1
|
Portugal MCS, Altafim GL, de Jesus SB, Alves AV, Rojas LAV, Zanardi-Lamardo E, Castro IB, Gallucci F, Choueri RB. Toxicity of PAHs-enriched sediments on meiobenthic communities under ocean warming and CO 2-driven acidification scenarios. MARINE POLLUTION BULLETIN 2025; 212:117489. [PMID: 39729829 DOI: 10.1016/j.marpolbul.2024.117489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
This study aimed to assess the interactive effects of CO2-driven acidification, temperature rise, and PAHs toxicity on meiobenthic communities. Laboratory microcosms were established in a full factorial experimental design, manipulating temperature (25 °C and 27 °C), pH (8.1 and 7.6), and PAH contamination (acenaphthene + benzo(a)pyrene spiked sediments and negative control). Temperature rise and CO2-driven acidification led to a decrease in the densities of Copepoda. The density of nematodes Pseudochromadora and Daptonema also decreased, while Sphaerotheristus and Sabatieria densities increased, particularly in the absence of CO2-driven acidification. Ostracoda densities increased in the acidified scenario. PAH contamination resulted in decreased Daptonema densities but increased Turbellaria and certain Nematoda genera (e.g. Pseudochromadora). Overall, the results indicate that the changes of meiobenthic communities caused by CO2 acidification, warming, and PAH contamination are shaped by the vulnerability and tolerance of each taxonomic group, alongside indirect effects observed in Nematoda assemblages.
Collapse
Affiliation(s)
| | - Giam Luca Altafim
- Instituto do Mar, Universidade Federal de São Paulo (IMar-Unifesp), Santos, SP, Brazil
| | - Simone Brito de Jesus
- Instituto do Mar, Universidade Federal de São Paulo (IMar-Unifesp), Santos, SP, Brazil
| | - Aline Vecchio Alves
- Instituto do Mar, Universidade Federal de São Paulo (IMar-Unifesp), Santos, SP, Brazil
| | - Lino Angel Valcárcel Rojas
- Laboratório de Compostos Orgânicos em Ecossistemas Costeiros e Marinhos (OrganoMAR) - Departamento de Oceanografia, Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil
| | - Eliete Zanardi-Lamardo
- Laboratório de Compostos Orgânicos em Ecossistemas Costeiros e Marinhos (OrganoMAR) - Departamento de Oceanografia, Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil
| | - Italo Braga Castro
- Instituto do Mar, Universidade Federal de São Paulo (IMar-Unifesp), Santos, SP, Brazil
| | - Fabiane Gallucci
- Instituto do Mar, Universidade Federal de São Paulo (IMar-Unifesp), Santos, SP, Brazil
| | | |
Collapse
|
2
|
de Santana DCN, Moreira LB, Cruz ACF, Perina FC, Lourenço RA, Abessa DMDS. Chemical Composition and Toxicity of Water-Soluble Fractions of Oil Samples from the Extensive Spill in Northeast Brazil. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 114:4. [PMID: 39633073 DOI: 10.1007/s00128-024-03985-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
This study evaluated the effects of water-soluble fractions (WSF) of stranded oil sampled from the beaches of Trancoso and Massarandupió (Bahia, Brazil) following a mysterious oil spill along Brazil's northeast coast (2019-2020). The samples were characterized for aliphatic hydrocarbons (AHs) and polycyclic aromatic hydrocarbons (PAHs) and tested for chronic toxicity in the embryo-larval stages of the sea urchin Echinometra lucunter. The WSFs contained high levels of PAHs, some of which were above the acceptable levels for water in Brazil, and toxicity to sea urchin embryos tended to occur at higher concentrations.
Collapse
Affiliation(s)
- Debora Cristina Nascimento de Santana
- Núcleo de Estudos em Poluição e Ecotoxicologia Aquática (NEPEA), Câmpus do Litoral Paulista da Universidade Estadual Paulista (UNESP), São Vicente, SP, Brazil
| | - Lucas Buruaem Moreira
- Núcleo de Estudos em Poluição e Ecotoxicologia Aquática (NEPEA), Câmpus do Litoral Paulista da Universidade Estadual Paulista (UNESP), São Vicente, SP, Brazil
- Instituto do Mar, Universidade Federal de São Paulo (IMar/UNIFESP), Santos, SP, Brazil
| | - Ana Carolina Feitosa Cruz
- Núcleo de Estudos em Poluição e Ecotoxicologia Aquática (NEPEA), Câmpus do Litoral Paulista da Universidade Estadual Paulista (UNESP), São Vicente, SP, Brazil
| | - Fernando Cesar Perina
- Centro de Estudos do Ambiente e do Mar (CESAM) e Departamento de Biologia, Universidade de Aveiro, Aveiro, Portugal
| | | | - Denis Moledo de Souza Abessa
- Núcleo de Estudos em Poluição e Ecotoxicologia Aquática (NEPEA), Câmpus do Litoral Paulista da Universidade Estadual Paulista (UNESP), São Vicente, SP, Brazil.
- Instituto de Biociências, São Paulo State University, UNESP. Praça Infante Dom Henrique, s/n, São Vicente, SP, 11330-900, Brazil.
| |
Collapse
|
3
|
Rios AS, Yogui GT, Müller MN, Almeida AO, Souza-Filho JF. Impact of dissolved/dispersed oil from a spill event on the development of embryos of the snapping shrimp Alpheus estuariensis (Caridea: Alpheidae). MARINE POLLUTION BULLETIN 2024; 209:117164. [PMID: 39461175 DOI: 10.1016/j.marpolbul.2024.117164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024]
Abstract
This study characterized polycyclic aromatic hydrocarbons (PAHs) in oil pellets stranded at Fernando de Noronha Archipelago, equatorial Atlantic. It also characterized PAHs dissolved/dispersed in seawater (i.e. water accommodated fraction - WAF) and used them for investigating toxic effects on embryos of the snapping shrimp Alpheus estuariensis. In the experiment, WAF was diluted to six concentrations - 0 %, 20 %, 40 %, 60 %, 80 % and 100 %. A total of 28 embryonated eggs were exposed to each dilution for 7 days under controlled conditions. Daily, four embryos from each treatment were removed for a detailed examination. Among the 16 priority PAHs, 12 of them were detected in the samples. There was a statistically significant correlation concerning embryo mortality over time across all dilutions, except for the control (0 % WAF). It can be concluded that embryo development is affected by increasing WAF concentration and exposure time. These results demonstrate that WAF directly affects larval development and cause significant mortality after one day of exposure.
