1
|
Lin S, Zheng T, Mo Y, Zhang G, Chen G. Site-2 protease Sll0528 interacts with RbcR to regulate carbon/nitrogen homeostasis in the cyanobacterium Synechocystis sp. PCC 6803. Front Microbiol 2025; 16:1556583. [PMID: 40270807 PMCID: PMC12014562 DOI: 10.3389/fmicb.2025.1556583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/19/2025] [Indexed: 04/25/2025] Open
Abstract
Cyanobacteria play pivotal roles in global biogeochemical cycles through oxygenic photosynthesis. To maintain cellular homeostasis, these organisms utilize sophisticated acclimation mechanisms to adapt to environmental fluctuations, particularly concerning nitrogen availability. While nitrogen deprivation induces dormancy, excess ammonium can have toxic effects on cyanobacteria and other photosynthetic organisms-a phenomenon for which the acclimation mechanisms remain poorly understood. Through the physiological characterization of knockout and overexpression mutants in Synechocystis sp. PCC 6803, we identified the site-2 protease Sll0528 as a critical regulator of ammonium stress acclimation. TurboID-based proximity labeling, coupled with quantitative proteomics, revealed a robust set of putative Sll0528-interacting proteins, some of which were subsequently validated through bacterial two-hybrid assays and transcriptomic profiling. Notably, we confirmed the physical interaction between Sll0528 and RbcR, a low-carbon-responsive transcriptional regulator. Transcriptomic analysis showed that the knockout of sll0528 led to a significant downregulation of the RbcR regulon, including the ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) operon rbcLXS. Further analysis suggests that this downregulation might result from improper post-transcriptional regulation of RbcR, which depends on its interaction with Sll0528. Our findings reveal novel regulatory crosstalk between a cyanobacterial S2P protease and the carbon-responsive transcriptional machinery, providing new mechanistic insights into the control of cyanobacterial carbon-nitrogen homeostasis during nitrogen fluctuations. This study offers insights into the functional characterization of other S2P proteases in photosynthetic organisms and may facilitate the cyanobacteria-based bioremediation of ammonium-rich wastewater.
Collapse
|
2
|
Macarini LC, Guimarães ATB, Szinwelski N. Ecotoxicological effects of a glyphosate-based herbicide on Gryllus (Gryllus) assimilis (Orthoptera: Gryllidae) ontogeny: a study on antioxidant system, oxidative stress and cholinergic system. ECOTOXICOLOGY (LONDON, ENGLAND) 2025; 34:219-230. [PMID: 39546078 DOI: 10.1007/s10646-024-02831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Brazil is an important global agricultural producer and to increase production the country has extensively used glyphosate-based herbicides (GBH), surpassing consumption and sales records. Consequently, concerns have arisen regarding the potential impact of GBH on ecosystems and non-target organisms. Thus, the effects of GBH exposure were evaluated throughout the cricket Gryllus (Gryllus) assimilis ontogeny, with five developmental stages. Each period contained 3 control and 3 treated boxes, with 15 crickets each, resulting in 90 insects at a time. The control groups received water, while the treated ones were continuously exposed to GBH (0.864 mg.GBH.L-1), with the solutions changed every 48 h. After each exposure time the crickets' group were euthanized to assess the activity of antioxidant enzymes (GST, GR, GPx, and CAT), cholinergic enzymes (ChE), and lipid peroxidation (LPO). The results revealed changes in the systems throughout different developmental phases. Specifically, CAT activity exhibited a significant increase during the nymphal phase, associated with the dismutation of hydrogen peroxide. The GBH increased GST, indicating its role in cellular detoxification, particularly during adulthood. In the senescence stage there was a considerable rise in ChE enzymes, suggesting their involvement in both, choline esters breakdown and potential pesticide detoxification. The action of these enzymes to effectively control lipid peroxidation shows the adaptability of this species to environmental contamination. These findings underscore the long-term effects of agrochemical pollution and emphasize the importance of sustainable practices, effective regulations, and alternative weed control methods.
Collapse
Affiliation(s)
- Leanna Camila Macarini
- Universidade Estadual do Oeste do Paraná, (Programa de Pós-Graduação em Conservação e Manejo de Recursos Naturais), Cascavel, Paraná, Brasil.
| | | | - Neucir Szinwelski
- Universidade Estadual do Oeste do Paraná, (Programa de Pós-Graduação em Conservação e Manejo de Recursos Naturais), Cascavel, Paraná, Brasil
| |
Collapse
|
3
|
Fatima K, Mohsin H, Afzal M. Revisiting biochemical pathways for lead and cadmium tolerance by domain bacteria, eukarya, and their joint action in bioremediation. Folia Microbiol (Praha) 2025; 70:41-54. [PMID: 39327398 DOI: 10.1007/s12223-024-01198-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
With the advent rise is in urbanization and industrialization, heavy metals (HMs) such as lead (Pb) and cadmium (Cd) contamination have increased considerably. It is among the most recalcitrant pollutants majorly affecting the biotic and abiotic components of the ecosystem like human well-being, animals, soil health, crop productivity, and diversity of prokaryotes (bacteria) and eukaryotes (plants, fungi, and algae). At higher concentrations, these metals are toxic for their growth and pose a significant environmental threat, necessitating innovative and sustainable remediation strategies. Bacteria exhibit diverse mechanisms to cope with HM exposure, including biosorption, chelation, and efflux mechanism, while fungi contribute through mycorrhizal associations and hyphal networks. Algae, especially microalgae, demonstrate effective biosorption and bioaccumulation capacities. Plants, as phytoremediators, hyperaccumulate metals, providing a nature-based approach for soil reclamation. Integration of these biological agents in combination presents opportunities for enhanced remediation efficiency. This comprehensive review aims to provide insights into joint action of prokaryotic and eukaryotic interactions in the management of HM stress in the environment.
Collapse
Affiliation(s)
- Kaneez Fatima
- Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Pakistan.
| | - Hareem Mohsin
- Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Maryam Afzal
- School of Chemical Engineering, Aalto University, Otakaari 24, 02150, Espoo, Finland
| |
Collapse
|
4
|
Chahal S, Bhandari R. Cyanobacterial phycoremediation: a sustainable approach to dairy wastewater management. ENVIRONMENTAL TECHNOLOGY 2025:1-13. [PMID: 39869667 DOI: 10.1080/09593330.2025.2453947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/05/2025] [Indexed: 01/29/2025]
Abstract
The dairy industry is a significant sector within the food industries, known for its high-water consumption and consequent generation of dairy wastewater (DWW), which is rich in pollutants like Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD). Improper disposal of DWW poses serious environmental challenges, including eutrophication and highlighting the need for sustainable biological treatment methods. This study investigates the potential of indigenous cyanobacterial strains Oscillatoria pseudogeminata, Oscillatoria proteus, Oscillatoria trichoides, and Lyngbya ceylanica for the bioremediation of DWW. Under controlled laboratory conditions, these strains were assessed for their uptake capabilities for 15 days. Results indicated that L. ceylanica significantly reduced (approx. 70%, P < .05) in key pollutants such as ammonia, nitrate, and phosphate compared to other strains. Biochemical analyses indicated a decrease in biomass, chlorophyll a, carotenoids, proteins, and carbohydrates in DWW relative to the growth of cyanobacteria in BG 11 media. This decline may hinder the effectiveness of cyanobacterial in wastewater remediation. The findings highlight the efficacy of selected cyanobacteria in nutrient removal from DWW, emphasizing their dual role in nutrient uptake through biosorption mechanism and biomass generation. The results pave the way for innovative biotechnological applications such as biofertilizers and feedstock for bioethanol/ biodiesel production, thus promoting more sustainable management practices within the dairy industry.
Collapse
Affiliation(s)
- Shristi Chahal
- Botany Discipline, School of Biological Sciences and Biotechnology, Goa University, Goa, India
| | - Rupali Bhandari
- Botany Discipline, School of Biological Sciences and Biotechnology, Goa University, Goa, India
| |
Collapse
|
5
|
Li S, Peng W, Guo Y, Li S, Wang Q. Current status of microplastic pollution and the latest treatment technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177467. [PMID: 39522775 DOI: 10.1016/j.scitotenv.2024.177467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/24/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
With the widespread use of plastics globally, the issue of microplastic (MP) pollution has escalated into a significant social and environmental concern. This paper seeks to comprehensively review the environmental hazards associated with MPs and to present the latest analytical techniques and countermeasures. By analyzing the global distribution of MPs and the hazards they pose to the human body, it is found that MPs come from a variety of sources and are widely distributed, and that their hazards cover the whole body, but there is a lack of specific dose analyses and acute toxicity analyses. To address the challenges of industrial-scale MP treatment, numerous advanced theories and methods have been developed, providing valuable insights for effective remediation. Despite these advancements, notable limitations persist, particularly in the treatment of MPs in residential water supplies. Furthermore, this review identifies promising approaches in the utilization of microorganisms and the synergistic mechanisms of enzymes for MP pollution mitigation. Additionally, the urgent need for the development of standardized methods and a comprehensive legal framework for the isolation and detection of MPs across various environmental media is underscored, providing novel perspectives on the study of MPs.
Collapse
Affiliation(s)
- Shuang Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenkang Peng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yan Guo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Sumei Li
- Department of Environment, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
6
|
Paul I, Biswas R, Halder G. Traversing the potential of phytoremediation and phycoremediation as pioneering technologies in microplastic mitigation - A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177200. [PMID: 39471944 DOI: 10.1016/j.scitotenv.2024.177200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
With the advent of numerous reports related to health and environmental hazards associated with microplastics (MPs), scientists have been engrossed in developing sustainable technologies for MP mitigation. Conventional methods for the remediation of MPs have several limitations, but with the increasing demand for biological mitigation methods, the latest technologies are prioritized. Among biological-driven methods, phytoremediation and phycoremediation are the two peaking approaches that have gained momentum because of their eco-friendliness, cost-effectiveness, and recyclability options. Investigations of the mechanisms underlying phytoremediation and phycoremediation processes can provide possible insights into practical applications in the present scenario. Modern instrumentation is a prerequisite for identifying and characterizing MPs and quantifying their removal efficiency. The current investigation highlights a unique combination of elaborate discussions on the use of plants in the mitigation of MPs, bibliometric analysis of the current status of research, their relevance to the modern context, and the development of a combinatorial strategy to amalgamate the advantages of these two unique processes via the concept of constructed wetlands for synergistically mitigating MPs. Thus, this review provides fresh insights into addressing MP pollution with sustainable ideologies to achieve improved mitigation outcomes without compromising the balance of the ecosystem.
Collapse
Affiliation(s)
- Indrani Paul
- Department of Biotechnology, Brainware University, Kolkata -700125, West Bengal, India
| | - Rupsa Biswas
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur-713209, West Bengal, India; Centre for Research on Environment and Water, National Institute of Technology Durgapur, Durgapur-713209, West Bengal, India
| | - Gopinath Halder
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur-713209, West Bengal, India.
| |
Collapse
|
7
|
Passucci V, Thomas-Chemin O, Dib O, Assaf AA, Durand MJ, Dague E, Areco MM, Formosa-Dague C. Investigating the role of extracellular polymeric substances produced by Parachlorella kessleri in Zn(II) bioremediation using atomic force microscopy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125082. [PMID: 39374767 DOI: 10.1016/j.envpol.2024.125082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/25/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Microalgae, such as Parachlorella kessleri, have significant potential for environmental remediation, especially in removing heavy metals like zinc from water. This study investigates how P. kessleri, isolated from a polluted river in Argentina, can remediate zinc. Using atomic force microscopy (AFM), the research examined the interactions between Zn particles and cells grown with different nitrogen sources-nitrate or ammonium. The results showed that cells grown with nitrate produced extracellular polymeric substances (EPS), while those grown with ammonium did not. Raman spectroscopy revealed distinct metabolic responses based on the nitrogen source, with nitrate-grown cells showing altered profiles after zinc exposure. Zinc exposure also changed the surface roughness and nanomechanical properties of the cells, particularly in those producing EPS. AFM force spectroscopy experiments then confirmed strong Zn binding to EPS in nitrate-grown cells, while interactions were weaker in ammonium-grown cells that lacked EPS. Overall, our results elucidate the critical role of EPS in Zn removal by P. kessleri cells and show that Zn remediation is mediated by EPS adsorption. This study underscores the significance of regulating nitrogen sources to stimulate EPS production, offering insights that are essential for subsequent bioremediation applications.
