1
|
Chen X, Dong L, Yang L, Yang Y, Yang L, Han S. Prenatal exposure to polycyclic aromatic hydrocarbons and blood pressure in the early life of children. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117830. [PMID: 39933235 DOI: 10.1016/j.ecoenv.2025.117830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/13/2025]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) has been associated with many adverse health outcomes. This cohort study investigates the association between prenatal exposure to PAHs and blood pressure in children aged 4-6 years. Conducted in Shenyang, China, the study includes 5642 children whose mothers provided urine samples in the third trimester, which were analyzed for PAH metabolites. Children's blood pressure indicators, including systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), and pulse pressure (PP), were measured during follow-up. Multivariable regression models, adjusted for key confounders, were used to explore associations between PAH metabolites and blood pressure. Additionally, we applied quantile g-computation (g-comp) and Bayesian kernel machine regression (BKMR) to assess the combined and interaction effects of multiple PAH metabolites. Prenatal exposure to specific PAH metabolites showed significant associations with blood pressure parameters. 2-hydroxynaphthalene, 3-hydroxyfluorene, 9-hydroxyphenanthrene, and 1-hydroxypyrene were positively linked to SBP. For DBP, 2-hydroxynaphthalene, 1-hydroxynaphthalene, and total PAH metabolites revealed strong associations. PP was significantly linked to 3-Hydroxyfluorene, while MAP showed consistent associations with 2-hydroxynaphthalene, 1-hydroxynaphthalene, 9-hydroxyphenanthrene, and 1-hydroxypyrene. G-comp analysis revealed significant associations between prenatal PAH exposure and increases in SBP, DBP, and MAP, with no effect on PP. BKMR showed no strong evidence for SBP or DBP but suggested potential positive associations for PP and MAP at higher exposure quantiles, indicating nuanced, exposure-dependent relationships with blood pressure outcomes. This study, being one of the first to explore these associations in children, provides important insights into the potential long-term health impacts of prenatal PAH exposure on childhood cardiovascular health.
Collapse
Affiliation(s)
- Xiaodong Chen
- Department of Oncology, Shengjing Hospital of China Medical University. Shenyang, Liaoning Province, China
| | - Lingling Dong
- Second Department of Cardiovascular Medicine, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, China
| | - Lina Yang
- Second Department of Cardiovascular Medicine, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, China
| | - Yan Yang
- Department of Gastroenterology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110032, China.
| | - Liyu Yang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Sijia Han
- Department of Oncology, Shengjing Hospital of China Medical University. Shenyang, Liaoning Province, China.
| |
Collapse
|
2
|
Kim JH, Hong YC. Associations among urinary 1-hydroxypyrene level, oxidative stress, and high blood pressure: A panel study among elderly Koreans. CHEMOSPHERE 2024; 368:143693. [PMID: 39515540 DOI: 10.1016/j.chemosphere.2024.143693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/24/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are environmental carcinogens. However, there is limited evidence for the relations between PAHs exposure and blood pressure (BP) with the mediating role of oxidative stress. Therefore, in this study, we evaluated relations among PAHs exposure, oxidative stress, and BP in the elderly population. We measured the levels of 1-hydroxypyrene (1-OHP), an indicator of PAHs exposure, and malondialdehyde (MDA), an oxidative stress marker, in urine samples repeatedly collected from 560 elderly persons aged ≥60 years, and then evaluated the relations among 1-OHP level, MDA level, and systolic or diastolic BP (SBP or DBP) measured on the day of urine collection. Urinary 1-OHP level was significantly associated with both MDA level (β = 0.19 and p < 0.0001) and BP (β = 1.72 and p < 0.0001 for SBP; and β = 1.24 and p < 0.0001 for DBP). Furthermore, urinary MDA level was also significantly associated with BP (β = 4.35 and p < 0.0001 for SBP; and β = 2.51 and p < 0.0001 for DBP). The trend for the change of SBP and DBP by 1-OHP quartile was more apparent in the elderly female participants (ptrend<0.0001 for SBP; and ptrend<0.0001 for DBP) compared with the elderly male participants (ptrend = 0.8351 for SBP; and ptrend = 0.3736 for DBP). To explore the mediating role of oxidative stress in the relation between 1-OHP level and SBP or DBP, we repeated these analyses after adjustment for the MDA levels. The increase in BP by 1-OHP exposure was largely mediated by the production of MDA (96.3% for SBP and 94.7% for DBP). These results revealed that PAHs exposure may increase BP through the mediation of oxidative stress.
Collapse
Affiliation(s)
- Jin Hee Kim
- Department of Integrative Bioscience & Biotechnology, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea.
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul, 03080, Republic of Korea
| |
Collapse
|
3
|
Mallah MA, Hill JW, Neupane B, Ahmad MZ, Ali M, Bibi J, Akhtar MF, Naveed M, Zhang Q. Urinary polycyclic aromatic hydrocarbons and adult obesity among the US population: NHANES 2003-2016. Clin Obes 2024; 14:e12687. [PMID: 38965765 DOI: 10.1111/cob.12687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/30/2024] [Accepted: 06/09/2024] [Indexed: 07/06/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are naturally occurring environmental pollutants that may contribute to obesity in the adult population. To investigate the relationship between the urinary concentrations of PAH metabolites and adult obesity among the US population, the National Health and Nutritional Examination Survey (NHANES, 2003-2016) was used as a data source for this study. As many as 4464 participants in the NHANES 2003-2016 were included in the final analyses. We used logistic regression to look at the link between urinary PAH metabolites and obesity, using odds ratios (ORs) and 95% confidence intervals (CIs). The study sample comprised 4464 individuals aged ≥18 years, 2199 were male and 2265 were female. The study characteristics for four different quartiles were analyzed, and the average ages of the four urinary PAH quartiles were 49.61 ± 20.01, 46.63 ± 20.33, 44.28 ± 19.19, and 43.27 ± 17.68 years, respectively. In the quartile analysis of all participants, the third quartile was significantly associated with an increased prevalence of obesity (OR = 1.33, 95% CI = 1.12-1.59) with p-values <.05. In addition, females, but not males, had a strong link between the second, third, and fourth quartiles of urinary PAH and a higher risk of obesity (OR = 1.27, 95% CI = 1.00-1.61; OR = 1.52, 95% CI = 1.19-1.94; and OR = 1.39, 95% CI = 1.09-1.78). In conclusion, the study observed that urinary PAH metabolites were associated with the prevalence of obesity among the US population.
Collapse
Affiliation(s)
| | - Jennifer W Hill
- College of Medicine and Life Sciences, The University of Toledo, Toledo, Ohio, USA
| | - Bidusha Neupane
- Transcultural Psychosocial Organization Nepal (TPO Nepal), Kathmandu, Nepal
| | - Muhammad Zia Ahmad
- Faculty of Social Sciences, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Mukhtiar Ali
- Faculty of Science, Quaid-e-Awam University of Engineering, Science & Technology, Nawab Shah, Sindh, Pakistan
| | - Jannat Bibi
- School of Physical Education, Beijing Sport University, Beijing, China
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Muhammad Naveed
- College of Medicine and Life Sciences, The University of Toledo, Toledo, Ohio, USA
| | - Qiao Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Masoudkabir F, Nayebirad S, Yousefi M, Azizi B, Karimi Z, Shafiee A, Yadangi S, Jalali A, Vasheghani-Farahani A. Waterpipe smoking is associated with presence and severity of coronary artery disease: a propensity score-matched study. BMC Cardiovasc Disord 2024; 24:424. [PMID: 39138402 PMCID: PMC11321025 DOI: 10.1186/s12872-024-04059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND The prevalence of waterpipe smoking (WPS) has been increasing worldwide. This trend is alarming as WPS can negatively impact cardiovascular health. In the present study, we explored the association between WPS and the presence and severity of CAD. METHODS This study was a retrospective analysis of patients who underwent diagnostic coronary angiography at Tehran Heart Center between April 2021 and May 2022. Patients with a previous history of percutaneous coronary intervention and coronary surgery were excluded. Waterpipe smokers were matched with non-smokers based on age, gender, and cigarette smoking using a 1:4 propensity score matching model. Stenosis ≥ 50% in any coronary artery was considered a CAD diagnosis. Gensini score was also calculated to measure the severity of the CAD. RESULTS We reviewed the medical records of 8699 patients, including 380 waterpipe smokers. After matching, 1520 non-smokers with similar propensity scores to the waterpipe smokers were selected. Waterpipe smokers were more likely to have CAD than non-smokers (OR: 1.29; 95% CI: 1.04-1.60, P = 0.021). In addition, WPS increased the natural logarithm of the Gensini score by 1.24 (95% CI: 1.04-1.48, P = 0.014) in patients with atherosclerotic coronary disease. CONCLUSION WPS may increase the risk of CAD independent of age, gender, and cigarette smoking. In addition, among patients with any degree of atherosclerosis in coronary arteries (GS > 0), WPS may lead to higher average GS, suggesting more severe atherosclerosis.
Collapse
Affiliation(s)
- Farzad Masoudkabir
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Cardiovascular Research, Tehran Heart Center, North Kargar Ave, Tehran, 1411713138, Iran.
| | - Sepehr Nayebirad
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Yousefi
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bayan Azizi
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Karimi
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Akbar Shafiee
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Yadangi
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Jalali
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Vasheghani-Farahani
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Tasmin S, Aschebrook-Kilfoy B, Hedeker D, Gopalakrishnan R, Connellan E, Kibriya MG, Young MT, Kaufman JD, Ahsan H. Long-term exposure to ambient air pollution and measures of central hemodynamics and arterial stiffness among multiethnic Chicago residents. Environ Health 2024; 23:47. [PMID: 38715087 PMCID: PMC11075200 DOI: 10.1186/s12940-024-01077-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 04/02/2024] [Indexed: 05/12/2024]
Abstract
OBJECTIVES To examine whether long-term air pollution exposure is associated with central hemodynamic and brachial artery stiffness parameters. METHODS We assessed central hemodynamic parameters including central blood pressure, cardiac parameters, systemic vascular compliance and resistance, and brachial artery stiffness measures [including brachial artery distensibility (BAD), compliance (BAC), and resistance (BAR)] using waveform analysis of the arterial pressure signals obtained from a standard cuff sphygmomanometer (DynaPulse2000A, San Diego, CA). The long-term exposures to particles with an aerodynamic diameter < 2.5 μm (PM2.5) and nitrogen dioxide (NO2) for the 3-year periods prior to enrollment were estimated at residential addresses using fine-scale intra-urban spatiotemporal models. Linear mixed models adjusted for potential confounders were used to examine associations between air pollution exposures and health outcomes. RESULTS The cross-sectional study included 2,387 Chicago residents (76% African Americans) enrolled in the ChicagO Multiethnic Prevention And Surveillance Study (COMPASS) during 2013-2018 with validated address information, PM2.5 or NO2, key covariates, and hemodynamics measurements. We observed long-term concentrations of PM2.5 and NO2 to be positively associated with central systolic, pulse pressure and BAR, and negatively associated with BAD, and BAC after adjusting for relevant covariates. A 1-µg/m3 increment in preceding 3-year exposures to PM2.5 was associated with 1.8 mmHg higher central systolic (95% CI: 0.98, 4.16), 1.0 mmHg higher central pulse pressure (95% CI: 0.42, 2.87), a 0.56%mmHg lower BAD (95% CI: -0.81, -0.30), and a 0.009 mL/mmHg lower BAC (95% CI: -0.01, -0.01). CONCLUSION This population-based study provides evidence that long-term exposures to PM2.5 and NO2 is related to central BP and arterial stiffness parameters, especially among African Americans.
Collapse
Affiliation(s)
- Saira Tasmin
- Department of Public Health Sciences, University of Chicago, 5815 S. Maryland Ave, Rm TC-620A, MC2000, Chicago, IL, 60637, USA
- Institute for Population and Precision Health, University of Chicago, Chicago, IL, USA
| | - Briseis Aschebrook-Kilfoy
- Department of Public Health Sciences, University of Chicago, 5815 S. Maryland Ave, Rm TC-620A, MC2000, Chicago, IL, 60637, USA
- Institute for Population and Precision Health, University of Chicago, Chicago, IL, USA
| | - Donald Hedeker
- Department of Public Health Sciences, University of Chicago, 5815 S. Maryland Ave, Rm TC-620A, MC2000, Chicago, IL, 60637, USA
| | | | - Elizabeth Connellan
- Institute for Population and Precision Health, University of Chicago, Chicago, IL, USA
| | - Muhammad G Kibriya
- Department of Public Health Sciences, University of Chicago, 5815 S. Maryland Ave, Rm TC-620A, MC2000, Chicago, IL, 60637, USA
- Institute for Population and Precision Health, University of Chicago, Chicago, IL, USA
| | - Michael T Young
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Joel D Kaufman
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Habibul Ahsan
- Department of Public Health Sciences, University of Chicago, 5815 S. Maryland Ave, Rm TC-620A, MC2000, Chicago, IL, 60637, USA.