Collapse
Affiliation(s)
- Aline Santos Rios
- Department of Oceanography, Center of Technology and Geosciences, Federal University of Pernambuco, Recife - PE, 50740-550, Brazil; Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Centro de Biociências, Federal University of Pernambuco, Recife - PE, 50740-550, Brazil.
| | - Gilvan Takeshi Yogui
- Department of Oceanography, Center of Technology and Geosciences, Federal University of Pernambuco, Recife - PE, 50740-550, Brazil
| | - Marius Nils Müller
- Department of Oceanography, Center of Technology and Geosciences, Federal University of Pernambuco, Recife - PE, 50740-550, Brazil
| | - Alexandre Oliveira Almeida
- Department of Oceanography, Center of Technology and Geosciences, Federal University of Pernambuco, Recife - PE, 50740-550, Brazil; Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Centro de Biociências, Federal University of Pernambuco, Recife - PE, 50740-550, Brazil
| | - Jesser F Souza-Filho
- Department of Oceanography, Center of Technology and Geosciences, Federal University of Pernambuco, Recife - PE, 50740-550, Brazil
| |
Collapse
|
4
|
Menezes N, Nascimento MM, Cruz I, Martinez ST, da Rocha GO, Souza Filho JR, Leão ZMNA, de Andrade JB. Polycyclic aromatic hydrocarbons in coral reefs from Southwestern Atlantic: A seascape approach using tissue and skeleton of the coral Montastraea cavernosa (Cnidaria; Scleractinia). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175913. [PMID: 39226965 DOI: 10.1016/j.scitotenv.2024.175913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Coastal marine ecosystems, such as coral reefs, are severely threatened by climate changes, overexploitation, and marine pollution. Particularly, environmental pollution caused by petroleum-derived substances is poorly studied in coral reefs in tropical developing countries, with a total absence of data about these contaminants in some regions. In this work, we determined the levels of conventional and unconventional PAHs in the tissue and skeleton of the coral Montastraea cavernosa in a seascape scale of the Southwest Atlantic. We sampled in 12 coral reefs adjacent to the coast along approximately 200 km. We found 14 PAHs, 2 Oxy-PAHs, and 15 Nitro-PAHs in the samples, and among them, benzo[a]pyrene, chrysene, benzo[a]anthracene, benzo[k]fluoranthene, indeno[1,2,3-c,d]pyrene and dibenz[a,h]anthracene, which are mutagenic, teratogenic and carcinogenic substances. Skeletons presented predominantly lower quantities of ∑PAHs than the respective tissue, except for the skeletons from one reef severely impacted by oil spills. The ∑PAHs levels were lower in a bay near an urbanized region than in open sea reefs. Diagnostic ratios indicate mixogenic sources, with the predominance of petrogenic origin. Our study provides the first occurrence of PAHs, Nitro-PAHs, and Oxy-PAHs distribution in corals from the Southwest Atlantic Ocean, and we expect that these data will help to evaluate any future impacts and management of this ecosystem.
Collapse
Affiliation(s)
- Natália Menezes
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Centro Interdisciplinar em Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Centro Universitário SENAI-CIMATEC, 41650-110, Salvador, BA, Brazil.
| | - Madson Moreira Nascimento
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Centro Interdisciplinar em Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Centro Universitário SENAI-CIMATEC, 41650-110, Salvador, BA, Brazil
| | - Igor Cruz
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Laboratory of Biological Oceanography, Department of Oceanography, Institute of Geosciences, Federal University of Bahia (UFBA), Barão de Jeremoabo Street, Ondina, Salvador 40210-340, Bahia, Brazil
| | | | - Gisele O da Rocha
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Centro Interdisciplinar em Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Instituto de Química, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil
| | - José R Souza Filho
- Instituto Federal de Educação, Ciência e Tecnologia Baiano, Campus Catu, Departamento de Ciências Humanas, Rua Barão de Camaçari, n° 118, Barão de Camaçari, 48110-000 Catu, Bahia, Brazil
| | - Zelinda M N A Leão
- Laboratory of Coral Reefs and Global Changes-RECOR, Institute of Geosciences, Federal University of Bahia (UFBA), Barão de Jeremoabo Street, Ondina, Salvador 40210-340, Bahia, Brazil
| | - Jailson B de Andrade
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Centro Interdisciplinar em Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Centro Universitário SENAI-CIMATEC, 41650-110, Salvador, BA, Brazil
| |
Collapse
|
5
|
Melo Alves MKD, Mariz CF, Melo TJBD, Alves RN, Valcarcel LA, Zanardi-Lamardo E, Feitosa JLL, Carvalho PSM. Oil spill impact on Brazilian coral reefs based on seawater polycyclic aromatic hydrocarbon contamination, biliary fluorescence and enzymatic biomarkers in damselfish Stegastes fuscus (Teleostei, Pomacentridae). MARINE POLLUTION BULLETIN 2024; 208:116958. [PMID: 39288671 DOI: 10.1016/j.marpolbul.2024.116958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
The crude oil contamination along the Brazilian Northeast coast significantly impacted reef ecosystems. This study assessed polycyclic aromatic hydrocarbons (PAHs) in seawater, fluorescence of bile PAHs, and biochemical biomarkers in damselfish Stegastes fuscus across four coral reef areas pre- and post-oil contamination. Serrambi (SE) and Japaratinga (JP1) were identified as suitable reference areas. PAH concentrations significantly increased in water post-contamination, predominantly 2 to 3 ring parent and alkylated PAHs. Biliary PAHs naphthalene, phenanthrene, chrysene, pyrene and benzo(a)pyrene increased on Paiva post-spill versus pre-spill to 173 %, 449 %, 334 %, 331 % and 131 %, respectively. Significant increases in ethoxy-resorufin-O-deethylase (EROD) (852 %), catalase (CAT) (139 %) and decrease in lipid peroxidation (LPO) (40 %) and acetylcholinesterase (AChE) (75 %) were verified in Paiva samples. Biliary PAHs and biochemical biomarkers were altered in S. fuscus after exposure to PAHs dissolved from the oil. Stegastes fuscus emerges as a promising sentinel organism for coastal reef oil pollution monitoring.
