1
|
Calderón-Garcidueñas L, Cejudo-Ruiz FR, Stommel EW, González-Maciel A, Reynoso-Robles R, Silva-Pereyra HG, Pérez-Guille BE, Soriano-Rosales RE, Torres-Jardón R. Sleep and Arousal Hubs and Ferromagnetic Ultrafine Particulate Matter and Nanoparticle Motion Under Electromagnetic Fields: Neurodegeneration, Sleep Disorders, Orexinergic Neurons, and Air Pollution in Young Urbanites. TOXICS 2025; 13:284. [PMID: 40278600 PMCID: PMC12030987 DOI: 10.3390/toxics13040284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025]
Abstract
Air pollution plays a key role in sleep disorders and neurodegeneration. Alzheimer's disease (AD), Parkinson's disease (PD), and/or transactive response DNA-binding protein TDP-43 neuropathology have been documented in children and young adult forensic autopsies in the metropolitan area of Mexico City (MMC), along with sleep disorders, cognitive deficits, and MRI brain atrophy in seemingly healthy young populations. Ultrafine particulate matter (UFPM) and industrial nanoparticles (NPs) reach urbanites' brains through nasal/olfactory, lung, gastrointestinal tract, and placental barriers. We documented Fe UFPM/NPs in neurovascular units, as well as lateral hypothalamic nucleus orexinergic neurons, thalamus, medullary, pontine, and mesencephalic reticular formation, and in pinealocytes. We quantified ferromagnetic materials in sleep and arousal brain hubs and examined their motion behavior to low magnetic fields in MMC brain autopsy samples from nine children and 25 adults with AD, PD, and TDP-43 neuropathology. Saturated isothermal remanent magnetization curves at 50-300 mT were associated with UFPM/NP accumulation in sleep/awake hubs and their motion associated with 30-50 µT (DC magnetic fields) exposure. Brain samples exposed to anthropogenic PM pollution were found to be sensitive to low magnetic fields, with motion behaviors that were potentially linked to the early development and progression of fatal neurodegenerative diseases and sleep disorders. Single-domain magnetic UFPM/NPs in the orexin system, as well as arousal, sleep, and autonomic regions, are key to neurodegeneration, behavioral and cognitive impairment, and sleep disorders. We need to identify children at higher risk and monitor environmental UFPM and NP emissions and exposures to magnetic fields. Ubiquitous ferrimagnetic particles and low magnetic field exposures are a threat to global brain health.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- Biomedical Sciences, The University of Montana, Missoula, MT 59812, USA
- Escuela de Enfermeria, Universidad Autónoma de Piedras Negras, Piedras Negras 26000, Mexico
| | | | - Elijah W. Stommel
- Department of Neurology, Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA;
| | - Angélica González-Maciel
- Instituto Nacional de Pediatría, Mexico City 04530, Mexico; (A.G.-M.); (R.R.-R.); (B.E.P.-G.); (R.E.S.-R.)
| | - Rafael Reynoso-Robles
- Instituto Nacional de Pediatría, Mexico City 04530, Mexico; (A.G.-M.); (R.R.-R.); (B.E.P.-G.); (R.E.S.-R.)
| | - Héctor G. Silva-Pereyra
- Department of Advance Materials, Instituto Potosino de Investigación Científica y Tecnológica AC, San Luis Potosi 78216, Mexico;
| | - Beatriz E. Pérez-Guille
- Instituto Nacional de Pediatría, Mexico City 04530, Mexico; (A.G.-M.); (R.R.-R.); (B.E.P.-G.); (R.E.S.-R.)
| | | | - Ricardo Torres-Jardón
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| |
Collapse
|
2
|
Mertaş B, Boşgelmez İİ. The Role of Genetic, Environmental, and Dietary Factors in Alzheimer's Disease: A Narrative Review. Int J Mol Sci 2025; 26:1222. [PMID: 39940989 PMCID: PMC11818526 DOI: 10.3390/ijms26031222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Alzheimer's disease (AD) is one of the most common and severe forms of dementia and neurodegenerative disease. As life expectancy increases in line with developments in medicine, the elderly population is projected to increase in the next few decades; therefore, an increase in the prevalence of some diseases, such as AD, is also expected. As a result, until a radical treatment becomes available, AD is expected to be more frequently recorded as one of the top causes of death worldwide. Given the current lack of a cure for AD, and the only treatments available being ones that alleviate major symptoms, the identification of contributing factors that influence disease incidence is crucial. In this context, genetic and/or epigenetic factors, mainly environmental, disease-related, dietary, or combinations/interactions of these factors, are assessed. In this review, we conducted a literature search focusing on environmental factors such as air pollution, toxic elements, pesticides, and infectious agents, as well as dietary factors including various diets, vitamin D deficiency, social factors (e.g., tobacco and alcohol use), and variables that are affected by both environmental and genetic factors, such as dietary behavior and gut microbiota. We also evaluated studies on the beneficial effects of antibiotics and diets, such as the Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) and Mediterranean diets.
Collapse
Affiliation(s)
- Beyza Mertaş
- Department of Pharmacology, Faculty of Pharmacy, Düzce University, Düzce 81010, Türkiye;
| | - İ. İpek Boşgelmez
- Department of Toxicology, Faculty of Pharmacy, Erciyes University, Kayseri 38280, Türkiye
| |
Collapse
|
3
|
van Zundert B, Montecino M. Epigenetics in Neurodegenerative Diseases. Subcell Biochem 2025; 108:73-109. [PMID: 39820861 DOI: 10.1007/978-3-031-75980-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Healthy brain functioning requires a continuous fine-tuning of gene expression, involving changes in the epigenetic landscape and 3D chromatin organization. Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD) are three multifactorial neurodegenerative diseases (NDDs) that are partially explained by genetics (gene mutations and genetic risk factors) and influenced by non-genetic factors (i.e., aging, lifestyle, and environmental conditions). Examining comprehensive studies of global and locus-specific (epi)genomic and transcriptomic alterations in human and mouse brain samples at the cell-type resolution has uncovered important phenomena associated with AD. First, DNA methylation and histone marks at promoters contribute to transcriptional dysregulation of genes that are directly implicated in AD pathogenesis (i.e., APP), neuroplasticity and cognition (i.e., PSD95), and microglial activation (i.e., TREM2). Second, the presence of AD genetic risk variants in cell-type-specific distal enhancers (i.e., BIN1 in microglia) alters transcription, presumably by disrupting associated enhancer-promoter interactions and chromatin looping. Third, epigenomic erosion is associated with widespread transcriptional disruption and cell identity loss. And fourth, aging, high cholesterol, air pollution, and pesticides have emerged as potential drivers of AD by inducing locus-specific and global epigenetic modifications that impact key AD-related pathways. Epigenetic studies in ALS/FTD also provide evidence that genetic and non-genetic factors alter gene expression profiles in neurons and astrocytes through aberrant epigenetic mechanisms. We additionally overview the recent development of potential new therapeutic strategies involving (epi)genetic editing and the use of small chromatin-modifying molecules (epidrugs).
Collapse
Affiliation(s)
- Brigitte van Zundert
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile.
- Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile.
- Department of Neurology, University of Massachusetts Chan Medical School (UMMS), Worcester, MA, USA.
| | - Martin Montecino
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile.
- Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile.
| |
Collapse
|
4
|
Oudin A, Raza W, Flanagan E, Segersson D, Jalava P, Kanninen KM, Rönkkö T, Giugno R, Sandström T, Muala A, Topinka J, Sommar J. Exposure to source-specific air pollution in residential areas and its association with dementia incidence: a cohort study in Northern Sweden. Sci Rep 2024; 14:15521. [PMID: 38969679 PMCID: PMC11226641 DOI: 10.1038/s41598-024-66166-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 06/27/2024] [Indexed: 07/07/2024] Open
Abstract
The aim of this study was to investigate the relationship between source-specific ambient particulate air pollution concentrations and the incidence of dementia. The study encompassed 70,057 participants from the Västerbotten intervention program cohort in Northern Sweden with a median age of 40 years at baseline. High-resolution dispersion models were employed to estimate source-specific particulate matter (PM) concentrations, such as PM10 and PM2.5 from traffic, exhaust, and biomass (mainly wood) burning, at the residential addresses of each participant. Cox regression models, adjusted for potential confounding factors, were used for the assessment. Over 884,847 person-years of follow-up, 409 incident dementia cases, identified through national registers, were observed. The study population's average exposure to annual mean total PM10 and PM2.5 lag 1-5 years was 9.50 µg/m3 and 5.61 µg/m3, respectively. Increased risks were identified for PM10-Traffic (35% [95% CI 0-82%]) and PM2.5-Exhaust (33% [95% CI - 2 to 79%]) in the second exposure tertile for lag 1-5 years, although no such risks were observed in the third tertile. Interestingly, a negative association was observed between PM2.5-Wood burning and the risk of dementia. In summary, this register-based study did not conclusively establish a strong association between air pollution exposure and the incidence of dementia. While some evidence indicated elevated risks for PM10-Traffic and PM2.5-Exhaust, and conversely, a negative association for PM2.5-Wood burning, no clear exposure-response relationships were evident.