- Institute for Population and Precision Health, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
6
|
Khaled R, Elabed S, Masarani A, Almulla A, Almheiri S, Koniyath R, Semerjian L, Abass K. Human biomonitoring of environmental contaminants in Gulf Countries - current status and future directions. ENVIRONMENTAL RESEARCH 2023; 236:116650. [PMID: 37479209 DOI: 10.1016/j.envres.2023.116650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND This systematic review aimed to evaluate the status of Human Biomonitoring (HBM) in the Gulf Cooperation Council (GCC) region and provide recommendations for future research, considering the increased environmental contaminants that pose a threat to human health in this rapidly industrializing area. METHODS A thorough search was performed in PubMed and Web of Science databases up to February 2023 to identify biomonitoring studies on human exposure and levels in the GCC region. Two independent reviewers assessed study eligibility, conducted data extraction and risk of bias assessment. The NIH Quality Assessment Tools and PRISMA guidelines were utilized for quality evaluation and reporting of results. RESULTS A total of 38 eligible articles were included in this systematic review out of 662 articles screened. The majority of the publications were from Saudi Arabia (n = 24) and Kuwait (n = 10), while limited representation was found from Qatar (n = 3) and the UAE (n = 1). No articles were identified from Oman and Bahrain. The studies focused on metals, organohalogen compounds, pesticides, polycyclic aromatic hydrocarbons, and phthalates. The findings revealed elevated levels of metals and established correlations between metal exposure and adverse health effects, including infant neurodevelopmental issues, vitamin D deficiency, and oxidative stress. The presence of organohalogen compounds and pesticides was prevalent in the GCC region, with significant associations between exposure to these compounds and negative health outcomes. Notably, high levels of perchlorate were observed in the Kuwaiti population, and a study from Saudi Arabia found an association between per- and polyfluorinated substances and increased odds of osteoporosis. CONCLUSIONS This review emphasizes the need to address environmental health challenges in the GCC region through improved HBM research methods and strategies. Implementing biomonitoring programs, conducting cohort studies, investing in tools and expertise, promoting collaboration, and engaging the community are crucial for reliable HBM data in the GCC.
Collapse
Affiliation(s)
- Raghad Khaled
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Shahd Elabed
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Asmaa Masarani
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Anfal Almulla
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Shamsa Almheiri
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Rinsha Koniyath
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Lucy Semerjian
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Khaled Abass
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, United Arab Emirates; Sharjah Institute for Medical Research (SIMR), University of Sharjah, United Arab Emirates; Research Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, Finland.
| |
Collapse
|
7
|
Islam R, Sheba NH, Siddique RF, Hannan JMA, Hossain S. Association of household fuel use with hypertension and blood pressure among adult women in rural Bangladesh: A cross-sectional study. Am J Hum Biol 2023; 35:e23899. [PMID: 36932851 DOI: 10.1002/ajhb.23899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/24/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
OBJECTIVES This study aimed to determine the association of household fuel use with hypertension, systolic blood pressure (SBP), and diastolic blood pressure (DBP) among adult women. METHODS A cross-sectional survey through face-to-face interviews and blood pressure (BP) measurement were conducted among 2182 randomly selected women (1236 solid fuel users and 946 clean fuel users) in rural areas of Bangladesh. RESULTS Overall, 21% of women were hypertensive. Mean SBP and DBP for the study population were 121.27 mmHg (SD ± 15.43) and 76.18 mmHg (SD ± 12.00), respectively. Hypertension was found significantly (p = .006) higher among solid fuel users (23%) compared to clean fuel users (18%). Women using solid fuels have a 35% higher chance (AOR: 1.35, CI: 1.10-1.80) of having hypertension and have more than twice the risk of developing elevated SBP (AOR: 2.01, CI: 1.55-2.95) relative to women using clean fuels for their daily cooking. The probability of hypertension (AOR: 1.39, CI: 1.17-1.60) and elevated SBP (AOR: 1.35, CI: 1.10-1.61) increased significantly for every hour of fuel use. CONCLUSIONS Using clean fuel, reducing the duration of daily cooking time, and improved cooking facilities may help minimizing hypertension and ultimately cardiovascular disease risk among women.
Collapse
Affiliation(s)
- Rabiul Islam
- Department of Public Health, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka, Bangladesh
- Department of Public Health and Informatics, Jahangirnagar University, Savar Union, Bangladesh
| | - Nusrat Hossain Sheba
- Department of Health Promotion and Health Education, Bangladesh University of Health Sciences, Dhaka, Bangladesh
| | - Ruhul Furkan Siddique
- Department of Public Health and Informatics, Jahangirnagar University, Savar Union, Bangladesh
| | - J M A Hannan
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka, Bangladesh
| | - Shakhaoat Hossain
- Department of Public Health and Informatics, Jahangirnagar University, Savar Union, Bangladesh
- Department of Public Health and Informatics, Air Pollution, Climate Change and Health (ACH) Lab, Savar Union, Bangladesh
| |
Collapse
|
8
|
Tasmin S, Aschebrook-Kilfoy B, Hedeker D, Gopalakrishnan R, Stepniak E, Kibriya MG, Young MT, Kaufman JD, Ahsan H. Long-term exposure to ambient air pollution and measures of central hemodynamics and arterial stiffness among multiethnic Chicago residents. RESEARCH SQUARE 2023:rs.3.rs-3171526. [PMID: 37503099 PMCID: PMC10371125 DOI: 10.21203/rs.3.rs-3171526/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Objectives To examine whether air pollution exposure is associated with central hemodynamic and brachial artery stiffness parameters. Methods We assessed central hemodynamic parameters, brachial artery stiffness measures [including brachial artery distensibility (BAD), compliance (BAC), and resistance (BAR)] using waveform analysis of the arterial pressure signals obtained from a standard cuff sphygmomanometer (DynaPulse2000A, San Diego, CA). The long-term exposures to particles with an aerodynamic diameter < 2.5μm (PM2.5) and nitrogen dioxide (NO2) for the 3-year periods prior to enrollment were estimated at residential addresses using fine-scale intra-urban spatiotemporal models. Linear mixed models adjusted for potential confounders were used to examine associations between air pollution exposures and health outcomes. Results The cross-sectional study included 2,387 Chicago residents (76% African Americans) enrolled in the ChicagO Multiethnic Prevention And Surveillance Study (COMPASS) during 2013-2018 with validated address information, PM2.5 or NO2, key covariates, and hemodynamics measurements. We observed long-term concentrations of PM2.5 and NO2 to be positively associated with central systolic, pulse pressure and BAR, and negatively associated with BAD, and BAC after adjusting for relevant covariates. A 1-μg/m3 increment in preceding 3-year exposures to PM2.5 was associated with 1.8 mmHg higher central systolic (95% CI: 0.98, 4.16), 1.0 mmHg higher central pulse pressure (95% CI: 0.42, 2.87), a 0.56%mmHg lower BAD (95% CI: -0.81, -0.30), and a 0.009 mL/mmHg lower BAC (95% CI: -0.01, -0.01). Conclusion This population-based study provides evidence that long-term exposures to PM2.5 and NO2 is related to central BP and arterial stiffness parameters, especially among African Americans.
Collapse
|
9
|
Hisamuddin NH, Jalaludin J. Children's exposure to polycyclic aromatic hydrocarbon (PAHs): a review on urinary 1-hydroxypyrene and associated health effects. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:151-168. [PMID: 35019243 DOI: 10.1515/reveh-2021-0013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
This article reviewed the published studies on the environmental exposure to polycyclic aromatic hydrocarbons (PAHs) among children and assessed the urinary 1-hydroxypyrene (1-OHP) level as a biomarker of exposure to PAHs. The current knowledge of the potential health effects of increased 1-OHP in children was reviewed. Additionally, the influence of genetic polymorphism on the urinary 1-OHP level was discussed in this review. The assembled data showed that children who are attending schools or living close to industrial and polluted urban areas might have greater exposure to higher concentrations of PAHs with a higher level of urinary 1-OHP when compared to those children living in rural areas. Urinary 1-OHP may be a reliable biomarker for determining the genotoxic effects, oxidative stress and inflammation caused by exposure to PAHs. Strong research evidence indicated that the total body burden of PAHs should be evaluated by biomonitoring of 1-OHP in line with other urinary PAHs metabolites (with 2-3 rings) to evaluate recent total exposure to PAHs. Overall, the study suggests implementing a mitigation plan to combat air pollution to provide a cleaner environment for children.
Collapse
Affiliation(s)
- Nur Hazirah Hisamuddin
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Juliana Jalaludin
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Occupational Health and Safety, Faculty of Public Health, Airlangga University, Surabaya, East Java, Indonesia
| |
Collapse
|
10
|
Wang F, Wang Y, Wang Y, Jia T, Chang L, Ding J, Zhou L. Urinary polycyclic aromatic hydrocarbon metabolites were associated with hypertension in US adults: data from NHANES 2009-2016. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80491-80501. [PMID: 35716300 DOI: 10.1007/s11356-022-21391-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widely existing organic pollutants in the environment, and their persistence in the environment makes us have to pay continuous attention to their health effects. However, since the American Heart Association updated its definition of hypertension in 2017, few studies have explored the relationship. This study aimed to investigate the relationship between PAH exposure and hypertension after the updated definition of hypertension and explore whether body mass index (BMI) moderates this relationship. A total of 6332 adult participants from the 2009-2016 National Health and Nutrition Examination Survey (NHANES) were examined. Multiple logistic regression and restricted cubic splines were used to analyze the association between urinary polycyclic aromatic hydrocarbon metabolites and hypertension, and the dose-response relationship. Weighted quantile sum (WQS) regression was applied to blood pressure to reveal multiple exposure effects and the relative weights of each PAH. The prevalence of hypertension in the study population was 48.52%. There was a positive dose-response relationship between high exposure to 1-hydroxynaphthalene, 2&3-hydroxyphenanthrene, and the risk of hypertension. Naphthalene metabolites accounted for the most significant proportion of systolic blood pressure, and phenanthrene metabolites accounted for the most significant proportion of diastolic blood pressure. Obese individuals with high PAH exposure were at greater risk for hypertension than individuals with low PAH exposure and normal BMI. Higher prevalence rate and stronger association of metabolites with outcomes were obtained in the general population of the USA under the new guideline. High levels of exposure to PAHs were positively associated with the risk of hypertension, and these effects were modified by BMI.
Collapse
Affiliation(s)
- Fang Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan, China.
| | - Yuying Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan, China
| | - Yu Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan, China
| | - Teng Jia
- Department of Epidemiology and Health Statistics, School of Public Health, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan, China
| | - Li Chang
- Department of Epidemiology and Health Statistics, School of Public Health, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan, China
| | - Jie Ding
- Department of Epidemiology and Health Statistics, School of Public Health, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan, China
| | - Li Zhou
- Department of Epidemiology and Health Statistics, School of Public Health, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan, China
| |
Collapse
|
11
|
Liu M, Zhao L, Liu L, Guo W, Yang H, Yu J, Chen S, Li M, Fang Q, Lai X, Yang L, Zhu R, Zhang X. Associations of urinary polycyclic aromatic hydrocarbon metabolites and blood pressure with the mediating role of cytokines: A panel study among children. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:74921-74932. [PMID: 35648342 DOI: 10.1007/s11356-022-21062-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Little was known regarding the relations of polycyclic aromatic hydrocarbon (PAH) mixture with children's blood pressure (BP) and its potential mechanism. We conducted a panel study with up to 3 visits across 3 seasons in 2017-2018 among 103 children aged 4-13 years. Urinary PAH metabolites (OH-PAHs) were measured by gas chromatograph-tandem triple quadrupole mass spectrometer, and serum cytokines were detected by Bio-Rad 48-Plex Screening Panel. We employed linear mixed-effects models to assess the relations of each urinary OH-PAH with BP, least absolute shrinkage and selection operator (LASSO), and weighted quantile sum (WQS) regression to evaluate associations of OH-PAHs mixture with BP, and mediation analyses for the role of serum cytokines. We found the consistently positive associations of 1-hydroxynaphthalene and 9-hydroxyphenanthrene (9-OHPh) with systolic BP (SBP), 4-OHPh, and 9-OHPh with diastolic BP (DBP) and mean arterial pressure (MAP) in a dose-responsive manner. For instance, each 1-fold increment of 9-OHPh was related with increase of 0.92% (95% confidence interval (CI): 0.25%, 1.60%) in SBP, 1.32% (95%CI: 0.25%, 2.39%) in DBP, and 1.15% (95%CI: 0.40%, 1.88%) in MAP. Meanwhile, based on LASSO and WQS regression, OH-PAHs mixture was linked with increased DBP and MAP, to which 9-OHPh and 4-OHPh were the major contributors. Such relationships were modified by passive smoking status and 3-4 times stronger in passive smokers than non-passive smokers. A 1-fold increase in 9-OHPh was associated with an elevation of 3.51% in SBP among passive smokers while that of 0.55% in SBP among non-passive smokers. Furthermore, 4-OHPh and 9-OHPh were related to multiple cytokines elevation, of which platelet-derived growth factor (PDGF) mediated 9.99% and 12.57% in 4-OHPh-related DBP and MAP elevation, respectively. Accordingly, urinary OH-PAHs dominated by 9-OHPh and 4-OHPh were dose-responsively associated with elevated BP whereby a mechanism partly involving PDGF among children.