Collapse
Affiliation(s)
- Victoria Passucci
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de mayo y Francia, 1650, San Martín, Provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Godoy Cruz 2290 CP (1033), Buenos Aires, Argentina
| | | | - Omar Dib
- Nantes Université, ONIRIS, CNRS, GEPEA, UMR 6144, La Roche-sur-Yon, F-85000, France
| | - Antony Ali Assaf
- Nantes Université, ONIRIS, CNRS, GEPEA, UMR 6144, La Roche-sur-Yon, F-85000, France
| | - Marie-José Durand
- Nantes Université, ONIRIS, CNRS, GEPEA, UMR 6144, La Roche-sur-Yon, F-85000, France
| | - Etienne Dague
- LAAS-CNRS, Université de Toulouse, CNRS, 31400, Toulouse, France
| | - Maria Mar Areco
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de mayo y Francia, 1650, San Martín, Provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Godoy Cruz 2290 CP (1033), Buenos Aires, Argentina.
| | | |
Collapse
|
8
|
Bindhuraj A, Paulose SV, Asharaf S, Joseph S. A comparative study on the treatment of kitchen grey water using microalgae consortia and microalgae-synthesized silver nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:67521-67533. [PMID: 38743331 DOI: 10.1007/s11356-024-33655-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Comparative study on the potential of microalgae consortia and green-synthesized silver nanoparticles using microalgae (M-AgNP) consortia for the treatment of kitchen grey water was investigated in this study. The microalgae consortia consisting of four species, viz., Chlorella sp., Scenedesmus sp., Coelastrum sp., and Pediastrum sp. were isolated from a local fish pond and the silver nanoparticles were synthesized with the same. Thus, synthesized silver nanoparticles exhibited a distinctive yellowish-brown colour and spherical morphology. Extensive qualitative and quantitative characterization techniques were employed to determine their size and morphology. Both microalgae consortia and M-AgNP were used separately for the treatment of kitchen grey water under experimental conditions. The synthesized silver nanoparticles demonstrated promising potential for domestic wastewater treatment, leading to substantial reductions in various parameters: total dissolved solids (29.6%), conductivity (49.4%), chemical oxygen demand (64.6%), and heavy metals (arsenic-63.5%, zinc-45.6%, cadmium-88%, copper-60.52%, and lead-80.82%). Notably, microalgae exhibited superior removal efficiency for nitrate (83.1%), sulphate (70.3%), and phosphate (96.5%) compared to microalgae-synthesized silver nanoparticles. This study underscores the effective utilization of both microalgae and microalgae-synthesized silver nanoparticles for wastewater treatment applications.
Collapse
Affiliation(s)
- Akhila Bindhuraj
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala, 686 560, India
| | - Sylas Variyattel Paulose
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala, 686 560, India.
- Advanced Centre of Environmental Studies and Sustainable Development, Mahatma Gandhi University, Kottayam, Kerala, 686 560, India.
| | - Sumayya Asharaf
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala, 686 560, India
| | - Saju Joseph
- International and Inter University Centre for Nanoscience and Nanotechnology (IIUCNN), Mahatma Gandhi University, Kottayam, Kerala, 686 560, India
| |
Collapse
|
9
|
Dada AO, Inyinbor AA, Atunwa BT, Gonuguntla S, Bello OS, Adekola FA, Pal U. Agrowaste-carbon and carbon-based nanocomposites for endocrine disruptive cationic dyes removal: A critical review. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 44:e00860. [PMID: 39678013 PMCID: PMC11639365 DOI: 10.1016/j.btre.2024.e00860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 12/17/2024]
Abstract
Dyes are considered to be pollutants that pose a considerable worldwide health risk, as they have been discovered as agents that affect the endocrine system. Adsorption is the most commonly used method for removing different substances since it is sustainable, flexible, affordable, and easy to use. Researchers have investigated the usage of agro-waste-based adsorbents that are ecologically friendly for the process of adsorption. This research has emphasized the potential of these adsorbents in developing carbon-based nanocomposites. Improved surface functionalization, great compatibility, and flexibility are beneficial uniqueness of carbon-based nanocomposites as well as a wide variety of applications. As a result, they are highly successful in removing cationic dyes. This paper specifically examines the environmentally friendly usage of activated carbons obtained from agricultural waste and the development of carbon-based-nanocomposites to adsorb positively charged dyes. Additionally, it offers an in-depth investigation of various cationic dyes, operating parameters, adsorption isotherms, kinetics, processes, and thermodynamic investigations. Further research is necessary to determine the effectiveness of carbon-based nanocomposites in removing new endocrine-disrupting pollutants. Additionally, these nanocomposites have the potential to be widely used in treating industrial effluents.
Collapse
Affiliation(s)
- Adewumi O. Dada
- Industrial Chemistry Programme, Nanotechnology Laboratory, Department of Physical Sciences, Landmark University, P.M.B.1001, Omu-Aran, Kwara, Nigeria
- Department of Energy and Environmental Engineering, CSIR-Indian Institute of, Chemical Technology, Hyderabad, India
- Sustainable Development Goal 6: Clean Water and Sanitation, Landmark University, P.M.B.1001, Omu-Aran, Kwara, Nigeria
- Sustainable Development Goal 7: Affordable and Clean Energy, Landmark University, P.M.B.1001, Omu-Aran, Kwara, Nigeria
- Sustainable Development Goal 11: Sustainable Cities and Communities, Landmark University, P.M.B.1001, Omu-Aran, Kwara, Nigeria
| | - Adejumoke A. Inyinbor
- Industrial Chemistry Programme, Nanotechnology Laboratory, Department of Physical Sciences, Landmark University, P.M.B.1001, Omu-Aran, Kwara, Nigeria
- Sustainable Development Goal 6: Clean Water and Sanitation, Landmark University, P.M.B.1001, Omu-Aran, Kwara, Nigeria
| | - Bukola T. Atunwa
- Industrial Chemistry Programme, Nanotechnology Laboratory, Department of Physical Sciences, Landmark University, P.M.B.1001, Omu-Aran, Kwara, Nigeria
- Sustainable Development Goal 6: Clean Water and Sanitation, Landmark University, P.M.B.1001, Omu-Aran, Kwara, Nigeria
| | - Spandana Gonuguntla
- Department of Energy and Environmental Engineering, CSIR-Indian Institute of, Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Olugbenga S. Bello
- Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Sustainable Development Goal 6: Clean Water and Sanitation, Landmark University, P.M.B.1001, Omu-Aran, Kwara, Nigeria
| | - Folahan A. Adekola
- Department of Industrial Chemistry, P.M.B 1515, University of Ilorin, Ilorin, Nigeria
| | - Ujjwal Pal
- Department of Energy and Environmental Engineering, CSIR-Indian Institute of, Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
10
|
Jayaraman J, Kumaraswamy J, Rao YKSS, Karthick M, Baskar S, Anish M, Sharma A, Yadav AS, Alam T, Ammarullah MI. Wastewater treatment by algae-based membrane bioreactors: a review of the arrangement of a membrane reactor, physico-chemical properties, advantages and challenges. RSC Adv 2024; 14:34769-34790. [PMID: 39483379 PMCID: PMC11526280 DOI: 10.1039/d4ra04417g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/02/2024] [Indexed: 11/03/2024] Open
Abstract
Reducing wastewater contaminants is an emerging area of particular concern for many industrialized and developing countries in improving the ecological quality of their water sources. In this case, the use of algae-based microbial reactors for wastewater treatment has attracted increasing attention in recent years. The advantages of both conventional microbial membrane bioreactors (MBRs) and algae-based treatment are combined in algae-based MBRs. According to the literature, previous studies did not fully discuss the techniques and performance of algae-based bioreactor systems in the treatment of wastewater. In particular, little attention has been paid to the types of waste, their consequences, and the ways in which they are treated. This makes it more difficult to develop and scale up efficient systems to treat waste discharge from industry, agriculture, and urban areas. Thus, the objective of this study is to critically evaluate algae as a valuable biological resource for wastewater treatment, with the goal of reducing emerging contaminants and increasing the chemical oxygen demand (COD) in wastewater. The most common wastewater treatment techniques employed for addressing these wastes are examined together with a brief discussion on contaminants in wastewater. Furthermore, algae-based wastewater treatment arrangements, particularly hybrid configurations, are carefully studied in relation to techniques for removing contaminants using algae. After analysing the key physicochemical characteristics that affect the ability of algal-bioremediation to remove developing contaminants, the benefits of algal-bioremediation systems are compared to those of other techniques. Lastly, an investigation is conducted into the technological difficulties associated with employing algal-bioremediation systems to eliminate emerging contaminants.
Collapse
Affiliation(s)
- Jayaprabakar Jayaraman
- Department of Mechanical Engineering, Sathyabama Institute of Science & Technology Chennai 600119 Tamil Nadu India
| | - J Kumaraswamy
- Department of Mechanical Engineering, R. L. Jalappa Institute of Technology, Affiliated to Visvesvaraya Technological University (V.T.U) Belagavi 590018 Karnataka India
| | - Yarrapragada K S S Rao
- Department of Mechanical Engineering, Aditya University Surampalem 533437 Andhra Pradesh India
| | - M Karthick
- Department of Mechanical Engineering, Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology Chennai 600062 Tamil Nadu India
| | - S Baskar
- School of Engineering, Vels Institute of Science, Technology & Advanced Studies Chennai 600117 Tamil Nadu India
| | - M Anish
- Department of Mechanical Engineering, Sathyabama Institute of Science & Technology Chennai 600119 Tamil Nadu India
| | - Abhishek Sharma
- Department of Mechanical Engineering, Government Engineering College (Department of Higher and Technical Education, Govt. of Jharkhand) Medininagar 822118 Jharkhand India
| | - Anil Singh Yadav
- Department of Mechanical Engineering, Bakhtiyarpur College of Engineering (Science, Technology and Technical Education Department, Govt. of Bihar) Bakhtiyarpur Patna 803212 Bihar India
| | - Tabish Alam
- Architecture Planning and Energy Efficiency, CSIR-Central Building Research Institute Roorkee 247667 Uttarakhand India
| | - Muhammad Imam Ammarullah
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Diponegoro Semarang 50275 Central Java Indonesia
- Undip Biomechanics Engineering & Research Centre (UBM-ERC), Universitas Diponegoro Semarang 50275 Central Java Indonesia
| |
Collapse
|
11
|
Fathy WA, Al-Qahtani WH, Abdel-Maksoud MA, Khanghahi MY, Elsayed KNM. Green solutions: evaluating the impact of Chlorella sorokiniana and Anabaena laxa on captan phycoremediation. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2278-2289. [PMID: 39109632 DOI: 10.1080/15226514.2024.2387219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
This study explores the use of algae for phycoremediation, focusing on how Chlorella sorokiniana and Anabaena laxa detoxify water contaminated with captan, a common fungicide. The efficiency of these species in absorbing captan and the associated biochemical changes were evaluated to assess their potential for environmental protection. Microalgae were exposed to captan concentrations of 15 and 30 mg/L, and various parameters, including captan uptake, chlorophyll (Chl) a, carotenoid levels, and changes in metabolic profiles (soluble carbohydrates, organic acids, amino acids, and fatty acids), were measured. Results showed Anabaena had a higher captan absorption capacity (141.7 µg/g at 15 mg/L and 239.3 µg/g at 30 mg/L) compared to Chlorella (74.43 µg/g and 162 µg/g). Increased captan uptake reduced the growth of both species, as indicated by lower Chl a levels. Both species accumulated osmo-protectants and antioxidants as defense mechanisms, with soluble sugars increasing by 83.49% in Chlorella and 68.87% in Anabaena, and carotenoids increasing by 60.42% and 46.24%, respectively. Principal component analysis revealed distinct species-level responses, with Anabaena showing greater tolerance. The study concludes that both species can effectively remediate captan, with Anabaena being more efficient, indicating their potential for mitigating agrochemical impacts in aquatic environments and promoting sustainable agriculture and water management.
Collapse
Affiliation(s)
- Wael A Fathy
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Wahidah H Al-Qahtani
- Department of Food Sciences & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mostafa A Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Khaled N M Elsayed
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
12
|
Torres MJ, Bellido-Pedraza CM, Llamas A. Applications of the Microalgae Chlamydomonas and Its Bacterial Consortia in Detoxification and Bioproduction. Life (Basel) 2024; 14:940. [PMID: 39202682 PMCID: PMC11355400 DOI: 10.3390/life14080940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
The wide metabolic diversity of microalgae, their fast growth rates, and low-cost production make these organisms highly promising resources for a variety of biotechnological applications, addressing critical needs in industry, agriculture, and medicine. The use of microalgae in consortia with bacteria is proving valuable in several areas of biotechnology, including the treatment of various types of wastewater, the production of biofertilizers, and the extraction of various products from their biomass. The monoculture of the microalga Chlamydomonas has been a prominent research model for many years and has been extensively used in the study of photosynthesis, sulphur and phosphorus metabolism, nitrogen metabolism, respiration, and flagellar synthesis, among others. Recent research has increasingly recognised the potential of Chlamydomonas-bacteria consortia as a biotechnological tool for various applications. The detoxification of wastewater using Chlamydomonas and its bacterial consortia offers significant potential for sustainable reduction of contaminants, while facilitating resource recovery and the valorisation of microalgal biomass. The use of Chlamydomonas and its bacterial consortia as biofertilizers can offer several benefits, such as increasing crop yields, protecting crops, maintaining soil fertility and stability, contributing to CO2 mitigation, and contributing to sustainable agricultural practises. Chlamydomonas-bacterial consortia play an important role in the production of high-value products, particularly in the production of biofuels and the enhancement of H2 production. This review aims to provide a comprehensive understanding of the potential of Chlamydomonas monoculture and its bacterial consortia to identify current applications and to propose new research and development directions to maximise their potential.
