University of Exeter Medical School, European Centre for Environment and Health, Knowledge Spa, Truro, TR1 3HD, United Kingdom; The University of Edinburgh, School of Chemistry, Level 3, Murchison House, 10 Max Born Crescent, The King's Buildings, West Mains Road, Edinburgh, EH9 3BF, United Kingdom
| |
Collapse
|
21
|
Trevenen ML, Heyworth J, Almeida OP, Yeap BB, Hankey GJ, Golledge J, Etherton-Beer C, Robinson S, Nieuwenhuijsen MJ, Flicker L. Ambient air pollution and risk of incident dementia in older men living in a region with relatively low concentrations of pollutants: The Health in Men Study. ENVIRONMENTAL RESEARCH 2022; 215:114349. [PMID: 36116491 DOI: 10.1016/j.envres.2022.114349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND In areas with moderate to severe air pollution, pollutant concentrations are associated with dementia risk. It is unclear whether the same relationship is present in regions with lower ambient air pollution. OBJECTIVE To determine whether exposure to air pollution is associated with risk of incident dementia in general, and Alzheimer's disease and vascular dementia in particular, in older men living in a relatively low ambient air pollution region. METHODS The cohort comprised 11,243 men residing in Perth, Australia. Participants were aged ≥65 years and free of a dementia diagnosis at time of recruitment in 1996-1999. Incident dementia was identified from recruitment to 2018 via ICD diagnosis codes and subsequent study waves. Concentrations for three air pollutants, nitrogen dioxide (NO2), fine particulate matter less than 2.5 μm in diameter (PM2.5), and black carbon (BC) were estimated at participants' home addresses using land-use regression models. We used Cox proportional hazards regression models adjusting for smoking status, physical activity, BMI, education, and socio-economic status. RESULTS Of 3053 (27.2%) incident cases of dementia, 1670 (54.7%) and 355 (11.6%) had documented Alzheimer's disease and vascular dementia. The average concentration of NO2 was 13.5 (SD 4.4) μg/m3, of PM2.5 was 4.54 (SD 1.6) μg/m3 and of BC was 0.97 (SD 0.29) ×10-5 m-1. None of the air pollutants were associated with incident dementia or Alzheimer's disease. In the unadjusted model, increased exposure to PM2.5 was associated with an increased risk of vascular dementia (for a 5 μg/m3 increase: HR 1.62, 95% CI 1.13, 2.31). However, this association was attenuated following adjustment for confounders (HR 1.39, 95% CI 0.93, 2.08). NO2 and BC were not associated with vascular dementia incidence. DISCUSSION Exposure to air pollution is not associated with increased risk of incident dementia in older men living in a region with relatively low ambient air pollution.
Collapse
Affiliation(s)
- Michelle L Trevenen
- Western Australian Centre for Health and Ageing, University of Western Australia, Perth, Western Australia, Australia.
| | - Jane Heyworth
- School of Population and Global Health, University of Western Australia, Perth, Western Australia, Australia
| | - Osvaldo P Almeida
- Western Australian Centre for Health and Ageing, University of Western Australia, Perth, Western Australia, Australia
| | - Bu B Yeap
- Medical School, University of Western Australia, Perth, Western Australia, Australia; Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Graeme J Hankey
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, James Cook University and Townsville University Hospital, Townsville, Queensland, Australia
| | - Christopher Etherton-Beer
- Western Australian Centre for Health and Ageing, University of Western Australia, Perth, Western Australia, Australia
| | - Suzanne Robinson
- School of Population Health, Curtin University, Perth, Western Australia, Australia
| | | | - Leon Flicker
- Western Australian Centre for Health and Ageing, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
22
|
Wood D, Evangelopoulos D, Beevers S, Kitwiroon N, Katsouyanni K. Exposure to Ambient Air Pollution and the Incidence of Dementia in the Elderly of England: The ELSA Cohort. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15889. [PMID: 36497970 PMCID: PMC9736331 DOI: 10.3390/ijerph192315889] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Increasing evidence suggests an adverse association between ambient air pollution and the incidence of dementia in adult populations, although results at present are mixed and further work is required. The present study investigated the relationships between NO2, PM10, PM2.5 and ozone on dementia incidence in a cohort of English residents, aged 50 years and older, followed up between 2004 and 2017 (English Longitudinal Study of Ageing; n = 8525). Cox proportional hazards models were applied to investigate the association between time to incident dementia and exposure to pollutants at baseline. Hazard ratios (HRs) were calculated per 10 μg/m3. Models were adjusted for age, gender, physical activity, smoking status and level of education (the latter as a sensitivity analysis). A total of 389 dementia cases were identified during follow-up. An increased risk of developing dementia was suggested with increasing exposure to PM2.5 (HR: 1.10; 95% confidence interval (CI): 0.88, 1.37), whilst NO2, PM10 and ozone exhibited no discernible relationships. Hazard ratios were 0.97 (CI: 0.89, 1.05) for NO2; 0.98 (CI: 0.89, 1.08) for PM10; 1.01 (CI: 0.94, 1.09) for ozone. In the London sub-sample (39 dementia cases), a 10 μg/m3 increase in PM10 was found to be associated with increased risk of dementia by 16%, although not statistically significant (HR: 1.16; CI: 0.90, 1.48), and the magnitude of effect for PM2.5 increased, whilst NO2 and ozone exhibited similar associations as observed in the England-wide study. Further work is required to fully elucidate the potentially adverse associations between air pollution exposure and dementia incidence.