Collapse
Affiliation(s)
- Miao Liu
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Lei Zhao
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
- Department of Public Health, Medical College of Qinghai University, Xining, Qinghai, China
| | - Linlin Liu
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Wenting Guo
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Huihua Yang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Jie Yu
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Shuang Chen
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Meng Li
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Qin Fang
- Department of Medical Affairs, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, China
| | - Xuefeng Lai
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Liangle Yang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Rui Zhu
- Department of Traditional Chinese Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China.
| |
Collapse
|
12
|
Wang X, Li A, Xu Q. The Association between Urinary Polycyclic Aromatic Hydrocarbons Metabolites and Type 2 Diabetes Mellitus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137605. [PMID: 35805265 PMCID: PMC9265723 DOI: 10.3390/ijerph19137605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are considered to be endocrine disruptors. In this study, the evidence on the association between PAHs and diabetes was systematically reviewed. PubMed, EMBASE, and ISI Web of Science were systematically searched for studies reporting the association between PAHs and diabetes. Of the 698 articles identified through the search, nine cross-sectional studies were included. Seven were conducted in the general population and two in coke oven workers. Fixed-effects and random-effects models were used to calculate the total effect. Subgroup analysis was further carried out according to the types of PAH metabolites. The results showed that the odds of diabetes were significantly higher for the highest category of urinary naphthalene (NAP), fluorine (FLU), phenanthrene (PHEN), and total mono-hydroxylated (OH-PAH) metabolites compared to the lowest category. The pooled odds ratios (OR) and 95% confidence intervals (CI) were 1.52 (95%CI: 1.19, 1.94), 1.53 (95%CI: 1.36, 1.71), 1.43 (95%CI: 1.28, 1.60), and 1.49 (95%CI: 1.07, 2.08), respectively. In coke oven workers, 4-hydroxyphenanthrene (4-OHPh) was significantly correlated with an increased risk of diabetes. Exposure measurements, outcome definitions, and adjustment for confounders were heterogeneous between studies. The results of the current study demonstrate a potentially adverse effect of PAHs on diabetes. Further mechanistic studies and longitudinal studies are needed to confirm whether PAH metabolite levels are causative, and hence associative, with increased diabetes incidences.
Collapse
Affiliation(s)
- Xue Wang
- Department of Allergy & Clinical Immunology, National Clinical Research Center for Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China;
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China;
- Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China;
- Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
- Correspondence:
| |
Collapse
|
13
|
Lv X, Tan J, Feng J, Li Z, Gong W, Zhang D, Kuang H, Fan R. Relationship of polycyclic aromatic hydrocarbons exposure with vascular damages among sanitation workers. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2022; 40:154-171. [PMID: 35895920 DOI: 10.1080/26896583.2022.2062199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chronic exposure to polycyclic aromatic hydrocarbons (PAHs) leads to a high incidence of cardiovascular diseases. To assess the effects of PAHs exposure on vascular damages in occupationally exposed populations, 196 sanitation workers were recruited. According to the differences of occupation or operation, they were divided into exposure group (n = 115) and control group (n = 81). Sixteen serum PAHs were determined by gas chromatography-tandem mass spectrometery. Tumor necrosis factor ɑ (TNF-ɑ) and angiotensin II (ANG-II) in serum, blood lipids and blood pressure were also measured. Results showed that, except for indeno(1,2,3-cd)pyrene, dibenzo(a,h)anthracene and benzo(g,h,i)perylene, the detection frequencies of other PAHs were above 85%, showing that subjects are generally exposed to PAHs. The top three compounds in serum concentrations of PAHs were phenanthrene, acenaphthylene and anthracene. Moreover, the concentrations of total serum PAHs in the exposure group were significantly higher than those in the control (p < 0.05), suggesting a higher PAHs exposure in the former. Though there was no significant difference in blood lipids and blood pressure between groups (p > 0.05), TNF-ɑ and ANG-II levels in the exposure group were significantly higher than those in the control group (p < 0.05), suggesting that PAHs exposure may be related to pro-inflammatory effects and vascular endothelial damages.
Collapse
Affiliation(s)
- Xuejing Lv
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jianhua Tan
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, China
| | - Jianglu Feng
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Zhilin Li
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Weiran Gong
- College of Environment, Hohai University, Nanjing, China
| | - Dingguo Zhang
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Hongxuan Kuang
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ruifang Fan
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
14
|
Mallah MA, Changxing L, Mallah MA, Noreen S, Liu Y, Saeed M, Xi H, Ahmed B, Feng F, Mirjat AA, Wang W, Jabar A, Naveed M, Li JH, Zhang Q. Polycyclic aromatic hydrocarbon and its effects on human health: An overeview. CHEMOSPHERE 2022; 296:133948. [PMID: 35151703 DOI: 10.1016/j.chemosphere.2022.133948] [Citation(s) in RCA: 240] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of chemicals of considerable environmental significance. PAHs are chemical contaminants of fused carbon and hydrogen aromatic rings, basically white, light-yellow, or solid compounds without color. Natural sources of pollution are marginal or less significant, such as volcanic eruptions, natural forest fires, and moorland fires that trigger lightning bursts. The significant determinants of PAH pollution are anthropogenic pollution sources, classified into four groups, i.e., industrial, mobile, domestic, and agricultural pollution sources. Humans can consume PAHs via different routes, such as inhalation, dermal touch, and ingestion. The Effect of PAHs on human health is primarily based on the duration and route of exposure, the volume or concentration of PAHs to which one is exposed, and the relative toxicity of PAHs. Many PAHs are widely referred to as carcinogens, mutagens, and teratogens and thus pose a significant danger to human health and the well-being of humans. Skin, lung, pancreas, esophagus, bladder, colon, and female breast are numerous organs prone to tumor development due to long-term PAH exposure. PAH exposure may increase the risk of lung cancer as well as cardiovascular disease (CVD), including atherosclerosis, thrombosis, hypertension, and myocardial infarction (MI). Preclinical studies have found a relationship between PAH exposure, oxidative stress, and atherosclerosis. In addition, investigations have discovered a relationship between PAH exposure at work and CVD illness and mortality development. This review aims to explain PAH briefly, its transportation, its effects on human health, and a relationship between environmental exposures to PAHs and CVD risk in humans.
Collapse
Affiliation(s)
- Manthar Ali Mallah
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Li Changxing
- Department of Human Anatomy, Medical College of Qinghai University, Xining, 81000, China
| | - Mukhtiar Ali Mallah
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering, Science & Technology, Nawabshah, 67480, Sindh, Pakistan
| | - Sobia Noreen
- Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 6300, Pakistan
| | - Yang Liu
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Muhammad Saeed
- The Cholestane University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - He Xi
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Bilal Ahmed
- Department of Clinical Pharmacy, School of Pharmacy. Nanjing Medical University, Nanjing, 211166, China
| | - Feifei Feng
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Ali Asghar Mirjat
- School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Wei Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Abdul Jabar
- Faculty of Pharmacy, University of Sargodha, Sargodha, 40100, Punjab, Pakistan
| | - Muhammad Naveed
- Department of Clinical Pharmacy, School of Pharmacy. Nanjing Medical University, Nanjing, 211166, China
| | - Jian-Hua Li
- Department of Human Anatomy, Medical College of Qinghai University, Xining, 81000, China.
| | - Qiao Zhang
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
15
|
Exposure to polycyclic aromatic hydrocarbon-induced oxidative stress in Shiraz, Iran: urinary levels, health risk assessment and mediation effect of MDA on the risk of metabolic syndromes. Int Arch Occup Environ Health 2022; 95:1043-1058. [PMID: 34997324 DOI: 10.1007/s00420-021-01822-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/26/2021] [Indexed: 01/08/2023]
Abstract
PURPOSE Polycyclic Aromatic Hydrocarbons (PAHs) have been identified as carcinogenic and endocrine disrupter compounds that cause Metabolic Syndrome (MetS). Oxidative stress can lead to carcinogenesis and MetS in exposed people. Therefore, the relationship between urinary metabolite of PAH (OH-PAHs) level and the oxidative stress biomarker (Malondialdehyde) effect as the mediator in increasing the risk of MetS due to PAH exposure and risk assessment was investigated in Shiraz, Iran. METHODS The first morning void urinary and blood samples were obtained from participants and analyzed. Physical examinations and anthropometric measurements were performed on the day of sampling. An automatic biochemistry analyzer was used to measure the blood cells. The participants' socio-demographic information was gathered using a questionnaire and direct interviews with participants. RESULTS The MetS prevalence was 26%. Malondialdehyde could act as a mediator between exposure to 1-HydroxyPyrene and increase in fast blood sugar, exposure to 2-HydroxyNaphthalene and increase in systolic blood pressure and exposure to 2-HydroxyFluorene and increase in SBP. Hazard quotients varied from 0.009 to 14.92 in women, and from 0.005 to 8.43 for Fluorene and Naphthalene in men, respectively. The Hazard Indexes were greater than one meaning that the non-cancer health risk related to the PAH exposure could be identified in the participants. CONCLUSION Although oxidative stress has been suggested to lead to MetS and the high HI levels obtained in the current study, future researches are essential to achieve more reliable findings and monitoring the environmental influencing factors in PAH exposure.
Collapse
|
16
|
Mallah MA, Mallah MA, Liu Y, Xi H, Wang W, Feng F, Zhang Q. Relationship Between Polycyclic Aromatic Hydrocarbons and Cardiovascular Diseases: A Systematic Review. Front Public Health 2021; 9:763706. [PMID: 34950626 PMCID: PMC8688693 DOI: 10.3389/fpubh.2021.763706] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/08/2021] [Indexed: 01/06/2023] Open
Abstract
Objective: The primary aim of this systematic review was to examine the relationship of polycyclic aromatic hydrocarbon (PAH) exposure with cardiovascular diseases (CVDs) and elaborate the current knowledge and recent advances in the area of PAH and its effects on CVDs and discuss the growing epidemiological evidence linking PAH to CVDs on the health of human populations. In this systematic review, the increased risk of cardiovascular diseases and their relationship with PAHs were discussed in detail. Methods: On 05th April 2021, a systematic literature search was conducted using PubMed/Medline and Web of Science search engines in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. The search was limited to articles that were written in English and dealt with human issues. All original peer-review publications were considered for inclusion. Comments, case reports, reviews, duplicated papers, and conference reports were excluded. Data was collected from included papers by two independent reviewers. Results: Conclusively, 20 research articles published between 2005 and 2021 were chosen for the final analysis. The systemic review included 20 studies with a variety of geographical studies. The most common research category among the nominated studies were time-series studies followed by retrospective cohort, cross-sectional, quasi-experimental, panel, and case-control studies. Most of the studies were conducted in the United States, whereas others were showed in various geographical countries around the world, such as Denmark, Germany, Finland, Netherlands, France, China, Norway, Korea, Sweden, Saudi Arabia, and Belgium. Eight studies assessed the association between PAH exposure and CVDs, four articles observed this relationship with blood pressure (BP), two observed association between atherosclerotic CVD and PAH, one congenital heart disease, cardiovascular events, and two with obesity. Furthermore, in some investigations, a favorable association between PAH exposure and hypertension as well as PAH exposure and obesity was found. Conclusion: In conclusion, this systematic review examined the relationship of PAH exposure with CVDs and CVD-related risk factors by searching several digital databases. After a comprehensive literature searches and summarizing findings from 20 articles, the authors concluded that a positive relationship was observed between PAH exposure and CVD risks.
Collapse
Affiliation(s)
- Manthar Ali Mallah
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Mukhtiar Ali Mallah
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering, Science & Technology (QUEST), Nawabshah, Pakistan
| | - Yang Liu
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - He Xi
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wei Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Feifei Feng
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Qiao Zhang
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Haverinen E, Fernandez MF, Mustieles V, Tolonen H. Metabolic Syndrome and Endocrine Disrupting Chemicals: An Overview of Exposure and Health Effects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:13047. [PMID: 34948652 PMCID: PMC8701112 DOI: 10.3390/ijerph182413047] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022]
Abstract
Increasing prevalence of metabolic syndrome (MetS) is causing a significant health burden among the European population. Current knowledge supports the notion that endocrine-disrupting chemicals (EDCs) interfere with human metabolism and hormonal balance, contributing to the conventionally recognized lifestyle-related MetS risk factors. This review aims to identify epidemiological studies focusing on the association between MetS or its individual components (e.g., obesity, insulin resistance, diabetes, dyslipidemia and hypertension) and eight HBM4EU priority substances (bisphenol A (BPA), per- and polyfluoroalkyl substances (PFASs), phthalates, polycyclic aromatic hydrocarbons (PAHs), pesticides and heavy metals (cadmium, arsenic and mercury)). Thus far, human biomonitoring (HBM) studies have presented evidence supporting the role of EDC exposures on the development of individual MetS components. The strength of the association varies between the components and EDCs. Current evidence on metabolic disturbances and EDCs is still limited and heterogeneous, and mainly represent studies from North America and Asia, highlighting the need for well-conducted and harmonized HBM programmes among the European population. Rigorous and ongoing HBM in combination with health monitoring can help to identify the most concerning EDC exposures, to guide future risk assessment and policy actions.