Collapse
Affiliation(s)
- María J. Torres
- Correspondence: (M.J.T.); (A.L.); Tel.: +34-957-218352 (M.J.T. & A.L.)
| | | | - Angel Llamas
- Department of Biochemistry and Molecular Biology, Campus de Rabanales and Campus Internacional de Excelencia Agroalimentario (CeiA3), Edif. Severo Ochoa, University of Córdoba, 14071 Córdoba, Spain;
| |
Collapse
|
13
|
Ali SS, Hassan LHS, El-Sheekh M. Microalgae-mediated bioremediation: current trends and opportunities-a review. Arch Microbiol 2024; 206:343. [PMID: 38967670 DOI: 10.1007/s00203-024-04052-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 07/06/2024]
Abstract
Environmental pollution poses a critical global challenge, and traditional wastewater treatment methods often prove inadequate in addressing the complexity and scale of this issue. On the other hand, microalgae exhibit diverse metabolic capabilities that enable them to remediate a wide range of pollutants, including heavy metals, organic contaminants, and excess nutrients. By leveraging the unique metabolic pathways of microalgae, innovative strategies can be developed to effectively remediate polluted environments. Therefore, this review paper highlights the potential of microalgae-mediated bioremediation as a sustainable and cost-effective alternative to conventional methods. It also highlights the advantages of utilizing microalgae and algae-bacteria co-cultures for large-scale bioremediation applications, demonstrating impressive biomass production rates and enhanced pollutant removal efficiency. The promising potential of microalgae-mediated bioremediation is emphasized, presenting a viable and innovative alternative to traditional treatment methods in addressing the global challenge of environmental pollution. This review identifies the opportunities and challenges for microalgae-based technology and proposed suggestions for future studies to tackle challenges. The findings of this review advance our understanding of the potential of microalgae-based technology wastewater treatment.
Collapse
Affiliation(s)
- Sameh S Ali
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Lamiaa H S Hassan
- Faculty of Science, Menoufia University, Shebin El-kom, 32511, Egypt
| | - Mostafa El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
14
|
Bellido-Pedraza CM, Torres MJ, Llamas A. The Microalgae Chlamydomonas for Bioremediation and Bioproduct Production. Cells 2024; 13:1137. [PMID: 38994989 PMCID: PMC11240456 DOI: 10.3390/cells13131137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
The extensive metabolic diversity of microalgae, coupled with their rapid growth rates and cost-effective production, position these organisms as highly promising resources for a wide range of biotechnological applications. These characteristics allow microalgae to address crucial needs in the agricultural, medical, and industrial sectors. Microalgae are proving to be valuable in various fields, including the remediation of diverse wastewater types, the production of biofuels and biofertilizers, and the extraction of various products from their biomass. For decades, the microalga Chlamydomonas has been widely used as a fundamental research model organism in various areas such as photosynthesis, respiration, sulfur and phosphorus metabolism, nitrogen metabolism, and flagella synthesis, among others. However, in recent years, the potential of Chlamydomonas as a biotechnological tool for bioremediation, biofertilization, biomass, and bioproducts production has been increasingly recognized. Bioremediation of wastewater using Chlamydomonas presents significant potential for sustainable reduction in contaminants and facilitates resource recovery and valorization of microalgal biomass, offering important economic benefits. Chlamydomonas has also established itself as a platform for the production of a wide variety of biotechnologically interesting products, such as different types of biofuels, and high-value-added products. The aim of this review is to achieve a comprehensive understanding of the potential of Chlamydomonas in these aspects, and to explore their interrelationship, which would offer significant environmental and biotechnological advantages.
Collapse
Affiliation(s)
| | | | - Angel Llamas
- Department of Biochemistry and Molecular Biology, Campus de Rabanales and Campus Internacional de Excelencia Agroalimentario (CeiA3), University of Córdoba, Edificio Severo Ochoa, 14071 Córdoba, Spain; (C.M.B.-P.); (M.J.T.)
| |
Collapse
|
15
|
Arslan Topal EI, Öbek E, Topal M. Is Cladophora fracta an efficient tool of accumulating critical raw materials from wastewater and there a potential health risk of use of algae as organic fertilizer? INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:1977-1994. [PMID: 37097044 DOI: 10.1080/09603123.2023.2203905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
In this study investigation of accumulations of critical raw materials (cobalt (Co), antimony (Sb), vanadium (V), lanthanum (La) and tungsten (W)) from wastewater by using C. fracta were aimed. Besides, assessment of the potential health risks in terms of the use of organic fertilizer obtained from the macroalga to be harvested from the treatment were also aimed. Highest Co, Sb, V, La and W accumulations by algae in reactor were 125±6.2%, 201.25±10%, 318.18±15%, 357.97±18%, and 500±25%, respectively. When compared with control, Co, Sb, V, La and W in algae increased 2.25, 3.01, 4.18, 4.58, and 6 times, respectively. The algae was very high bioaccumulative for Co and La. Highest MPI was calculated as 3.94. Non-carcinogenic risk of CRMs according to different exposure types (ingestion, inhalation, and dermal) were calculated for man, woman and child. There is not any non-carcinogenic risk from the investigated exposure ways of algae as organic fertilizer.
Collapse
Affiliation(s)
- E Işıl Arslan Topal
- Department of Environmental Engineering, Faculty of Engineering, Firat University, Elazığ, Turkey
| | - Erdal Öbek
- Department of Bioengineering, Faculty of Engineering, Firat University, Elazığ, Turkey
| | - Murat Topal
- Department of Chemistry Processing Technologies, Tunceli Vocation School, Munzur University, Tunceli, Turkey
| |
Collapse
|
16
|
Song M, Yin D, Zhao J, Li R, Yu J, Chen X. Proteomics reveals toxin tolerance and polysaccharide accumulation in Chlorococcum humicola under high CO 2 concentration. ENVIRONMENTAL RESEARCH 2024; 243:117738. [PMID: 37993048 DOI: 10.1016/j.envres.2023.117738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
Algae have great application prospects in excess sludge reclamation and recovery of high-value biomass. Chlorococcum humicola was cultivated in this research, using sludge extract (mixed with SE medium) with additions of 10%, 20%, and 30% CO2 (v/v). Results showed that under 20% CO2, the dry weight and polysaccharide yield reached 1.389 ± 0.070 g/L and 313.49 ± 10.77 mg/L, respectively. 10% and 20% CO2 promoted the production of cellular antioxidant molecules to resist the toxic stress and the toxicity of 20% CO2 group decreased from 62.16 ± 3.11% to 33.02 ± 3.76%. 10% and 20% CO2 accelerated the electron transfer, enhanced carbon assimilation, and promoted the photosynthetic efficiency, while 30% CO2 led to photosystem damage and disorder of antioxidant system. Proteomic analysis showed that 20% CO2 mainly affected energy metabolism and the oxidative stress level on the early stage (10 d), while affected photosynthesis and organic substance metabolism on the stable stage (30 d). The up-regulation of PSII photosynthetic protein subunit 8 (PsbA, PsbO), A0A383W1S5 and A0A383VRI4 promoted the efficiency of PSII and chlorophyll synthesis, and the up-regulation of A0A383WH74 and A0A2Z4THB7 led to the accumulation of polysaccharides. The up-regulation of A0A383VDH1, A0A383VX37 and A0A383VA86 promoted respiration. Collectively, this work discloses the regulatory mechanism of high-concentration CO2 on Chlorococcum humicola to overcome toxicity and accumulate polysaccharides.
Collapse
Affiliation(s)
- Meijing Song
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Danning Yin
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Jiamin Zhao
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Renjie Li
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Jiayu Yu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiurong Chen
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
17
|
Sithara NV, Bharathi D, Lee J, Mythili R, Devanesan S, AlSalhi MS. Synthesis of iron oxide nanoparticles using orange fruit peel extract for efficient remediation of dye pollutant in wastewater. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:30. [PMID: 38227286 DOI: 10.1007/s10653-023-01781-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/20/2023] [Indexed: 01/17/2024]
Abstract
The removal of color-causing compounds from wastewater is a significant challenge that industries encounter due to their toxic, carcinogenic, and harmful properties. Despite the extensive research and development of various techniques with the objective of effectively degrading color pollutants, the challenge still persists. This paper introduces a simple technique for producing iron oxide nanoparticles (Fe2O3 NPs) using orange fruit peel for sustainable dye degradation in aqueous environment. The observation of color change and the measurement of UV-visible absorbance at 240 nm provided a confirmation for the development of Fe2O3 NPs. Transmission electron microscopy examination demonstrated that the Fe2O3 NPs have an agglomerated distribution and forming spherical structures with size ranging from 25-80 nm. Energy-dispersive X-ray spectroscopy analysis supported the existence of Fe and O. Fourier transform infrared spectroscopy conducted to investigate the involvement of orange peel extract in the reduction, capping, and synthesis of Fe2O3 NPs from the precursor salt. Fe2O3 NPs showed a photocatalytic remediation of 97%, for methylene blue under visible light irradiation. Additionally, prepared NPs exhibited concentration depended biofilm inhibition action against E. coli and S. aureus. In conclusion, Fe2O3 NPs can efficiently purify water and suppress pathogens due to their strong degrading activity, reusability, and biofilm inhibition property.
Collapse
Affiliation(s)
- N V Sithara
- Department of Biotechnology, Hindusthan College of Arts and Science, Coimbatore, Tamil Nadu, 641028, India.
- Department of Biotechnology, PSG College of Arts & Science, Coimbatore, Tamil Nadu, 641014, India.
| | - Devaraj Bharathi
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea.
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea
| | - R Mythili
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 600077, India
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box-2455, 11451, Riyadh, Saudi Arabia
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box-2455, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Zambrano-Pinto MV, Tinizaray-Castillo R, Riera MA, Maddela NR, Luque R, Díaz JMR. Microplastics as vectors of other contaminants: Analytical determination techniques and remediation methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168244. [PMID: 37923271 DOI: 10.1016/j.scitotenv.2023.168244] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/04/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
The ubiquitous and persistent presence of microplastics (MPs) in aquatic and terrestrial ecosystems has raised global concerns due to their detrimental effects on human health and the natural environment. These minuscule plastic fragments not only threaten biodiversity but also serve as vectors for contaminants, absorbing organic and inorganic pollutants, thereby causing a range of health and environmental issues. This review provides an overview of microplastics and their effects. This work highlights available analytical techniques for detecting and characterizing microplastics in different environmental matrices, assessing their advantages and limitations. Additionally, this review explores innovative remediation approaches, such as microbial degradation and other advanced methods, offering promising prospects for combatting microplastic accumulation in contaminated environments. The focus on environmentally-friendly technologies, such as the use of microorganisms and enzymes for microplastic degradation, underscores the importance of sustainable solutions in plastic pollution management. In conclusion, this article not only deepens our understanding of the microplastic issue and its impact but also advocates for the urgent need to develop and implement effective strategies to mitigate this critical environmental challenge. In this context, the crucial role of advanced technologies, like quantitative Nuclear Magnetic Resonance spectroscopy (qNMR), as promising tools for rapid and efficient microplastic detection, is emphasized. Furthermore, the potential of the enzyme PETase (polyethylene terephthalate esterase) in microplastic degradation is examined, aiming to address the growing plastic pollution, particularly in saline environments like oceanic ecosystems. These innovations offer hope for effectively addressing microplastic accumulation in contaminated environments and minimizing its adverse impacts.