Collapse
Affiliation(s)
- Dylan Wood
- Environmental Research Group, School of Public Health, Imperial College, London W12 0BZ, UK
- MRC Centre for Environment and Health, Imperial College, London W12 0BZ, UK
- NIHR HPRU in Environmental Exposures and Health, Imperial College, London W12 0BZ, UK
| | - Dimitris Evangelopoulos
- Environmental Research Group, School of Public Health, Imperial College, London W12 0BZ, UK
- MRC Centre for Environment and Health, Imperial College, London W12 0BZ, UK
- NIHR HPRU in Environmental Exposures and Health, Imperial College, London W12 0BZ, UK
| | - Sean Beevers
- Environmental Research Group, School of Public Health, Imperial College, London W12 0BZ, UK
- MRC Centre for Environment and Health, Imperial College, London W12 0BZ, UK
- NIHR HPRU in Environmental Exposures and Health, Imperial College, London W12 0BZ, UK
| | - Nutthida Kitwiroon
- Environmental Research Group, School of Public Health, Imperial College, London W12 0BZ, UK
- MRC Centre for Environment and Health, Imperial College, London W12 0BZ, UK
- NIHR HPRU in Environmental Exposures and Health, Imperial College, London W12 0BZ, UK
| | - Klea Katsouyanni
- Environmental Research Group, School of Public Health, Imperial College, London W12 0BZ, UK
- MRC Centre for Environment and Health, Imperial College, London W12 0BZ, UK
- NIHR HPRU in Environmental Exposures and Health, Imperial College, London W12 0BZ, UK
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
23
|
Long-term particulate matter 2.5 exposure and dementia: a systematic review and meta-analysis. Public Health 2022; 212:33-41. [DOI: 10.1016/j.puhe.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/26/2022] [Accepted: 08/16/2022] [Indexed: 11/11/2022]
|
24
|
Yan YH, Chen TB, Yang CP, Tsai IJ, Yu HL, Wu YS, Huang WJ, Tseng ST, Peng TY, Chou EP. Long-term exposure to particulate matter was associated with increased dementia risk using both traditional approaches and novel machine learning methods. Sci Rep 2022; 12:17130. [PMID: 36224306 PMCID: PMC9556552 DOI: 10.1038/s41598-022-22100-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/10/2022] [Indexed: 02/05/2023] Open
Abstract
Air pollution exposure has been linked to various diseases, including dementia. However, a novel method for investigating the associations between air pollution exposure and disease is lacking. The objective of this study was to investigate whether long-term exposure to ambient particulate air pollution increases dementia risk using both the traditional Cox model approach and a novel machine learning (ML) with random forest (RF) method. We used health data from a national population-based cohort in Taiwan from 2000 to 2017. We collected the following ambient air pollution data from the Taiwan Environmental Protection Administration (EPA): fine particulate matter (PM2.5) and gaseous pollutants, including sulfur dioxide (SO2), carbon monoxide (CO), ozone (O3), nitrogen oxide (NOx), nitric oxide (NO), and nitrogen dioxide (NO2). Spatiotemporal-estimated air quality data calculated based on a geostatistical approach, namely, the Bayesian maximum entropy method, were collected. Each subject's residential county and township were reviewed monthly and linked to air quality data based on the corresponding township and month of the year for each subject. The Cox model approach and the ML with RF method were used. Increasing the concentration of PM2.5 by one interquartile range (IQR) increased the risk of dementia by approximately 5% (HR = 1.05 with 95% CI = 1.04-1.05). The comparison of the performance of the extended Cox model approach with the RF method showed that the prediction accuracy was approximately 0.7 by the RF method, but the AUC was lower than that of the Cox model approach. This national cohort study over an 18-year period provides supporting evidence that long-term particulate air pollution exposure is associated with increased dementia risk in Taiwan. The ML with RF method appears to be an acceptable approach for exploring associations between air pollutant exposure and disease.