Collapse
Affiliation(s)
- Elsi Haverinen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), 00300 Helsinki, Finland;
| | - Mariana F. Fernandez
- Department of Radiology, School of Medicine, University of Granada, 18016 Granada, Spain; (M.F.F.); (V.M.)
- Center of Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain
- Consortium for Biomedical Research and Epidemiology & Public Health (CIBERESP), 28029 Madrid, Spain
| | - Vicente Mustieles
- Department of Radiology, School of Medicine, University of Granada, 18016 Granada, Spain; (M.F.F.); (V.M.)
- Center of Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain
- Consortium for Biomedical Research and Epidemiology & Public Health (CIBERESP), 28029 Madrid, Spain
| | - Hanna Tolonen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), 00300 Helsinki, Finland;
| |
Collapse
|
18
|
Shahsavani S, Fararouei M, Soveid M, Hoseini M, Dehghani M. The association between the urinary biomarkers of polycyclic aromatic hydrocarbons and risk of metabolic syndromes and blood cell levels in adults in a Middle Eastern area. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:1667-1680. [PMID: 34900297 PMCID: PMC8617240 DOI: 10.1007/s40201-021-00722-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
PURPOSE Limited studies have been published on the association between the urinary biomarkers of Polycyclic Aromatic Hydrocarbons (PAHs) and risk of Metabolic Syndromes (MetS) and blood cell levels in adults in the Middle East. The present study aimed to evaluate the exposure to PAHs and the distribution of urinary OH-PAH levels in the general population of Shiraz, Iran, as well as, the association between OH-PAHs and the prevalence of MetS and blood cell levels. METHODS In this study, 200 participants were randomly selected from the adult population, and their first-morning void urine samples were collected. RESULTS The mean concentrations of 1-OHNap, 2-OHNap, 2-OHFlu, 9-OHPhe, and 1-OHP were 639.8, 332.1, 129, 160.3, and 726.9 ng/g creatinine, respectively. The prevalence of MetS was 26% according to the National Cholesterol Education Program Adult Treatment Panel III (NCEP-ATP III) criteria. The results showed that urinary OH-PAHs, especially 1-OHP, were positively and significantly associated with higher waist circumstance (p < 0.001), triglyceride level (p < 0.001), systolic blood pressure (p < 0.001), diastolic blood pressure (p < 0.001), number of white blood cells (p = 0.041) and red blood cells (p < 0.001). It also caused lower levels of High Density Lipoprotein-Cholesterol (HDL-C). In conclusion, the results emphasized the adverse health effects of PAHs on human health, including obesity, hypertension, dyslipidemia, and decreased number of blood cells. CONCLUSION Therefore, in order to identify the PAHs sources and to develop methods for decreasing the amount of emissions to the environment, broader researches are needed.
Collapse
Affiliation(s)
- Samaneh Shahsavani
- Department of Environmental Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Fararouei
- Department of Epidemiology, School of Health, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Mahmood Soveid
- Endocrinology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hoseini
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, P.O.Box: 111, 71645, Shiraz, Iran
| | - Mansooreh Dehghani
- Research Center for Health Sciences, Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, P.O.Box: 111, 71645 Shiraz, Iran
| |
Collapse
|
19
|
Wu M, Liu C, Wang H, Nie J, Yang J. Dose-response relationship between urinary PAH metabolites and blood viscosity among coke oven workers: a cross-sectional study. BMJ Open 2021; 11:e046682. [PMID: 34794984 PMCID: PMC8603277 DOI: 10.1136/bmjopen-2020-046682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES Polycyclic aromatic hydrocarbons (PAHs) have been proven to be a risk factor for cardiovascular disease in coke oven workers, and increased plasma viscosity is a signal for higher risk of catching up cardiovascular disease. We want to explore whether the plasma viscosity is affected by the concentration of PAHs. DESIGN Our study is a cross-sectional dose-response study. SETTING Participants in this study came from a coke plant in Taiyuan, Shanxi. PARTICIPANTS We used data of 693 coke oven workers in Taiyuan. PRIMARY AND SECONDARY OUTCOME MEASURES We assumed that plasma viscosity would increase as the concentration of PAHs metabolites in urine increases. We found that 2-hydroxyfluorene (OHFLU2) and plasma viscosity have a stable linear relationship in different statistical methods. RESULTS We found that plasma viscosity increased by 1.14 (mPa.s,30/s) for each ng/mL of 2-OHFLU urinary (correlation coefficient range: 0.54-1.74, p<0.05). CONCLUSIONS The results of this study could provide evidence for coke oven workers to prevent cardiovascular disease by checking whether plasma viscosity is elevated.
Collapse
Affiliation(s)
- Min Wu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chengjuan Liu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Huimin Wang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jisheng Nie
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jin Yang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
20
|
Li K, Yin R, Wang Y, Zhao D. Associations between exposure to polycyclic aromatic hydrocarbons and metabolic syndrome in U.S. adolescents: Cross-sectional results from the National Health and Nutrition Examination Survey (2003-2016) data. ENVIRONMENTAL RESEARCH 2021; 202:111747. [PMID: 34333007 DOI: 10.1016/j.envres.2021.111747] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The metabolic syndrome is a constellation of risk factors, including abdominal obesity, hypertension, dyslipidemia, and hyperglycemia. Polycyclic aromatic hydrocarbons (PAHs) constitute a group of chemicals that are formed during the incomplete combustion of coal, oil and gas, garbage, and other organic substances. In the occupational exposure population, PAHs exposure increased the prevalence ratio of metabolic syndrome. However, the effect of PAHs on prevalence of metabolic syndrome in adolescents has not been reported. Because of the propensity for childhood metabolic risk to track into adulthood, there is a great need to identify risk factors for childhood metabolic syndrome. METHOD Using data from the 2003-2016 National Health and Nutrition Examination Survey. We defined metabolic syndrome using a modified version of the National Cholesterol Education Program Adult Treatment Panel Ⅲ definition for adolescents. Weighted logistic regression was used to calculate the odds ratio and 95 % confidence intervals for each biomarker. In addition, we applied the weighted quantile sum (WQS) regressions to adolescent metabolic syndrome to reveal the multiple exposure effects and relative weights of each PAH. RESULTS Among the 827 adolescents, 183 (22.13 %) had metabolic syndrome. The levels of 2-hydroxynaphthalene (2-NAP), 2-hydroxyphenanthrene (2-PHE), 2-hydroxyfluorene (2-FLU), 1-hydroxynaphthalene (1-NAP), 3-hydroxyfluorene (3-FLU) and 1-hydroxypyrene (1-PYR) were higher in the group of adolescents with metabolic syndrome. There were positive associations between higher concentrations of 2-NAP, 2-FLU and odds of metabolic syndrome after adjustment, which odds ratios (ORs) in the 3rd tertile were 2.22 (95%CI:1.45-3.44) and 2.09 (95%CI:1.36-3.10), respectively. In subgroups analysis, the ORs between the 3 tertile concentrations of 2-NAP, 2-PHE and high fasting blood glucose (FBG) were 2.20 (95%CI:1.37-3.57) and 1.99 (95%CI:1.16-3.48). CONCLUSION The present study suggested that PAHs may be associated with odds of metabolic syndrome as well as individual metabolic syndrome components among adolescents. A cohort study should be designed to clarify the cause and effect between PAHs and metabolic syndrome in future research.
Collapse
Affiliation(s)
- Kun Li
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing, 101149, China
| | - Ruili Yin
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing, 101149, China
| | - Yan Wang
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing, 101149, China
| | - Dong Zhao
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing, 101149, China.
| |
Collapse
|
21
|
Goldman RH, Zajac L, Geller RJ, Miller MD. Developing and implementing core competencies in children's environmental health for students, trainees and healthcare providers: a narrative review. BMC MEDICAL EDUCATION 2021; 21:503. [PMID: 34560874 PMCID: PMC8464086 DOI: 10.1186/s12909-021-02921-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/01/2021] [Indexed: 05/29/2023]
Abstract
Knowledge of the health impacts of environmental exposures (such as pollution disasters, poor air quality, water contamination, climate change) on children's health has dramatically increased in the past 40 years. The World Health Organization (WHO) estimated that 23% of all deaths worldwide were attributable to the environment, and 26% of deaths in children less than 5 years old could be prevented with removal of environmental risks factors. Yet, little has permeated medical education, leaving pediatric providers ill equipped to address these issues. To address this gap, members from the Pediatric Environmental Health Specialty Units, a United States nationwide network of academically affiliated experts who have created numerous environmental health educational materials and programs, have identified fifteen core environmental health (EH) competencies needed by health care providers to enable them to effectively address environmental health concerns. These competencies can serve as the foundation for the development and implementation of relevant educational programs. The core EH competencies are based upon these foundational elements: 1) Definition of "children's environmental health" that describes how environmental exposures (positive and negative) in early life influence the health and development in childhood and across the entire human life span 2) Children are not "little adults" and so have unique vulnerabilities to environmental hazards; 3) Environmental health inequities exist, causing some children to have a disproportionate amount of unhealthy exposures and consequently a greater risk of adverse effects; 4) Climate change will translate to numerous adverse health effects that will particularly affect children worldwide. In this article, the authors describe the core environmental health competencies and provide resources, online tools, strategies, and examples targeted to all levels of training and practice to better enable leaders and educators to bring this important content to the forefront.
Collapse
Affiliation(s)
- Rose Hannah Goldman
- Department of Medicine, Cambridge Health Alliance, Cambridge Massachusetts, Cambridge Hospital, Macht Center 427, Cambridge, MA, 02139, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Lauren Zajac
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Robert J Geller
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Mark D Miller
- Division of Occupational and Environmental Medicine, Department of Medicine, University of California, California, San Francisco, USA
| |
Collapse
|
22
|
Xu H, Zhu Y, Li L, Liu S, Song X, Yi T, Wang Y, Wang T, Zhao Q, Liu L, Wu R, Liu S, Feng B, Chen J, Zheng L, Rajagopaplan S, Brook RD, Li J, Cao J, Huang W. Combustion-derived particulate organic matter associated with hemodynamic abnormality and metabolic dysfunction in healthy adults. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126261. [PMID: 34098265 DOI: 10.1016/j.jhazmat.2021.126261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/13/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
Epidemiological evidence on cardiometabolic health of particulate organic matter (POM) and its sources is sparse. In a panel of 73 healthy adults in Beijing, China, daily concentrations of ambient fine particulate matter-bound polycyclic aromatic hydrocarbons (PAHs) and n-alkanes were measured throughout the study period, and Positive Matrix Factorization approach was used to identity PAHs sources. Linear mixed-effect models and mediation analyses were applied to examine the associations and potential interlink pathways between POM and biomarkers indicative of hemodynamics, insulin resistance, vascular calcification and immune inflammation. We found that significant alterations in cardiometabolic measures were associated with POM exposures. In specific, interquartile range increases in PAHs concentrations at prior up to 9 days were observed in association with significant elevations of 2.6-2.9% in diastolic blood pressure, 6.6-8.1% in soluble ST2, 10.5-14.5% in insulin, 40.9-45.7% in osteoprotegerin, and 36.3-48.7% in interleukin-17A. Greater associations were generally observed for PAHs originating from traffic emissions and coal burning. Mediation analyses revealed that POM exposures may prompt the genesis of hemodynamic abnormalities, possibly via worsening insulin resistance and calcification potential. These findings suggested that cardiometabolic health benefits would be achieved by reducing PM from combustion emissions.