Collapse
Affiliation(s)
- Maria Karolaine de Melo Alves
- Programa de Pós-Graduação em Biologia Animal, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Brazil
| | - Célio Freire Mariz
- Programa de Pós-Graduação em Biologia Animal, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Brazil
| | - Thalita Joana Bezerra de Melo
- Programa de Pós-Graduação em Biologia Animal, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Brazil
| | - Romulo Nepomuceno Alves
- Programa de Pós-Graduação em Biologia Animal, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Brazil
| | - Lino A Valcarcel
- Departamento de Oceanografia, Universidade Federal de Pernambuco, Av. Arquitetura s/n, Cidade Universitária, Recife 50740-550, Brazil
| | - Eliete Zanardi-Lamardo
- Departamento de Oceanografia, Universidade Federal de Pernambuco, Av. Arquitetura s/n, Cidade Universitária, Recife 50740-550, Brazil
| | - João Lucas Leão Feitosa
- Programa de Pós-Graduação em Biologia Animal, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Brazil
| | - Paulo S M Carvalho
- Programa de Pós-Graduação em Biologia Animal, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Brazil.
| |
Collapse
|
6
|
Mariz CF, Nascimento JVG, Morais BS, Alves MKM, Rojas LAV, Zanardi-Lamardo E, Carvalho PSM. Toxicity of the oil spilled on the Brazilian coast at different degrees of natural weathering to early life stages of the zebrafish Danio rerio. MARINE POLLUTION BULLETIN 2024; 207:116819. [PMID: 39182410 DOI: 10.1016/j.marpolbul.2024.116819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/07/2024] [Accepted: 08/03/2024] [Indexed: 08/27/2024]
Abstract
Toxicity of water accommodated fractions (WAF) from the oil spilled on the Brazilian coast at different stages of weathering were investigated using Danio rerio. Weathering stages included emulsified oil that reached the coast (OM) and oil collected 50 days later deposited on beach sand (OS) or adhered to shore rocks (OR). Parent and alkylated naphthalenes decreased whereas phenanthrenes increased from less weathered WAF-OM to more weathered WAF-OS and WAF-OR. More weathered WAF-OS and WAF-OR were more potent inducers of zebrafish developmental delay, suggesting that parent and alkylated phenanthrenes are involved. However, less weathered WAF-OM was a more potent inducer of failure in swim-bladder inflation than more weathered WAF-OS and WAF-OR, suggesting that parent and alkylated naphthalenes are involved. Decreases in heart rates and increased heart and skeletal deformities were observed in exposed larvae. Lowest observed effect concentrations for different developmental toxicity endpoints are within environmentally relevant polycyclic aromatic hydrocarbon concentrations.
Collapse
Affiliation(s)
- Célio Freire Mariz
- Departamento de Zoologia, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Brazil.
| | - João V Gomes Nascimento
- Departamento de Zoologia, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Brazil
| | - Bruna Santana Morais
- Departamento de Zoologia, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Brazil
| | - Maria K Melo Alves
- Departamento de Zoologia, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Brazil
| | - Lino Angel Valcarcel Rojas
- Departamento de Oceanografia, Universidade Federal de Pernambuco, Av. Arquitetura s/n, Cidade Universitária, Recife 50740-550, Brazil
| | - Eliete Zanardi-Lamardo
- Departamento de Oceanografia, Universidade Federal de Pernambuco, Av. Arquitetura s/n, Cidade Universitária, Recife 50740-550, Brazil
| | - Paulo S M Carvalho
- Departamento de Zoologia, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Brazil
| |
Collapse
|
7
|
Müller MN, Vicente Ferreira Junior A, Zanardi Lamardo E, Yogui GT, Flores Montes MDJ, Silva MA, Lima EJAC, Rojas LAV, Jannuzzi LGDS, Cunha MDGGDS, Melo PAMDC, Carvalho VPCD, Carneiro YMM, Carreira RDS, Araujo M, Santos LPDS. Finding the needle in a haystack: Evaluation of ecotoxicological effects along the continental shelf break during the Brazilian mysterious oil spill. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124422. [PMID: 38914197 DOI: 10.1016/j.envpol.2024.124422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/01/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Oceanic oil spills present significant ecological risks that have the potential to contaminate extensive areas, including coastal regions. The occurrence of the 2019 oil spill event in Brazil resulted in over 3000 km of contaminated beaches and shorelines. While assessing the impact on benthic and beach ecosystems is relatively straightforward due to direct accessibility, evaluating the ecotoxicological effects of open ocean oil spills on the pelagic community is a complex task. Difficulties are associated with the logistical challenges of responding promptly and, in case of the Brazilian mysterious oil spill, to the subsurface propagation of the oil that impeded remote visual detection. An oceanographic expedition was conducted in order to detect and evaluate the impact of this oil spill event along the north-eastern Brazilian continental shelf. The pursuit of dissolved and dispersed oil compounds was accomplished by standard oceanographic methods including seawater polycyclic aromatic hydrocarbons (PAHs) analysis, biomass stable carbon isotope (δ13C), particulate organic carbon to particulate organic nitrogen (POC:PON) ratios, nutrient analysis and ecotoxicological bioassays using the naupliar phase of the copepod Tisbe biminiensis. Significant ecotoxicological effects, reducing naupliar development by 20-40 %, were indicated to be caused by the presence of dispersed oil in the open ocean. The heterogeneous distribution of oil droplets aggravated the direct detection and biochemical indicators for oil are presented and discussed. Our findings serve as a case study for identifying and tracing subsurface propagation of oil, demonstrating the feasibility of utilizing standard oceanographic and ecotoxicological methods to assess the impacts of oil spill events in the open ocean. Ultimately, it encourages the establishment of appropriate measures and responses regarding the liability and regulation of entities to be held accountable for oil spills in the marine environment.
Collapse
Affiliation(s)
- Marius Nils Müller
- Department of Oceanography, Federal University of Pernambuco, Recife, PE, 50670-901, Brazil; Macau Environmental Research Institute, Macau University of Science and Technology, Macau SAR, 999078, China.
| | | | - Eliete Zanardi Lamardo
- Department of Oceanography, Federal University of Pernambuco, Recife, PE, 50670-901, Brazil
| | - Gilvan Takeshi Yogui
- Department of Oceanography, Federal University of Pernambuco, Recife, PE, 50670-901, Brazil
| | | | - Marcus André Silva
- Department of Oceanography, Federal University of Pernambuco, Recife, PE, 50670-901, Brazil
| | | | | | | | | | | | | | | | - Renato da Silva Carreira
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, RJ, 22451-900, Brazil
| | - Moacyr Araujo
- Department of Oceanography, Federal University of Pernambuco, Recife, PE, 50670-901, Brazil
| | | |
Collapse
|
8
|
Zacharias DC, Lemos AT, Keramea P, Dantas RC, da Rocha RP, Crespo NM, Sylaios G, Jovane L, da Silva Santos IG, Montone RC, de Oliveira Soares M, Lourenço RA. Offshore oil spills in Brazil: An extensive review and further development. MARINE POLLUTION BULLETIN 2024; 205:116663. [PMID: 38972220 DOI: 10.1016/j.marpolbul.2024.116663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/09/2024]
Abstract
The present study offers an extensive overview on the evolution and current state of marine oil spill research in Brazil and then discusses further directions. Given the historical and current relevance of this issue, this paper also aims to summarize the exploration, geological background, design of oil spills timeline and assessment of the most important of them. Moreover, it includes a critical comparison of Brazilian oil spill models in terms of their simulation abilities, real-time field data assimilation, space and time forecasts and uncertainty evaluation. This study also presents the perspectives of the Multi-User System for Detection, Prediction, and Monitoring of Oil Spills at Sea (SisMOM) the largest and most important Brazilian project to face the offshore oil spills.