Collapse
Affiliation(s)
- Yuan-Horng Yan
- grid.415517.30000 0004 0572 8068Department of Endocrinology and Metabolism, Kuang Tien General Hospital, Taichung, Taiwan ,grid.415517.30000 0004 0572 8068Department of Medical Research, Kuang Tien General Hospital, Taichung, Taiwan ,grid.411432.10000 0004 1770 3722Institute of Biomedical Nutrition, Hungkuang University, Taichung, Taiwan
| | - Ting-Bin Chen
- grid.410764.00000 0004 0573 0731Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan ,grid.411432.10000 0004 1770 3722Department of Applied Cosmetology, Hungkuang University, Taichung, Taiwan
| | - Chun-Pai Yang
- grid.415517.30000 0004 0572 8068Department of Medical Research, Kuang Tien General Hospital, Taichung, Taiwan ,grid.411432.10000 0004 1770 3722Institute of Biomedical Nutrition, Hungkuang University, Taichung, Taiwan ,grid.415517.30000 0004 0572 8068Department of Neurology, Kuang Tien General Hospital, Taichung, Taiwan
| | - I-Ju Tsai
- grid.415517.30000 0004 0572 8068Department of Medical Research, Kuang Tien General Hospital, Taichung, Taiwan
| | - Hwa-Lung Yu
- grid.19188.390000 0004 0546 0241Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| | - Yuh-Shen Wu
- grid.411432.10000 0004 1770 3722Department of Safety, Health, and Environmental Engineering, Hungkuang University, Taichung, Taiwan
| | - Winn-Jung Huang
- grid.411432.10000 0004 1770 3722Department of Safety, Health, and Environmental Engineering, Hungkuang University, Taichung, Taiwan
| | - Shih-Ting Tseng
- grid.415517.30000 0004 0572 8068Division of Endocrinology and Metabolism, Department of Internal Medicine, Kuang Tien General Hospital, Taichung, Taiwan ,Jenteh Junior College of Medicine, Nursing and Management, Miaoli County, Taiwan
| | - Tzu-Yu Peng
- grid.412042.10000 0001 2106 6277Department of Statistics, National Chengchi University, No. 64, Sec. 2, Zhinan Rd., Wenshan Dist., Taipei City, 116 Taiwan
| | - Elizabeth P. Chou
- grid.412042.10000 0001 2106 6277Department of Statistics, National Chengchi University, No. 64, Sec. 2, Zhinan Rd., Wenshan Dist., Taipei City, 116 Taiwan
| |
Collapse
|
25
|
Cristaldi A, Fiore M, Oliveri Conti G, Pulvirenti E, Favara C, Grasso A, Copat C, Ferrante M. Possible association between PM 2.5 and neurodegenerative diseases: A systematic review. ENVIRONMENTAL RESEARCH 2022; 208:112581. [PMID: 34979121 DOI: 10.1016/j.envres.2021.112581] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Air pollution is one of the most serious environmental problems that afflict our planet and one of the greatest risk factors for human health. In particular, PM2.5 is able to cross the blood-alveolar and blood-brain barriers, thus increasing the onset of respiratory, cardiovascular and neurodegenerative diseases. Neurodegenerative disease is a progressive neuronal dysfunction that leads to neuronal lesions in both structure and function, and includes several diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), vascular dementia (VaD), multiple sclerosis (MS), and others. We carried out a systematic review using PRISMA approach to investigate on the possible association between exposure to PM2.5 and neurodegenerative diseases. The international databases (PubMed, Science Direct, Web of Sciences) were used to find published studies on the topic. The search period was between January 2011 and June 2021. About 2000 full research articles were selected, and finally, we included 20 full-research articles. Selected studies have highlighted how PM2.5 exposure can be associated with the onset of neurodegenerative diseases (AD, PD, MS, VaD). This association depends not only on age, PM2.5 levels and exposure time, but also on exposure to other air pollutants, proximity to areas with high vehicular traffic, and the presence of comorbidities. Exposure to PM2.5 promotes neuroinflammation processes, because through breathing the particles can reach the nasal epithelial mucosa and transferred to the brain through the olfactory bulb. Furthermore, exposure to PM2.5 has been associated with an increased expression of markers of neurodegenerative diseases (e.g. alpha-synuclein or beta-amyloid), which can contribute to the etiopathogenesis of neurodegenerative diseases. Although many studies have revealed the pathological relationship between PM2.5 exposure and cognitive impairment, the potential cellular and molecular mechanisms of PM2.5 leading to neurodegenerative disease remain not entirely clear, and then, further studies need to be carried out on the topic.
Collapse
Affiliation(s)
- Antonio Cristaldi
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy
| | - Maria Fiore
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy
| | - Gea Oliveri Conti
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy.
| | - Eloise Pulvirenti
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy
| | - Claudia Favara
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy
| | - Alfina Grasso
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy
| | - Chiara Copat
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy
| | - Margherita Ferrante
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy
| |
Collapse
|
26
|
Kim YT, Kim W, Bae MJ, Choi JE, Kim MJ, Oh SS, Park KS, Park S, Lee SK, Koh SB, Kim C. The effect of polycyclic aromatic hydrocarbons on changes in the brain structure of firefighters: An analysis using data from the Firefighters Research on Enhancement of Safety & Health study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151655. [PMID: 34785224 DOI: 10.1016/j.scitotenv.2021.151655] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/17/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are formed during incomplete combustion of organic matter, and firefighters are highly exposed to these toxic compounds at fire sites. Exposure to PAHs can cause cognitive decline and neurodegeneration; however, to date, few studies have examined the potential effects of PAH exposure on structural changes in the brain. We aimed to investigate the association between the four types of PAH metabolites and the corresponding changes in neuroimaging markers based on smoking status and hypertension in male firefighters. For this, we utilized the 2-year follow-up data of 301 Korean male firefighters aged over 40 years. The concentrations of four PAH metabolites in urine were measured. Subcortical volume and cortical thickness were estimated using 3 T magnetic resonance imaging of the brain. A generalized linear model was used to investigate the effects of PAHs on changes in the subcortical volume and cortical thickness. We found an association between 1-hydroxyphenathrene (1-OHPHE) and 2-hydroxyfluorene (2-OHF) and changes in several brain regions in all the study participants. Individuals who had never smoked showed significantly thinner frontal (p < 0.001), parietal (p < 0.001), temporal (p < 0.001), and cingulate lobes (p < 0.001) with 1% increase each in the urinary concentration of 1-OHPHE. Hypertension interacted with the concentration of 1-OHPHE to reduce the volume of gray matter and cause cortical thinning in the frontal, parietal, and temporal lobes. Exposure to PAHs may reduce cortical thickness and subcortical volume, which are definitive markers of neurodegeneration. Notably, hypertension can accelerate the degenerative effects of PAHs.