Collapse
Affiliation(s)
- Anna Oudin
- Department of Public Health and Clinical Medicine, Sustainable Health, Umeå University, Umeå, Sweden.
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| | - Wasif Raza
- Department of Public Health and Clinical Medicine, Sustainable Health, Umeå University, Umeå, Sweden
| | - Erin Flanagan
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - David Segersson
- Swedish Meteorological and Hydrological Institute, Norrköping, Sweden
| | - Pasi Jalava
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Topi Rönkkö
- Aerosol Physics Laboratory, Physics Unit, Tampere University, Tampere, Finland
| | - Rosalba Giugno
- Computer Science Department, University of Verona, Verona, Italy
| | - Thomas Sandström
- Division of Medicine/Respiratory Medicine, Department of Toxicology and Molecular Epidemiology, Umeå University, Umeå, Sweden
| | - Ala Muala
- Division of Medicine/Respiratory Medicine, Department of Toxicology and Molecular Epidemiology, Umeå University, Umeå, Sweden
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - Johan Sommar
- Department of Public Health and Clinical Medicine, Sustainable Health, Umeå University, Umeå, Sweden
| |
Collapse
|
5
|
Frndak S, Deng Z, Ward-Caviness CK, Gorski-Steiner I, Thorpe RJ, Dickerson AS. Risk of dementia due to Co-exposure to air pollution and neighborhood disadvantage. ENVIRONMENTAL RESEARCH 2024; 251:118709. [PMID: 38493859 DOI: 10.1016/j.envres.2024.118709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Co-exposure to air pollution and neighborhood disadvantage may influence cognition decline. We tested these associations in the context of dementia risk. METHODS We leveraged a cohort of adults ≥65 years (n = 5397) enrolled from 2011 to 2018 in the National Health and Aging Trends Study (NHATS). Particulate matter (PM) ≤ 10 μm in diameter, PM ≤ 2.5 μm in diameter, carbon monoxide, nitric oxide, and nitrogen dioxide - and neighborhood disadvantage were tested for joint associations with dementia risk. Pollutant concentrations at the 2010 census tract level were assigned using the US Environmental Protection Agency's Community Multiscale Air Quality Modeling System. Neighborhood disadvantage was defined using the tract Social Deprivation Index (SDI). Dementia was determined through self- or proxy-report or scores indicative of "probable dementia" according to NHATS screening tools. Joint effects of air pollutants and SDI were tested using quantile g-computation Cox proportional hazards models. We also stratified joint air pollution effects across SDI tertiles. Analyses adjusted for age at enrollment, sex, education, partner status, urbanicity, income, race and ethnicity, years at residence, census segregation, and census region. RESULTS SDI score (aHR = 1.08; 95% CI 0.96, 1.22), joint air pollution (aHR = 1.03, 95% CI 0.92, 1.16) and joint SDI with air pollution (aHR = 1.04, 95% CI 0.89, 1.22) were not associated with dementia risk. After accounting for competing risk of death, joint SDI with air pollution was not associated with dementia risk (aHR = 1.06; 95% CI 0.87, 1.29). In stratified models, joint air pollution was associated with greater risk of dementia at high (aHR = 1.19; 95% CI 0.87, 1.63), but not at medium or low SDI. CONCLUSION Air pollution was associated with greater dementia risk in disadvantaged areas after accounting for competing risks. Air pollution associations with dementia incidence may be attenuated when other risk factors are more prominent in disadvantaged neighborhoods.
Collapse
Affiliation(s)
- Seth Frndak
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, USA.
| | - Zhengyi Deng
- Department of Urology, Stanford School of Medicine, USA
| | - Cavin K Ward-Caviness
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, USA
| | - Irena Gorski-Steiner
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, USA
| | - Roland J Thorpe
- Department of Health, Behavior and Society, Johns Hopkins Bloomberg School of Public Health, USA; Hopkins Center for Health Disparities Solutions, Johns Hopkins Bloomberg School of Public Health, USA; Johns Hopkins Alzheimer's Disease Resource Center for Minority Aging Research, USA
| | - Aisha S Dickerson
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, USA; Hopkins Center for Health Disparities Solutions, Johns Hopkins Bloomberg School of Public Health, USA
| |
Collapse
|
6
|
Ogonowski NS, García-Marín LM, Fernando AS, Flores-Ocampo V, Rentería ME. Impact of genetic predisposition to late-onset neurodegenerative diseases on early life outcomes and brain structure. Transl Psychiatry 2024; 14:185. [PMID: 38605018 PMCID: PMC11009228 DOI: 10.1038/s41398-024-02898-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
Most patients with late-onset neurodegenerative diseases such as Alzheimer's and Parkinson's have a complex aetiology resulting from numerous genetic risk variants of small effects located across the genome, environmental factors, and the interaction between genes and environment. Over the last decade, genome-wide association studies (GWAS) and post-GWAS analyses have shed light on the polygenic architecture of these diseases, enabling polygenic risk scores (PRS) to estimate an individual's relative genetic liability for presenting with the disease. PRS can screen and stratify individuals based on their genetic risk, potentially years or even decades before the onset of clinical symptoms. An emerging body of evidence from various research studies suggests that genetic susceptibility to late-onset neurodegenerative diseases might impact early life outcomes, including cognitive function, brain structure and function, and behaviour. This article summarises recent findings exploring the potential impact of genetic susceptibility to neurodegenerative diseases on early life outcomes. A better understanding of the impact of genetic susceptibility to neurodegenerative diseases early in life could be valuable in disease screening, detection, and prevention and in informing treatment strategies before significant neural damage has occurred. However, ongoing studies have limitations. Overall, our review found several studies focused on APOE haplotypes and Alzheimer's risk, but a limited number of studies leveraging polygenic risk scores or focused on genetic susceptibility to other late-onset conditions.
Collapse
Affiliation(s)
- Natalia S Ogonowski
- Mental Health & Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Luis M García-Marín
- Mental Health & Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Amali S Fernando
- Mental Health & Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Victor Flores-Ocampo
- Mental Health & Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Miguel E Rentería
- Mental Health & Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
7
|
Suresh S, Singh S A, Rushendran R, Vellapandian C, Prajapati B. Alzheimer's disease: the role of extrinsic factors in its development, an investigation of the environmental enigma. Front Neurol 2023; 14:1303111. [PMID: 38125832 PMCID: PMC10730937 DOI: 10.3389/fneur.2023.1303111] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
In the realm of Alzheimer's disease, the most prevalent form of dementia, the impact of environmental factors has ignited intense curiosity due to its substantial burden on global health. Recent investigations have unveiled these environmental factors as key contributors, shedding new light on their profound influence. Notably, emerging evidence highlights the detrimental role of various environmental contaminants in the incidence and progression of Alzheimer's disease. These contaminants encompass a broad spectrum, including air pollutants laden with ozone, neurotoxic metals like lead, aluminum, manganese, and cadmium, pesticides with their insidious effects, and the ubiquitous presence of plastics and microplastics. By meticulously delving into the intricate web connecting environmental pollutants and this devastating neurological disorder, this comprehensive chapter takes a deep dive into their involvement as significant risk factors for Alzheimer's disease. Furthermore, it explores the underlying molecular mechanisms through which these contaminants exert their influence, aiming to unravel the complex interactions that drive the pathogenesis of the disease. Additionally, this chapter proposes potential strategies to mitigate the detrimental effects of these environmental contaminants on brain health, with the ultimate goal of restoring and preserving typical cognitive function. Through this comprehensive exploration, we aim to enhance our understanding of the multifaceted relationship between neurotoxins and Alzheimer's disease, providing a solid foundation for developing innovative in-vivo models and advancing our knowledge of the intricate pathological processes underlying this debilitating condition.