Collapse
Affiliation(s)
- Hongbing Xu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Yutong Zhu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Lijuan Li
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Shengcong Liu
- Division of Cardiology, Peking University First Hospital, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Xiaoming Song
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Tieci Yi
- Division of Cardiology, Peking University First Hospital, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Yang Wang
- Department of Prevention and Health Care, Hospital of Health Science Center, Peking University, Beijing, China
| | - Tong Wang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Qian Zhao
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Lingyan Liu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Rongshan Wu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Shuo Liu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Baihuan Feng
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Jie Chen
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Institute for Risk Assessment Sciences, University Medical Centre Utrecht, University of Utrecht, The Netherlands
| | - Lemin Zheng
- Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, Peking University School of Basic Medical Sciences, Beijing, China
| | - Sanjay Rajagopaplan
- Division of Cardiovascular Medicine, Case Western Reserve Medical School, Cleveland, OH, USA
| | - Robert D Brook
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jianping Li
- Division of Cardiology, Peking University First Hospital, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China.
| | - Wei Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China.
| |
Collapse
|
23
|
Flores-Ramírez R, Ortega-Romero M, Christophe-Barbier O, Meléndez-Marmolejo JG, Rodriguez-Aguilar M, Lee-Rangel HA, Díaz de León-Martínez L. Exposure to polycyclic aromatic hydrocarbon mixtures and early kidney damage in Mexican indigenous population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23060-23072. [PMID: 33432415 DOI: 10.1007/s11356-021-12388-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The traditions and habits of indigenous communities in México include the use of wood and biomass burning to cook their food, which generates large amounts of smoke and therefore pollution inside the households. This smoke is composed of a complex mixture of polycyclic aromatic hydrocarbons (PAHs) which at high levels of exposure cause carcinogenic, genotoxic effects and some chronic pulmonary and cardiovascular diseases; however, few studies relate kidney health with exposure to PAHs. Thus, the aim of this study was the evaluation of 10 hydroxylated metabolites of PAHs (OH-PAHs), and their correlation with biomarkers of early kidney damage renal (cystatin-C (Cys-C)), osteopontin (OPN), retinol-binding protein-4 (RPB-4), and neutrophil gelatinase-associated lipocalin (NGAL) in the indigenous population of the Huasteca Potosina in Mexico. The results demonstrate the presence of the OH-PAHs and kidney damage biomarkers in 100% of the study population. The OH-PAHs were shown in the following order of frequency, 1-OH-PYR > 4-OH-PHE > 2-OH-NAP > 1-OH-NAP > 9-OH-FLU > 3-OH-FLU > 2-OH-FLU > 3-OH-PHE and with the following percentages of detection 97.6, 87.8, 78, 73.2, 68.3, 31.7, 14.6, and 12.2%, respectively. NGAL and RBP-4 were present in above 85% of the population, with mean concentrations of 78.5 ± 143.9 and 139.4 ± 131.7 ng/g creatinine, respectively, OPN (64%) with a mean concentration of 642.6 ± 723.3 ng/g g creatinine, and Cys-C with a mean concentration of 33.72 ± 44.96 ng/g creatinine. Correlations were found between 1-OH-NAP, 2-OH-NAP, 9-OH-FLU, and 4-OH-PHE and the four biomarkers of early kidney damage. 3-OH-FLU with OPN and 1-OH-PYR correlated significantly with NGAL, OPN, and RPB-4.
Collapse
Affiliation(s)
- Rogelio Flores-Ramírez
- CONACYT Research Fellow, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, CP 78210, San Luis Potosí, SLP, Mexico
| | - Manolo Ortega-Romero
- Toxicology Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, Ciudad de México, Mexico
| | - Olivier Christophe-Barbier
- Toxicology Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, Ciudad de México, Mexico
| | - Jessica Guadalupe Meléndez-Marmolejo
- Center for Applied Research on Environment and Health (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, CP 78210, San Luis Potosí, SLP, Mexico
| | | | - Héctor A Lee-Rangel
- Facultad de Agronomía y Veterinaria, Centro de Biociencias, Universidad Autonoma de San Luis Potosí, km. 14.5 Carr. San Luis Potosí-Matehuala, 78321, San Luis Potosí, SLP, Mexico
| | - Lorena Díaz de León-Martínez
- Center for Applied Research on Environment and Health (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, CP 78210, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
24
|
Mann JK, Lutzker L, Holm SM, Margolis HG, Neophytou AM, Eisen EA, Costello S, Tyner T, Holland N, Tindula G, Prunicki M, Nadeau K, Noth EM, Lurmann F, Hammond SK, Balmes JR. Traffic-related air pollution is associated with glucose dysregulation, blood pressure, and oxidative stress in children. ENVIRONMENTAL RESEARCH 2021; 195:110870. [PMID: 33587949 PMCID: PMC8520413 DOI: 10.1016/j.envres.2021.110870] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/30/2020] [Accepted: 02/07/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Metabolic syndrome increases the risk of cardiovascular disease in adults. Antecedents likely begin in childhood and whether childhood exposure to air pollution plays a contributory role is not well understood. OBJECTIVES To assess whether children's exposure to air pollution is associated with markers of risk for metabolic syndrome and oxidative stress, a hypothesized mediator of air pollution-related health effects. METHODS We studied 299 children (ages 6-8) living in the Fresno, CA area. At a study center visit, questionnaire and biomarker data were collected. Outcomes included hemoglobin A1c (HbA1c), urinary 8-isoprostane, systolic blood pressure (SBP), and BMI. Individual-level exposure estimates for a set of four pollutants that are constituents of traffic-related air pollution (TRAP) - the sum of 4-, 5-, and 6-ring polycyclic aromatic hydrocarbon compounds (PAH456), NO2, elemental carbon, and fine particulate matter (PM2.5) - were modeled at the primary residential location for 1-day lag, and 1-week, 1-month, 3-month, 6-month, and 1-year averages prior to each participant's visit date. Generalized additive models were used to estimate associations between each air pollutant exposure and outcome. RESULTS The study population was 53% male, 80% Latinx, 11% Black and largely low-income (6% were White and 3% were Asian/Pacific Islander). HbA1c percentage was associated with longer-term increases in TRAP; for example a 4.42 ng/m3 increase in 6-month average PAH456 was associated with a 0.07% increase (95% CI: 0.01, 0.14) and a 3.62 μg/m3 increase in 6-month average PM2.5 was associated with a 0.06% increase (95% CI: 0.01, 0.10). The influence of air pollutants on blood pressure was strongest at 3 months; for example, a 6.2 ppb increase in 3-month average NO2 was associated with a 9.4 mmHg increase in SBP (95% CI: 2.8, 15.9). TRAP concentrations were not significantly associated with anthropometric or adipokine measures. Short-term TRAP exposure averages were significantly associated with creatinine-adjusted urinary 8-isoprostane. DISCUSSION Our results suggest that both short- and longer-term estimated individual-level outdoor residential exposures to several traffic-related air pollutants, including ambient PAHs, are associated with biomarkers of risk for metabolic syndrome and oxidative stress in children.
Collapse
Affiliation(s)
- Jennifer K Mann
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Liza Lutzker
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Stephanie M Holm
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Helene G Margolis
- Department of Internal Medicine, University of California, Davis, Davis, CA, USA
| | - Andreas M Neophytou
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Ellen A Eisen
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Sadie Costello
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Tim Tyner
- University of California, San Francisco-Fresno, Fresno, CA, USA; Central California Asthma Collaborative, USA
| | - Nina Holland
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Gwen Tindula
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Mary Prunicki
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Palo Alto, CA, USA
| | - Kari Nadeau
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Palo Alto, CA, USA
| | - Elizabeth M Noth
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | | | - S Katharine Hammond
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - John R Balmes
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
25
|
Dillon DT, Webster GD, Bisesi JH. Contributions of biomass/solid fuel burning to blood pressure modification in women: A systematic review and meta-analysis. Am J Hum Biol 2021; 34:e23586. [PMID: 33645874 DOI: 10.1002/ajhb.23586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/16/2021] [Accepted: 02/12/2021] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVES Approximately 2½ billion people worldwide rely on solid/biomass fuel as fuel for cooking/heating the home. Environmental exposure to the smoke associated with biomass fuel burning has been associated respiratory diseases, cardiac disorders, and altered blood pressure. Therefore, a systematic review and meta-analysis was conducted to study this relationship across multiple studies. METHODS Searches were performed using PRISMA guidelines for articles using Web of Science, PubMed, Toxline, and Web of Science of peer reviewed papers with no beginning time restriction until February 2017. The search yielded 10 manuscripts after application of inclusion criteria, which encompassed 93 724 participants. Outcomes included (a) the proportion of people with a clinical diagnosis of hypertension in an exposed (vs. unexposed) population or (b) correlation coefficients examining degree of exposure and systolic/diastolic blood pressure. RESULTS The four studies reporting effect sizes for hypertension (N = 92 042) had a weighted mean effect size of r = .12 [-0.02, 0.27], z = 1.66, p = 0.097. The six studies reporting effect sizes for systolic and diastolic blood pressure (N = 1682) had weighted mean effect sizes of r = .15 [0.06, 0.24], p = 0.001, and r = .09 [0.03, 0.15], p = 0.002, respectively. CONCLUSION These analyses revealed that there is a small-but-significant relationship between biomass fuel exposure and an increase in both systolic and diastolic blood pressure, but the relationship between biomass fuel and hypertension specifically remains unclear.
Collapse
Affiliation(s)
- David T Dillon
- Department of Anthropology, University of Florida, Gainesville, Florida, USA
| | - Gregory D Webster
- Department of Psychology, University of Florida, Gainesville, Florida, USA
| | - Joseph H Bisesi
- Department of Environmental and Global Health, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
26
|
Peña J, Fernández Laespada ME, García Pinto C, Pérez Pavón JL. Multiple headspace sampling coupled to a programmed temperature vaporizer – Gas chromatograph-mass spectrometer for the determination of polycyclic aromatic hydrocarbons in water and saliva. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Coelho NR, Matos C, Pimpão AB, Correia MJ, Sequeira CO, Morello J, Pereira SA, Monteiro EC. AHR canonical pathway: in vivo findings to support novel antihypertensive strategies. Pharmacol Res 2021; 165:105407. [PMID: 33418029 DOI: 10.1016/j.phrs.2020.105407] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/23/2022]
Abstract
Essential hypertension (HTN) is a disease where genetic and environmental factors interact to produce a high prevalent set of almost indistinguishable phenotypes. The weak definition of what is under the umbrella of HTN is a consequence of the lack of knowledge on the players involved in environment-gene interaction and their impact on blood pressure (BP) and mechanisms. The disclosure of these mechanisms that sense and (mal)adapt to toxic-environmental stimuli might at least determine some phenotypes of essential HTN and will have important therapeutic implications. In the present manuscript, we looked closer to the environmental sensor aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor involved in cardiovascular physiology, but better known by its involvement in biotransformation of xenobiotics through its canonical pathway. This review aims to disclose the contribution of the AHR-canonical pathway to HTN. For better mirror the complexity of the mechanisms involved in BP regulation, we privileged evidence from in vivo studies. Here we ascertained the level of available evidence and a comprehensive characterization of the AHR-related phenotype of HTN. We reviewed clinical and rodent studies on AHR-HTN genetic association and on AHR ligands and their impact on BP. We concluded that AHR is a druggable mechanistic linker of environmental exposure to HTN. We conclude that is worth to investigate the canonical pathway of AHR and the expression/polymorphisms of its related genes and/or other biomarkers (e.g. tryptophan-related ligands), in order to identify patients that may benefit from an AHR-centered antihypertensive treatment.
Collapse
Affiliation(s)
- Nuno R Coelho
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Clara Matos
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - António B Pimpão
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - M João Correia
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Catarina O Sequeira
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Judit Morello
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Sofia A Pereira
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal.
| | - Emília C Monteiro
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| |
Collapse
|
28
|
Prunicki M, Cauwenberghs N, Ataam JA, Movassagh H, Kim JB, Kuznetsova T, Wu JC, Maecker H, Haddad F, Nadeau K. Immune biomarkers link air pollution exposure to blood pressure in adolescents. Environ Health 2020; 19:108. [PMID: 33066786 PMCID: PMC7566149 DOI: 10.1186/s12940-020-00662-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/01/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Childhood exposure to air pollution contributes to cardiovascular disease in adulthood. Immune and oxidative stress disturbances might mediate the effects of air pollution on the cardiovascular system, but the underlying mechanisms are poorly understood in adolescents. Therefore, we aimed to identify immune biomarkers linking air pollution exposure and blood pressure levels in adolescents. METHODS We randomly recruited 100 adolescents (mean age, 16 years) from Fresno, California. Using central-site data, spatial-temporal modeling, and distance weighting exposures to the participant's home, we estimated average pollutant levels [particulate matter (PM), polyaromatic hydrocarbons (PAH), ozone (O3), carbon monoxide (CO) and nitrogen oxides (NOx)]. We collected blood samples and vital signs on health visits. Using proteomic platforms, we quantitated markers of inflammation, oxidative stress, coagulation, and endothelial function. Immune cellular characterization was performed via mass cytometry (CyTOF). We investigated associations between pollutant levels, cytokines, immune cell types, and blood pressure (BP) using partial least squares (PLS) and linear regression, while adjusting for important confounders. RESULTS Using PLS, biomarkers explaining most of the variance in air pollution exposure included markers of oxidative stress (GDF-15 and myeloperoxidase), acute inflammation (C-reactive protein), hemostasis (ADAMTS, D-dimer) and immune cell types such as monocytes. Most of these biomarkers were independently associated with the air pollution levels in fully adjusted regression models. In CyTOF analyses, monocytes were enriched in participants with the highest versus the lowest PM2.5 exposure. In both PLS and linear regression, diastolic BP was independently associated with PM2.5, NO, NO2, CO and PAH456 pollution levels (P ≤ 0.009). Moreover, monocyte levels were independently related to both air pollution and diastolic BP levels (P ≤ 0.010). In in vitro cell assays, plasma of participants with high PM2.5 exposure induced endothelial dysfunction as evaluated by eNOS and ICAM-1 expression and tube formation. CONCLUSIONS For the first time in adolescents, we found that ambient air pollution levels were associated with oxidative stress, acute inflammation, altered hemostasis, endothelial dysfunction, monocyte enrichment and diastolic blood pressure. Our findings provide new insights on pollution-related immunological and cardiovascular disturbances and advocate preventative measures of air pollution exposure.