Collapse
Affiliation(s)
- Maria Veronica Zambrano-Pinto
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo 130104, Ecuador.
| | - Rolando Tinizaray-Castillo
- Departamento de Construcciones Civiles, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador.
| | - María A Riera
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo 130104, Ecuador.
| | - Naga Raju Maddela
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador.
| | - Rafael Luque
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198 Moscow, Russian Federation; Universidad ECOTEC, Km. 13.5 Samborondón, Samborondón EC092302, Ecuador.
| | - Joan Manuel Rodríguez Díaz
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo 130104, Ecuador.
| |
Collapse
|
19
|
Thanigaivel S, Vinayagam S, Gnanasekaran L, Suresh R, Soto-Moscoso M, Chen WH. Environmental fate of aquatic pollutants and their mitigation by phycoremediation for the clean and sustainable environment: A review. ENVIRONMENTAL RESEARCH 2024; 240:117460. [PMID: 37866533 DOI: 10.1016/j.envres.2023.117460] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/30/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Emerging pollutants such as natural and manufactured chemicals, insecticides, pesticides, surfactants, and other biological agents such as personal care products, cosmetics, pharmaceuticals, and many industrial discharges hamper the aquatic environment. Nanomaterials and microplastics, among the categories of pollutants, can directly interfere with the marine ecosystem and translate into deleterious effects for humans and animals. They are either uncontrolled or poorly governed. Due to their known or suspected effects on human and environmental health, some chemicals are currently causing concern. The aquatic ecology is at risk from these toxins, which have spread worldwide. This review assesses the prevalence of emerging and hazardous pollutants that have effects on aquatic ecosystems and contaminated water bodies and their toxicity to non-target organisms. Microalgae are found to be a suitable source to remediate the above-mentioned risks. Microalgae based mitigation techniques are currently emerging approaches for all such contaminants, including the other categories that are discussed above. These studies describe the mechanism of phycoremediation, provide outrage factors that may significantly affect the efficiency of contaminants removal, and discuss the future directions and challenges of microalgal mediated remediations.
Collapse
Affiliation(s)
- S Thanigaivel
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| | - Saranya Vinayagam
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Lalitha Gnanasekaran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile.
| | - R Suresh
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India; Centre for Material Chemistry, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India
| | | | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung, 411, Taiwan
| |
Collapse
|
20
|
He J, Xia S, Li W, Deng J, Lin Q, Zhang L. Resource recovery and valorization of food wastewater for sustainable development: An overview of current approaches. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119118. [PMID: 37769472 DOI: 10.1016/j.jenvman.2023.119118] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/05/2023] [Accepted: 08/30/2023] [Indexed: 09/30/2023]
Abstract
The food processing industry is one of the world's largest consumers of potable water. Agri-food wastewater systems consume about 70% of the world's fresh water and cause at least 80% of deforestation. Food wastewater is characterized by complex composition, a wide range of pollutants, and fluctuating water quality, which can cause huge environmental pollution problems if discharged directly. In recent years, food wastewater has attracted considerable attention as it is considered to have great prospects for resource recovery and reuse due to its rich residues of nutrients and low levels of harmful substances. This review explored and compared the sources and characteristics of different types of food wastewater and methods of wastewater treatment. Particular attention was paid to the different methods of resource recovery and reuse of food wastewater. The diversity of raw materials in the food industry leads to different compositional characteristics of wastewater, which determine the choice and efficiency of wastewater treatment methods. Physicochemical methods, and biological methods alone or in combination have been used for the efficient treatment of food wastewater. Current approaches for recycling and reuse of food wastewater include culture substrates, agricultural irrigation, and bio-organic fertilizers, recovery of high-value products such as proteins, lipids, biopolymers, and bioenergy to alleviate the energy crisis. Food wastewater is a promising substrate for resource recovery and reuse, and its valorization meets the current international policy requirements regarding food waste and environment protection, follows the development trend of the food industry, and is also conducive to energy conservation, emission reduction, and economic development. However, more innovative biotechnologies are necessary to advance the effectiveness of food wastewater treatment and the extent of resource recovery and valorization.
Collapse
Affiliation(s)
- JinTao He
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - SuXuan Xia
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Wen Li
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; Hunan Provincial Engineering Technology Research Center of Seasonings Green Manufacturing, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, Jiangsu, China.
| | - Jing Deng
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - QinLu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, Jiangsu, China.
| | - Lin Zhang
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| |
Collapse
|
21
|
Selvaraj D, Dhayabaran NK, Mahizhnan A. An insight on pollutant removal mechanisms in phycoremediation of textile wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124714-124734. [PMID: 35708812 DOI: 10.1007/s11356-022-21307-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Pollutants, including dyes and heavy metals from textile industrial discharge, adversely affect the surface and groundwater resources, and pose a severe risk to the living organisms in the ecosystem. Phycoremediation of wastewater is now an emerging trend, as it is colossally available, inexpensive, eco-friendly, and has many other benefits, with high removal efficiency for undesirable substances, when compared to conventional treatment methods. Algae have a good binding affinity toward nutrients and toxic compounds because of various functional groups on its cell surface by following the mechanisms such as biosorption, bioaccumulation, or alternate biodegradation pathway. Algae-based treatments generate bioenergy feedstock as sludge, mitigate CO2, synthesize high-value-added products, and release oxygenated effluent. Algae when converted into activated carbon also show good potential against contaminants, because of its higher binding efficiency and surface area. This review provides an extensive analysis of different mechanisms involved in removal of undesirable and hazardous substances from textile wastewater using algae as green technology. It could be founded that both biosorption and biodegradation mechanisms were responsible for the removal of dye, organic, and inorganic pollutants. But for the heavy metals removal, biosorption results in higher removal efficiency. Overall, phycoremediation is a convenient technique for substantial conserving of energy demand, reducing greenhouse gas emissions, and removing pollutants.
Collapse
Affiliation(s)
- Durgadevi Selvaraj
- Environmental Biotechnology Laboratory, Department of Chemical Engineering, National Institute of Technology, Tamil Nadu, Tiruchirappalli, 620015, India
| | - Navamani Kartic Dhayabaran
- Environmental Biotechnology Laboratory, Department of Chemical Engineering, National Institute of Technology, Tamil Nadu, Tiruchirappalli, 620015, India
| | - Arivazhagan Mahizhnan
- Environmental Biotechnology Laboratory, Department of Chemical Engineering, National Institute of Technology, Tamil Nadu, Tiruchirappalli, 620015, India.
| |
Collapse
|
22
|
Sunyer-Caldú A, Quintana G, Diaz-Cruz MS. Factors driving PPCPs uptake by crops after wastewater irrigation and human health implications. ENVIRONMENTAL RESEARCH 2023; 237:116923. [PMID: 37598843 DOI: 10.1016/j.envres.2023.116923] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/10/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Currently, water scarcity affects more than three billion people. Nevertheless, the volume of treated wastewater discharged into the environment is estimated to exceed 100 m3 per inhabitant/year. These water resources are regularly used in agriculture worldwide to overcome water shortages. Such a practice, however, entails the uptake of waterborne pollutants, such as pharmaceuticals and personal care products (PPCPs), by crops and their further access to the food web, constituting an additional route of human exposure to PPCPs, with potential health outcomes. In this study, the occurrence of 56 PPCPs in tomatoes, lettuce, and carrot, together with soil and irrigation water, was evaluated using a QuEChERS-based methodology for extraction and LC-MS/MS for analysis. The influence of the selected cultivation conditions on the plant uptake levels of PPCPs was assessed. Two irrigation water qualities (secondary and tertiary treatment effluents), two soil compositions (sandy and clayey), two irrigation systems (dripping and sprinkling), and three crop types (lettuce, tomato, and carrot) were tested. Carrots showed the highest load of PPCPs (7787 ng/g dw), followed by tomatoes (1692 ng/g dw) and lettuces (1248 ng/g dw). The most translocated PPCPs were norfluoxetine (fluoxetine antidepressant main metabolite) (521 ng/g dw), and the anti-inflammatory diclofenac (360 ng/g dw). Nine PPCPs, are reported to be accumulated in crops for the first time. Water quality was the most important factor for reducing PPCPs' plant uptake. Overall, the best conditions for reducing PPCP uptake by crops were irrigation with reclaimed water by sprinkling in soils with higher clay content. The risk assessment performed revealed that the crops' consumption posed no risk to human health. This study serves as the first comprehensive assessment of the relevance of diverse cultivation factors on PPCPs' plant uptake under field agricultural practices.
Collapse
Affiliation(s)
- Adrià Sunyer-Caldú
- Institute of Environmental Assessment and Water Research (IDAEA) Severo Ochoa Excellence Center, Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034, Barcelona, Spain; Department of Environmental Science (ACES, Exposure & Effects), Science for Life Laboratory, Stockholm University, Stockholm, 106 91, Sweden
| | - Gerard Quintana
- Institute of Environmental Assessment and Water Research (IDAEA) Severo Ochoa Excellence Center, Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034, Barcelona, Spain
| | - M Silvia Diaz-Cruz
- Institute of Environmental Assessment and Water Research (IDAEA) Severo Ochoa Excellence Center, Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034, Barcelona, Spain.
| |
Collapse
|
23
|
Sengupta SL, Chaudhuri RG, Dutta S. A critical review on phycoremediation of pollutants from wastewater-a novel algae-based secondary treatment with the opportunities of production of value-added products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114844-114872. [PMID: 37919498 DOI: 10.1007/s11356-023-30470-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 10/10/2023] [Indexed: 11/04/2023]
Abstract
Though the biological treatment employing bacterial strains has wide application in effluent treatment plant, it has got several limitations. Researches hence while looking for alternative biological organisms that can be used for secondary treatment came up with the idea of using microalgae. Since then, a large number of microalgal/cyanobacterial strains have been identified that can efficiently remove pollutants from wastewater. Some researchers also found out that the algal biomass not only acts as a carbon sink by taking up carbon dioxide from the atmosphere and giving oxygen but also is a renewable source of several value-added products that can be extracted from it for the commercial use. In this work, the cleaning effect of different species of microalgae/cyanobacteria on wastewater from varied sources along with the value-added products obtained from the algal biomass as observed by researchers during the past few years are reviewed. While a number of review works in the field of phycoremediation technology was reported in literature, a comprehensive study on phycoremediation of wastewater from different industries and household individually is limited. In the present review work, the efficiency of diverse microalgal/cyanobacterial strains in treatment of wide range of industrial effluents along with municipal wastewater having multi-pollutants has been critically reviewed.
Collapse
Affiliation(s)
- Swagata Laxmi Sengupta
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India
| | - Rajib Ghosh Chaudhuri
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India
| | - Susmita Dutta
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India.
| |
Collapse
|
24
|
Shahi Khalaf Ansar B, Kavusi E, Dehghanian Z, Pandey J, Asgari Lajayer B, Price GW, Astatkie T. Removal of organic and inorganic contaminants from the air, soil, and water by algae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116538-116566. [PMID: 35680750 DOI: 10.1007/s11356-022-21283-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Rapid increases in human populations and development has led to a significant exploitation of natural resources around the world. On the other hand, humans have come to terms with the consequences of their past mistakes and started to address current and future resource utilization challenges. Today's primary challenge is figuring out and implementing eco-friendly, inexpensive, and innovative solutions for conservation issues such as environmental pollution, carbon neutrality, and manufacturing effluent/wastewater treatment, along with xenobiotic contamination of the natural ecosystem. One of the most promising approaches to reduce the environmental contamination load is the utilization of algae for bioremediation. Owing to their significant biosorption capacity to deactivate hazardous chemicals, macro-/microalgae are among the primary microorganisms that can be utilized for phytoremediation as a safe method for curtailing environmental pollution. In recent years, the use of algae to overcome environmental problems has advanced technologically, such as through synthetic biology and high-throughput phenomics, which is increasing the likelihood of attaining sustainability. As the research progresses, there is a promise for a greener future and the preservation of healthy ecosystems by using algae. They might act as a valuable tool in creating new products.
Collapse
Affiliation(s)
- Behnaz Shahi Khalaf Ansar
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Elaheh Kavusi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Zahra Dehghanian
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Janhvi Pandey
- Division of Agronomy and Soil Science, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, Uttar Pradesh, India
| | - Behnam Asgari Lajayer
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Gordon W Price
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | - Tess Astatkie
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| |
Collapse
|
25
|
Manikandan DB, Arumugam M, Sridhar A, Perumalsamy B, Ramasamy T. Sustainable fabrication of hybrid silver-copper nanocomposites (Ag-CuO NCs) using Ocimum americanum L. as an effective regime against antibacterial, anticancer, photocatalytic dye degradation and microalgae toxicity. ENVIRONMENTAL RESEARCH 2023; 228:115867. [PMID: 37044164 DOI: 10.1016/j.envres.2023.115867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 05/16/2023]
Abstract
In this study, a sustainable fabrication of hybrid silver-copper oxide nanocomposites (Ag-CuO NCs) was accomplished utilizing Ocimum americanum L. by one pot green chemistry method. The multifarious biological and environmental applications of the green fabricated Ag-CuO NCs were evaluated through their antibacterial, anticancer, dye degradation, and microalgae growth inhibition activities. The morphological features of the surface functionalized hybrid Ag-CuO NCs were confirmed by FE-SEM and HR-TEM techniques. The surface plasmon resonance λmax peak appeared at 441.56 nm. The average hydrodynamic size distribution of synthesized nanocomposite was 69.80 nm. Zeta potential analysis of Ag-CuO NCs confirmed its remarkable stability at -21.5 mV. XRD and XPS techniques validated the crystalline structure and electron binding affinity of NCs, respectively. The Ag-CuO NCs demonstrated excellent inhibitory activity against Vibrio cholerae (19.93 ± 0.29 mm) at 100 μg/mL. Anticancer efficacy of Ag-CuO NCs was investigated against the A549 lung cancer cell line, and Ag-CuO NCs exhibited outstanding antiproliferative activity with a low IC50 of 2.8 ± 0.05 μg/mL. Furthermore, staining and comet assays substantiated that the Ag-CuO NCs hindered the progression of the A549 cells and induced apoptosis as a result of cell cycle arrest at the G0/G1 phase. Concerning the environmental applications, the Ag-CuO NCs displayed efficient photocatalytic activity against eosin yellow degradation up to 80.94% under sunlight irradiation. Microalgae can be used as an early bio-indicator/prediction of environmental contaminants and toxic substances. The treatment of the Ag-CuO NCs on the growth of marine microalgae Tetraselmis suecica demonstrated the dose and time-dependent growth reduction and variations in the chlorophyll content. Therefore, the efficient multifunctional properties of hybrid Ag-CuO NCs could be exploited as a regime against infective diseases and cancer. Further, the findings of our investigation witness the remarkable scope and potency of Ag-CuO NCs for environmental applications.