Collapse
Affiliation(s)
- Swathi Suresh
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Ankul Singh S
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Rapuru Rushendran
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Bhupendra Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Gujarat, India
| |
Collapse
|
8
|
Yao H, Peng Z, Sha X. Association between cognitive function and dusty weather: a propensity score matching study. BMC Geriatr 2023; 23:777. [PMID: 38012572 PMCID: PMC10680218 DOI: 10.1186/s12877-023-04466-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 11/08/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND With a rapidly aging global population, the health of older adults is a national priority for countries across the world. Dusty weather has been demonstrated to be a potential risk factor of cognitive function among the elderly population. However, there is a paucity of studies exploring the associations between dusty weather and cognitive function among the older in China. METHODS Data on individual characteristics were obtained from the China Health and Retirement Longitudinal Survey (CHARLS) 2018, whereas data on air pollution were sourced from environmental monitoring stations in China. Cognitive function, including general cognitive function, episodic memory, and linguistic competence, was assessed by self- or informant-questionnaires. We used propensity score matching and linear regression to investigate the relationship between dusty weather and cognitive function. Sensitivity analyses were conducted to test the robustness of the results. RESULTS This study included 8,604 participants older than 60 years old. After controlling air pollutant weather, dusty weather was demonstrated to be positively associated with a decline in cognitive function (Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE), 4.0, 95% confidence interval (CI): 3.11, 4.89; Mini-Mental State Exam (MMSE), 0.63, 95% CI: 0.34, 0.92). Results of sensitivity analysis showed that our research findings are robust. CONCLUSION Older adults living in dusty weather regions suffered a higher level of cognitive impairment, and such adverse effects were more substantial among females compared with their male counterparts. Targeted health interventions to help older adults living in regions where dusty weather occurs frequently are suggested to be proposed.
Collapse
Affiliation(s)
- Honghui Yao
- Department of Learning, Informatics, Management and Ethics, Karolinska Institute, Stockholm, Sweden
| | - Zixuan Peng
- Institute of Health Policy, Management & Evaluation, Dalla Lana School of Public Health, Toronto, Canada
| | - Xinping Sha
- Department of infectious disease. Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China.
- Xinagya Changde Hospital, Changde, 415000, Hunan Province, China.
| |
Collapse
|
9
|
Lee J, Weerasinghe-Mudiyanselage PDE, Kim B, Kang S, Kim JS, Moon C. Particulate matter exposure and neurodegenerative diseases: A comprehensive update on toxicity and mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115565. [PMID: 37832485 DOI: 10.1016/j.ecoenv.2023.115565] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/30/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
Exposure to particulate matter (PM) has been associated with a range of health impacts, including neurological abnormalities that affect neurodevelopment, neuroplasticity, and behavior. Recently, there has been growing interest in investigating the possible relationship between PM exposure and the onset and progression of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. However, the precise mechanism by which PM affects neurodegeneration is still unclear, even though several epidemiological and animal model studies have provided mechanistic insights. This article presents a review of the current research on the neurotoxicity of PM and its impact on neurodegenerative diseases. This review summarizes findings from epidemiological and animal model studies collected through searches in Google Scholar, PubMed, Web of Science, and Scopus. This review paper also discusses the reported effects of PM exposure on the central nervous system and highlights research gaps and future directions. The information presented in this review may inform public health policies aimed at reducing PM exposure and may contribute to the development of new treatments for neurodegenerative diseases. Further mechanistic and therapeutic research will be needed to fully understand the relationship between PM exposure and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jeongmin Lee
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Poornima D E Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Bohye Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
10
|
Ciurleo GCV, Tavares-Júnior JWL, Vieira CMAG, Braga-Neto P, Oriá RB. Do APOE4 and long COVID-19 increase the risk for neurodegenerative diseases in adverse environments and poverty? Front Neurosci 2023; 17:1229073. [PMID: 37694114 PMCID: PMC10483995 DOI: 10.3389/fnins.2023.1229073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Affiliation(s)
- Gabriella C. V. Ciurleo
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Carlos Meton A. G. Vieira
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Pedro Braga-Neto
- Neurology Division, Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
- Health Sciences Center, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Reinaldo B. Oriá
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
11
|
Yuan S, Huang X, Zhang L, Ling Y, Tan S, Peng M, Xu A, Lyu J. Associations of air pollution with all-cause dementia, Alzheimer's disease, and vascular dementia: a prospective cohort study based on 437,932 participants from the UK biobank. Front Neurosci 2023; 17:1216686. [PMID: 37600021 PMCID: PMC10436530 DOI: 10.3389/fnins.2023.1216686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Abstract
OBJECTIVE To prospectively assess whether air pollution, including PM2.5, PM10, and NOx, is associated with the risk of all-cause dementia, Alzheimer's disease (AD), and vascular dementia, and to investigate the potential relationship between air pollution and genetic susceptibility in the development of AD. METHODS AND RESULTS Our study included 437,932 participants from the UK Biobank with a median follow-up period of over 10 years. Using a Cox proportional hazards model, we found that participants exposed to PM2.5 levels of ≥10 μg/m3 had a higher risk of developing all-cause dementia (HR = 1.1; 95% CI: 1.05-1.28; p < 0.05) compared to the group exposed to PM2.5 levels of <10 μg/m3. However, there was no significant association between PM10 levels of ≥15 μg/m3 and the risk of all-cause dementia, AD, or vascular dementia when compared to the group exposed to PM10 levels of <15 μg/m3. On the other hand, participants exposed to NOx levels of ≥50 μg/m3 had a significantly higher risk of all-cause dementia (HR = 1.14; 95% CI: 1.02-1.26; p < 0.05) and AD (HR = 1.26; 95% CI: 1.08-1.48; p < 0.05) compared to the group exposed to NOx levels of <50 μg/m3. Furthermore, we examined the combined effect of air pollution (PM2.5, PM10, and NOx) and Alzheimer's disease genetic risk score (AD-GRS) on the development of AD using a Cox proportional hazards model. Among participants with a high AD-GRS, those exposed to NOx levels of ≥50 μg/m3 had a significantly higher risk of AD compared to those in the group exposed to NOx levels of <50 μg/m3 (HR = 1.36; 95% CI: 1.03-1.18; p < 0.05). Regardless of air pollutant levels (PM2.5, PM10, or NOx), participants with a high AD-GRS had a significantly increased risk of developing AD. Similar results were obtained when assessing multiple variables using inverse probability of treatment weighting (IPTW). CONCLUSION Our findings indicate that individuals living in areas with PM2.5 levels of ≥10 μg/m3 or NOx levels of ≥50 μg/m3 are at a higher risk of developing all-cause dementia. Moreover, individuals with a high AD-GRS demonstrated an increased risk of developing AD, particularly in the presence of NOx ≥ 50 μg/m3.
Collapse
Affiliation(s)
- Shiqi Yuan
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Xiaxuan Huang
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Luming Zhang
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yitong Ling
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Shanyuan Tan
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Min Peng
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Anding Xu
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jun Lyu
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Abdullah L, Nkiliza A, Niedospial D, Aldrich G, Bartenfelder G, Keegan A, Hoffmann M, Mullan M, Klimas N, Baraniuk J, Crawford F, Krengel M, Chao L, Sullivan K. Genetic association between the APOE ε4 allele, toxicant exposures and Gulf war illness diagnosis. Environ Health 2023; 22:51. [PMID: 37415220 PMCID: PMC10324249 DOI: 10.1186/s12940-023-01002-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
INTRODUCTION Exposure to nerve agents, pyridostigmine bromide (PB), pesticides, and oil-well fires during the 1991 Gulf War (GW) are major contributors to the etiology of Gulf War Illness (GWI). Since the apolipoprotein E (APOE) ε4 allele is associated with the risk of cognitive decline with age, particularly in the presence of environmental exposures, and cognitive impairment is one of the most common symptoms experienced by veterans with GWI, we examined whether the ε4 allele was associated with GWI. METHODS Using a case-control design, we obtained data on APOE genotypes, demographics, and self-reported GW exposures and symptoms that were deposited in the Boston Biorepository and Integrative Network (BBRAIN) for veterans diagnosed with GWI (n = 220) and healthy GW control veterans (n = 131). Diagnosis of GWI was performed using the Kansas and/or Center for Disease Control (CDC) criteria. RESULTS Age- and sex-adjusted analyses showed a significantly higher odds ratio for meeting the GWI case criteria in the presence of the ε4 allele (Odds ratio [OR] = 1.84, 95% confidence interval [CI = 1.07-3.15], p ≤ 0.05) and with two copies of the ε4 allele (OR = 1.99, 95% CI [1.23-3.21], p ≤ 0.01). Combined exposure to pesticides and PB pills (OR = 4.10 [2.12-7.91], p ≤ 0.05) as well as chemical alarms and PB pills (OR = 3.30 [1.56-6.97] p ≤ 0.05) during the war were also associated with a higher odds ratio for meeting GWI case criteria. There was also an interaction between the ε4 allele and exposure to oil well fires (OR = 2.46, 95% CI [1.07-5.62], p ≤ 0.05) among those who met the GWI case criteria. CONCLUSION These findings suggest that the presence of the ε4 allele was associated with meeting the GWI case criteria. Gulf War veterans who reported exposure to oil well fires and have an ε4 allele were more likely to meet GWI case criteria. Long-term surveillance of veterans with GWI, particularly those with oil well fire exposure, is required to better assess the future risk of cognitive decline among this vulnerable population.