Collapse
Affiliation(s)
- Yun Tae Kim
- Department of Public Health, Yonsei University, Seoul, Republic of Korea
| | - Woojin Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mun-Joo Bae
- Department of Occupational and Environmental Health, Yonsei University Graduate School of Public Health, Seoul, Republic of Korea
| | - Jee Eun Choi
- Department of Public Health, Yonsei University, Seoul, Republic of Korea
| | - Mi-Ji Kim
- Department of Preventive Medicine and Institute of Health Science, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Sung Soo Oh
- Department of Occupational and Environmental Medicine, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea
| | - Ki Soo Park
- Department of Preventive Medicine and Institute of Health Science, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Sungha Park
- Division of Cardiology, Yonsei Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung-Koo Lee
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang-Baek Koh
- Department of Preventive Medicine, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea
| | - Changsoo Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Institute of Human Complexity and Systems Science, Yonsei University, Incheon, Republic of Korea.
| |
Collapse
|
27
|
Balboni E, Filippini T, Crous-Bou M, Guxens M, Erickson LD, Vinceti M. The association between air pollutants and hippocampal volume from magnetic resonance imaging: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2022; 204:111976. [PMID: 34478724 DOI: 10.1016/j.envres.2021.111976] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/31/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Growing epidemiological evidence suggests that air pollution may increase the risk of cognitive decline and neurodegenerative disease. A hallmark of neurodegeneration and an important diagnostic biomarker is volume reduction of a key brain structure, the hippocampus. We aimed to investigate the possibility that outdoor air nitrogen dioxide (NO2) and particulate matter with diameter ≤2.5 μm (PM2.5) and ≤10 μm (PM10) adversely affect hippocampal volume, through a meta-analysis. We considered studies that assessed the relation between outdoor air pollution and hippocampal volume by structural magnetic resonance imaging in adults and children, searching in Pubmed and Scopus databases from inception through July 13, 2021. For inclusion, studies had to report the correlation coefficient along with its standard error or 95% confidence interval (CI) between air pollutant exposure and hippocampal volume, to use standard space for neuroimages, and to consider at least age, sex and intracranial volume as covariates or effect modifiers. We meta-analyzed the data with a random-effects model, considering separately adult and child populations. We retrieved four eligible studies in adults and two in children. In adults, the pooled summary β regression coefficients of the association of PM2.5, PM10 and NO2 with hippocampal volume showed respectively a stronger association (summary β -7.59, 95% CI -14.08 to -1.11), a weaker association (summary β -2.02, 95% CI -4.50 to 0.47), and no association (summary β -0.44, 95% CI -1.27 to 0.40). The two studies available for children, both carried out in preadolescents, did not show an association between PM2.5 and hippocampal volume. The inverse association between PM2.5 and hippocampal volume in adults appeared to be stronger at higher mean PM2.5 levels. Our results suggest that outdoor PM2.5 and less strongly PM10 could adversely affect hippocampal volume in adults, a phenomenon that may explain why air pollution has been related to memory loss, cognitive decline, and dementia.
Collapse
Affiliation(s)
- Erica Balboni
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN); Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Medical Physics Unit, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Tommaso Filippini
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN); Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marta Crous-Bou
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO) - Bellvitge Biomedical Research Institute (IDIBELL). L'Hospitalet de Llobregat, Barcelona, Spain; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Mònica Guxens
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health, Instituto de Salud Carlos III, Madrid, Spain; Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Lance D Erickson
- Department of Sociology, Brigham Young University, Provo, UT, USA
| | - Marco Vinceti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN); Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
| |
Collapse
|
28
|
Choi G, Kim Y, Shin G, Bae S. Projecting Lifetime Health Outcomes and Costs Associated with the Ambient Fine Particulate Matter Exposure among Adult Women in Korea. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:2494. [PMID: 35270187 PMCID: PMC8909340 DOI: 10.3390/ijerph19052494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/03/2022] [Accepted: 02/17/2022] [Indexed: 02/05/2023]
Abstract
We sought to estimate the lifetime healthcare costs and outcomes associated with the exposure to the escalated concentration of fine particulate matter (particle size < 2.5 μm, PM2.5) among adult Korean women. We adapted a previously developed Markov model, and a hypothetical cohort composed of Korean women was exposed to either a standard (15 μg/m3) or increased (25 μg/m3) concentration of PM2.5. The time horizon of the analysis was 60 years, and the cycle length was 1 year. The outcomes were presented as direct healthcare costs and quality-adjusted life years (QALYs), and costs were discounted annually at 5%. Deterministic and probabilistic sensitivity analyses were performed. The model estimated that when the exposure concentration was increased by 10 μg/m3, the lifetime healthcare cost increased by USD 9309, which is an 11.3% increase compared to the standard concentration group. Women exposed to a higher concentration of PM2.5 were predicted to live 30.64 QALYs, compared to 32.08 QALYs for women who were exposed to the standard concentration of PM2.5. The tendency of a higher cost and shorter QALYs at increased exposure was consistent across a broad range of sensitivity analyses. The negative impact of PM2.5 was higher on cost than on QALYs and accelerated as the exposure time increased, emphasizing the importance of early intervention.
Collapse
Affiliation(s)
- Gyeyoung Choi
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea; (G.C.); (Y.K.); (G.S.)
| | - Yujeong Kim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea; (G.C.); (Y.K.); (G.S.)