Collapse
Affiliation(s)
- Mary Prunicki
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, USA
| | - Nicholas Cauwenberghs
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Jennifer Arthur Ataam
- Research and Innovation Unit, INSERM U999, DHU TORINO, Paris Sud University, Marie Lannelongue Hospital, Le Plessis Robinson, France
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, USA
| | - Hesam Movassagh
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, USA
| | - Juyong Brian Kim
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, USA
| | - Tatiana Kuznetsova
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Joseph C. Wu
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, USA
| | - Holden Maecker
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, USA
| | - Francois Haddad
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, USA
| | - Kari Nadeau
- Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, USA
| |
Collapse
|
29
|
Wang Q, Xu X, Zeng Z, Zheng X, Ye K, Huo X. Antioxidant alterations link polycyclic aromatic hydrocarbons to blood pressure in children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:138944. [PMID: 32434106 DOI: 10.1016/j.scitotenv.2020.138944] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 02/05/2023]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) is associated with changes in blood pressure. However, the association is controversial in different studies, and antioxidants' roles involved in it remain unclear. To investigate the associations among PAH exposure, blood pressure, and antioxidant concentrations, we recruited 403 children (2-7 years old), of which 203 were from Guiyu, an e-waste-recycling area (exposed group), and 200 were from Haojiang, a nearby non-e-waste area (reference group). Levels of blood pressure, plasma vitamin E, serum superoxide dismutase (SOD), serum glutathione peroxidase (GPx), and eight urinary hydroxylated PAHs (OH-PAHs) were measured. Compared with Haojiang children, Guiyu children had higher urinary OH-PAH concentrations but lower systolic pressure, pulse pressure, serum SOD concentration, and serum GPx concentration (all P < 0.05). PAH exposure was associated with lower systolic pressure, pulse pressure, SOD (adjusted β = -0.091, -0.104 and -0.154, respectively, all P < 0.05, in all children), GPx (adjusted β∑7LMW-OH-PAHs-T3 = -0.332, only in Haojiang children) and vitamin E (adjusted OR∑7LMW-OH-PAHs = 0.838, 95% CI: 0.706, 0.995, only in Guiyu children). Serum SOD and GPx were associated with higher blood pressure (βSOD-T2 for diastolic pressure = 0.215 in all children, βSOD-T3 for systolic pressure = 0.193 in all children, βSOD-T3 for pulse pressure = 0.281 in high-∑8OH-PAHs children, βGPx-T2 = 0.283 and βGPx-T3 = 0.289 for diastolic pressure in Haojiang children, all P < 0.05). Interactions between PAHs and vitamin E were associated with lower systolic pressure and pulse pressure; simple effects of vitamin E to raise systolic pressure and pulse pressure were only significant in low-∑8OH-PAHs children. Our results indicate that PAH exposure, especially at high levels, and further antioxidant-decrease are potential risk factors for blood-pressure decrease in children; vascular function of PAH-exposed children may be impaired, manifesting as disordered blood pressure.
Collapse
Affiliation(s)
- Qihua Wang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Zhijun Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Xiangbin Zheng
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Kai Ye
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China.
| |
Collapse
|
30
|
Rosa MJ, Hair GM, Just AC, Kloog I, Svensson K, Pizano-Zárate ML, Pantic I, Schnaas L, Tamayo-Ortiz M, Baccarelli AA, Tellez-Rojo MM, Wright RO, Sanders AP. Identifying critical windows of prenatal particulate matter (PM 2.5) exposure and early childhood blood pressure. ENVIRONMENTAL RESEARCH 2020; 182:109073. [PMID: 31881529 PMCID: PMC7024649 DOI: 10.1016/j.envres.2019.109073] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Exposure to air pollution is associated with increased blood pressure (BP) in adults and children. Some evidence suggests that air pollution exposure during the prenatal period may contribute to adverse cardiorenal health later in life. Here we apply a distributed lag model (DLM) approach to identify critical windows that may underlie the association between prenatal particulate matter ≤ 2.5 μm in diameter (PM2.5) exposure and children's BP at ages 4-6 years. METHODS Participants included 537 mother-child dyads enrolled in the Programming Research in Obesity, GRowth Environment, and Social Stress (PROGRESS) longitudinal birth cohort study based in Mexico City. Prenatal daily PM2.5 exposure was estimated using a validated satellite-based spatio-temporal model and BP was measured using the automated Spacelabs system with a sized cuff. We used distributed lag models (DLMs) to examine associations between daily PM2.5 exposure and systolic and diastolic BP (SBP and DBP), adjusting for child's age, sex and BMI, as well as maternal education, preeclampsia and indoor smoking report during the second and third trimester, seasonality and average postnatal year 1 PM2.5 exposure. RESULTS We found that PM2.5 exposure between weeks 11-32 of gestation (days 80-226) was significantly associated with children's increased SBP. Similarly, PM2.5 exposure between weeks 9-25 of gestation (days 63-176) was significantly associated with increased DBP. To place this into context, a constant 10 μg/m3 increase in PM2.5 sustained throughout this critical window would predict a cumulative increase of 2.6 mmHg (CI: 0.5, 4.6) in SBP and 0.88 mmHg (CI: 0.1, 1.6) in DBP at ages 4-6 years. In a stratified analysis by sex, this association persisted in boys but not in girls. CONCLUSIONS Second and third trimester PM2.5 exposure may increase children's BP in early life. Further work investigating PM2.5 exposure with BP trajectories later in childhood will be important to understanding cardiorenal trajectories that may predict adult disease. Our results underscore the importance of reducing air pollution exposure among susceptible populations, including pregnant women.
Collapse
Affiliation(s)
- Maria José Rosa
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Gleicy Macedo Hair
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Allan C Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Itai Kloog
- Department of Geography and Environmental Development, Ben-Gurion University of the Negev, P.O.B., Beer Sheva, Israel
| | | | - María Luisa Pizano-Zárate
- Division of Community Interventions Research, National Institute of Perinatology, Mexico City, Mexico
| | - Ivan Pantic
- Division of Community Interventions Research, National Institute of Perinatology, Mexico City, Mexico
| | - Lourdes Schnaas
- Division of Community Interventions Research, National Institute of Perinatology, Mexico City, Mexico
| | - Marcela Tamayo-Ortiz
- National Council of Science and Technology (CONACYT), National Institute of Public Health (INSP), Cuernavaca, Morelos, Mexico; Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Martha M Tellez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Alison P Sanders
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
31
|
Holme JA, Brinchmann BC, Refsnes M, Låg M, Øvrevik J. Potential role of polycyclic aromatic hydrocarbons as mediators of cardiovascular effects from combustion particles. Environ Health 2019; 18:74. [PMID: 31439044 PMCID: PMC6704565 DOI: 10.1186/s12940-019-0514-2] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 08/09/2019] [Indexed: 05/05/2023]
Abstract
Air pollution is the most important environmental risk factor for disease and premature death, and exposure to combustion particles from vehicles is a major contributor. Human epidemiological studies combined with experimental studies strongly suggest that exposure to combustion particles may enhance the risk of cardiovascular disease (CVD), including atherosclerosis, hypertension, thrombosis and myocardial infarction.In this review we hypothesize that adhered organic chemicals like polycyclic aromatic hydrocarbons (PAHs), contribute to development or exacerbation of CVD from combustion particles exposure. We summarize present knowledge from existing human epidemiological and clinical studies as well as experimental studies in animals and relevant in vitro studies. The available evidence suggests that organic compounds attached to these particles are significant triggers of CVD. Furthermore, their effects seem to be mediated at least in part by the aryl hydrocarbon receptor (AhR). The mechanisms include AhR-induced changes in gene expression as well as formation of reactive oxygen species (ROS) and/or reactive electrophilic metabolites. This is in accordance with a role of PAHs, as they seem to be the major chemical group on combustion particles, which bind AhR and/or is metabolically activated by CYP-enzymes. In some experimental models however, it seems as PAHs may induce an inflammatory atherosclerotic plaque phenotype irrespective of DNA- and/or AhR-ligand binding properties. Thus, various components and several signalling mechanisms/pathways are likely involved in CVD induced by combustion particles.We still need to expand our knowledge about the role of PAHs in CVD and in particular the relative importance of the different PAH species. This warrants further studies as enhanced knowledge on this issue may amend risk assessment of CVD caused by combustion particles and selection of efficient measures to reduce the health effects of particular matters (PM).
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway.
| | - Bendik C Brinchmann
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway
| | - Magne Refsnes
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway
| | - Marit Låg
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway
| | - Johan Øvrevik
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway.
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
32
|
Jiang H, Hu X, Li Y, Qi J, Sun X, Wang L, Li J. Large-pore ordered mesoporous carbon as solid-phase microextraction coating for analysis of polycyclic aromatic hydrocarbons from aqueous media. Talanta 2019; 195:647-654. [DOI: 10.1016/j.talanta.2018.11.090] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 10/27/2018] [Accepted: 11/24/2018] [Indexed: 12/16/2022]
|
33
|
Oliveira M, Slezakova K, Delerue-Matos C, Pereira MC, Morais S. Children environmental exposure to particulate matter and polycyclic aromatic hydrocarbons and biomonitoring in school environments: A review on indoor and outdoor exposure levels, major sources and health impacts. ENVIRONMENT INTERNATIONAL 2019; 124:180-204. [PMID: 30654326 DOI: 10.1016/j.envint.2018.12.052] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Children, an important vulnerable group, spend most of their time at schools (up to 10 h per day, mostly indoors) and the respective air quality may significantly impact on children health. Thus, this work reviews the published studies on children biomonitoring and environmental exposure to particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) at school microenvironments (indoors and outdoors), major sources and potential health risks. A total of 28, 35, and 31% of the studies reported levels that exceeded the international outdoor ambient air guidelines for PM10, PM2.5, and benzo(a)pyrene, respectively. Indoor and outdoor concentrations of PM10 at European schools, the most characterized continent, ranged between 7.5 and 229 μg/m3 and 21-166 μg/m3, respectively; levels of PM2.5 varied between 4 and 100 μg/m3 indoors and 6.1-115 μg/m3 outdoors. Despite scarce information in some geographical regions (America, Oceania and Africa), the collected data clearly show that Asian children are exposed to the highest concentrations of PM and PAHs at school environments, which were associated with increased carcinogenic risks and with the highest values of urinary total monohydroxyl PAH metabolites (PAH biomarkers of exposure). Additionally, children attending schools in polluted urban and industrial areas are exposed to higher levels of PM and PAHs with increased concentrations of urinary PAH metabolites in comparison with children from rural areas. Strong evidences demonstrated associations between environmental exposure to PM and PAHs with several health outcomes, including increased risk of asthma, pulmonary infections, skin diseases, and allergies. Nevertheless, there is a scientific gap on studies that include the characterization of PM fine fraction and the levels of PAHs in the total air (particulate and gas phases) of indoor and outdoor air of school environments and the associated risks for the health of children. There is a clear need to improve indoor air quality in schools and to establish international guidelines for exposure limits in these environments.
Collapse
Affiliation(s)
- Marta Oliveira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Porto, Portugal; LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Klara Slezakova
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Porto, Portugal; LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Porto, Portugal
| | - Maria Carmo Pereira
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Simone Morais
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Porto, Portugal.
| |
Collapse
|
34
|
Pulster EL, Johnson G, Hollander D, McCluskey J, Harbison R. Levels and Sources of Atmospheric Polycyclic Aromatic Hydrocarbons Surrounding an Oil Refinery in Curaçao. ACTA ACUST UNITED AC 2019. [DOI: 10.4236/jep.2019.103025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Singh A, Kamal R, Tiwari R, Gaur VK, Bihari V, Satyanarayana G, Patel DK, Azeez PA, Srivastava V, Ansari A, Kesavachandran CN. Association between PAHs biomarkers and kidney injury biomarkers among kitchen workers with microalbuminuria: A cross-sectional pilot study. Clin Chim Acta 2018; 487:349-356. [DOI: 10.1016/j.cca.2018.10.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 02/08/2023]
|
36
|
Wang B, Zhu Y, Pang Y, Xie J, Hao Y, Yan H, Li Z, Ye R. Indoor air pollution affects hypertension risk in rural women in Northern China by interfering with the uptake of metal elements: A preliminary cross-sectional study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 240:267-272. [PMID: 29747111 DOI: 10.1016/j.envpol.2018.04.097] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/21/2018] [Accepted: 04/22/2018] [Indexed: 06/08/2023]
Abstract
Coal combustion and passive smoking are two important contributors to indoor air pollution (IAP) in rural areas of northern China. Although the association between outdoor air pollutants and hypertension risk had been widely reported, fewer studies have examined the relationship between IAP and hypertension risk. This study evaluated the association between IAP and hypertension risk in housewives in rural areas of northern China and the potential mediation pathway of metal elements. Our cross-sectional study, conducted in Shanxi Province, China, enrolled 367 subjects without taking anti-hypertensive drugs, including 142 subjects with hypertension (case group) and 225 subjects without hypertension (control group). We collected information on energy use characteristics and lifestyle using questionnaires. An IAP exposure index was developed to indicate the population exposure to coal combustion and passive smoking. Scalp hair samples were collected from the housewives and various trace and major metal elements were measured. Our results revealed that the IAP index was positively correlated with systolic and diastolic blood pressure. A significant association between the IAP index and hypertension risk was found both without [odds ratio (95% confidence interval, CI) = 2.08 (1.30-3.31)] and with [OR (95% CI) = 2.52 (1.46-4.36)] adjustment for confounders. We also observed that the IAP index was positively correlated with the arsenic, lead, and rare earth element levels in hair samples, and negatively correlated with the levels of some other trace elements (i.e., chromium, cobalt, nickel, and tin) and alkaline earth elements (i.e., calcium, magnesium, and barium) with an overall p value of <0.01. We concluded that IAP may contribute to the development of hypertension in rural housewives in northern China, possibly by interfering with the uptake of metal elements.