Collapse
Affiliation(s)
- Dinesh Babu Manikandan
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Manikandan Arumugam
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Arun Sridhar
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Balaji Perumalsamy
- National Centre for Alternatives to Animal Experiments (NCAAE), Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Thirumurugan Ramasamy
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India; National Centre for Alternatives to Animal Experiments (NCAAE), Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| |
Collapse
|
26
|
Widhiastuti F, Rajendram W, Pramanik BK. Understanding the risk of using herbicides for tree root removal into wastewater treatment plant performance. CHEMOSPHERE 2023; 337:139345. [PMID: 37379978 DOI: 10.1016/j.chemosphere.2023.139345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/16/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023]
Abstract
Adding herbicides to sewer lines, a common practice for controlling root intrusion in sewer pipes, may adversely impact downstream wastewater treatment by inhibiting nitrification and denitrification performance. This study investigated the effects of herbicides, namely diquat, triclopyr, and 2-methyl-4-chlorophenoxyacetic acid (MCPA)-dicamba, on these processes. Various parameters were monitored, including oxygen uptake rate (OUR), nutrients (NH3-N, TP, NO3-N, and NO2-N), chemical oxygen demand (COD), and herbicide concentrations. It was found that nitrification was not affected by OUR in the presence of each herbicide at various concentrations (1, 10, and 100 mg L-1). Additionally, MCPA-dicamba at various concentrations demonstrated minimal inhibition in the nitrification process compared to diquat and triclopyr. COD consumption was not affected by the presence of these herbicides. However, triclopyr significantly inhibited NO3-N formation in the denitrification process at various concentrations. Similar to nitrification process, both COD consumption and herbicide reduction concentration were not affected by the presence of herbicides during the denitrification process. Adenosine triphosphate measurements showed minimal impact on nitrification and denitrification processes when herbicides were present in the solution up to a concentration of 10 mg L-1. Tree root kill efficiency experiments were performed on Acacia melanoxylon. Considering the performance on nitrification and denitrification process, diquat emerged as the best herbicide option (concentration of 10 mg L-1), with a 91.24% root kill efficiency.
Collapse
Affiliation(s)
- Fitri Widhiastuti
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, 3001, Victoria, Australia
| | | | - Biplob Kumar Pramanik
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, 3001, Victoria, Australia.
| |
Collapse
|
27
|
Parasuraman B, Kandasamy B, Murugan I, Alsalhi MS, Asemi N, Thangavelu P, Perumal S. Designing the heterostructured FeWO 4/FeS 2 nanocomposites for an enhanced photocatalytic organic dye degradation. CHEMOSPHERE 2023; 334:138979. [PMID: 37236279 DOI: 10.1016/j.chemosphere.2023.138979] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/04/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
The present study, reports a facile approach for the synthesis of FeWO4/FeS2 nanocomposites were demonstrated through hydrothermal method. The surface morphology, crystalline structure, chemical composition, optical properties of the prepared samples was analysed by different various technique. The result observed analysis indicates that, the formation of heterojunction by 2:1 wt.% of FeWO4/FeS2 nanohybrid has the lowest recombination rate of electron-hole pairs and the least electron transfer resistance. Due to its the broad absorption spectral range and preferable energy band gap, the (2:1) FeWO4/FeS2 nanohybrid photocatalyst exhibits an excellent ability to remove MB dye when exposed to UV-Vis. Light irradiation. Its photocatalytic activity of (2:1) FeWO4/FeS2 nanohybrid is higher than other as prepared samples due to its synergistic effects, enhanced light absorption and high charge carrier separation. Radical trapping experimental result implies that the photo-generated free electrons and hydroxyl radials are essential to degrade the MB dye. Furthermore, a possible future mechanism for FeWO4/FeS2 nanocomposites photocatalytic activity was discussed. Moreover, the recyclability analysis demonstrated that the FeWO4/FeS2 nanocomposites can be recycled multiple times. The enhanced photocatalytic activity of 2:1 FeWO4/FeS2 nanocomposites is promising for the further application of visible light driven photocatalyst in wastewater treatment.
Collapse
Affiliation(s)
- Balaji Parasuraman
- Smart Materials Laboratory, Department of Physics, Periyar University, Salem, Tamil Nadu, 636011, India
| | | | - Indrani Murugan
- Department of Chemistry, Sri GVG Visalakshi College for Women, Udumalpet, Tamil Nadu, 642128, India
| | - Mohamad S Alsalhi
- Department of Physics Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Nassar Asemi
- Department of Physics Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Pazhanivel Thangavelu
- Smart Materials Laboratory, Department of Physics, Periyar University, Salem, Tamil Nadu, 636011, India.
| | - Sakthivel Perumal
- Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| |
Collapse
|
28
|
Ahammed MS, Baten MA, Ali MA, Mahmud S, Islam MS, Thapa BS, Islam MA, Miah MA, Tusher TR. Comparative Evaluation of Chlorella vulgaris and Anabaena variabilis for Phycoremediation of Polluted River Water: Spotlighting Heavy Metals Detoxification. BIOLOGY 2023; 12:biology12050675. [PMID: 37237489 DOI: 10.3390/biology12050675] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/23/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023]
Abstract
This study investigated the phycoremediation abilities of Chlorella vulgaris (microalga) and Anabaena variabilis (cyanobacterium) for the detoxification of polluted river water. Lab-scale phycoremediation experiments were conducted for 20 days at 30 °C using the microalgal and cyanobacterial strains and water samples collected from the Dhaleswari river in Bangladesh. The physicochemical properties such as electrical conductivity (EC), total dissolved solids (TDS), biological oxygen demand (BOD), hardness ions, and heavy metals of the collected water samples indicated that the river water is highly polluted. The results of the phycoremediation experiments demonstrated that both microalgal and cyanobacterial species significantly reduced the pollutant load and heavy metal concentrations of the river water. The pH of the river water was significantly raised from 6.97 to 8.07 and 8.28 by C. vulgaris and A. variabilis, respectively. A. variabilis demonstrated higher efficacy than C. vulgaris in reducing the EC, TDS, and BOD of the polluted river water and was more effective at reducing the pollutant load of SO42- and Zn. In regard to hardness ions and heavy metal detoxification, C. vulgaris performed better at removing Ca2+, Mg2+, Cr, and Mn. These findings indicate that both microalgae and cyanobacteria have great potential to remove various pollutants, especially heavy metals, from the polluted river water as part of a low-cost, easily controllable, environmentally friendly remediation strategy. Nevertheless, the composition of polluted water should be assessed prior to the designing of microalgae- or cyanobacteria-based remediation technology, since the pollutant removal efficiency is found to be species dependent.
Collapse
Affiliation(s)
- Md Shakir Ahammed
- Department of Environmental Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Abdul Baten
- Department of Environmental Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Muhammad Aslam Ali
- Department of Environmental Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Shahin Mahmud
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Md Sirajul Islam
- Department of Environmental Science and Resource Management, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Bhim Sen Thapa
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Md Aminul Islam
- Department of Environmental Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Alim Miah
- Department of Environmental Science and Engineering, Jatiya Kabi Kazi Nazrul Islam University, Trishal, Mymensingh 2224, Bangladesh
| | - Tanmoy Roy Tusher
- Department of Environmental Science and Resource Management, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| |
Collapse
|
29
|
Coccia M, Bontempi E. New trajectories of technologies for the removal of pollutants and emerging contaminants in the environment. ENVIRONMENTAL RESEARCH 2023; 229:115938. [PMID: 37086878 DOI: 10.1016/j.envres.2023.115938] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/02/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Modern society has increasingly a diffusion of pollutants and emerging contaminants (e.g., different types of chemicals and endocrine disruptors in pharmaceuticals, pesticides, household cleaning, and personal care products, etc.) that have detrimental effects on the environment (atmosphere, hydrosphere, biosphere and anthroposphere) and also generate diseases and disorders on the people health. Environmental science requires efforts in the detection and elimination of manifold pollutants and emerging pollutants with appropriate product and process technologies. This study aims to analyze different paths of treatment technologies to investigate their evolution and predict new directions of promising technological trajectories to support the removal of contaminants directed to reach, whenever possible, sustainable development objectives. The work is mainly devoted to wastewater treatment technologies. A proposed model analyzes the evolution of patents (proxy of innovation and new technology) on publications (proxy of science and knowledge advances) to quantify the relative growth rate of new trajectories of technologies to remove pollutants and emerging contaminants. Results reveal that new directions of treatment technologies having an accelerated rate of growth are (in decreasing order): biochar and reverse osmosis in physical-based technologies, coagulation, and disinfection water treatments in chemical-based technologies and anaerobic processes in biological-based technologies. Other main technologies, such as carbon nanotubes and advanced oxidation processes, seem to be in the initial phase of development and need learning by using processes and further science and technology advances to be implemented as effective treatments and cost-effective. The results here are in accord with global water and wastewater equipment treatment market revenues by technology, showing a similar trend. These findings bring us to the main information to extend the knowledge about new directions of technologies for the treatment and/or elimination of pollutants and microorganisms that can support decisions of policymakers towards goals of sustainable development by reducing environmental degradation and people health disorders.
Collapse
Affiliation(s)
- Mario Coccia
- National Research Council of Italy, IRCRES-CNR, Turin Research Area of the National Research Council, Strada Delle Cacce, 73-10135, Torino, Italy.
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, University of Brescia, Via Branze 38, 25123, Brescia, Italy.
| |
Collapse
|
30
|
Lin S, Li S, Ouyang T, Chen G. Site-2 Protease Slr1821 Regulates Carbon/Nitrogen Homeostasis during Ammonium Stress Acclimation in Cyanobacterium Synechocystis sp. PCC 6803. Int J Mol Sci 2023; 24:ijms24076606. [PMID: 37047577 PMCID: PMC10094980 DOI: 10.3390/ijms24076606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Excess ammonium imposes toxicity and stress response in cyanobacteria. How cyanobacteria acclimate to NH4+ stress is so far poorly understood. Here, Synechocystis sp. PCC6803 S2P homolog Slr1821 was identified as the essential regulator through physiological characterization and transcriptomic analysis of its knockout mutant. The proper expression of 60% and 67% of the NH4+ activated and repressed genes, respectively, were actually Slr1821-dependent since they were abolished or reversed in ∆slr1821. Synechocystis 6803 suppressed nitrogen uptake and assimilation, ammonium integration and mobilization of other nitrogen sources upon NH4+ stress. Opposite regulation on genes for assimilation of nitrogen and carbon, such as repression of nitrogen regulatory protein PII, PII interactive protein PirC and activation of carbon acquisition regulator RcbR, demonstrated that Synechocystis 6803 coordinated regulation to maintain carbon/nitrogen homeostasis under increasing nitrogen, while functional Slr1821 was indispensable for most of this coordinated regulation. Additionally, slr1821 knockout disrupted the proper response of regulators and transporters in the ammonium-specific stimulon, and resulted in defective photosynthesis as well as compromised translational and transcriptional machinery. These results provide new insight into the coordinated regulation of nutritional fluctuation and the functional characterization of S2Ps. They also provide new targets for bioengineering cyanobacteria in bioremediation and improving ammonium tolerance in crop plants.