- Korean Health Insurance Review & Assessment Service, Wonju 26465, Korea
| | - Gyeongseon Shin
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea; (G.C.); (Y.K.); (G.S.)
| | - SeungJin Bae
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea; (G.C.); (Y.K.); (G.S.)
| |
Collapse
|
29
|
Wang X, Younan D, Millstein J, Petkus AJ, Garcia E, Beavers DP, Espeland MA, Chui HC, Resnick SM, Gatz M, Kaufman JD, Wellenius GA, Whitsel EA, Manson JE, Rapp SR, Chen JC. Association of improved air quality with lower dementia risk in older women. Proc Natl Acad Sci U S A 2022; 119:e2107833119. [PMID: 34983871 PMCID: PMC8764698 DOI: 10.1073/pnas.2107833119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2021] [Indexed: 12/24/2022] Open
Abstract
Late-life ambient air pollution is a risk factor for brain aging, but it remains unknown if improved air quality (AQ) lowers dementia risk. We studied a geographically diverse cohort of older women dementia free at baseline in 2008 to 2012 (n = 2,239, aged 74 to 92). Incident dementia was centrally adjudicated annually. Yearly mean concentrations of fine particulate matter (PM2.5) and nitrogen dioxide (NO2) were estimated using regionalized national universal kriging models and averaged over the 3-y period before baseline (recent exposure) and 10 y earlier (remote exposure). Reduction from remote to recent exposures was used as the indicator of improved AQ. Cox proportional hazard ratios (HRs) for dementia risk associated with AQ measures were estimated, adjusting for sociodemographic, lifestyle, and clinical characteristics. We identified 398 dementia cases during follow up (median = 6.1 y). PM2.5 and NO2 reduced significantly over the 10 y before baseline. Larger AQ improvement was associated with reduced dementia risks (HRPM2.5 0.80 per 1.78 μg/m3, 95% CI 0.71-0.91; HRNO2 0.80 per 3.91 parts per billion, 95% CI 0.71-0.90), equivalent to the lower risk observed in women 2.4 y younger at baseline. Higher PM2.5 at baseline was associated with higher dementia risk (HRPM2.5 1.16 per 2.90 μg/m3, 95% CI 0.98-1.38), but the lower dementia risk associated with improved AQ remained after further adjusting for recent exposure. The observed associations did not substantially differ by age, education, geographic region, Apolipoprotein E e4 genotypes, or cardiovascular risk factors. Long-term AQ improvement in late life was associated with lower dementia risk in older women.
Collapse
Affiliation(s)
- Xinhui Wang
- Department of Neurology, University of Southern California, Los Angeles, CA 90033
| | - Diana Younan
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA 90032;
| | - Joshua Millstein
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA 90032
| | - Andrew J Petkus
- Department of Neurology, University of Southern California, Los Angeles, CA 90033
| | - Erika Garcia
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA 90032
| | - Daniel P Beavers
- Department of Biostatistics and Data Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Mark A Espeland
- Department of Biostatistics and Data Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Helena C Chui
- Department of Neurology, University of Southern California, Los Angeles, CA 90033
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224
| | - Margaret Gatz
- Center for Economic and Social Research, University of Southern California, Los Angeles, CA 90089
| | - Joel D Kaufman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195
- Department of Medicine, University of Washington, Seattle, WA 98195
- Department of Epidemiology, University of Washington, Seattle, WA 98195
| | | | - Eric A Whitsel
- Department of Epidemiology, UNC Gillings School of Global Public Health, Chapel Hill, NC 27599
- Department of Medicine, UNC School of Medicine, Chapel Hill, NC 27516
| | - JoAnn E Manson
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Stephen R Rapp
- Department of Psychiatry and Behavioral Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157
- Department of Social Sciences and Health Policy, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Jiu-Chiuan Chen
- Department of Neurology, University of Southern California, Los Angeles, CA 90033;
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA 90032
| |
Collapse
|
30
|
Beutel M, Möhler T. Lärm und Luftverschmutzung: Ihr Einfluss auf psychische Erkrankungen. AKTUELLE KARDIOLOGIE 2021. [DOI: 10.1055/a-1546-7419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
ZusammenfassungImmer mehr Studien belegen die Einflüsse von Lärm und Luftverschmutzung als bedeutsame Umweltrisikofaktoren für kardiovaskuläre Erkrankungen. Weniger gut geklärt ist, wie diese Faktoren die psychische Gesundheit beeinflussen. Aktuelle Studienergebnisse zeigen, dass Umgebungslärm (vor allem Verkehrslärm) und verschiedene Bestandteile von Luftverschmutzung (vor allem Feinstaub) das Risiko für psychische Erkrankungen, insbesondere Depressionen und Angststörungen, erhöhen können. Pathophysiologische Mechanismen umfassen das enge Zusammenspiel von biologischen (wie oxidativem Stress und Inflammation) und psychosozialen Faktoren (wie mentalem Stress, subjektive Lärmbelästigung und -sensitivität). Umweltrisikofaktoren wie Lärm- und Luftverschmutzung können einen signifikanten Einfluss auf die psychische Gesundheit ausüben. Aufgrund der teils heterogenen Studienergebnisse und der limitierten Verfügbarkeit von methodisch hochwertigen Längsschnittstudien sind zwingend weitere
Untersuchungen notwendig, um die zugrunde liegenden Mechanismen zu verstehen und präventive Maßnahmen abzuleiten.