Collapse
Affiliation(s)
- Bin Wang
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, School of Public Health, Peking University, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Yibing Zhu
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, School of Public Health, Peking University, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Yiming Pang
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, School of Public Health, Peking University, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Jing Xie
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, School of Public Health, Peking University, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Yongxiu Hao
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, School of Public Health, Peking University, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Huina Yan
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, School of Public Health, Peking University, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Zhiwen Li
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, School of Public Health, Peking University, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Rongwei Ye
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, School of Public Health, Peking University, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China.
| |
Collapse
|
37
|
Sanders AP, Saland JM, Wright RO, Satlin L. Perinatal and childhood exposure to environmental chemicals and blood pressure in children: a review of literature 2007-2017. Pediatr Res 2018; 84:165-180. [PMID: 29884847 PMCID: PMC6185812 DOI: 10.1038/s41390-018-0055-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 01/09/2023]
Abstract
Exposure to environmental chemicals during periods of renal development from embryogenesis to birth and through childhood can inform critical windows of nephrotoxicity, including changes in childhood blood pressure. This review assessed recent studies that examined the relationship of air pollution, metals, and other organic pollutants with children's blood pressure outcomes. We restricted this review to peer-reviewed studies published in English between January 2007 and July 2017. We identified a total of 36 articles that estimated associations with childhood blood pressure, of which 14 studies examined the effects of air pollution, 10 examined metals, and 12 examined other organic pollutants including phthalates (n = 4), Bisphenol A (n = 3), polychlorinated biphenols (n = 2), organophosphate pesticides (n = 2), or perfluoroalkyl acids (n = 1). Similar to the established relationship between tobacco smoke exposure and childhood blood pressure, the majority of studies that examined air pollutants, particularly exposure to PM10 and PM2.5, reported associations with increased childhood blood pressure. The literature reported conflicting evidence for metals, and putative evidence of the effects of exposure to phthalates, Bisphenol A, polychlorinated biphenols, and pesticides. Overall, our review underscores the need for additional studies that assess the impact of nephrotoxicant exposure during early life, particularly the perinatal period, and blood pressure in childhood.
Collapse
Affiliation(s)
- Alison P Sanders
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Jeffrey M Saland
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lisa Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
38
|
Brinchmann BC, Le Ferrec E, Podechard N, Lagadic-Gossmann D, Shoji KF, Penna A, Kukowski K, Kubátová A, Holme JA, Øvrevik J. Lipophilic Chemicals from Diesel Exhaust Particles Trigger Calcium Response in Human Endothelial Cells via Aryl Hydrocarbon Receptor Non-Genomic Signalling. Int J Mol Sci 2018; 19:E1429. [PMID: 29748474 PMCID: PMC5983734 DOI: 10.3390/ijms19051429] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 12/21/2022] Open
Abstract
Exposure to diesel exhaust particles (DEPs) affects endothelial function and may contribute to the development of atherosclerosis and vasomotor dysfunction. As intracellular calcium concentration [Ca2+]i is considered important in myoendothelial signalling, we explored the effects of extractable organic matter from DEPs (DEP-EOM) on [Ca2+]i and membrane microstructure in endothelial cells. DEP-EOM of increasing polarity was obtained by pressurized sequential extraction of DEPs with n-hexane (n-Hex-EOM), dichloromethane (DCM-EOM), methanol, and water. Chemical analysis revealed that the majority of organic matter was extracted by the n-Hex- and DCM-EOM, with polycyclic aromatic hydrocarbons primarily occurring in n-Hex-EOM. The concentration of calcium was measured in human microvascular endothelial cells (HMEC-1) using micro-spectrofluorometry. The lipophilic n-Hex-EOM and DCM-EOM, but not the more polar methanol- and water-soluble extracts, induced rapid [Ca2+]i increases in HMEC-1. n-Hex-EOM triggered [Ca2+]i increase from intracellular stores, followed by extracellular calcium influx consistent with store operated calcium entry (SOCE). By contrast, the less lipophilic DCM-EOM triggered [Ca2+]i increase via extracellular influx alone, resembling receptor operated calcium entry (ROCE). Both extracts increased [Ca2+]i via aryl hydrocarbon receptor (AhR) non-genomic signalling, verified by pharmacological inhibition and RNA-interference. Moreover, DCM-EOM appeared to induce an AhR-dependent reduction in the global plasma membrane order, as visualized by confocal fluorescence microscopy. DCM-EOM-triggered [Ca2+]i increase and membrane alterations were attenuated by the membrane stabilizing lipid cholesterol. In conclusion, lipophilic constituents of DEPs extracted by n-hexane and DCM seem to induce rapid AhR-dependent [Ca2+]i increase in HMEC-1 endothelial cells, possibly involving both ROCE and SOCE-mediated mechanisms. The semi-lipophilic fraction extracted by DCM also caused an AhR-dependent reduction in global membrane order, which appeared to be connected to the [Ca2+]i increase.
Collapse
Affiliation(s)
- Bendik C Brinchmann
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, N-0403 Oslo, Norway.
- Division of Laboratory Medicine, Faculty of Medicine, University of Oslo, N-0315 Oslo, Norway.
| | - Eric Le Ferrec
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), Univ. Rennes, UMR_S 1085, F-35000 Rennes, France.
| | - Normand Podechard
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), Univ. Rennes, UMR_S 1085, F-35000 Rennes, France.
| | - Dominique Lagadic-Gossmann
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), Univ. Rennes, UMR_S 1085, F-35000 Rennes, France.
| | - Kenji F Shoji
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), Univ. Rennes, UMR_S 1085, F-35000 Rennes, France.
| | - Aubin Penna
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), Univ. Rennes, UMR_S 1085, F-35000 Rennes, France.
| | - Klara Kukowski
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA.
| | - Alena Kubátová
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA.
| | - Jørn A Holme
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, N-0403 Oslo, Norway.
| | - Johan Øvrevik
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, N-0403 Oslo, Norway.
| |
Collapse
|
39
|
Yin W, Hou J, Xu T, Cheng J, Li P, Wang L, Zhang Y, Wang X, Hu C, Huang C, Yu Z, Yuan J. Obesity mediated the association of exposure to polycyclic aromatic hydrocarbon with risk of cardiovascular events. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:841-854. [PMID: 29122344 DOI: 10.1016/j.scitotenv.2017.10.238] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 10/04/2017] [Accepted: 10/22/2017] [Indexed: 05/21/2023]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) could cause high blood pressure (BP) and increased risk for atherosclerotic cardiovascular disease (ASCVD). However, the mechanisms underlying the relationship between them were unclear. We investigated potential mediation effect of obesity on the association of exposure to PAHs with high BP and increased risk for ASCVD. In the repeated measures study, 106 community-dwelling residents in Wuhan, China finished the physical examination in the winter and summer seasons, eight urinary PAHs metabolites were measured. Associations of urinary PAHs with high BP and increased risk for ASCVD were assessed using either linear mixed effect models or generalized estimating equations models. Mediation analysis was performed to evaluate the mediating effect of obesity on the association of urinary PAHs metabolites with high BP or increased risk of ASCVD. We observed the positive association between urinary PAHs metabolites and BP or the odds ratios for high BP (all P<0.05). Additionally, each one-unit increase in ln-transformed urinary levels of 4-hydroxyphenanthrene or the total of PAH metabolites was associated with a 12.63% or 11.91% increase in the estimated 10-year ASCVD risk (both P<0.05). The waist-to-height ratio mediated 29.0% of the association of urinary 4-hydroxyphenanthrene with increased risk of ASCVD (P<0.05). The findings suggest that PAHs exposure may be associated with elevated BP and an increased risk of ASCVD. Obesity may partially mediate the association between PAHs exposure and higher BP or increased risk of ASCVD.
Collapse
Affiliation(s)
- Wenjun Yin
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China
| | - Jian Hou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China
| | - Tian Xu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China
| | - Juan Cheng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China
| | - Pei Li
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Lin Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China
| | - Youjian Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China
| | - Xian Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China
| | - Chen Hu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China
| | - Cheng Huang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Jing Yuan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China.
| |
Collapse
|
40
|
Cox RS, Irwin P, Scannell L, Ungar M, Bennett TD. Children and youth's biopsychosocial wellbeing in the context of energy resource activities. ENVIRONMENTAL RESEARCH 2017; 158:499-507. [PMID: 28709032 DOI: 10.1016/j.envres.2017.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/29/2017] [Accepted: 07/05/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Children and youth emerge as key populations that are impacted by energy resource activities, in part because of their developmental vulnerabilities, as well as the compounding effects of energy systems on their families, communities, and physical environments. While there is a larger literature focused on fossil fuel emissions and children, the impacts of many aspects of energy systems on children and youth remain under examined and scattered throughout the health, social science, and environmental science literatures. OBJECTIVES This systematic interdisciplinary review examines the biological, psychosocial, and economic impacts of energy systems identified through social science research - specifically focused on household and industrial extraction and emissions - on children and youth functioning. METHODS A critical interpretive search of interdisciplinary and international social sciences literature was conducted using an adaptive protocol focusing on the biopsychosocial and economic impacts of energy systems on children and youth. The initial results were complemented with a purposeful search to extend the breadth and depth of the final collection of articles. DISCUSSION Although relatively few studies have specifically focused on children and youth in this context, the majority of this research uncovers a range of negative health impacts that are directly and indirectly related to the development and ongoing operations of natural resource production, particularly oil and gas, coal, and nuclear energy. Psychosocial and cultural effects, however, remain largely unexamined and provide a rich avenue for further research. CONCLUSIONS This synthesis identifies an array of adverse biopsychosocial health outcomes on children and youth of energy resource extraction and emissions, and identifies gaps that will drive future research in this area.
Collapse
Affiliation(s)
- Robin S Cox
- ResiliencebyDesign Research Lab, School of Humanitarian Studies, Royal Roads University, Victoria, BC, Canada.
| | - Pamela Irwin
- ResiliencebyDesign Research Lab, School of Humanitarian Studies, Royal Roads University, Victoria, BC, Canada
| | - Leila Scannell
- ResiliencebyDesign Research Lab, School of Humanitarian Studies, Royal Roads University, Victoria, BC, Canada
| | - Michael Ungar
- Resilience Research Centre, Dalhousie University, Halifax, NS, Canada
| | - Trevor Dixon Bennett
- ResiliencebyDesign Research Lab, School of Humanitarian Studies, Royal Roads University, Victoria, BC, Canada
| |
Collapse
|
41
|
Harville EW, Shankar A, Zilversmit L, Buekens P. Self-Reported Oil Spill Exposure and Pregnancy Complications: The GROWH Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14070692. [PMID: 28654004 PMCID: PMC5551130 DOI: 10.3390/ijerph14070692] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/15/2017] [Accepted: 06/22/2017] [Indexed: 12/30/2022]
Abstract
Adverse infant outcomes often rise in the aftermath of disaster, but few studies have assessed the effects of disaster on maternal health. 1091 southern Louisiana women were interviewed about their pregnancy history, including pregnancy complications. Associations between oil spill exposures and gestational diabetes, hypertensive disorders, and nausea/vomiting were assessed for all reported pregnancies. 631 women had a pregnancy both before and after the oil spill. Generalized estimating equations (logistic regression) with adjustment for confounders were used. To assess possible unmeasured confounding, instead of considering oil spill exposure as a time-varying exposure, women were defined as oil spill-exposed or not. If oil spill-exposed women were equally prone to complications in pregnancies that occurred prior to the oil spill as after it, it was considered that any associations were likely due to selection or reporting issues. Women who reported oil spill exposure, particularly loss of use of the coast, were more likely to report gestational diabetes; however, the level of association was similar for pregnancies before and after the spill (p for interaction >0.10 and odds ratios (ORs) for pregnancies prior to the spill > than those after the spill). No associations were found between oil spill exposure and hypertensive disorders. This analysis does not suggest an increased risk of pregnancy complications associated with exposure to the oil spill; however, future studies should assess exposure and outcomes prospectively and clinically instead of relying on self-report.