Collapse
Affiliation(s)
- Shiqi Lin
- School of Food Sciences and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Shiliang Li
- School of Food Sciences and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Tong Ouyang
- School of Food Sciences and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Gu Chen
- School of Food Sciences and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| |
Collapse
|
31
|
Alazaiza MYD, He S, Su D, Abu Amr SS, Toh PY, Bashir MJK. Sewage Water Treatment Using Chlorella Vulgaris Microalgae for Simultaneous Nutrient Separation and Biomass Production. SEPARATIONS 2023. [DOI: 10.3390/separations10040229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Recovery of wastewater is essential for better management of water resources and can aid in reducing regional or seasonal water shortages. When algae were used to clean wastewater, amazing benefits were guaranteed, such as a decrease in the formation of dangerous solid sludge and the creation of valuable algal biomass through recycling of the nutrients in the wastewater. The trace elements nitrogen, phosphorus, and others that microalgae need for cell development are frequently present in contaminated wastewater. Hence, microalgal bioremediation is used in this study as an effective technique for the simultaneous treatment of COD, NH3-N, and orthophosphate from domestic wastewater and biomass production. Different concentrations of wastewaters were used. The maximum removals attained were: 84% of COD on the fifth day using the lowest mixing ratio of 50%, 95% of ammoniacal nitrogen, and 97% of phosphorus. The highest biomass production was achieved at day 12, except for the mixing ratio of 80% where the growth rate increased until day 14 at 400 mg/L.
Collapse
|
32
|
Penke YK, Kar KK. A review on multi-synergistic transition metal oxide systems towards arsenic treatment: Near molecular analysis of surface-complexation (synchrotron studies/modeling tools). Adv Colloid Interface Sci 2023; 314:102859. [PMID: 36934514 DOI: 10.1016/j.cis.2023.102859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/25/2022] [Accepted: 02/13/2023] [Indexed: 02/23/2023]
Abstract
The science and interface chemistry between the arsenic (As) anions and the different adsorbent systems have been gaining interest in recent years in environmental remediation applications. Metal-oxides and the corresponding hybrid systems have shown promising performance as novel adsorbents in various treatment technologies. The abundance, surface chemistry, high surface area (active-centres), various synthesis and functionalization methodologies, and good recyclability make these metal oxide-based nanomaterials as potential remediating agents for As oxyanions. This work critically reviews eight different platforms focused on the arsenic contamination issue, where the first classification describes the origin of arsenic contamination and presents geographical and demo-graphical considerations. The following section briefs the state-of-the-art remediation techniques for arsenic treatment with a comparative evaluation. An emphasized discussion has been provided regarding the adsorption and classification of various metal oxide adsorbents. In the next classification, various multi-synergism abilities like Redox activity, Surface functional groups, Surface area/morphology, Heterogeneous catalysis, Reactive oxygen species, Photo-catalytic/electro-catalytic reactions, and Electrosorption are detailed. The classification of various characterization tools for accessing the arsenic remediation qualitatively and quantitatively are given in the fifth chapter. The first-of-its-kind dedicated analysis has been given on the surface complexation aspects of the arsenic speciation onto various metal adsorbent systems using synchrotron results, surface-complexation modeling, and molecular simulation (e.g., DFT) in the sixth chapter. The current sensing applications of these novel nano-material systems for arsenic determination using colorimetric and electrochemical-based analytical tools and a note about the economic parameters, i.e., regeneration aspects of various adsorbent systems/the sustainable applications of the treated sludge materials, are provided in the final sections. This work makes a critical analysis of 'Environmental Nanotechnology' towards 'Arsenic Treatment'.
Collapse
Affiliation(s)
- Yaswanth K Penke
- Advanced Nanoengineering Materials Laboratory, Indian Institute of Technology Kanpur, Kanpur 208016, U.P, India; Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur 208016, U.P, India.
| | - Kamal K Kar
- Advanced Nanoengineering Materials Laboratory, Indian Institute of Technology Kanpur, Kanpur 208016, U.P, India; Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur 208016, U.P, India; Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, U.P, India.
| |
Collapse
|
33
|
Biofabricated ZnO nanoparticles as vital components for agriculture revolutionization–a green approach. APPLIED NANOSCIENCE 2023. [DOI: 10.1007/s13204-023-02765-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
34
|
Devi MK, Yaashikaa PR, Kumar PS, Manikandan S, Oviyapriya M, Varshika V, Rangasamy G. Recent advances in carbon-based nanomaterials for the treatment of toxic inorganic pollutants in wastewater. NEW J CHEM 2023. [DOI: 10.1039/d3nj00282a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Wastewater contains inorganic pollutants, generated by industrial and domestic sources, such as heavy metals, antibiotics, and chemical pesticides, and these pollutants cause many environmental problems.
Collapse
|
35
|
Kaliaperumal V, Subramaniyan V, Renganathan S, Mohandoss N, Hatamleh AA, Alnafisi BK, Kim W, Subramaniyan P. Bioremediations analysis using multifactorial porous materials derived from tea residue. ENVIRONMENTAL RESEARCH 2023; 216:114634. [PMID: 36341788 DOI: 10.1016/j.envres.2022.114634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are becoming more and more renowned as biocompatible nanomaterials with diverse biological functions. In the present study, the aqueous extract of tea residue (tea filtered waste powder) was used to synthesize the TiO2 NPs and treated for effluent bioremediations. Maximum absorption in the UV-Vis spectrum of the TiO2 NPs was seen at 358 nm, and the XRD pattern reveals peaks at 2 h values of 25.78, 38.24, 47.98, 54.76, 55.32, 62.64, 69.05, 70.15, 75.24, and 83.59 that may be indexed to the (101), (004), (200), (105), (211), (204), (116), (220), (215) and (303). The FT-IR spectra of TiO2 NPs showed a peak at 3420, 2925, 1621, 1382, 1098, and 687 cm-1. The spherical form and size were disclosed by FE-SEM analyses, and the EDAX pattern verified the purity of the TiO2 NPs. The average particles size of the TiO2 NPs was 32 nm. The photodegradation of paper mill waste water is significantly deteriorated up to 99.08% for 600 min, but textile waste water is degraded up to 98.06% for the same duration. Furthermore, we reported that TiO2 NPs may rapidly breakdown industrially hazardous effluents when exposed to sunshine. Overall, this new, straightforward, and environmentally beneficial strategy may be of interest to the management of efficient degradation of dye solutions in the polluted regions.
Collapse
Affiliation(s)
- Vimal Kaliaperumal
- PG and Research Department of Botany, A.V.V.M. Sri Pushpam College, Poondi (Affiliated to Bharathidasan University), India
| | - Vijayakumar Subramaniyan
- PG and Research Department of Botany, A.V.V.M. Sri Pushpam College, Poondi (Affiliated to Bharathidasan University), India.
| | - Sangeetha Renganathan
- PG and Research Department of Mathematics, A.V.V.M. Sri Pushpam College, Poondi (Affiliated to Bharathidasan University), India
| | - Nilavukkarasi Mohandoss
- PG and Research Department of Botany, A.V.V.M. Sri Pushpam College, Poondi (Affiliated to Bharathidasan University), India
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Bassam Khalid Alnafisi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | | |
Collapse
|
36
|
Birolli WG, da Silva BF, Rodrigues Filho E. Biodegradation of the pyrethroid cypermethrin by bacterial consortia collected from orange crops. ENVIRONMENTAL RESEARCH 2022; 215:114388. [PMID: 36152890 DOI: 10.1016/j.envres.2022.114388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Pyrethroids, such as cypermethrin (CYP), are widely employed in agriculture, promoting environmental pollution and the need for efficient decontamination methods. In this study, bacteria from orange crops were explored for CYP biodegradation. Among 40 tested bacterial strains, 20 grew in the presence of CYP and 19 performed statistically significant CYP biodegradation in 5 days (20.5%-97.8%). In addition, 3-phenoxybenzoic acid, the main metabolite from CYP, was quantified ranging from 1.1 mg.L-1 to 32.1 mg.L-1. The five most efficient strains, and consortia composed of 5, 10 and 20 bacteria biodegraded the CYP formulation as sole carbon source in phosphate buffer and in minimum mineral medium. Under optimized conditions determined employing Response Surface Methodology, Bacillus sp. CSA-1 and the consortium composed of 10 strains biodegraded 71.0% and 71.6% CYP in 24 h, respectively. Moreover, metabolite identification enabled the proposal of an extended biodegradation pathway with 29 identified compounds, including different new amide and amine derivatives that expanded the knowledge about the fate of this compound in the environment. Experiments of bioaugmentation in soil using Bacillus sp. CSA-1 and the consortium of 10 bacterial strains resulted in faster CYP biodegradation than natural attenuation, showing that the selection of efficient strains for composing a consortium is an interesting approach for bioremediation of pyrethroids.
Collapse
Affiliation(s)
- Willian Garcia Birolli
- Laboratory of Micromolecular Biochemistry of Microorganisms (LaBioMMi), Center for Exact Sciences and Technology, Federal University of São Carlos, Via Washington Luiz, km 235, 13.565-905, P.O. Box 676, São Carlos, SP, Brazil.
| | - Bianca Ferreira da Silva
- Institute of Chemistry, Department of Analytical Chemistry, São Paulo State University (UNESP), 14800-060, P.O. Box 355, Araraquara, SP, Brazil
| | - Edson Rodrigues Filho
- Laboratory of Micromolecular Biochemistry of Microorganisms (LaBioMMi), Center for Exact Sciences and Technology, Federal University of São Carlos, Via Washington Luiz, km 235, 13.565-905, P.O. Box 676, São Carlos, SP, Brazil.
| |
Collapse
|
37
|
Ramprasath R, Manikandan V, Aldawood S, Sudha S, Cholan S, Kannadasan N, Sampath S, Gokul B. Polyol-assisted hydrothermal synthesis of Mn-doped α - Fe 2O 3(MFO) nanostructures: Spin disorder-induced magnetism and photocatalytic properties. ENVIRONMENTAL RESEARCH 2022; 214:113866. [PMID: 35952748 DOI: 10.1016/j.envres.2022.113866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/10/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Hierarchical nanostructures play an important role in environmental clean-up and sustainability applications. The magnetic and photocatalytic characteristics of flower-like Mn-doped α-Fe2O3 nanostructures were prepared by using a polyol-assisted hydrothermal method. Crystallite sizes are in the range of 35-42 nm, and the existence of 3D hierarchical nanostructures was observed in FESEM pictures. The optical band gap energy varies between 2.08 and 2.16 eV, while XPS examination exposes the ions' charge states and validates Mn3+ inclusion in the Fe3+ lattice. At room temperature, the addition of Mn to α-Fe2O3 results in a spin disorder ferromagnetism and coercivity of about 600 Oe was achieved. Methylene blue (MB) dye solution degraded by 92% when 2.5% Mn doped with α-Fe2O3 under visible conditions for 120 min irradiation time.
Collapse
Affiliation(s)
- R Ramprasath
- Department of Physics, Periyar University, Salem, 636 011, Tamil Nadu, India; Department of Physics, P.D.R.T. Padmavathi Arts and Science College (Women), Dharmapuri, 636902, Tamil Nadu, India
| | - Velu Manikandan
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea
| | - S Aldawood
- Department of Physics and Astronomy, College of Science, P.O. Box 2455, King Saud University, Riyadh, 11451, Saudi Arabia
| | - S Sudha
- Department of Physics, Periyar University, Salem, 636 011, Tamil Nadu, India; Department of Physics, P.D.R.T. Padmavathi Arts and Science College (Women), Dharmapuri, 636902, Tamil Nadu, India
| | - S Cholan
- Department of Physics, Gonzaga College of Arts and Science for Women, Elathagiri, Krishnagiri, 635108, Tamil Nadu, India.
| | - N Kannadasan
- Department of Physics, Sri Sarada Mahavidhyalayam Arts and Science College for Women, Ulunthoorpetai, Vilupuram, 606107, Tamil Nadu, India
| | - Sridhar Sampath
- Department of Physics, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, 600062, Tamil Nadu, India
| | - B Gokul
- Department of Physics, Kongunadu Arts and Science College (Autonomous), Coimbatore, 641 029, Tamil Nadu, India
| |
Collapse
|
38
|
Thanigaivel S, Vickram S, Manikandan S, Deena SR, Subbaiya R, Karmegam N, Govarthanan M, Kim W. Sustainability and carbon neutralization trends in microalgae bioenergy production from wastewater treatment: A review. BIORESOURCE TECHNOLOGY 2022; 364:128057. [PMID: 36195218 DOI: 10.1016/j.biortech.2022.128057] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Reducing CO2 emissions using biomass is gaining popularity as an environmentally friendly strategy. Due to high growth rates, low production costs, and ability to withstand harsh conditions, microalgae have become quite popular. Microalgae may also undertake photosynthesis, converting CO2 and solar energy into sugar before becoming biomass, making them an excellent source of renewable and promising biofuels. CO2 sequestration and biofixation was utilized to compare the synthesis of biodiesel as a third-generation biofuel from various types of wastewater was also used as a source for the algal cultivation. This review article focuses on recent developments, research discoveries in the field of microalgal CO2 capture modification and the optimization of conversion efficiency. This review is intended to serve as a helpful and reference for the use of wastewater treatment with microalgae to collect CO2. The overarching objective of this study is to assist wastewater treatment systems in achieving carbon neutrality.