Collapse
Affiliation(s)
- L Abdullah
- Roskamp Institute, Sarasota, FL, USA.
- James A. Haley VA Hospital, Tampa, FL, USA.
| | - A Nkiliza
- James A. Haley VA Hospital, Tampa, FL, USA
| | | | - G Aldrich
- Roskamp Institute, Sarasota, FL, USA
- James A. Haley VA Hospital, Tampa, FL, USA
| | | | - A Keegan
- Roskamp Institute, Sarasota, FL, USA
| | | | - M Mullan
- Roskamp Institute, Sarasota, FL, USA
| | - N Klimas
- Nova Southeastern University, Ft Lauderdale, FL, USA
- Miami VA Medical Center GRECC, Miami, FL, USA
| | - J Baraniuk
- Department of Medicine, Georgetown University, Washington, DC, USA
| | - F Crawford
- Roskamp Institute, Sarasota, FL, USA
- James A. Haley VA Hospital, Tampa, FL, USA
| | - M Krengel
- Boston University School of Medicine, Boston, MA, USA
| | - L Chao
- University of California, San Francisco, CA, USA
| | - K Sullivan
- Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
13
|
Santos JX, Sampaio P, Rasga C, Martiniano H, Faria C, Café C, Oliveira A, Duque F, Oliveira G, Sousa L, Nunes A, Vicente AM. Evidence for an association of prenatal exposure to particulate matter with clinical severity of Autism Spectrum Disorder. ENVIRONMENTAL RESEARCH 2023; 228:115795. [PMID: 37028534 DOI: 10.1016/j.envres.2023.115795] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 03/06/2023] [Accepted: 03/28/2023] [Indexed: 05/16/2023]
Abstract
Early-life exposure to air pollutants, including ozone (O3), particulate matter (PM2.5 or PM10, depending on diameter of particles), nitrogen dioxide (NO2) and sulfur dioxide (SO2) has been suggested to contribute to the etiology of Autism Spectrum Disorder (ASD). In this study, we used air quality monitoring data to examine whether mothers of children with ASD were exposed to high levels of air pollutants during critical periods of pregnancy, and if higher exposure levels may lead to a higher clinical severity in their offspring. We used public data from the Portuguese Environment Agency to estimate exposure to these pollutants during the first, second and third trimesters of pregnancy, full pregnancy and first year of life of the child, for 217 subjects with ASD born between 2003 and 2016. These subjects were stratified in two subgroups according to clinical severity, as defined by the Autism Diagnostic Observational Schedule (ADOS). For all time periods, the average levels of PM2.5, PM10 and NO2 to which the subjects were exposed were within the admissible levels defined by the European Union. However, a fraction of these subjects showed exposure to levels of PM2.5 and PM10 above the admissible threshold. A higher clinical severity was associated with higher exposure to PM2.5 (p = 0.001), NO2 (p = 0.011) and PM10 (p = 0.041) during the first trimester of pregnancy, when compared with milder clinical severity. After logistic regression, associations with higher clinical severity were identified for PM2.5 exposure during the first trimester (p = 0.002; OR = 1.14, 95%CI: 1.05-1.23) and full pregnancy (p = 0.04; OR = 1.07, 95%CI: 1.00-1.15) and for PM10 (p = 0.02; OR = 1.07, 95%CI: 1.01-1.14) exposure during the third trimester. Exposure to PM is known to elicit neuropathological mechanisms associated with ASD, including neuroinflammation, mitochondrial disruptions, oxidative stress and epigenetic changes. These results offer new insights on the impact of early-life exposure to PM in ASD clinical severity.
Collapse
Affiliation(s)
- João Xavier Santos
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisboa, Portugal; BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, C8, 1749-016, Lisboa, Portugal.
| | - Pedro Sampaio
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisboa, Portugal; BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, C8, 1749-016, Lisboa, Portugal.
| | - Célia Rasga
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisboa, Portugal; BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, C8, 1749-016, Lisboa, Portugal.
| | - Hugo Martiniano
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisboa, Portugal; BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, C8, 1749-016, Lisboa, Portugal.
| | - Clarissa Faria
- Unidade de Neurodesenvolvimento e Autismo, Serviço Do Centro de Desenvolvimento da Criança, Centro de Investigação e Formação Clínica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.
| | - Cátia Café
- Unidade de Neurodesenvolvimento e Autismo, Serviço Do Centro de Desenvolvimento da Criança, Centro de Investigação e Formação Clínica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Faculty of Medicine, University Clinic of Pediatrics and Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Alexandra Oliveira
- Unidade de Neurodesenvolvimento e Autismo, Serviço Do Centro de Desenvolvimento da Criança, Centro de Investigação e Formação Clínica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Faculty of Medicine, University Clinic of Pediatrics and Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| | - Frederico Duque
- Unidade de Neurodesenvolvimento e Autismo, Serviço Do Centro de Desenvolvimento da Criança, Centro de Investigação e Formação Clínica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Faculty of Medicine, University Clinic of Pediatrics and Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| | - Guiomar Oliveira
- Unidade de Neurodesenvolvimento e Autismo, Serviço Do Centro de Desenvolvimento da Criança, Centro de Investigação e Formação Clínica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Faculty of Medicine, University Clinic of Pediatrics and Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| | - Lisete Sousa
- Departamento de Estatística e Investigação Operacional e Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| | - Ana Nunes
- BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, C8, 1749-016, Lisboa, Portugal; Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| | - Astrid Moura Vicente
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisboa, Portugal; BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, C8, 1749-016, Lisboa, Portugal.
| |
Collapse
|
14
|
Peng H, Wang M, Wang S, Wang X, Fan M, Qin X, Wu Y, Chen D, Li J, Hu Y, Wu T. KCNQ1 rs2237892 polymorphism modify the association between short-term ambient particulate matter exposure and fasting blood glucose: A family-based study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162820. [PMID: 36921852 DOI: 10.1016/j.scitotenv.2023.162820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND The association between particulate matter and fasting blood glucose (FBG) has shown conflicting results. Genome-wide association studies have shown that KCNQ1 rs2237892 polymorphism is associated with the risk of diabetes. Whether KCNQ1 rs2237892 polymorphism might modify the association between particulate matter and FBG is still uncertain. METHODS Data collected from a family-based cohort study in Northern China, were used to perform the analysis. A generalized additive Gaussian model was used to examine the short-term effects of air pollutants on FBG. We further conducted interaction analyses by including a cross-product term of air pollutants by rs2237892 within KCNQ1 gene. RESULTS A total of 4418 participants were included in the study. In the single pollutant model, the FBG level increased 0.0031 mmol/L with per 10 μg/m3 elevation in fine particular matter (PM2.5) for lag 0 day. After additional adjustments for nitrogen dioxide (NO2) and sulfur dioxide (SO2), similar results were observed for lag 0-2 days. As for particulate matter with particle size below 10 μm (PM10), the significant association between the daily average concentration of the pollutant and FBG level was observed for lag 0-3 days. Additionally, rs2237892 in KCNQ1 gene modified the association between PM and FBG level. The higher risk of FBG levels associated with elevations in PM10 and PM2.5 were more evident as the number of risk allele C increased. Individuals with a CC genotype had the highest risk of elevation in FBG levels. CONCLUSION Short-term exposures to PM2.5 and PM10 were associated with higher FBG levels. Additionally, rs2237892 in KCNQ1 gene might modify the association between the air pollutants and FBG levels.