Collapse
Affiliation(s)
- Emily W Harville
- Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, 1440 Canal St. Ste. 2000 #8318, New Orleans, LA 70112-2715, USA.
| | - Arti Shankar
- Department of Global Biostatistics and Data Science, Tulane School of Public Health and Tropical Medicine, New Orleans, LA 70112-2715, USA.
| | - Leah Zilversmit
- Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, 1440 Canal St. Ste. 2000 #8318, New Orleans, LA 70112-2715, USA.
| | - Pierre Buekens
- Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, 1440 Canal St. Ste. 2000 #8318, New Orleans, LA 70112-2715, USA.
| |
Collapse
|
42
|
Poursafa P, Moosazadeh M, Abedini E, Hajizadeh Y, Mansourian M, Pourzamani H, Amin MM. A Systematic Review on the Effects of Polycyclic Aromatic Hydrocarbons on Cardiometabolic Impairment. Int J Prev Med 2017; 8:19. [PMID: 28479961 PMCID: PMC5404352 DOI: 10.4103/ijpvm.ijpvm_144_17] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 03/14/2017] [Indexed: 01/06/2023] Open
Abstract
Background: Various epidemiological studies have shown that exposure to environmental pollutants including polycyclic aromatic hydrocarbons (PAHs) might increase the risk of cardiovascular diseases (CVDs) and their risk factors. This study aims to systematically review the association of PAH exposure with metabolic impairment. Methods: Data were collected by searching for relevant studies in international databases using the following keywords: “polycyclic aromatic hydrocarbon” + “cardiovascular disease,” PAH + CVD, polycyclic aromatic hydrocarbon and “air pollutant” + “CVD,” and the desired data were extracted and included in the study according to the systematic review process. Results: From the 14 articles included in the present systematic review, eight articles were conducted on the relationship between PAH and CVDs, four articles were conducted to examine the association of PAH exposure with blood pressure (BP), and two articles investigated the link between PAH and obesity. Conclusions: Most studies included in this systematic review reported a significant positive association of PAH exposure with increased risk of CVDs and its major risk factors including elevated BP and obesity. These findings should be confirmed by longitudinal studies with long-term follow-up.
Collapse
Affiliation(s)
- Parinaz Poursafa
- Environment Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmood Moosazadeh
- Health Science Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ehsan Abedini
- Student Research Committee, Health Science Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Yaghoub Hajizadeh
- Environment Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marjan Mansourian
- Environment Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamidreza Pourzamani
- Environment Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad-Mehdi Amin
- Environment Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
43
|
Polonikov AV, Bushueva OY, Bulgakova IV, Freidin MB, Churnosov MI, Solodilova MA, Shvetsov YD, Ivanov VP. A comprehensive contribution of genes for aryl hydrocarbon receptor signaling pathway to hypertension susceptibility. Pharmacogenet Genomics 2017; 27:57-69. [PMID: 27977510 DOI: 10.1097/fpc.0000000000000261] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The present study was designed to investigate whether genetic polymorphisms of the aryl hydrocarbon receptor (AHR) signaling pathway are involved in the molecular basis of essential hypertension (EH). METHODS A total of 2160 unrelated Russian individuals comprising 1341 EH patients and 819 healthy controls were recruited into the study. Seven common AHR pathway single-nucleotide polymorphisms (SNPs) such as rs2066853, rs2292596, rs2228099, rs1048943, rs762551, rs1056836, and rs1800566 were genotyped by TaqMan-based allele discrimination assays. RESULTS We found that SNP rs2228099 of ARNT is associated with an increased risk of EH (odds ratio=1.20 95% confidence interval: 1.01-1.44, P=0.043) in a dominant genetic model, whereas polymorphism rs762551 of CYP1A2 showed an association with a decreased risk of disease in a recessive genetic model (odds ratio=0.68, 95% confidence interval: 0.52-0.89, P=0.006). A log-likelihood ratio test enabled identification of epistatic interaction effects on EH susceptibility for all SNPs. MB-MDR analysis showed that cigarette smoking, rs1048943, rs762551, rs1056836, and rs2228099 were significant contributing factors in 19, 18, 13, 13, and 11 interaction models, respectively. The best MDR model associated with EH risk included rs1048943, rs762551, rs1056836, and cigarette smoking (cross-validation consistency 100%, prediction error 45.7%, Ppermutation<0.0001). The mRNA expression and in-silico function prediction analyses have confirmed a regulatory potential for a majority of SNPs associated with EH susceptibility. CONCLUSION Our pilot study was the first to show that gene-gene and gene-environment interactions in the AHR signaling pathway represent important determinants for the development of EH, and the pathway may become an attractive target for a pharmacological intervention in hypertensive patients in the future.
Collapse
Affiliation(s)
- Alexey V Polonikov
- aDepartment of Biology, Medical Genetics and Ecology bLaboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk cPopulation Genetics Laboratory, Research Institute for Medical Genetics, Tomsk dDepartment of Medical Biological Disciplines, Belgorod State University, Belgorod, Russian Federation
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Wang B, Li Z, Ma Y, Qiu X, Ren A. Association of polycyclic aromatic hydrocarbons in housewives' hair with hypertension. CHEMOSPHERE 2016; 153:315-21. [PMID: 27023119 DOI: 10.1016/j.chemosphere.2016.03.067] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 05/06/2023]
Abstract
The relationship between polycyclic aromatic hydrocarbons (PAHs) and hypertension remains a subject of debate. The aims of this study were to determine an association of concentrations of PAHs in housewives' hair with hypertension risk and the modification effect of single nucleotide polymorphisms (SNPs) related to Phase I metabolism of PAHs. We recruited 405 women for a cross-sectional study in Shanxi Province, China, including 170 with hypertension (the case group) and 235 without hypertension (the control group). We analyzed 26 individual PAHs in hair samples and the SNPs of the genes including cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1), CYP1A2, CYP1B1 and CYP2E1. Our results showed that seven PAHs in hair samples were measured with detection rate >70%. Only acenaphthylene was found to be associated with an increased risk of hypertension with adjustment for the potential confounders following Bonferroni correction, whereas others not. No SNPs of the concerned genes were found to be associated with the risk of hypertension. A multiple interaction effect of PAHs in housewives' hair and SNPs on hypertension risk was not observed. It was concluded that PAHs tended to contribute to the formation of hypertension.
Collapse
Affiliation(s)
- Bin Wang
- Institute of Reproductive and Child Health/Ministry of Health Key Laboratory of Reproductive Health, School of Public Health, Peking University, Beijing 100191, PR China
| | - Zhiwen Li
- Institute of Reproductive and Child Health/Ministry of Health Key Laboratory of Reproductive Health, School of Public Health, Peking University, Beijing 100191, PR China.
| | - Yiqiu Ma
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Aiguo Ren
- Institute of Reproductive and Child Health/Ministry of Health Key Laboratory of Reproductive Health, School of Public Health, Peking University, Beijing 100191, PR China
| |
Collapse
|
45
|
James-Todd TM, Huang T, Seely EW, Saxena AR. The association between phthalates and metabolic syndrome: the National Health and Nutrition Examination Survey 2001-2010. Environ Health 2016; 15:52. [PMID: 27079661 PMCID: PMC4832560 DOI: 10.1186/s12940-016-0136-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 04/08/2016] [Indexed: 05/07/2023]
Abstract
BACKGROUND Higher exposure to certain phthalates is associated with a diabetes and insulin resistance, with sex differences seen. Yet, little is known about the association between phthalates and metabolic syndrome (MetS), particularly with consideration for differences by sex and menopausal status. METHODS We analyzed data from 2719 participants in the National Health and Nutrition Examination Survey (NHANES) 2001-2010 aged 20-80 years. Five urinary phthalate metabolites (MEP, MnBP, MiBP, MBzP, and MCPP) and DEHP metabolites were analyzed by the Centers for Disease Control and Prevention and were evaluated as population-specific quartiles. MetS was defined by National Cholesterol Education Program's Adult Treatment Panel III report criteria. Prevalence odds ratios (POR) and 95 % confidence intervals (CI) were calculated using multivariable logistic regression, adjusting for potential confounders and stratifying by sex and menopausal status. RESULTS Participants with MetS (32 % of the study population) had higher concentrations for all urinary phthalate metabolites. After full adjustment, higher DEHP metabolite concentrations were associated with an increased odds of MetS in men, but not women (adj. POR for men Q4 versus Q1: 2.20; 95 % CI: 1.32, 3.68 and adj. POR for women Q4 versus Q1: 1.50; 95 % CI: 0.89, 2.52). When evaluating by menopausal status, pre-menopausal women with higher concentrations of MBzP had close to a 4-fold increased odds of MetS compared to pre-menopausal women with the lowest concentrations of MBzP (adj POR: Q4 versus Q1: 3.88; 95 % CI: 1.59, 9.49). CONCLUSIONS Higher concentrations of certain phthalate metabolites were associated with an increased odds of MetS. Higher DEHP metabolite concentrations were associated with an increased odds of MetS for men. In women, the strongest association was between higher concentrations of MBzP and MetS, but only among pre-menopausal women.
Collapse
Affiliation(s)
- Tamarra M. James-Todd
- />Departments of Environmental Health and Epidemiology, Harvard T.H. Chan School of Public Health, 665 Huntington Ave., Bldg. 1, 14th Floor, Boston, MA 02115 USA
- />Division of Women’s Health, Department of Medicine, Connors Center for Women’s Health and Gender Biology, 1620 Tremont St., 3rd Floor, Boston, MA 02115 USA
- />Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, 181 Longwood Ave., Boston, MA 02115 USA
| | - Tianyi Huang
- />Division of Women’s Health, Department of Medicine, Connors Center for Women’s Health and Gender Biology, 1620 Tremont St., 3rd Floor, Boston, MA 02115 USA
- />Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, 181 Longwood Ave., Boston, MA 02115 USA
| | - Ellen W. Seely
- />Division of Endocrine, Diabetes, and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, 221 Longwood Ave., 3rd Floor, Boston, MA 02115 USA
| | - Aditi R. Saxena
- />Division of Endocrine, Diabetes, and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, 221 Longwood Ave., 3rd Floor, Boston, MA 02115 USA
| |
Collapse
|
46
|
Alghamdi MA, Alam MS, Stark C, Mohammed N, Harrison RM, Shamy M, Khoder MI, Shabbaj II, Göen T. Urinary metabolites of polycyclic aromatic hydrocarbons in Saudi Arabian schoolchildren in relation to sources of exposure. ENVIRONMENTAL RESEARCH 2015; 140:495-501. [PMID: 25996626 DOI: 10.1016/j.envres.2015.04.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 05/22/2023]
Abstract
Polycyclic aromatic hydrocarbons contain a number of known carcinogenic compounds, and urinary biomarkers have been widely used as a measure of exposure but quantitative relationships with exposure variables have proved elusive. This study aimed to quantify the relationship between exposures to phenanthrene and pyrene from atmospheric and dietary sources with the excretion of 1-hydroxypyrene and hydroxyphenanthrenes in urine as biomarkers of exposure. The study population consisted of 204 male schoolchildren attending three schools in different parts of Jeddah, Saudi Arabia who provided urine samples on each of three consecutive days. Outdoor air measurements of polycyclic aromatic hydrocarbons were made at the schools and the children provided information on diet, exposure to environmental tobacco smoke and incense, and various lifestyle factors through a questionnaire. Mixed models with random effects for subjects nested within site were fitted in order to examine the relationship between exposure variables and urinary PAH metabolites. A unit increase (1 ng m(-3)) in ambient pyrene (particulate plus gaseous phase) was associated with a 3.5% (95% CI: 1.01%, 5.13%) increase in urinary 1-hydroxypyrene concentration. A unit increase in ambient phenanthrene was associated with a 1.01% (95% CI: 0.03%, 2.02%) increase in total hydroxyphenanthrene concentrations. Consumption of chargrilled food increased the 1-hydroxypyrene and hydroxyphenanthrene concentrations by 24% (95% CI: 11%, 37%) and 17% (95% CI: 8%, 26%) respectively. We did not find evidence of association for environmental tobacco smoke exposure or incense burning. It is concluded that both respiratory exposure and consumption of chargrilled food are considerable sources of PAH exposure in this population as reflected by concentrations of urinary biomarkers.
Collapse
Affiliation(s)
- Mansour A Alghamdi
- Department of Environmental Sciences, Faculty of Meteorology Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Mohammed S Alam
- Division of Environmental Health and Risk Management School of Geography, Earth & Environmental Sciences University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| | - Christopher Stark
- Division of Environmental Health and Risk Management School of Geography, Earth & Environmental Sciences University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| | - Nuredin Mohammed
- Institute of Occupational and Environmental Medicine University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| | - Roy M Harrison
- Department of Environmental Sciences, Faculty of Meteorology Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia; Division of Environmental Health and Risk Management School of Geography, Earth & Environmental Sciences University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| | - Magdy Shamy
- Department of Environmental Sciences, Faculty of Meteorology Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Mamdouh I Khoder
- Department of Environmental Sciences, Faculty of Meteorology Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Ibrahim I Shabbaj
- Department of Environmental Sciences, Faculty of Meteorology Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Thomas Göen
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|