Collapse
Affiliation(s)
- Sundaram Thanigaivel
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai - 603 203, Tamil Nadu, India
| | - Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai - 602 105, Tamil Nadu, India
| | - Sivasubramanian Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai - 602 105, Tamil Nadu, India
| | - Santhana Raj Deena
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai - 602 105, Tamil Nadu, India
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - Natchimuthu Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem 636 007, Tamil Nadu, India
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
39
|
Gindaba GT, Demsash HD, Jayakumar M. Green synthesis, characterization, and application of metal oxide nanoparticles for mercury removal from aqueous solution. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:9. [PMID: 36269461 DOI: 10.1007/s10661-022-10586-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/28/2022] [Indexed: 06/16/2023]
Abstract
In this work, a novel surface-modified, green-based wheat straw-supported magnetite nanoparticles (Fe3O4-NPs) were synthesized via the green synthesis method, and the adsorption of mercury (Hg(II)) ion from aqueous solutions was methodically investigated. The synthesized wheat straw-supported magnetite (Fe3O4-WSS) NPs were characterized using X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and scanning electron microscopic (SEM) methods. FT-IR and TGA confirmed that the surface of Fe3O4-NPs was functionalized well. The XRD analysis revealed the existence of magnetite in the synthesized wheat straw-supported Fe3O4-NPs of 19.83 nm average crystalline size. SEM analysis showed Fe3O4-NPs were almost spherical, with an average particle size of 22.48 nm. Adsorption studies were carried out to investigate the adsorption of Hg(II) ions onto Fe3O4-WSS NPs and the effect of various adsorption parameters such as pH, time, adsorbent dosage, and Hg(II) ion concentration. The optimum adsorption conditions were obtained: pH of 6, contact time of 45 min, adsorbate of 40 mg/L, and adsorbent of 1 g. A maximum of 98.04% Hg(II) ion removal efficiency was obtained at these optimum conditions. FT-IR analysis also indicated that surface functional groups such as C = C,-OH, and C-C of the newly produced Fe3O4-NPs led to the more efficient removal of Hg(II) from aqueous solution. The synthesized nano-adsorbent showed an excellent adsorption capability of 101.01 mg/g. Hg(II) ions adsorption onto Fe3O4-WSS NPs fitted well with the Langmuir adsorption isotherm model. Therefore, these reasonable findings reveal that Fe3O4-WSS NPs are an efficient and promising adsorbent for Hg(II) removal from aqueous water environments.
Collapse
Affiliation(s)
- Gadissa Tokuma Gindaba
- Department of Chemical Engineering, Institute of Technology, Haramaya University, P.O. Box 138, Dire Dawa, Ethiopia
| | - Hundessa Dessalegn Demsash
- School of Chemical and Bio-Engineering, Institute of Technology, Addis Ababa University, King George VI Street, P.O. Box 385, Addis Ababa, Ethiopia.
| | - Mani Jayakumar
- Department of Chemical Engineering, Institute of Technology, Haramaya University, P.O. Box 138, Dire Dawa, Ethiopia.
| |
Collapse
|
40
|
Mahesh N, Balakumar S, Shyamalagowri S, Manjunathan J, Pavithra MKS, Babu PS, Kamaraj M, Govarthanan M. Carbon-based adsorbents as proficient tools for the removal of heavy metals from aqueous solution: A state of art-review emphasizing recent progress and prospects. ENVIRONMENTAL RESEARCH 2022; 213:113723. [PMID: 35752329 DOI: 10.1016/j.envres.2022.113723] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/13/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Carbon-centric adsorbents (CCA) are diverse forms, from simple biochar (BC) to graphene derivatives, carbon nanotubes (CNTs), and activated carbon (AC), which have been vastly explored for their removal of a plethora of pollutants, including heavy metals (HM). The prominent features of CCA are their operational attributes like extensive surface area, the occurrence of flexible surface functional groups, etc. This work offers a comprehensive examination of contemporary research on CCA for their superior metal removal aptitude and performances in simulated solutions and wastewater flows; via portraying the recent research advances as an outlook on the appliances of CACs for heavy metal adsorption for removal via distinct forms like AC, BC, Graphene oxide (GO), and CNTs. The bibliometric analysis tool was employed to highlight the number of documents, country-wise contribution, and co-occurrence mapping based on the Scopus database. The coverage of research works in this review is limited to the last 5 years (2017-2021) to highlight recent progress and prospects in using CCAs such as AC, BC, GO, and CNTs to remove HM from aqueous media, which makes the review unique. Besides an overview of the common mechanisms of CACs, the future scope of CAC, especially towards HM mitigation, is also discussed in this review. This review endorses that further efforts should be commenced to enhance the repertory of CCAs that effectively eliminate multiple targeted metals in both simulated and real wastewater.
Collapse
Affiliation(s)
- Narayanan Mahesh
- Department of Chemistry and Biosciences, Srinivasa Ramanujan Centre, SASTRA Deemed to Be University, Kumbakonam, 612001, Tamil Nadu, India
| | - Srinivasan Balakumar
- Department of Chemistry and Biosciences, Srinivasa Ramanujan Centre, SASTRA Deemed to Be University, Kumbakonam, 612001, Tamil Nadu, India
| | | | - Jagadeesan Manjunathan
- Department of Biotechnology, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, 600117, Tamil Nadu, India
| | - M K S Pavithra
- Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, 638401, Tamil Nadu, India
| | - Palanisamy Suresh Babu
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai, 602105, Tamil Nadu, India; Faculty of Pharmaceutical Sciences, UCSI University, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Murugesan Kamaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology -Ramapuram Campus, Chennai, 600089, Tamil Nadu, India.
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
41
|
Samiyammal P, Kokila A, Pragasan LA, Rajagopal R, Sathya R, Ragupathy S, Krishnakumar M, Minnam Reddy VR. Adsorption of brilliant green dye onto activated carbon prepared from cashew nut shell by KOH activation: Studies on equilibrium isotherm. ENVIRONMENTAL RESEARCH 2022; 212:113497. [PMID: 35618006 DOI: 10.1016/j.envres.2022.113497] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/29/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Activated carbon from cashew nut shell via a potassium hydroxide (KOH) at 600 °C in an N2 atmosphere and their characteristics using FT-IR, XRD, SEM with EDS, and BET analysis was investigated. The cashew nut shell activated carbon obtained by KOH activation with a CNS/KOH ratio of 1:1 at 600 °C (N2 atmosphere) for 2 h had the highest surface area (407.80 m2/g) as compared to other ratio samples. Amongst, CNS/KOH ratios of 1:1 sample are used for the adsorbent, they are effects of contact time, pH, adsorbent dose, and initial dye concentration on brilliant green (BG) removal efficiency were studied. Moreover, the Langmuir and Freundlich adsorption models consisted utilized to affirm the adsorption isotherms. They are, best fitting for BG experimental equilibrium data was achieved with the Langmuir isotherm, giving a maximum BG adsorption capacity of 243.90 mg/g.
Collapse
Affiliation(s)
- P Samiyammal
- Department of Physics, Annai College of Arts and Science (Affiliated to Bharathidasan University, Trichy), Kovilacheri, Kumbakonam, 612503, Tamil Nadu, India
| | - A Kokila
- Department of Forestry and Environmental Science, GKVK, University of Agricultural Sciences, Bangalore, 560065, India
| | - L Arul Pragasan
- Department of Environmental Sciences, Bharathiar University, Coimbatore, 641 046, India
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rengasamy Sathya
- Department of Microbiology, Centre for Research and Development, PRIST University, Tamil Nadu, 613 403, India
| | - S Ragupathy
- Department of Physics, E.R.K Arts and Science College, Erumiyampatti, Dharmapuri, 636905, Tamil Nadu, India.
| | - M Krishnakumar
- Department of Physics, University College of Engineering, Dindigul, 624 622, Tamil Nadu, India
| | | |
Collapse
|
42
|
Deka R, Shreya S, Mourya M, Sirotiya V, Rai A, Khan MJ, Ahirwar A, Schoefs B, Bilal M, Saratale GD, Marchand J, Saratale RG, Varjani S, Vinayak V. A techno-economic approach for eliminating dye pollutants from industrial effluent employing microalgae through microbial fuel cells: Barriers and perspectives. ENVIRONMENTAL RESEARCH 2022; 212:113454. [PMID: 35597291 DOI: 10.1016/j.envres.2022.113454] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/01/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Microbial fuel cells are biochemical factories which besides recycling wastewater are electricity generators, if their low power density can be scaled up. This also adds up to work on many factors responsible to increase the cost of running a microbial fuel cell. As a result, the first step is to use environment friendly dead organic algae biomass or even living algae cells in a microbial fuel cell, also referred to as microalgal microbial fuel cells. This can be a techno-economic aspect not only for treating textile wastewater but also an economical way of obtaining value added products and bioelectricity from microalgae. Besides treating wastewater, microalgae in its either form plays an essential role in treating dyes present in wastewater which essentially include azo dyes rich in synthetic ions and heavy metals. Microalgae require these metals as part of their metabolism and hence consume them throughout the integration process in a microbial fuel cell. In this review a detail plan is laid to discuss the treatment of industrial effluents (rich in toxic dyes) employing microbial fuel cells. Efforts have been made by researchers to treat dyes using microbial fuel cell alone or in combination with catalysts, nanomaterials and microalgae have also been included. This review therefore discusses impact of microbial fuel cells in treating wastewater rich in textile dyes its limitations and future aspects.
Collapse
Affiliation(s)
- Rahul Deka
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP), 470003, India
| | - Shristi Shreya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP), 470003, India
| | - Megha Mourya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP), 470003, India
| | - Vandana Sirotiya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP), 470003, India
| | - Anshuman Rai
- MMU, Deemed University, School of Engineering, Department of Biotechnology, Ambala, Haryana,133203, India
| | - Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP), 470003, India
| | - Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP), 470003, India
| | - Benoit Schoefs
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, IUML - FR 3473 CNRS, Le Mans, France
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido, 10326, Republic of Korea
| | - Justine Marchand
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido, 10326, Republic of Korea
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382010, India.
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP), 470003, India.
| |
Collapse
|
43
|
Sánchez-Sandoval DS, González-Ortega O, Vazquez-Martínez J, García de la Cruz RF, Soria-Guerra RE. Diclofenac removal by the microalgae species Chlorella vulgaris, Nannochloropsis oculata, Scenedesmus acutus, and Scenedesmus obliquus. 3 Biotech 2022; 12:210. [PMID: 35945985 PMCID: PMC9357248 DOI: 10.1007/s13205-022-03268-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 07/21/2022] [Indexed: 12/01/2022] Open
Abstract
In this work, we evaluated the removal efficiency of diclofenac by Chlorella vulgaris OW-01, Nannochloropsis oculata CCAP 849/7, Scenedesmus acutus UTEX 72, and Scenedesmus obliquus CCAP 276/2. Each microalga was grown in media with different concentrations (50 and 100% of the original formulation) of carbon, nitrogen, and phosphorus, to evaluate their effect on the removal of diclofenac. We also evaluated the photodegradation of diclofenac under the same conditions. The diclofenac removed from the media ranged from 59 to 92%, obtaining the highest removal with S. obliquus. The diclofenac adsorbed on the cell walls ranged from 12.2 to 26.5%, obtaining the highest adsorption with S. obliquus. The diclofenac degraded by light ranged from 15 to 28%. The nutrient deficit showed no influence on the removal of diclofenac in any of the microalgae under study. These results indicate that S. obliquus is the best alternative for the bioremediation of diclofenac. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03268-2.
Collapse
Affiliation(s)
- Danaé Samara Sánchez-Sandoval
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210 San Luis Potosí, Mexico
| | - Omar González-Ortega
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210 San Luis Potosí, Mexico
| | - Juan Vazquez-Martínez
- Instituto Tecnológico Superior de Irapuato, Carretera Irapuato-Silao km 12.5 Colonia El Copal, 36821 Irapuato, Guanajuato Mexico
| | | | - Ruth Elena Soria-Guerra
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210 San Luis Potosí, Mexico
| |
Collapse
|
44
|
Abdel-Fattah Mostafa A, Yassin MT, Dawoud TM, Al-Otibi FO, Sayed SR. Mycodegradation of diazinon pesticide utilizing fungal strains isolated from polluted soil. ENVIRONMENTAL RESEARCH 2022; 212:113421. [PMID: 35568233 DOI: 10.1016/j.envres.2022.113421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/22/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
The current study aimed to isolate biodegradable soil fungi capable of metabolizing diazinon. The collected soil samples were investigated for diazinon pollution to detect the pesticide level in the polluted soil samples. Food poisoning techniques were utilized to preliminary investigate the biodegradation efficiency of the isolated fungal strains to diazinon pesticide using solid and liquid medium and also to detect their tolerance to different concentrations. GC-MS analysis of control and treated flasks were achieved to determine the diazinon residues for confirmation of the biodegradation efficiency. The total diazinon residues in the collected soil samples was found to be 0.106 mg/kg. Out of thirteen fungal strains isolated form diazinon polluted soils, six strains were potentially active in diazinon biodegradation. Food poisoning technique showed that A. niger, B. antennata, F. graminearum, P. digitatum, R. stolonifer and T. viride strains recorded fungal growth diameters of 65.2 ± 0.18, 57.5 ± 0.41, 47.2 ± 0.36, 56.5 ± 0.27, 85.0 ± 0.01, 85.0 ± 0.06 mm respectively in the treated group which were non significantly different compared to that of control (P > 0.05), indicating the high efficiency of these strains in diazinon degradation compared to the other isolated strains. GC-MS analysis revealed that B. antennata was the most efficient strain in diazinon degradation recording 32.24 ± 0.15 ppm concentration after 10 days incubation. Linear regression analysis confirmed that B. antennata was the most effective biodegradable strain recording the highest diazinon dissipation (83.88%) with the lowest T1/2 value of 5.96 days while T. viride, A. niger, R. stolonifer and F. graminearum exhibited a high biodegradable activities reducing diazinon to 80.26%, 78.22%, 77.36% and 75.43% respectively after 10 days incubation. In conclusion, these tolerant fungi could be considered as promising, eco-friendly and biodegradable fungi for the efficient and potential removal of hazardous diazinon from polluted soil.