Collapse
Affiliation(s)
- Hexiang Peng
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Mengying Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Siyue Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Xueheng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Meng Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Xueying Qin
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Yiqun Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Dafang Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Jing Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Yonghua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Tao Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China.
| |
Collapse
|
15
|
Calderón-Garcidueñas L, Hernández-Luna J, Aiello-Mora M, Brito-Aguilar R, Evelson PA, Villarreal-Ríos R, Torres-Jardón R, Ayala A, Mukherjee PS. APOE Peripheral and Brain Impact: APOE4 Carriers Accelerate Their Alzheimer Continuum and Have a High Risk of Suicide in PM 2.5 Polluted Cities. Biomolecules 2023; 13:927. [PMID: 37371506 DOI: 10.3390/biom13060927] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
This Review emphasizes the impact of APOE4-the most significant genetic risk factor for Alzheimer's disease (AD)-on peripheral and neural effects starting in childhood. We discuss major mechanistic players associated with the APOE alleles' effects in humans to understand their impact from conception through all life stages and the importance of detrimental, synergistic environmental exposures. APOE4 influences AD pathogenesis, and exposure to fine particulate matter (PM2.5), manufactured nanoparticles (NPs), and ultrafine particles (UFPs) associated with combustion and friction processes appear to be major contributors to cerebrovascular dysfunction, neuroinflammation, and oxidative stress. In the context of outdoor and indoor PM pollution burden-as well as Fe, Ti, and Al alloys; Hg, Cu, Ca, Sn, and Si UFPs/NPs-in placenta and fetal brain tissues, urban APOE3 and APOE4 carriers are developing AD biological disease hallmarks (hyperphosphorylated-tau (P-tau) and amyloid beta 42 plaques (Aβ42)). Strikingly, for Metropolitan Mexico City (MMC) young residents ≤ 40 y, APOE4 carriers have 4.92 times higher suicide odds and 23.6 times higher odds of reaching Braak NFT V stage versus APOE4 non-carriers. The National Institute on Aging and Alzheimer's Association (NIA-AA) framework could serve to test the hypothesis that UFPs and NPs are key players for oxidative stress, neuroinflammation, protein aggregation and misfolding, faulty complex protein quality control, and early damage to cell membranes and organelles of neural and vascular cells. Noninvasive biomarkers indicative of the P-tau and Aβ42 abnormal protein deposits are needed across the disease continuum starting in childhood. Among the 21.8 million MMC residents, we have potentially 4 million APOE4 carriers at accelerated AD progression. These APOE4 individuals are prime candidates for early neuroprotective interventional trials. APOE4 is key in the development of AD evolving from childhood in highly polluted urban centers dominated by anthropogenic and industrial sources of pollution. APOE4 subjects are at higher early risk of AD development, and neuroprotection ought to be implemented. Effective reductions of PM2.5, UFP, and NP emissions from all sources are urgently needed. Alzheimer's Disease prevention ought to be at the core of the public health response and physicians-scientist minority research be supported.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- College of Health, The University of Montana, Missoula, MT 59812, USA
- Universidad del Valle de México, Mexico City 14370, Mexico
| | | | - Mario Aiello-Mora
- Otorrinolaryngology Department, Instituto Nacional de Cardiología, Mexico City 14080, Mexico
| | | | - Pablo A Evelson
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1113 AAD, Argentina
| | | | - Ricardo Torres-Jardón
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Alberto Ayala
- Sacramento Metropolitan Air Quality Management District, Sacramento, CA 95814, USA
- West Virginia University, Morgantown, WV 26506, USA
| | - Partha S Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata 700108, India
| |
Collapse
|
16
|
Delagneau G, Twilhaar ES, Testa R, van Veen S, Anderson P. Association between prenatal maternal anxiety and/or stress and offspring's cognitive functioning: A meta-analysis. Child Dev 2023; 94:779-801. [PMID: 36582056 PMCID: PMC10952806 DOI: 10.1111/cdev.13885] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This meta-analysis examined the relationship between prenatal maternal stress and/or anxiety and the outcomes of children aged 3 months to 9 years. Of the 8754 studies published before June 2021 that were synthesized, 17 conducted in Western countries were included in the meta-analysis (Ntotal = 23,307; Mmales 54%; Methnicity White 77%, Pacific 15%, African American/Black 10%, Middle Eastern 7%, Eastern 8%). Effect sizes ranged from -0.41 to 0.15. A weak negative association was found between prenatal stress and/or anxiety exposure and children's general intellectual development. Associations varied based on the type of exposure. Findings are limited to developed counties and cannot be generalized to low- and middle-income countries. Directions for maternal prenatal intervention and future studies are discussed.
Collapse
Affiliation(s)
- Garance Delagneau
- Turner Institute for Brain and Mental Health, School of Psychological SciencesMonash UniversityClaytonVictoriaAustralia
| | - E. Sabrina Twilhaar
- Obstetrical Perinatal and Pediatric Epidemiology Research TeamInstitute of Health and Medical ResearchCentre of Research in Epidemiology and StatisticsUniversité Paris CitéParisFrance
| | - Renee Testa
- Turner Institute for Brain and Mental Health, School of Psychological SciencesMonash UniversityClaytonVictoriaAustralia
- Murdoch Children's Research InstituteRoyal Children's Hospital (Dept of Mental Health)ParkvilleVictoriaAustralia
| | - Sarit van Veen
- Turner Institute for Brain and Mental Health, School of Psychological SciencesMonash UniversityClaytonVictoriaAustralia
| | - Peter Anderson
- Turner Institute for Brain and Mental Health, School of Psychological SciencesMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
17
|
Zhang X, Liu SH, Geron M, Mathilda Chiu YH, Gershon R, Ho E, Huddleston K, Just AC, Kloog I, Coull BA, Enlow MB, Wright RO, Wright RJ. Prenatal exposure to PM 2.5 and childhood cognition: Accounting for between-site heterogeneity in a pooled analysis of ECHO cohorts in the Northeastern United States. ENVIRONMENTAL RESEARCH 2022; 214:114163. [PMID: 36030921 PMCID: PMC9675417 DOI: 10.1016/j.envres.2022.114163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/02/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Emerging studies have investigated the adverse health effects of PM2.5 using data from multiple cohorts, and results often are not generalizable across cohorts. We aimed to assess associations between prenatal PM2.5 and childhood cognition in two U.S. cohorts while accounting for between-site heterogeneity. METHODS Analyses included 348 mother-child dyads enrolled in the dual site (New York City and Boston) PRogramming of Intergenerational Stress Mechanisms (PRISM) cohort and in the First Thousand Days of Life (FTDL) study (Northern Virginia) participating in the Environmental influences on Child Health Outcomes (ECHO) national consortium. Residential prenatal PM2.5 exposure was estimated using a validated satellite-based model and childhood cognition was measured using the NIH Toolbox Cognition Battery at three to eight years of age. We used a log-linear model applied to contingency tables formed by cross-classifying covariates by site to examine between-site heterogeneity using 3rd trimester PM2.5 exposure, age-corrected cognition scores, and covariates potentially causing heterogeneities. Multivariable linear regression models informed by the combinability analysis were used to estimate the coefficients and 95% confidence intervals (CIs) for the association between 3rd trimester PM2.5 exposure and age-corrected cognition scores (mean = 100, SD = 15). RESULTS The log-linear model indicated that inter-study associations were similar between PRISM-NYC and FTDL, which were different from those in PRISM-Boston. Accordingly, we combined the data of PRISM-NYC and FTDL cohorts. We observed associations between 3rd trimester PM2.5 and cognition scores, findings were varying by site, childsex, and test. For example, a 1 μg/m3 increase of 3rd trimester PM2.5 was associated with -4.35 (95% CI = -8.73, -0.25) mean early childhood cognition scores in females in PRISM-Boston. In the pooled NYC + FTDL site, the association between PM2.5 and childhood cognition may be modified by maternal education and urbanicity. CONCLUSIONS We found associations between prenatal PM2.5 and impaired childhood cognition. Since multi-site analyses are increasingly conducted, our findings suggest the needed awareness of between-site heterogeneity.
Collapse
Affiliation(s)
- Xueying Zhang
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Shelley H Liu
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mariel Geron
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yueh-Hsiu Mathilda Chiu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute of Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Richard Gershon
- Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Emily Ho
- Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kathi Huddleston
- College of Health and Human Services, George Mason University, Fairfax, VA, USA
| | - Allan C Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute of Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Itai Kloog
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute of Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Geography and Environmental Development, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Brent A Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Michelle Bosquet Enlow
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute of Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rosalind J Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute of Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
18
|
O'Piela DR, Durisek GR, Escobar YNH, Mackos AR, Wold LE. Particulate matter and Alzheimer's disease: an intimate connection. Trends Mol Med 2022; 28:770-780. [PMID: 35840480 PMCID: PMC9420776 DOI: 10.1016/j.molmed.2022.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/09/2022] [Accepted: 06/10/2022] [Indexed: 10/17/2022]
Abstract
The environmental role in disease progression has been appreciated for decades; however, understanding how airborne toxicant exposure can affect organs beyond the lungs is an underappreciated area of scientific inquiry. Particulate matter (PM) includes various gases, liquids, and particles in suspension and is produced by industrial activities such as fossil fuel combustion and natural events including wildfires and volcanic eruptions. Although agencies have attempted to reduce acceptable airborne particulate levels, with urbanization and population growth, these policies have been only moderately effective in mitigating disease progression. A growing area of research is focused on the role of PM exposure in the progression of Alzheimer's disease (AD). This review will summarize the knowns and unknowns of this expanding field.