Collapse
Affiliation(s)
- Manfred Beutel
- Klinik und Poliklinik für psychosomatische Medizin und Psychotherapie, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Mainz, Deutschland
| | - Tobias Möhler
- Klinik und Poliklinik für psychosomatische Medizin und Psychotherapie, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Mainz, Deutschland
| |
Collapse
|
31
|
Zhang M, Wang Y, Wong RMS, Yung KKL, Li R. Fine particulate matter induces endoplasmic reticulum stress-mediated apoptosis in human SH-SY5Y cells. Neurotoxicology 2021; 88:187-195. [PMID: 34813867 DOI: 10.1016/j.neuro.2021.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 02/08/2023]
Abstract
Exposure to ambient fine particulate matter (PM2.5) may contribute to brain injury, however, the molecular mechanisms have not yet been fully described. In this study, the human SH-SY5Y cells were treated with PM2.5 with different concentrations (0, 25, 100, and 250 μg/mL) for 24 h to investigate the cell apoptosis mediated by endoplasmic reticulum (ER) stress. The ratio of apoptosis, Ca2+ level, biomarkers of ER stress and apoptosis were determined. The results revealed that PM2.5 triggered the increase of apoptosis ratio and cellular Ca2+ levels. Compared with control, the expression of GRP78 and phosphorylation of IER1α and p38 were enhanced significantly in the cells under the conditions of PM2.5 exposure for activating ER stress signals. Besides, the key genes (CHOP/DR5/Caspase8/Caspase12) in ER stress-induced apoptosis signals were up-regulated after the PM2.5 treatment compared to the control. The results suggested PM2.5 induced apoptosis in SH-SY5Y cells by the stimulation of ER stress, which may be the potential mechanism of neurological diseases incurred by PM2.5.
Collapse
Affiliation(s)
- Mei Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, PR China
| | - Ying Wang
- Institute of Environmental Science, Shanxi University, Taiyuan, PR China
| | - Ricky M S Wong
- Institute of Environmental Science, Shanxi University, Taiyuan, PR China; Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Ken Kin Lam Yung
- Institute of Environmental Science, Shanxi University, Taiyuan, PR China; Department of Biology, Hong Kong Baptist University, Hong Kong, China; Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong, China.
| | - Ruijin Li
- Institute of Environmental Science, Shanxi University, Taiyuan, PR China.
| |
Collapse
|
32
|
Liao G, Lee PMY, Zhao S, Ho WM, Lam AT, Lee MK, Poon PKM, Ng SSM, Li W, He Y, Wang F, Wong SYS, Ng CF, Tse LA. Joint effect between bisphenol A and alcohol consumption on benign prostatic hyperplasia: A case-control study in Hong Kong Chinese males. Prostate 2021; 81:1214-1224. [PMID: 34464465 DOI: 10.1002/pros.24217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/08/2021] [Accepted: 08/13/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND Whether bisphenol A (BPA) exposure is a contributing factor to benign prostatic hyperplasia (BPH) remains unclear. This study evaluated the association between chronic BPA exposure and BPH risk, and explored whether this association was modified by alcohol drinking. METHODS This study included a total of 650 BPH cases and 650 controls recruited from the same hospital in Hong Kong during 2011-2016. Chronic BPA exposure level was estimated by a validated cumulative BPA exposure index (CBPAI). We performed unconditional logistic regression model to examine the association of BPH risk with potential sources of BPA exposure via oral intake and CBPAI. We further tested the interactions between CBPAI and alcohol consumption habits on BPH risk. RESULTS A positive exposure-response relationship was observed between CBPAI and BPH risk. Frequent BPA exposure via oral intake of foods heated in a plastic box/bag (odds ratio [OR] = 3.52, 95% confidence interval [CI]: 1.51-8.22), cooling water in a plastic bottle (OR = 2.65, 95% CI: 1.33-5.27), or using a plastic cup to contain hot water (OR = 4.14, 95% CI: 1.02-16.89), was significantly associated with increased BPH risk. Compared with nonalcohol drinkers, alcohol drinkers was insignificantly associated with BPH risk (OR = 1.10, 95% CI: 0.77-1.57), but it demonstrated a more remarkable positive gradient between CBPAI exposure and BPH risk among alcohol drinkers, indicating an additive interaction between CBPAI and alcohol on BPH risk (synergy index = 4.24, 95% CI: 1.21-14.94). CONCLUSIONS Chronic oral BPA exposure increased BPH risk with a positive exposure-response relationship among Hong Kong Chinese, and alcohol drinking amplified the effect of BPA on BPH. Hence, minimizations of containing food or water/beverage in plastic containers and drinking alcohol are recommended in the community to mitigate BPH risk. Future larger and designated studies are warranted.