Collapse
Affiliation(s)
- Ashraf Abdel-Fattah Mostafa
- Botany and Microbiology Department, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed Taha Yassin
- Botany and Microbiology Department, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia.
| | - Turki M Dawoud
- Botany and Microbiology Department, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Fatimah O Al-Otibi
- Botany and Microbiology Department, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Shaban Rm Sayed
- Electron Microscope Unit, Collage of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
45
|
Ramaswamy J, Solaiappan V, Albasher G, Alamri O, Alsultan N, Sathiasivan K. Process optimization of struvite recovered from slaughterhouse wastewater and its fertilizing efficacy in amendment of biofertilizer. ENVIRONMENTAL RESEARCH 2022; 211:113011. [PMID: 35288154 DOI: 10.1016/j.envres.2022.113011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
The intensive discharge of slaughterhouse waste into water bodies increases Nitrogen (N), Phosphorus (P) in the wastewater and leads to various environmental problems. On the other hand, the increasing treatment effort after the extraction of these valuable nutrients in the commercial fertilizer reduces the dependence on scarce phosphate resources. The viable solution is to recover N, P as struvite (magnesium ammonium phosphate) from nutrient rich waste water as a small scale treatment unit application. The main parameters that have a significant impact on the process, including pH, Mg: P ratio, and precipitation time, were investigated from slaughterhouse wastewater using a central composite design and the experimental data's were statistically analysed. The results indicated that pH and Mg/P ratio level had a significant impact and thus 85% struvite precipitation efficiency was achieved at 9.6 pH and 1.5 dose mol ratio (mol Mg per mol P), in an inexpensive, stirred tank batch reactor with a retention time of 70 min. The fertilization efficiency was tested on the growth of Solanum melongena L with the obtained struvite and the integration of struvite with the Azospirullum rhizobium and Bacillus megaterium. Treatment of struvite, struvite with Azospirillum rhizobium and Bacillus megaterium increased growth parameters by 10%, 20%, and 25%, respectively, over control. The assessment of growth factors showed the most amazing number of fruits, shoots, and root length in a standard ratio of 60:40 of struvite to bio-inoculants compared to sole struvite fertilizer. Findings of this study would be beneficial to determine the feasibility of slaughterhouse waste as a phosphorus source for struvite recovery.
Collapse
Affiliation(s)
- Jeyalakshmi Ramaswamy
- Department of Chemistry, College of Engineering and Technology, Faculty of E & T, SRM Institute of Science and Technology, Kattankulathur, 603203, Chennai, Tamil Nadu, India
| | - Vishali Solaiappan
- Department of Chemical Engineering, College of Engineering and Technology, Faculty of E & T, SRM Institute of Science and Technology, Kattankulathur, 603203, Chennai, Tamil Nadu, India
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ohoud Alamri
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nouf Alsultan
- Faculty of Medicine and Health Sciences, Medical School, University of Nottingham, UK
| | - Kiruthika Sathiasivan
- Department of Chemical Engineering, College of Engineering and Technology, Faculty of E & T, SRM Institute of Science and Technology, Kattankulathur, 603203, Chennai, Tamil Nadu, India.
| |
Collapse
|
46
|
Liu L, He A, Yuan Z. Methylene blue adsorption by metal-decorated fullerenes: DFT assessments. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
47
|
Ragupathy S, Priyadharsan A, AlSalhi MS, Devanesan S, Guganathan L, Santhamoorthy M, Kim SC. Effect of doping and loading Parameters on photocatalytic degradation of brilliant green using Sn doped ZnO loaded CSAC. ENVIRONMENTAL RESEARCH 2022; 210:112833. [PMID: 35150712 DOI: 10.1016/j.envres.2022.112833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Sn doped ZnO loaded cotton stalk activated carbon (Sn-ZnO/CSAC) was prepared by chemical precipitation method, and the products were characterized. The XRD resultants confirm that the presence of hexagonal wurtzite phase of the bare ZnO. Furthermore, particular particle size gradually decreases (21.49 nm) due to doping and loading. UV-Vis absorption intensity of doped/loaded sample was red-shifted and then PL intensity is reduced. The photocatalytic performances of bare, Sn-doped ZnO and Sn-ZnO/CSAC was estimated by photodegradation of brilliant green (BG) under sunlight. The photodegradation of BG dye in 120 min over Sn-doped ZnO/CSAC is nearly 96.52%, which is considerably improved than bare ZnO (72.60%), respectively.
Collapse
Affiliation(s)
- S Ragupathy
- Department of Physics, E.R.K. Arts and Science College, Erumiyampatti, Dharmapuri, 636 905, Tamil Nadu, India.
| | - A Priyadharsan
- Department of Physics, E.R.K. Arts and Science College, Erumiyampatti, Dharmapuri, 636 905, Tamil Nadu, India.
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box-2455, Riyadh, 11451, Saudi Arabia
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box-2455, Riyadh, 11451, Saudi Arabia
| | - L Guganathan
- Department of Physics, Annamalai University, Annamalainagar, 608002, Tamil Nadu, India
| | - M Santhamoorthy
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38544, Republic of Korea
| | - S C Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38544, Republic of Korea.
| |
Collapse
|
48
|
Manikandan V, Anushkkaran P, Chae WS, Chung HS, Park JH, Jang JS. Microwave-assisted thermochemical conversion of Zr-FeOOH nanorods to Zr-ZnFe 2O 4 nanorods for bacterial disinfection and photo-Fenton catalytic degradation of organic pollutants. CHEMOSPHERE 2022; 299:134363. [PMID: 35358554 DOI: 10.1016/j.chemosphere.2022.134363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/28/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Herein, we report a CoOx-loaded Zr-doped ZnFe2O4 (CoOx/Zr-ZFO) NR photocatalyst synthesized by successive microwave and wet impregnation methods for bacterial inactivation and degradation of organic pollutants. For the first time, microwave treatment was used for Zn attachment on hydrothermally synthesized self-assembled Zr-FeOOH NRs to produce Zr-doped ZnFe2O4 (Zr-ZFO) NRs. The lowest bandgap energy (1.96 eV) enables for significant absorption in the visible light region, which helps to improve bacteria degradation inactivation efficiency. Further, various metal oxides (Cu, Ag and Co) were loaded onto the surface of photocatalysts (Zr-ZFO NRs) by a wet impregnation method. As-synthesized CoOx/Zr-ZFO-3 NRs were systematically characterized and used as photocatalysts for inactivation of E. coli and S. aureus and degradation of organic pollutants. The CoOx/Zr-ZFO-3 NR photocatalyst exhibited better inactivation efficiency (99.4 %) than other metal oxide-loaded Zr-ZFO NRs (Ag2Ox-loaded Zr-ZFO NRs (33.6 %), CuOx-loaded Zr-ZFO NRs (77.6 %)). Additionally, the optimum CoOx/Zr-ZFO-3 NR photocatalyst showed 98.3 % and 98.1 % degradation efficiencies for BPA and orange II dye, respectively, under visible light irradiation (λ ≥ 420 nm). Therefore, this work affords a novel, simple and rapid approach for the development of photocatalysts which active in visible light for bacterial disinfection and organic degradation.
Collapse
Affiliation(s)
- Velu Manikandan
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Periyasamy Anushkkaran
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Weon-Sik Chae
- Daegu Center, Korea Basic Science Institute, Daegu, 41566, Republic of Korea
| | - Hee-Suk Chung
- Analytical Research Division, Korea Basic Science Institute, Jeonju, Jeollabuk-do, 54907, Republic of Korea
| | - Jung Hee Park
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Jum Suk Jang
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea.
| |
Collapse
|
49
|
Pai S, Kini MS, Mythili R, Selvaraj R. Adsorptive removal of AB113 dye using green synthesized hydroxyapatite/magnetite nanocomposite. ENVIRONMENTAL RESEARCH 2022; 210:112951. [PMID: 35183516 DOI: 10.1016/j.envres.2022.112951] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/02/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
In the present study, magnetite nanoparticles (Fe3O4NPs) synthesized using Thunbergia grandiflora leaf extract as a reducing agent were doped with hydroxyapatite sourced from waste bivalve clamshells to produce hydroxyapatite/magnetite nanocomposite (HA/Fe3O4NPs). The magnetic nanocomposite was examined using several characterization techniques. The results of XRD and FESEM, analysis showed HA/Fe3O4NPs have a crystalline phase and irregular spherical particles respectively. EDAX and FTIR confirmed the presence of specific elements and functional groups of both iron oxide and hydroxyapatite nanoparticles respectively. The surface area and superparamagnetic property of the composite were determined by BET and VSM analysis. Central Composite Design (CCD) was used to optimize the adsorption process to remove of AB113 from aqueous solutions. The optimal adsorption efficiency was found out to be 94.38% at pH 8, AB113 dye concentration 54 ppm, HA/Fe3O4NPs dose 84 mg, and an agitation speed of 174 rpm. The monolayer Langmuir isotherm was the best model with a sorption capacity of 109.98 mg/g which was higher than the reported values. The pseudo-second-order kinetic model displayed a good fit with an R2 = 0.99. Thermodynamic parameters were assessed which confirmed the exothermic adsorption process. Therefore, the synthesized magnetic nanocomposite can be employed as a novel nanoadsorbent for the removal of anionic dyes from waste effluents.
Collapse
Affiliation(s)
- Shraddha Pai
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - M Srinivas Kini
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Raja Mythili
- PG & Research Department of Biotechnology, Mahendra Arts & Science College, Kalippatti, 637501, Namakkal, Tamil Nadu, India
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
50
|
Maheswaran B, Karmegam N, Al-Ansari M, Subbaiya R, Al-Humaid L, Sebastin Raj J, Govarthanan M. Assessment, characterization, and quantification of microplastics from river sediments. CHEMOSPHERE 2022; 298:134268. [PMID: 35276113 DOI: 10.1016/j.chemosphere.2022.134268] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/17/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Microplastic (MP), as a pollutant, is currently posing a biological hazard to the aquatic environment. The study aims to isolate, quantify, and characterize the MP pollutants in sediment samples from 14 study sites at Kaveri River, Killa Chinthamani, Tiruchirappalli, South India. With Sediment-MP Isolation (SMI) unit, density separation was done with a hydrogen peroxide solution. Four forms of MPs namely, fragments, films, foams, and fibers with orange, white, green, and saffron red were observed. The plenitude and distribution of four forms of MPs and natural substrates were geometrically independent, with large amounts of microfragments within the research region accounting for 79.72% variation by Principal Component Analysis. FT-IR analyses of MPs showed the presence of polyamide, polyethylene, polyethylene glycol, polyethylene terephthalate, polypropylene, and polystyrene. Additionally, the scanning electron microscopic analysis revealed that the MPs have differential surface morphology with rough surfaces, porous structures, fissures, and severe damage. Most MPs comprised Si, Mg, Cu, and Al, according to energy dispersive X-ray analyses. The combined SMI, instrumental analyses and evaluation (heat map) of MPs in river sediments help assess contamination levels and types of MPs. The findings might provide an insight into the status of MPs in Kavery River sediments that could help in formulating regulations for MPs reduction and contamination in rivers eventually to protect the environment.
Collapse
Affiliation(s)
- Baskaran Maheswaran
- Post Graduate and Research Department of Biotechnology, Jamal Mohamed College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, 620 020, Tamil Nadu, India
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem, Tamil Nadu, India
| | - Mysoon Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box, 21692, Kitwe, Zambia
| | - Latifah Al-Humaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Joseph Sebastin Raj
- Post Graduate and Research Department of Biotechnology, Jamal Mohamed College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, 620 020, Tamil Nadu, India.
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India.
| |
Collapse
|