Collapse
Affiliation(s)
- Devin R O'Piela
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA; College of Nursing, The Ohio State University, Columbus, OH, USA
| | - George R Durisek
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA; College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Yael-Natalie H Escobar
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA; College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Amy R Mackos
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA; College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Loren E Wold
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA; College of Nursing, The Ohio State University, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
19
|
Han C, Xu R, Ye T, Xie Y, Zhao Y, Liu H, Yu W, Zhang Y, Li S, Zhang Z, Ding Y, Han K, Fang C, Ji B, Zhai W, Guo Y. Mortality burden due to long-term exposure to ambient PM 2.5 above the new WHO air quality guideline based on 296 cities in China. ENVIRONMENT INTERNATIONAL 2022; 166:107331. [PMID: 35728411 DOI: 10.1016/j.envint.2022.107331] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 05/17/2023]
Abstract
OBJECTIVE Quantifying the spatial and socioeconomic variation of mortality burden attributable to particulate matters with aerodynamic diameter ≤ 2.5 µm (PM2.5) has important implications for pollution control policy. This study aims to examine the regional and socioeconomic disparities in the mortality burden attributable to long-term exposure to ambient PM2.5 in China. METHODS Using data of 296 cities across China from 2015 to 2019, we estimated all-cause mortality (people aged ≥ 16 years) attributable to the long-term exposure to ambient PM2.5 above the new WHO air quality guideline (5 µg/m3). Attributed fraction (AF), attributed deaths (AD), attributed mortality rate (AMR) and total value of statistical life lost (VSL) by regional and socioeconomic levels were reported. RESULTS Over the period of 2015-2019, 17.0% [95% confidence interval (CI): 7.4-25.2] of all-cause mortality were attributable to long-term exposure to ambient PM2.5, corresponding to 1,425.2 thousand deaths (95% CI: 622.4-2,099.6), 103.5/105 (95% CI: 44.9-153.3) AMR, and 1006.9 billion USD (95% CI: 439.8-1483.4) total VSL per year. The AMR decreased from 120.5/105 (95% CI: 52.9-176.6) to 92.7/105 (95% CI:39.9-138.5) from 2015 to 2019. The highest mortality burden was observed in the north region (annual average AF = 24.2%, 95% CI: 10.8-35.1; annual average AMR = 137.0/105, 95% CI: 60.9-198.5). The highest AD and economic loss were observed in the east region (annual average AD = 390.0 thousand persons, 95% CI: 170.3-574.6; annual total VSL = 275.6 billion USD, 95% CI: 120.3-406.0). Highest AMR was in the cities with middle level of GDP per capita (PGDP)/urbanization. The majority of the top ten cities of AF, AMR and VSL were in high and middle PGDP/urbanization regions. CONCLUSION There were significant regional and socioeconomic disparities in PM2.5 attributed mortality burden among Chinese cities, suggesting differential mitigation policies are required for different regions in China.
Collapse
Affiliation(s)
- Chunlei Han
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong Province 264003, PR China
| | - Rongbin Xu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Tingting Ye
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Yang Xie
- School of Economics and Management, Beihang University, Beijing 100191, PR China; Key Laboratory of Big Data-Based Precision Medicine, Ministry of Industry and Information Technology, Beihang University, Beijing 100191, PR China
| | - Yang Zhao
- The George Institute for Global Health at Peking University Health Science Center, Beijing 100600, PR China; WHO Collaborating Centre on Implementation Research for Prevention & Control of NCDs, VIC 3010, Australia
| | - Haiyun Liu
- Yantai Center for Disease Control and Prevention, Yantai, Shandong 264003, PR China
| | - Wenhua Yu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Yajuan Zhang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, PR China
| | - Shanshan Li
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Zhongwen Zhang
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong Province 264003, PR China
| | - Yimin Ding
- School of Software, Tongji University, Shanghai 200092, PR China
| | - Kun Han
- GuotaiJunan Securities, Shanghai 200030, PR China; School of Economics, Fudan University, Shanghai 200433, PR China
| | - Chang Fang
- School of Public Health, Haerbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Baocheng Ji
- Linyi Municipal Ecology and Environment Bureau, Linyi, Shandong 276000, PR China
| | - Wenhui Zhai
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yuming Guo
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong Province 264003, PR China; School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|
20
|
Liu C, She Y, Huang J, Liu Y, Li W, Zhang C, Zhang T, Yu L. HMGB1-NLRP3-P2X7R pathway participates in PM 2.5-induced hippocampal neuron impairment by regulating microglia activation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113664. [PMID: 35605331 DOI: 10.1016/j.ecoenv.2022.113664] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Neuroinflammation is a key mechanism underlying the cognitive impairment induced by PM2.5, and activated microglia plays an important role in this process. However, the mechanisms by which activated microglia induced by PM2.5 impair hippocampal neurons have not been fully elucidated. In this study, we focused on the role of HMGB1-NLRP3-P2X7R pathway which mediated the microglia activation in hippocampal neurons impairment induced by PM2.5 using a co-culture model of microglia and hippocampal neurons. We found that PM2.5 resulted in activated microglia and HMGB1-NLRP3 inflammatory pathway, and elevated proinflammatory cytokines of IL-18 and IL-1β in a dose-dependent manner. Notably, we next utilized previously reported pharmacological inhibitors or siRNA for HMGB1 and found that they significantly inhibited the activation of downstream NLRP3 and MAPK pathways derived from PM2.5 exposure, and down-regulated IL-18 and IL-1β in microglia. Furthermore, we employed co-cultured hippocampal neurons and microglia and found that reducing HMGB1 significantly decreased neuron impairment, apoptosis related protein of cl-caspase3, synaptic damage, and neurotransmitter receptor of 5-HT2A, along with notably elevated presynaptic and postsynaptic proteins of SYP and PSD-95, as well as learning and memory related proteins of p-CREB and BDNF. The neuronal impairment induced by PM2.5 could not be prevented in the case of simultaneous employment of HMGB1 siRNA and NLRP3 agonist. After silencing NLRP3 alone in microglia, hippocampal neurons demonstrated decreased excessive autophagy and up-regulated synaptic protein of GAP43 as well as learning and memory related protein of NCAM1. Therefore, we further studied how hippocampal neurons affected microglia under PM2.5 exposure, Further investigation indicated that silencing HMGB1 could affect the activation of P2X7R and reduce the release of ATP from hippocampal neurons, thus protecting the interaction between microglia and hippocampal neurons. The present work suggests that regulation of HMGB1-NLRP3-P2X7R pathway can inhibit the microglia activation induced by PM2.5 to alleviate hippocampal neuron impairment and stabilize the microenvironment between microglia and neurons. This contributes to maintaining the normal function of hippocampal neurons and alleviating the cognitive impairment derived from PM2.5 exposure.
Collapse
Affiliation(s)
- Chong Liu
- School of Basic Medical Sciences, Experimental Center for Medical Research, Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Yingjie She
- School of Basic Medical Sciences, Experimental Center for Medical Research, Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Jia Huang
- School of Basic Medical Sciences, Experimental Center for Medical Research, Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Yongping Liu
- School of Basic Medical Sciences, Experimental Center for Medical Research, Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Wanwei Li
- School of Basic Medical Sciences, Experimental Center for Medical Research, Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Tianliang Zhang
- School of Basic Medical Sciences, Experimental Center for Medical Research, Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China.
| | - Li Yu
- School of Basic Medical Sciences, Experimental Center for Medical Research, Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China.
| |
Collapse
|
21
|
Cristaldi A, Fiore M, Oliveri Conti G, Pulvirenti E, Favara C, Grasso A, Copat C, Ferrante M. Possible association between PM 2.5 and neurodegenerative diseases: A systematic review. ENVIRONMENTAL RESEARCH 2022; 208:112581. [PMID: 34979121 DOI: 10.1016/j.envres.2021.112581] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Air pollution is one of the most serious environmental problems that afflict our planet and one of the greatest risk factors for human health. In particular, PM2.5 is able to cross the blood-alveolar and blood-brain barriers, thus increasing the onset of respiratory, cardiovascular and neurodegenerative diseases. Neurodegenerative disease is a progressive neuronal dysfunction that leads to neuronal lesions in both structure and function, and includes several diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), vascular dementia (VaD), multiple sclerosis (MS), and others. We carried out a systematic review using PRISMA approach to investigate on the possible association between exposure to PM2.5 and neurodegenerative diseases. The international databases (PubMed, Science Direct, Web of Sciences) were used to find published studies on the topic. The search period was between January 2011 and June 2021. About 2000 full research articles were selected, and finally, we included 20 full-research articles. Selected studies have highlighted how PM2.5 exposure can be associated with the onset of neurodegenerative diseases (AD, PD, MS, VaD). This association depends not only on age, PM2.5 levels and exposure time, but also on exposure to other air pollutants, proximity to areas with high vehicular traffic, and the presence of comorbidities. Exposure to PM2.5 promotes neuroinflammation processes, because through breathing the particles can reach the nasal epithelial mucosa and transferred to the brain through the olfactory bulb. Furthermore, exposure to PM2.5 has been associated with an increased expression of markers of neurodegenerative diseases (e.g. alpha-synuclein or beta-amyloid), which can contribute to the etiopathogenesis of neurodegenerative diseases. Although many studies have revealed the pathological relationship between PM2.5 exposure and cognitive impairment, the potential cellular and molecular mechanisms of PM2.5 leading to neurodegenerative disease remain not entirely clear, and then, further studies need to be carried out on the topic.