Collapse
Affiliation(s)
- Daniel Constantino Zacharias
- Université Clermont Auvergne, CNRS, Laboratoire de Météorologie Physique (LaMP), F-63000 Clermont Ferrand, France.
| | - Angelo Teixeira Lemos
- Centro de Formação em Ciências Ambientais, Universidade Federal do Sul da Bahia, Rodovia BR-367, km 10, Zona Rural, Porto Seguro, BA 45810-000, Brazil
| | - Panagiota Keramea
- Laboratory of Ecological Engineering and Technology, Department of Environmental Engineering, Democritus University of Thrace, 67100 Xanthi, Greece
| | - Rafaela Cardoso Dantas
- Departamento de Oceanografia Física, Química e Geológica, Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico, 191, São Paulo, SP 05508-900, Brazil
| | - Rosmeri Porfirio da Rocha
- Departamento de Ciências Atmosféricas, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, IAG/USP, Rua do Matão, 1226, São Paulo, SP 05508-090, Brazil
| | - Natália Machado Crespo
- Department of Atmospheric Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 747/2, 180 00 Prague, Czech Republic
| | - Georgios Sylaios
- Laboratory of Ecological Engineering and Technology, Department of Environmental Engineering, Democritus University of Thrace, 67100 Xanthi, Greece
| | - Luigi Jovane
- Departamento de Oceanografia Física, Química e Geológica, Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico, 191, São Paulo, SP 05508-900, Brazil
| | - Iwldson Guilherme da Silva Santos
- Departamento de Ciências Atmosféricas, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, IAG/USP, Rua do Matão, 1226, São Paulo, SP 05508-090, Brazil
| | - Rosalinda Carmela Montone
- Departamento de Oceanografia Física, Química e Geológica, Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico, 191, São Paulo, SP 05508-900, Brazil
| | - Marcelo de Oliveira Soares
- Instituto de Ciências do Mar (LABOMAR), Universidade Federal do Ceará (UFC), Avenida da Abolição, 3207, 60165081, Meireles, Fortaleza, Ceará, Brazil
| | - Rafael André Lourenço
- Departamento de Oceanografia Física, Química e Geológica, Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico, 191, São Paulo, SP 05508-900, Brazil
| |
Collapse
|
9
|
Varasteh T, Lima MS, Silva TA, da Cruz MLR, Ahmadi RA, Atella GC, Attias M, Swings J, de Souza W, Thompson FL, Thompson CC. The dispersant Corexit 9500 and (dispersed) oil are lethal to coral endosymbionts. MARINE POLLUTION BULLETIN 2024; 203:116491. [PMID: 38754321 DOI: 10.1016/j.marpolbul.2024.116491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
Endosymbionts (Symbiodiniaceae) play a vital role in the health of corals. Seawater pollution can harm these endosymbionts and dispersants used during oil spill cleanup can be extremely toxic to these organisms. Here, we examined the impact of oil and a specific dispersant, Corexit-9500, on two representative endosymbionts - Symbiodinium and Cladocopium - from the Southwestern endemic coral Mussismilia braziliensis. The survival and photosynthetic potential of the endosymbionts decreased dramatically after exposure to the dispersant and oil by ~25 % after 2 h and ~50 % after 7 days. Low concentrations of dispersant (0.005 ml/l) and dispersed oil (Polycyclic Aromatic Hydrocarbons, 1132 μg/l; Total Petroleum Hydrocarbons, 595 μg/l) proved highly toxic to both Symbiodinium and Cladocopium. These levels triggered a reduction in growth rate, cell size, and cell wall thickness. After a few hours of exposure, cellular organelles were damaged or destroyed. These acute toxic effects underline the fragile nature of coral endosymbionts.
Collapse
Affiliation(s)
- Tooba Varasteh
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Michele S Lima
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Tatiana A Silva
- Laboratory of Celullar Ultrastructure Hertha Meyer, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Maria Luíza R da Cruz
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Reza Amir Ahmadi
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Georgia C Atella
- Laboratory of Lipids Biochemistry and Lipoprotein, Biochemistry Institute Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Marcia Attias
- Laboratory of Celullar Ultrastructure Hertha Meyer, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Jean Swings
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratory of Celullar Ultrastructure Hertha Meyer, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Fabiano L Thompson
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| | - Cristiane C Thompson
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
Lou Y, Wang Y, Li S, Yu F, Liu X, Cong Y, Li Z, Jin F, Zhang M, Yao Z, Wang J. Different responses of marine microalgae Phaeodactylum tricornutum upon exposures to WAF and CEWAF of crude oil: A case study coupled with stable isotopic signatures. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133833. [PMID: 38401215 DOI: 10.1016/j.jhazmat.2024.133833] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/26/2024]
Abstract
Increasing use of chemical dispersants for oil spills highlights the need to understand their adverse effects on marine microalgae and nutrient assimilation because the toxic components of crude oil can be more bioavailable. We employed the crude oil water-accommodated fraction (WAF) and chemically enhanced WAF (CEWAF) to compare different responses in marine microalgae (Phaeodactylum tricornutum) coupled with stable isotopic signatures. The concentration and proportion of high-molecular-weight polycyclic aromatic hydrocarbons (HMW PAHs), which are key toxic components in crude oil, increased after dispersant addition. CEWAF exposure caused higher percent growth inhibition and a lower chlorophyll-a level of microalgae than those after WAF exposure. Compared with WAF exposure, CEWAF led to an enhancement in the self-defense mechanism of P. tricornutum, accompanied by an increased content of extracellular polymeric substances. 13C-depletion and carbon assimilation were altered in P. tricornutum, suggesting more HMW PAHs could be utilized as carbon sources by microalgae under CEWAF. CEWAF had no significant effects on the isotopic fractionation or assimilation of nitrogen in P. tricornutum. Our study unveiled the impact on the growth, physiological response, and nutrient assimilation of microalgae upon WAF and CEWAF exposures. Our data provide new insights into the ecological effects of dispersant applications for coastal oil spills.