Collapse
Affiliation(s)
- Gengze Liao
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Priscilla M Y Lee
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shi Zhao
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
- CUHK Shenzhen Research Institute, Shenzhen, China
| | - Wing Ming Ho
- Department of Clinical Oncology, Prince of Wales Hospital, Hong Kong SAR, China
| | - Augustine T Lam
- Family Medicine Training Centre, Prince of Wales Hospital, Hong Kong SAR, China
| | - Man Kei Lee
- Family Medicine Training Centre, Prince of Wales Hospital, Hong Kong SAR, China
| | - Paul K M Poon
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Simon S M Ng
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wentao Li
- Department of Obstetrics and Gynecology, Monash University, Melbourne, Australia
| | - Yonghua He
- School of Public Health, Guilin Medical College, Guangxi Province, China
| | - Feng Wang
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Samuel Y S Wong
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chi Fai Ng
- Department of Surgery, SH Ho Urology Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lap Ah Tse
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
- CUHK Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
33
|
Weuve J, Bennett EE, Ranker L, Gianattasio KZ, Pedde M, Adar SD, Yanosky JD, Power MC. Exposure to Air Pollution in Relation to Risk of Dementia and Related Outcomes: An Updated Systematic Review of the Epidemiological Literature. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:96001. [PMID: 34558969 PMCID: PMC8462495 DOI: 10.1289/ehp8716] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Dementia is a devastating neurologic condition that is common in older adults. We previously reviewed the epidemiological evidence examining the hypothesis that long-term exposure to air pollution affects dementia risk. Since then, the evidence base has expanded rapidly. OBJECTIVES With this update, we collectively review new and previously identified epidemiological studies on air pollution and late-life cognitive health, highlighting new developments and critically discussing the merits of the evidence. METHODS Using a registered protocol (PROSPERO 2020 CRD42020152943), we updated our literature review to capture studies published through 31 December 2020, extracted data, and conducted a bias assessment. RESULTS We identified 66 papers (49 new) for inclusion in this review. Cognitive level remained the most commonly considered outcome, and particulate matter (PM) remained the most commonly considered air pollutant. Since our prior review, exposure estimation methods in this research have improved, and more papers have looked at cognitive change, neuroimaging, and incident cognitive impairment/dementia, though methodological concerns remain common. Many studies continue to rely on administrative records to ascertain dementia, have high potential for selection bias, and adjust for putative mediating factors in primary models. A subset of 35 studies met strict quality criteria. Although high-quality studies of fine particulate matter with aerodynamic diameter ≤ 2.5 μ m (PM 2.5 ) and cognitive decline generally supported an adverse association, other findings related to PM 2.5 and findings related to particulate matter with aerodynamic diameter ≤ 10 μ m (PM 10 , NO 2 , and NO x ) were inconclusive, and too few papers reported findings with ozone to comment on the likely direction of association. Notably, only a few findings on dementia were included for consideration on the basis of quality criteria. DISCUSSION Strong conclusions remain elusive, although the weight of the evidence suggests an adverse association between PM 2.5 and cognitive decline. However, we note a continued need to confront methodological challenges in this line of research. https://doi.org/10.1289/EHP8716.
Collapse
Affiliation(s)
- Jennifer Weuve
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Erin E. Bennett
- Department of Epidemiology, The George Washington University Milken Institute School of Public Health, Washington, DC, USA
| | - Lynsie Ranker
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Kan Z. Gianattasio
- Department of Epidemiology, The George Washington University Milken Institute School of Public Health, Washington, DC, USA
| | - Meredith Pedde
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Sara D. Adar
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Jeff D. Yanosky
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Melinda C. Power
- Department of Epidemiology, The George Washington University Milken Institute School of Public Health, Washington, DC, USA
| |
Collapse
|
34
|
Activation of Endogenous Retrovirus, Brain Infections and Environmental Insults in Neurodegeneration and Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22147263. [PMID: 34298881 PMCID: PMC8303979 DOI: 10.3390/ijms22147263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/29/2021] [Accepted: 07/03/2021] [Indexed: 12/18/2022] Open
Abstract
Chronic neurodegenerative diseases are complex, and their pathogenesis is uncertain. Alzheimer’s disease (AD) is a neurodegenerative brain alteration that is responsible for most dementia cases in the elderly. AD etiology is still uncertain; however, chronic neuroinflammation is a constant component of brain pathology. Infections have been associated with several neurological diseases and viruses of the Herpes family appear to be a probable cause of AD neurodegenerative alterations. Several different factors may contribute to the AD clinical progression. Exogeneous viruses or other microbes and environmental pollutants may directly induce neurodegeneration by activating brain inflammation. In this paper, we suggest that exogeneous brain insults may also activate retrotransposons and silent human endogenous retroviruses (HERVs). The initial inflammation of small brain areas induced by virus infections or other brain insults may activate HERV dis-regulation that contributes to neurodegenerative mechanisms. Chronic HERV activation in turn may cause progressive neurodegeneration that thereafter merges in cognitive impairment and dementia in genetically susceptible people. Specific treatment for exogenous end endogenous pathogens and decreasing pollutant exposure may show beneficial effect in early intervention protocol to prevent the progression of cognitive deterioration in the elderly.
Collapse
|
35
|
The joint association of physical activity and fine particulate matter exposure with incident dementia in elderly Hong Kong residents. ENVIRONMENT INTERNATIONAL 2021; 156:106645. [PMID: 34015665 DOI: 10.1016/j.envint.2021.106645] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 04/13/2021] [Accepted: 05/12/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The evidence for the beneficial effects of physical activity (PA) and potentially detrimental effects of long-term exposure to fine particulate matter (PM2.5) on neurodegeneration diseases is accumulating. However, their joint effects remain unclear. We evaluated joint associations of habitual PA and PM2.5 exposure with incident dementia in a longitudinal elderly cohort in Hong Kong. METHODS A total of 57,775 elderly participants (≥65 years) without dementia were enrolled during 1998-2001 and followed up till 2011. Their information on PA and other relevant covariates were collected at baseline (1998-2001) by a standard self-administered questionnaire, including PA volumes (high, moderate, low, and inactive) and types (aerobic exercise, traditional Chinese exercise, stretching exercise, walking slowly, and no exercise). Their annual mean PM2.5 exposures at the residential address were estimated using a satellite-based spatiotemporal model. We then adopted the Cox proportional hazards model to examine the joint associations with the incidence of all-cause dementia, Alzheimer's diseases, and vascular dementia on additive and multiplicative scales. RESULTS During the follow-up period, we identified 1,157 incident cases of dementia, including 642 cases of Alzheimer's disease and 324 cases of vascular dementia. A higher PA level was associated with a lower risk of incident all-cause dementia (hazard ratio (HR) for the high-PA volume was 0.59 (95% CI, 0.47, 0.75), as compared with the inactive-PA), whereas a high level of PM2.5 was related to the higher risk with an HR of 1.15 (95%CI: 1.00, 1.33) compared with the low-level of PM2.5. No clear evidence was observed of interaction between habitual PA (volume and type) and PM2.5 inhalation to incident dementia on either additive or multiplicative scale. CONCLUSION Habitual PA and long-term PM2.5 exposure were oppositely related to incident dementia in the Hong Kong aged population. The benefits of PA remain in people irrespective of exposure to air pollution.