Collapse
Affiliation(s)
- Antonio Cristaldi
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy
| | - Maria Fiore
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy
| | - Gea Oliveri Conti
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy.
| | - Eloise Pulvirenti
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy
| | - Claudia Favara
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy
| | - Alfina Grasso
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy
| | - Chiara Copat
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy
| | - Margherita Ferrante
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania, 95123, Italy
| |
Collapse
|
22
|
Ogbodo JO, Agbo CP, Njoku UO, Ogugofor MO, Egba SI, Ihim SA, Echezona AC, Brendan KC, Upaganlawar AB, Upasani CD. Alzheimer's Disease: Pathogenesis and Therapeutic Interventions. Curr Aging Sci 2022; 15:2-25. [PMID: 33653258 DOI: 10.2174/1874609814666210302085232] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/04/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Alzheimer's Disease (AD) is the most common cause of dementia. Genetics, excessive exposure to environmental pollutants, as well as unhealthy lifestyle practices are often linked to the development of AD. No therapeutic approach has achieved complete success in treating AD; however, early detection and management with appropriate drugs are key to improving prognosis. INTERVENTIONS The pathogenesis of AD was extensively discussed in order to understand the reasons for the interventions suggested. The interventions reviewed include the use of different therapeutic agents and approaches, gene therapy, adherence to healthy dietary plans (Mediterranean diet, Okinawan diet and MIND diet), as well as the use of medicinal plants. The potential of nanotechnology as a multidisciplinary and interdisciplinary approach in the design of nano-formulations of AD drugs and the use of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) as theranostic tools for early detection of Alzheimer's disease were also discussed.
Collapse
Affiliation(s)
- John O Ogbodo
- Department of Science Laboratory Technology, University of Nigeria, Nsukka, Nigeria
| | - Chinazom P Agbo
- Department of Pharmaceutics, University of Nigeria, Nsukka, Nigeria
| | - Ugochi O Njoku
- Department of Biochemistry, University of Nigeria, Nsukka, Nigeria
| | | | - Simeon I Egba
- Department of Biochemistry, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - Stella A Ihim
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Nigeria
| | | | | | - Aman B Upaganlawar
- Department of Pharmacology, Sureshdada Shriman\'s College of Pharmacy, New Dehli, India
| | | |
Collapse
|
23
|
Sarrouilhe D, Defamie N, Mesnil M. Is the Exposome Involved in Brain Disorders through the Serotoninergic System? Biomedicines 2021; 9:1351. [PMID: 34680468 PMCID: PMC8533279 DOI: 10.3390/biomedicines9101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 11/24/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a biogenic monoamine acting as a neurotransmitter in the central nervous system (CNS), local mediator in the gut, and vasoactive agent in the blood. It has been linked to a variety of CNS functions and is implicated in many CNS and psychiatric disorders. The high comorbidity between some neuropathies can be partially understood by the fact that these diseases share a common etiology involving the serotoninergic system. In addition to its well-known functions, serotonin has been shown to be a mitogenic factor for a wide range of normal and tumor cells, including glioma cells, in vitro. The developing CNS of fetus and newborn is particularly susceptible to the deleterious effects of neurotoxic substances in our environment, and perinatal exposure could result in the later development of diseases, a hypothesis known as the developmental origin of health and disease. Some of these substances affect the serotoninergic system and could therefore be the source of a silent pandemic of neurodevelopmental toxicity. This review presents the available data that are contributing to the appreciation of the effects of the exposome on the serotoninergic system and their potential link with brain pathologies (neurodevelopmental, neurodegenerative, neurobehavioral disorders, and glioblastoma).
Collapse
Affiliation(s)
- Denis Sarrouilhe
- Laboratoire de Physiologie Humaine, Faculté de Médecine et Pharmacie, 6 Rue de la Milétrie, Bât D1, TSA 51115, CEDEX 09, 86073 Poitiers, France
| | - Norah Defamie
- Laboratoire STIM, ERL7003 CNRS-Université de Poitiers, 1 Rue G. Bonnet–TSA 51106, CEDEX 09, 86073 Poitiers, France; (N.D.); (M.M.)
| | - Marc Mesnil
- Laboratoire STIM, ERL7003 CNRS-Université de Poitiers, 1 Rue G. Bonnet–TSA 51106, CEDEX 09, 86073 Poitiers, France; (N.D.); (M.M.)
| |
Collapse
|
24
|
Garcia M, Salazar R, Wilson T, Lucas S, Herbert G, Young T, Begay J, Denson JL, Zychowski K, Ashley R, Byrum S, Mackintosh S, Bleske BE, Ottens AK, Campen MJ. Early Gestational Exposure to Inhaled Ozone Impairs Maternal Uterine Artery and Cardiac Function. Toxicol Sci 2021; 179:121-134. [PMID: 33146391 DOI: 10.1093/toxsci/kfaa164] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Exposure to air pollutants such as ozone (O3) is associated with adverse pregnancy outcomes, including higher incidence of gestational hypertension, preeclampsia, and peripartum cardiomyopathy; however, the underlying mechanisms of this association remain unclear. We hypothesized that O3 exposures during early placental formation would lead to more adverse cardiovascular effects at term for exposed dams, as compared with late-term exposures. Pregnant Sprague Dawley rats were exposed (4 h) to either filtered air (FA) or O3 (0.3 or 1.0 ppm) at either gestational day (GD)10 or GD20, with longitudinal functional assessments and molecular endpoints conducted at term. Exposure at GD10 led to placental transcriptional changes at term that were consistent with markers in human preeclampsia, including reduced mmp10 and increased cd36, fzd1, and col1a1. O3 exposure, at both early and late gestation, induced a significant increase in maternal circulating soluble FMS-like tyrosine kinase-1 (sFlt-1), a known driver of preeclampsia. Otherwise, exposure to 0.3 ppm O3 at GD10 led to several late-stage cardiovascular outcomes in dams that were not evident in GD20-exposed dams, including elevated uterine artery resistance index and reduced cardiac output and stroke volume. GD10 O3 exposure proteomic profile in maternal hearts characterized by a reduction in proteins with essential roles in metabolism and mitochondrial function, whereas phosphoproteomic changes were consistent with pathways involved in cardiomyopathic responses. Thus, the developing placenta is an indirect target of inhaled O3 and systemic maternal cardiovascular abnormalities may be induced by O3 exposure at a specific window of gestation.
Collapse
Affiliation(s)
- Marcus Garcia
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Raul Salazar
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Thomas Wilson
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Selita Lucas
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Guy Herbert
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Tamara Young
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Jessica Begay
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Jesse L Denson
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Katherine Zychowski
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Ryan Ashley
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, New Mexico 88003
| | - Stephanie Byrum
- Arkansas Children's Research Institute, Little Rock, Arkansas 72202
| | - Samuel Mackintosh
- Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Barry E Bleske
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Andrew K Ottens
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia 23298-0709
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| |
Collapse
|
25
|
Jankowska-Kieltyka M, Roman A, Nalepa I. The Air We Breathe: Air Pollution as a Prevalent Proinflammatory Stimulus Contributing to Neurodegeneration. Front Cell Neurosci 2021; 15:647643. [PMID: 34248501 PMCID: PMC8264767 DOI: 10.3389/fncel.2021.647643] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Air pollution is regarded as an important risk factor for many diseases that affect a large proportion of the human population. To date, accumulating reports have noted that particulate matter (PM) is closely associated with the course of cardiopulmonary disorders. As the incidence of Alzheimer’s disease (AD), Parkinson’s disease (PD), and autoimmune disorders have risen and as the world’s population is aging, there is an increasing interest in environmental health hazards, mainly air pollution, which has been slightly overlooked as one of many plausible detrimental stimuli contributing to neurodegenerative disease onset and progression. Epidemiological studies have indicated a noticeable association between exposure to PM and neurotoxicity, which has been gradually confirmed by in vivo and in vitro studies. After entering the body directly through the olfactory epithelium or indirectly by passing through the respiratory system into the circulatory system, air pollutants are subsequently able to reach the brain. Among the potential mechanisms underlying particle-induced detrimental effects in the periphery and the central nervous system (CNS), increased oxidative stress, inflammation, mitochondrial dysfunction, microglial activation, disturbance of protein homeostasis, and ultimately, neuronal death are often postulated and concomitantly coincide with the main pathomechanisms of neurodegenerative processes. Other complementary mechanisms by which PM could mediate neurotoxicity and contribute to neurodegeneration remain unconfirmed. Furthermore, the question of how strong and proven air pollutants are as substantial adverse factors for neurodegenerative disease etiologies remains unsolved. This review highlights research advances regarding the issue of PM with an emphasis on neurodegeneration markers, symptoms, and mechanisms by which air pollutants could mediate damage in the CNS. Poor air quality and insufficient knowledge regarding its toxicity justify conducting scientific investigations to understand the biological impact of PM in the context of various types of neurodegeneration.