Collapse
Affiliation(s)
- Yadi Lou
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Ying Wang
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China.
| | - Shiyue Li
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China; College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Fuwei Yu
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China; School of Chemical, Dalian University of Technology, Dalian 116024, China
| | - Xing Liu
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Yi Cong
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Zhaochuan Li
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Fei Jin
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Mingxing Zhang
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Ziwei Yao
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Juying Wang
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China
| |
Collapse
|
11
|
de Souza Dias da Silva MF, Zanardi-Lamardo E, Valcarcel Rojas LA, de Oliveira Alves MD, Chimendes da Silva Neves V, de Araújo ME. Traces of oil in sea turtle feces. MARINE POLLUTION BULLETIN 2024; 200:116088. [PMID: 38309176 DOI: 10.1016/j.marpolbul.2024.116088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
In 2019, an oil spill hit the Brazilian Northeast coast causing impact to several ecosystems, including sea turtles' breeding and feeding areas. This study aimed to investigate whether sea turtles were impacted by this oil disaster, correlating the oil found inside feces with a sandy-oiled sample collected on the beach some days after the accident. The fecal samples were collected in the upper mid-littoral reef areas during three consecutive days in February 2020. The results suggested that sea turtles consumed algae contaminated by petroleum. Hydrocarbons composition of oil inside feces was similar to the sandy-oiled sample, suggesting they were the same. Lighter aliphatic and polycyclic aromatic compounds were missing, indicating both sandy-oiled and oil inside the feces had experienced significant evaporation prior to collection. Although the long-term damage is still unknown, the data are novel and relevant to support future research and alert authorities about the risks to sea turtles.
Collapse
Affiliation(s)
- Matheus Felipe de Souza Dias da Silva
- Centro de Tecnologia e Geociências, Departamento de Oceanografia, Universidade Federal de Pernambuco, Av. Arquitetura, s/n, Cidade Universitária, Recife 50740-550, Pernambuco, Brazil
| | - Eliete Zanardi-Lamardo
- Centro de Tecnologia e Geociências, Departamento de Oceanografia, Universidade Federal de Pernambuco, Av. Arquitetura, s/n, Cidade Universitária, Recife 50740-550, Pernambuco, Brazil.
| | - Lino Angel Valcarcel Rojas
- Centro de Tecnologia e Geociências, Departamento de Oceanografia, Universidade Federal de Pernambuco, Av. Arquitetura, s/n, Cidade Universitária, Recife 50740-550, Pernambuco, Brazil
| | - Maria Danise de Oliveira Alves
- Faculdade Frassinetti do Recife, Av. Conde da Boa Vista, 921, Recife 50060-002, Pernambuco, Brazil; Associação de Pesquisa e Preservação de Ecossistemas Aquáticos - AQUASIS, Av. Pintor João Figueiredo - SESC - Iparana, Caucaia, 61627-250, Ceará, Brazil
| | | | - Maria Elisabeth de Araújo
- Centro de Tecnologia e Geociências, Departamento de Oceanografia, Universidade Federal de Pernambuco, Av. Arquitetura, s/n, Cidade Universitária, Recife 50740-550, Pernambuco, Brazil
| |
Collapse
|
12
|
Bérgamo DB, Craveiro N, Magalhães KM, Yogui GT, Soares MO, Zanardi-Lamardo E, Rojas LAV, Lima MCSD, Rosa Filho JS. Tar balls as a floating substrate for long-distance species dispersal. MARINE POLLUTION BULLETIN 2023; 196:115654. [PMID: 37839129 DOI: 10.1016/j.marpolbul.2023.115654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
Recent arrivals of tar balls have been observed in several tropical beaches associated with the oceanic circulation that flows to the Brazilian continental shelf. Between August and September 2022, tar balls were collected in the northeastern coast of Brazil and analyzed. Nearly 90 % of the oils were colonized by barnacles, polychaetes, decapods, and algae. Most rafting organisms were Lepas anserifera with capitulum measuring 0.32 to 22.21 mm. Based on the growth rate of barnacles and the speed of the SEC it was estimated that tar balls were floating since July and August 2022 and traveled a maximum of 1938.82 km. The organisms and tar balls' possible origin is in the international waters, near to the meso-Atlantic ridge, known for oil tanker traffic. The tar balls, in addition to the oil-related impacts, can act as a vector of long-distance species dispersion, and it needs to raise an alert, considering the possible ecological impacts.
Collapse
Affiliation(s)
- Davy Barbosa Bérgamo
- Universidade Federal de Pernambuco (UFPE), Centro de Tecnologia e Geociências (CTG), Departamento de Oceanografia (DOCEAN) - Laboratório de Bentos (LABEN), 50670-901 Recife, PE, Brazil.