Collapse
|
36
|
Petkus AJ, Younan D, Wang X, Beavers DP, Espeland MA, Gatz M, Gruenewald T, Kaufman JD, Chui HC, Millstein J, Rapp SR, Manson JE, Resnick SM, Wellenius GA, Whitsel EA, Widaman K, Chen JC. Associations Between Air Pollution Exposure and Empirically Derived Profiles of Cognitive Performance in Older Women. J Alzheimers Dis 2021; 84:1691-1707. [PMID: 34744078 PMCID: PMC9057084 DOI: 10.3233/jad-210518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Elucidating associations between exposures to ambient air pollutants and profiles of cognitive performance may provide insight into neurotoxic effects on the aging brain. OBJECTIVE We examined associations between empirically derived profiles of cognitive performance and residential concentrations of particulate matter of aerodynamic diameter < 2.5 (PM2.5) and nitrogen dioxide (NO2) in older women. METHOD Women (N = 2,142) from the Women's Health Initiative Study of Cognitive Aging completed a neuropsychological assessment measuring attention, visuospatial, language, and episodic memory abilities. Average yearly concentrations of PM2.5 and NO2 were estimated at the participant's addresses for the 3 years prior to the assessment. Latent profile structural equation models identified subgroups of women exhibiting similar profiles across tests. Multinomial regressions examined associations between exposures and latent profile classification, controlling for covariates. RESULT Five latent profiles were identified: low performance across multiple domains (poor multi-domain; n = 282;13%), relatively poor verbal episodic memory (poor memory; n = 216; 10%), average performance across all domains (average multi-domain; n = 974; 45%), superior memory (n = 381; 18%), and superior attention (n = 332; 15%). Using women with average cognitive ability as the referent, higher PM2.5 (per interquartile range [IQR] = 3.64μg/m3) was associated with greater odds of being classified in the poor memory (OR = 1.29; 95% Confidence Interval [CI] = 1.10-1.52) or superior attention (OR = 1.30; 95% CI = 1.10-1.53) profiles. NO2 (per IQR = 9.86 ppb) was associated with higher odds of being classified in the poor memory (OR = 1.38; 95% CI = 1.17-1.63) and lower odds of being classified with superior memory (OR = 0.81; 95% CI = 0.67-0.97). CONCLUSION Exposure to PM2.5 and NO2 are associated with patterns of cognitive performance characterized by worse verbal episodic memory relative to performance in other domains.
Collapse
Affiliation(s)
- Andrew J Petkus
- University of Southern California, Department of Neurology, Los Angeles, CA, USA
| | - Diana Younan
- University of Southern California, Department of Population and Public Health Sciences, Los Angeles, CA, USA
| | - Xinhui Wang
- University of Southern California, Department of Neurology, Los Angeles, CA, USA
| | - Daniel P Beavers
- Wake Forest School of Medicine, Department of Biostatistics, Winston-Salem, NC, USA
| | - Mark A Espeland
- Wake Forest School of Medicine, Department of Biostatistics, Winston-Salem, NC, USA
| | - Margaret Gatz
- University of Southern California, Center for Economic and Social Research, Los Angeles, CA, USA
| | - Tara Gruenewald
- Chapman University, Department of Psychology, Orange, CA, USA
| | - Joel D Kaufman
- University of Washington, Department of Environmental and Occupational Health Sciences, Seattle, WA, USA
| | - Helena C Chui
- University of Southern California, Department of Neurology, Los Angeles, CA, USA
| | - Joshua Millstein
- University of Southern California, Department of Population and Public Health Sciences, Los Angeles, CA, USA
| | - Stephen R Rapp
- Wake Forest School of Medicine, Department of Psychiatry and Behavioral Medicine, Winston-Salem, NC, USA
| | - JoAnn E Manson
- Harvard Medical School, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Susan M Resnick
- National Institute on Aging, Laboratory of Behavioral Neuroscience, Baltimore, MD, USA
| | - Gregory A Wellenius
- Boston University, Boston, Department of Environmental Health, Boston, MA, USA
| | - Eric A Whitsel
- University of North Carolina, Departments of Epidemiology and Medicine, Chapel Hill, NC, USA
| | - Keith Widaman
- University of California, Riverside, Graduate School of Education, Riverside, CA, USA
| | - Jiu-Chiuan Chen
- University of Southern California, Department of Neurology, Los Angeles, CA, USA
- University of Southern California, Department of Population and Public Health Sciences, Los Angeles, CA, USA
| |
Collapse
|