| | - Nykon Craveiro
- Universidade Federal de Pernambuco (UFPE), Centro de Tecnologia e Geociências (CTG), Departamento de Oceanografia (DOCEAN) - Laboratório de Bentos (LABEN), 50670-901 Recife, PE, Brazil
| | - Karine Matos Magalhães
- Universidade Federal Rural de Pernambuco (UFRPE), Centro de Ciências Biológicas, Departamento de Biologia - Laboratório de Ecossistemas Aquáticos (LEAQUA), 52171- 900 Recife, PE, Brazil
| | - Gilvan Takeshi Yogui
- Universidade Federal de Pernambuco (UFPE), Centro de Tecnologia e Geociências (CTG), Departamento de Oceanografia (DOCEAN) - Laboratório de Compostos Orgânicos em Ecossistemas Costeiros e Marinhos (ORGANOMAR), 50670-901, Recife, PE, Brazil
| | - Marcelo Oliveira Soares
- Universidade Federal do Ceará (UFC) - Instituto de Ciências do Mar (LABOMAR), 60165-081 Fortaleza, CE, Brazil
| | - Eliete Zanardi-Lamardo
- Universidade Federal de Pernambuco (UFPE), Centro de Tecnologia e Geociências (CTG), Departamento de Oceanografia (DOCEAN) - Laboratório de Compostos Orgânicos em Ecossistemas Costeiros e Marinhos (ORGANOMAR), 50670-901, Recife, PE, Brazil
| | - Lino Angel Valcarcel Rojas
- Universidade Federal de Pernambuco (UFPE), Centro de Tecnologia e Geociências (CTG), Departamento de Oceanografia (DOCEAN) - Laboratório de Compostos Orgânicos em Ecossistemas Costeiros e Marinhos (ORGANOMAR), 50670-901, Recife, PE, Brazil
| | - Maria Cecília Santana de Lima
- Universidade Federal Rural de Pernambuco (UFRPE), Centro de Ciências Biológicas, Departamento de Biologia - Laboratório de Ecossistemas Aquáticos (LEAQUA), 52171- 900 Recife, PE, Brazil
| | - José Souto Rosa Filho
- Universidade Federal de Pernambuco (UFPE), Centro de Tecnologia e Geociências (CTG), Departamento de Oceanografia (DOCEAN) - Laboratório de Bentos (LABEN), 50670-901 Recife, PE, Brazil
| |
Collapse
|
13
|
da Rocha AB, de Aquino Saraiva R, de Siqueira VM, Yogui GT, de Souza Bezerra R, de Assis CRD, Sousa MSB, de Souza Buarque D. Shrimp laccase degrades polycyclic aromatic hydrocarbons from an oil spill disaster in Brazil: A tool for marine environmental bioremediation. MARINE POLLUTION BULLETIN 2023; 194:115445. [PMID: 37639916 DOI: 10.1016/j.marpolbul.2023.115445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/19/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
Our work aims to purify, characterize and evaluate a laccase from by-products of the shrimp farming industry (Litopenaeus vannamei) for the degradation of Polycyclic Aromatic Hydrocarbons (PAHs) from 2019 oil spill in Brazilian coast. The enzyme was purified by affinity chromatography and characterized as thermostable, with activity above 90 °C and at alkaline pH. In addition, the laccase was also tolerant to copper, lead, cadmium, zinc, arsenic, hexane and methanol, with significant enzymatic activation in acetone and 10 mM mercury. Concerning PAHs' degradation, the enzyme degraded 42.40 % of the total compounds, degrading >50 % of fluorene, C4-naphthalenes, C3-naphthalenes, C2-naphthalenes, anthracene, acenaphthene, 1-methylnaphthalene and 2-methylnaphthalene. Thus, this laccase demonstrated important characteristics for bioremediation of marine environments contaminated by crude oil spills, representing a viable and ecological alternative for these purposes.
Collapse
Affiliation(s)
- Amanda Barbosa da Rocha
- Universidade Federal Rural de Pernambuco, Unidade Acadêmica de Serra Talhada, Pernambuco, Fazenda Saco, s/n, Serra Talhada, PE 55608-680, Brazil; Programa de Pós-graduação em Biodiversidade e Conservação, UFRPE/UAST, 55608-680, Brazil
| | - Rogério de Aquino Saraiva
- Programa de Pós-graduação em Biodiversidade e Conservação, UFRPE/UAST, 55608-680, Brazil; Universidade Federal do Cariri, Campus Brejo Santo, Brejo Santo, Ceará 63048-080, Brazil
| | - Virgínia Medeiros de Siqueira
- Programa de Pós-graduação em Biodiversidade e Conservação, UFRPE/UAST, 55608-680, Brazil; Departamento de Biologia, Universidade Federal Rural de Pernambuco, Recife, Pernambuco 52171-900, Brazil.
| | - Gilvan Takeshi Yogui
- Departamento de Oceanografia, Universidade Federal de Pernambuco, Recife, Pernambuco 50740-550, Brazil.
| | - Ranilson de Souza Bezerra
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-901, Brazil
| | | | | | - Diego de Souza Buarque
- Universidade Federal Rural de Pernambuco, Unidade Acadêmica de Serra Talhada, Pernambuco, Fazenda Saco, s/n, Serra Talhada, PE 55608-680, Brazil; Programa de Pós-graduação em Biodiversidade e Conservação, UFRPE/UAST, 55608-680, Brazil.
| |
Collapse
|
14
|
Oliveira CYB, de Cássia S Brandão B, de S Jannuzzi LG, Oliveira DWS, Yogui GT, Müller MN, Gálvez AO. New insights on the role of nitrogen in the resistance to environmental stress in an endosymbiotic dinoflagellate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:82142-82151. [PMID: 37322400 DOI: 10.1007/s11356-023-28228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
Endosymbiotic dinoflagellates provide the nutritional basis for marine invertebrates, especially reef-building corals. These dinoflagellates are sensitive to environmental changes, and understanding the factors that can increase the resistance of the symbionts is crucial for the elucidation of the mechanisms involved with coral bleaching. Here, we demonstrate how the endosymbiotic dinoflagellate Durusdinium glynnii is affected by concentration (1760 vs 440 µM) and source (sodium nitrate vs urea) of nitrogen after light and thermal stress exposure. The effectiveness in the use of the two nitrogen forms was proven by the nitrogen isotopic signature. Overall, high nitrogen concentrations, regardless of source, increased D. glynnii growth, chlorophyll-a, and peridinin levels. During the pre-stress period, the use of urea accelerated the growth of D. glynnii compared to cells grown using sodium nitrate. During the luminous stress, high nitrate conditions increased cell growth, but no changes in pigments composition was observed. On the other hand, during thermal stress, a steep and steady decline in cell densities over time was observed, except for high urea condition, where there is cellular division and peridinin accumulation 72 h after the thermal shock. Our findings suggest peridinin has a protective role during the thermal stress, and the uptake of urea by D. glynnii can alleviate thermal stress responses, eventually mitigating coral bleaching events.
Collapse
Affiliation(s)
- Carlos Yure B Oliveira
- Department of Fishing and Aquaculture, Federal Rural University of Pernambuco, 52171-900, Recife, Brazil.
- Phycology Laboratory, Federal University of Santa Catarina, 88049-900, Florianopolis, Brazil.
| | | | | | - Deyvid Willame S Oliveira
- Department of Fishing and Aquaculture, Federal Rural University of Pernambuco, 52171-900, Recife, Brazil
| | - Gilvan Takeshi Yogui
- Department of Oceanography, Federal University of Pernambuco, 50740-550, Recife, Brazil
| | - Marius N Müller
- Department of Oceanography, Federal University of Pernambuco, 50740-550, Recife, Brazil
| | - Alfredo O Gálvez
- Department of Fishing and Aquaculture, Federal Rural University of Pernambuco, 52171-900, Recife, Brazil
| |
Collapse
|
15
|
Menezes N, Cruz I, da Rocha GO, de Andrade JB, Leão ZMAN. Polycyclic aromatic hydrocarbons in coral reefs with a focus on Scleractinian corals: A systematic overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162868. [PMID: 36934938 DOI: 10.1016/j.scitotenv.2023.162868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 05/06/2023]
Abstract
The impact of petroleum exploitation and oil spills in marine ecosystems has increased over time. Among the concerns regarding these events, the impact on coral reefs stand out because this ecosystem has ecological and economic importance and is globally threatened. We performed a systematic review and bibliometric analysis of studies that determine polycyclic aromatic hydrocarbons (PAHs) in coral reefs, attempting to answer how the studies were distributed around the globe, the main environmental matrices and species of coral studied, the main PAHs found and their mean concentrations, and the methodology used. A bibliographic search resulted in 42 studies with worldwide distribution. The bibliometric results presented more explored terms, such as sediments and toxicology, and newly investigated terms, which should encourage a new area of study, such as those related to zooxanthellae and mucus. The main matrices studied in coral reefs are sediments, corals, and water, whereas air and other invertebrates have rarely been studied. Approximately 45 species of corals with several morphotypes have been reported. PAHs recommended by the United States Environmental Protection Agency (US EPA) were analyzed in all studies, while additional compounds were analyzed in only five. The methods used to determine hydrocarbons are predominantly the most traditional; however, for corals, studies have tended to separate tissue, zooxanthellae, skeleton, and mucus. In the future, we recommend investment in improving the capacity to detect non-conventional PAHs, more studies in regions that are rarely explored in developing countries, and the creation of databases to facilitate management planning on marine coasts.
Collapse
Affiliation(s)
- Natália Menezes
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil; Centro Interdisciplinar em Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil.
| | - Igor Cruz
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil; Laboratory of Biological Oceanography, Federal University of Bahia (UFBA), Department of Oceanography, Institute of Geosciences, Barão de Jeremoabo Street, Ondina, Salvador 40210-340, Bahia, Brazil
| | - Gisele O da Rocha
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil; Centro Interdisciplinar em Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Instituto de Química, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil
| | - Jailson B de Andrade
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil; Centro Interdisciplinar em Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Centro Universitário SENAI-CIMATEC, 41650-110 Salvador, BA, Brazil
| | - Zelinda M A N Leão
- Laboratory of Coral Reefs and Global Changes-RECOR, Institute of Geosciences, Federal University of Bahia (UFBA), Barão de Jeremoabo Street, Ondina, Salvador 40210-340, Bahia, Brazil
| |
Collapse
|
16
|
Costa GKDA, da Silva SPA, Trindade MRCM, Santos FLD, Carreira RS, Massone CG, Sant'Ana OD, da Silva SMBC. Concentration of polycyclic aromatic hydrocarbons (PAHs) and histological changes in Anomalocardia brasiliana and Crassostrea rhizophorae from Pernambuco, Brazil after the 2019 oil spill. MARINE POLLUTION BULLETIN 2023; 192:115066. [PMID: 37236092 DOI: 10.1016/j.marpolbul.2023.115066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
The present study aimed to analyze the concentrations of polycyclic aromatic hydrocarbons (PAHs) in populations of the shellfish Anomalocardia brasiliana and oysters Crassostrea rhizophorae three years after the 2019 oil spill, as well as evaluate histopathological changes on the gill tissues of the bivalves. Individuals of both species were sampled at points along the northern and southern coast of Pernambuco, Brazil. The permanence of oil residues was confirmed, evidenced by the total concentration of PAHs in the shellfish from the northern coast, which was roughly four times higher than the southern one. Among the PAHs analyzed, the low molecular weight compounds naphthalene and anthracene were the main contributors to the total concentration. Histological changes in the gills of the bivalves, were more severe in the specimens sampled on the north coast indicating alterations in the bivalve's health, mainly on the state's northern coast.
Collapse
Affiliation(s)
- Gisely Karla de Almeida Costa
- Laboratory of Aquatic Animal Health, Department of Fisheries and Aquaculture, Federal Rural University of Pernambuco, Dom Manoel de Medeiros Street, s/n, Dois Irmãos, 52171-900 Recife, Pernambuco, Brazil
| | - Scarlatt Paloma Alves da Silva
- Laboratory of Aquatic Animal Health, Department of Fisheries and Aquaculture, Federal Rural University of Pernambuco, Dom Manoel de Medeiros Street, s/n, Dois Irmãos, 52171-900 Recife, Pernambuco, Brazil
| | - Maria Raissa Coelho Marchetti Trindade
- Laboratory of Aquatic Animal Health, Department of Fisheries and Aquaculture, Federal Rural University of Pernambuco, Dom Manoel de Medeiros Street, s/n, Dois Irmãos, 52171-900 Recife, Pernambuco, Brazil
| | - Fernando Leandro Dos Santos
- Department de Veterinary Medicine, Federal Rural University of Pernambuco, Dom Manoel de Medeiros Street, s/n, Dois Irmãos, 52171-900 Recife, Pernambuco, Brazil
| | - Renato S Carreira
- LabMAM, Dep of Chemistry, Pontifical Catholic University, 22451-900 Rio de Janeiro, RJ, Brazil
| | - Carlos G Massone
- LabMAM, Dep of Chemistry, Pontifical Catholic University, 22451-900 Rio de Janeiro, RJ, Brazil
| | - Otoniel D Sant'Ana
- LabMAM, Dep of Chemistry, Pontifical Catholic University, 22451-900 Rio de Janeiro, RJ, Brazil
| | - Suzianny Maria Bezerra Cabral da Silva
- Laboratory of Aquatic Animal Health, Department of Fisheries and Aquaculture, Federal Rural University of Pernambuco, Dom Manoel de Medeiros Street, s/n, Dois Irmãos, 52171-900 Recife, Pernambuco, Brazil.
| |
Collapse
|
17
|
Soares MO, Rabelo EF. Severe ecological impacts caused by one of the worst orphan oil spills worldwide. MARINE ENVIRONMENTAL RESEARCH 2023; 187:105936. [PMID: 36958200 DOI: 10.1016/j.marenvres.2023.105936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Orphan oil spills pose a severe risk to ocean sustainability; however, they are understudied. We provide the first synthetic assessment of short-term ecological impacts of the most extensive oil spill in tropical oceans, which affected 2900 km of Brazil's coastline in 2019. Oil ingestion, changes in sex ratio and size of animals, morphological abnormalities of larvae and eggs, mutagenic, behavioral, and morphological alterations, contamination by polycyclic aromatic hydrocarbons, and mortality were detected. A decrease in species richness and abundance of oil-sensitive animals, an increase in opportunistic and oil-tolerant organisms, and simplification of communities was observed. The impacts were observed in sponges, corals, mollusks, crustaceans, polychaetes, echinoderms, turtles, birds, fish, and mammals. The majority of studies were conducted on bioindicator substrate-associated organisms, with 68.4% of the studies examining the benthos, 21.2% the nekton, and 10.4% the plankton. Moreover, most of the current short-term impacts assessment studies were focused on the species level (66.7%), with fewer studies on the community level (19%), and even fewer on oil-affected ecosystems (14.3%). Oil-related impacts were detected in five sensitive habitats, including blue-carbon ecosystems (e.g., mangroves and seagrass beds) and coastal reefs. These results call for the development of new ocean-basin observation systems for orphan spills. Finally, we discuss how these mysterious oil spills from unknown sources pose a risk to sustainable development goals and ocean-based actions to tackle global climate change.
Collapse
Affiliation(s)
- Marcelo O Soares
- Instituto de Ciências do Mar (LABOMAR), Universidade Federal do Ceará (UFC), Fortaleza, Brazil; Reef Systems Group, Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany; Center for Marine and Environmental Studies (CMES), University of the Virgin Islands, St. Thomas, U.S. Virgin Islands.
| | | |
Collapse
|
18
|
Oliveira CYB, Abreu JL, Santos EP, Matos ÂP, Tribuzi G, Oliveira CDL, Veras BO, Bezerra RS, Müller MN, Gálvez AO. Light induces peridinin and docosahexaenoic acid accumulation in the dinoflagellate Durusdinium glynnii. Appl Microbiol Biotechnol 2022; 106:6263-6276. [PMID: 35972515 DOI: 10.1007/s00253-022-12131-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/02/2022]
Abstract
Peridinin is a light-harvesting carotenoid present in phototrophic dinoflagellates and has great potential for new drug applications and cosmetics development. Herein, the effects of irradiance mediated by light-emitting diodes on growth performance, carotenoid and fatty acid profiles, and antioxidant activity of the endosymbiotic dinoflagellate Durusdinium glynnii were investigated. The results demonstrate that D. glynnii is particularly well adapted to low-light conditions; however, it can be high-light-tolerant. In contrast to other light-harvesting carotenoids, the peridinin accumulation in D. glynnii occurred during high-light exposure. The peridinin to chlorophyll-a ratio varied as a function of irradiance, while the peridinin to total carotenoids ratio remained stable. Under optimal irradiance for growth, there was a peak in docosahexaenoic acid (DHA) bioaccumulation. This study contributes to the understanding of the photoprotective role of peridinin in endosymbiont dinoflagellates and highlights the antioxidant activity of peridinin-rich extracts. KEY POINTS: • Peridinin has a protective role against chlorophyll photo-oxidation • High light conditions induce cellular peridinin accumulation • D. glynnii accumulates high amounts of DHA under optimal light supply.
Collapse
Affiliation(s)
- Carlos Yure B Oliveira
- Department of Fishing and Aquaculture, Federal Rural University of Pernambuco, St. Dom Manuel de Medeiros, Dois Irmãos, Recife, 52171-900, Brazil.
| | - Jéssika L Abreu
- Department of Fishing and Aquaculture, Federal Rural University of Pernambuco, St. Dom Manuel de Medeiros, Dois Irmãos, Recife, 52171-900, Brazil
| | - Elizabeth P Santos
- Department of Fishing and Aquaculture, Federal Rural University of Pernambuco, St. Dom Manuel de Medeiros, Dois Irmãos, Recife, 52171-900, Brazil
| | - Ângelo P Matos
- Center of Agricultural Sciences, Federal University of Santa Catarina, Florianópolis, 88034-001, Brazil
| | - Giustino Tribuzi
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, 88034-801, Brazil
| | - Cicero Diogo L Oliveira
- Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, 57072-900, Brazil
| | - Bruno O Veras
- Department of Biochemistry, Federal University of Pernambuco, Recife, 50740-550, Brazil
| | - Railson S Bezerra
- Department of Biochemistry, Federal University of Pernambuco, Recife, 50740-550, Brazil
| | - Marius N Müller
- Department of Oceanography, Federal University of Pernambuco, Recife, 50740-550, Brazil
| | - Alfredo O Gálvez
- Department of Fishing and Aquaculture, Federal Rural University of Pernambuco, St. Dom Manuel de Medeiros, Dois Irmãos, Recife, 52171-900, Brazil
| |
Collapse
|
19
|
Soares MO, Teixeira CEP, Bezerra LEA, Rabelo EF, Castro IB, Cavalcante RM. The most extensive oil spill registered in tropical oceans (Brazil): the balance sheet of a disaster. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19869-19877. [PMID: 35061174 PMCID: PMC8776981 DOI: 10.1007/s11356-022-18710-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/13/2022] [Indexed: 06/06/2023]
Abstract
This article presents a synthesis of information about the massive oil spill in Brazil (2019/2020). The event affected 11 states; however, the majority of the oil residue was collected (~ 5380 tons) near nine states (99.8%) in northeastern Brazil. This spill was not the largest in volume (between 5000 m3 and 12,000 m3) recorded in tropical oceans, but it was the most extensive (2890 km). This spill develops an overwashed tar that remains mostly in the undersurface drift (non-floating oil plume) below 17 m of depth while on the continental shelf. Ten ecosystems were impacted, with potentially more severe effects in mangroves and seagrasses. Certain negative effects are still understudied, such as effects on tropical reefs and rhodolith beds. A total of 57 protected areas in seven management categories were affected, most of which (60%) were characterized as multiple-use regions. The spill affected at least 34 threatened species, with impacts detected on plankton and benthic communities. Acute impacts were reported on echinoderms, coral symbionts, polychaetes, and sponges with evidence of oil ingestion. Socioeconomic impacts were detected in food security, public health, lodging, gender equality, tourism, and fishing, with reduced sales, prices, tourist attractiveness, gross domestic product, and employment. Moreover, chemical contamination was detected in some states by toxic metals (Hg, As, Cd, Pb, and Zn) and polycyclic aromatic hydrocarbons (acenaphthalene, fluoranthene, fluorene, naphthalene, and phenanthrene). This summary aims to aid in the design of science-based strategies to understand the impacts and develop strategies for the most extensive spill observed in tropical oceans.
Collapse
Affiliation(s)
- Marcelo Oliveira Soares
- Instituto de Ciências Do Mar (LABOMAR), Universidade Federal Do Ceará (UFC), Fortaleza, Brazil.
- Reef Systems Group, Leibniz Center for Tropical Marine Research (ZMT), Bremen, Germany.
| | | | | | | | - Italo Braga Castro
- Instituto Do Mar, Universidade Federal de São Paulo (UNIFESP), Santos, Brazil
| | | |
Collapse
|