Collapse
Affiliation(s)
- Monika Jankowska-Kieltyka
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Adam Roman
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Irena Nalepa
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
26
|
Liu RM, Chong Z, Chen JC. Ozone and Particulate Matter Exposure and Alzheimer's Disease: A Review of Human and Animal Studies. J Alzheimers Dis 2021; 76:807-824. [PMID: 32568209 DOI: 10.3233/jad-200435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD), an aging-related neurodegenerative disease, is a major cause of dementia in the elderly. Although the early-onset (familial) AD is attributed to mutations in the genes coding for amyloid-β protein precursor (AβPP) and presenilin1/presenilin 2 (PS1/PS2), the cause for the late-onset AD (LOAD), which accounts for more than 95% of AD cases, remains unclear. Aging is the greatest risk factor for LOAD, whereas the apolipo protein E4 allele (APOEɛ4) is believed to be a major genetic risk factor in acquiring LOAD, with female APOEɛ4 carriers at highest risk. Nonetheless, not all the elderly, even older female APOEɛ4 carriers, develop LOAD, suggesting that other factors, including environmental exposure, must play a role. This review summarizes recent studies that show a potential role of environmental exposure, especially ozone and particulate matter exposure, in the development of AD. Interactions between environmental exposure, genetic risk factor (APOEɛ4), and sex in AD pathophysiology are also discussed briefly. Identification of environmental risk factor(s) and elucidation of the complex interactions between genetic and environmental risk factors plus aging and female sex in the onset of AD will be a key to our understanding of the etiology and pathogenesis of AD and the development of the strategies for its prevention and treatment.
Collapse
Affiliation(s)
- Rui-Ming Liu
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zechen Chong
- Department of Genetics, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jiu-Chiuan Chen
- Department of Biostatistics and Data Science, The University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
27
|
Chen H, Chen L, Hao G. Sex difference in the association between solid fuel use and cognitive function in rural China. ENVIRONMENTAL RESEARCH 2021; 195:110820. [PMID: 33539833 DOI: 10.1016/j.envres.2021.110820] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/09/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Whether indoor air pollution from solid fuel use is associated with cognitive function remains unclear. OBJECTIVE This study aims to examine the association of solid fuel use with the risk of cognitive impairment in males and females. METHODS The data was from the China Health and Retirement Longitudinal Study (CHARLS). Self-reported heating and cooking fuel were categorized as clean fuel (solar, liquefied gas, natural gas, or electricity) and solid fuel (coal, biomass charcoal, wood, or straw). Cognitive function, including orientation and attention, episodic memory, and visuospatial abilities, was assessed using standardized questionnaires. RESULTS A total of 7824 individuals were included in our study (aged 57.0 ± 9.3, 46.2% female), with 47.0% and 76.0% used solid fuel for cooking and heating, respectively. There was an interaction between sex and solid fuel use for cooking (P=0.008) for the progress of cognitive impairment. Solid fuel use for cooking was associated with a larger decrease in cognitive function score in females (β=-0.832; 95% CI: -1.043, -0.622; P < 0.001) than in males (β=-0.487; 95% CI: -0.671, -0.302; P < 0.001). The sex difference remained with further adjustment of covariates (β=-0.321; 95% CI: -0.503, -0.138; P=0.001 for males; β=-0.534; 95% CI: -0.745, -0.324; P < 0.001 for females). For heating, the interaction between sex and solid fuel was not statistically significant (P=0.156). After controlling for the covariates, solid fuel use for heating was inversely associated with a 0.321 unit of decrease of cognitive function score (β=-0.321; 95% CI: -0.652, 0.009; P=0.057) in males, and a 0.598 unit of decrease of cognitive function (β=-0.598; 95% CI: -0.978, -0.218; P=0.002) in females. CONCLUSION In conclusion, solid fuel use for cooking and heating was significantly associated with a higher risk of cognitive impairment. Furthermore, for the first time, we found that the effect of solid fuel use on cognitive function in females was greater than in males.
Collapse
Affiliation(s)
- Haiyan Chen
- Guangzhou Center for Disease Control and Prevention Guangzhou, China
| | - Li Chen
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Guang Hao
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
28
|
Shaffer RM, Li G, Adar SD, Dirk Keene C, Latimer CS, Crane PK, Larson EB, Kaufman JD, Carone M, Sheppard L. Fine Particulate Matter and Markers of Alzheimer's Disease Neuropathology at Autopsy in a Community-Based Cohort. J Alzheimers Dis 2021; 79:1761-1773. [PMID: 33459717 PMCID: PMC8061707 DOI: 10.3233/jad-201005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Evidence links fine particulate matter (PM2.5) to Alzheimer's disease (AD), but no community-based prospective cohort studies in older adults have evaluated the association between long-term exposure to PM2.5 and markers of AD neuropathology at autopsy. OBJECTIVE Using a well-established autopsy cohort and new spatiotemporal predictions of air pollution, we evaluated associations of 10-year PM2.5 exposure prior to death with Braak stage, Consortium to Establish a Registry for AD (CERAD) score, and combined AD neuropathologic change (ABC score). METHODS We used autopsy specimens (N = 832) from the Adult Changes in Thought (ACT) study, with enrollment ongoing since 1994. We assigned long-term exposure at residential address based on two-week average concentrations from a newly developed spatiotemporal model. To account for potential selection bias, we conducted inverse probability weighting. Adjusting for covariates with tiered models, we performed ordinal regression for Braak and CERAD and logistic regression for dichotomized ABC score. RESULTS 10-year average (SD) PM2.5 from death across the autopsy cohort was 8.2 (1.9) μg/m3. Average age (SD) at death was 89 (7) years. Each 1μg/m3 increase in 10-year average PM2.5 prior to death was associated with a suggestive increase in the odds of worse neuropathology as indicated by CERAD score (OR: 1.35 (0.90, 1.90)) but a suggestive decreased odds of neuropathology as defined by the ABC score (OR: 0.79 (0.49, 1.19)). There was no association with Braak stage (OR: 0.99 (0.64, 1.47)). CONCLUSION We report inconclusive associations between PM2.5 and AD neuropathology at autopsy among a cohort where 94% of individuals experienced 10-year exposures below the current EPA standard. Prior studies of AD risk factors and AD neuropathology are similarly inconclusive, suggesting alternative mechanistic pathways for disease or residual confounding.
Collapse
Affiliation(s)
- Rachel M. Shaffer
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, WA, USA
| | - Ge Li
- VA Northwest Network Mental Illness Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA
| | - Sara D. Adar
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - C. Dirk Keene
- Division of Neuropathology, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Caitlin S. Latimer
- Division of Neuropathology, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Paul K. Crane
- School of Medicine, University of Washington, Seattle, WA, USA
| | - Eric B. Larson
- School of Medicine, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Joel D. Kaufman
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, WA, USA
- Departments of Medicine and Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
| | - Marco Carone
- Department of Biostatistics, University of Washington School of Public Health, Seattle, WA, USA
| | - Lianne Sheppard
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, WA, USA
- Department of Biostatistics, University of Washington School of Public Health, Seattle, WA, USA
| |
Collapse
|
29
|
Calderón-Garcidueñas L, Torres-Jardón R, Franco-Lira M, Kulesza R, González-Maciel A, Reynoso-Robles R, Brito-Aguilar R, García-Arreola B, Revueltas-Ficachi P, Barrera-Velázquez JA, García-Alonso G, García-Rojas E, Mukherjee PS, Delgado-Chávez R. Environmental Nanoparticles, SARS-CoV-2 Brain Involvement, and Potential Acceleration of Alzheimer's and Parkinson's Diseases in Young Urbanites Exposed to Air Pollution. J Alzheimers Dis 2020; 78:479-503. [PMID: 32955466 DOI: 10.3233/jad-200891] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's and Parkinson's diseases (AD, PD) have a pediatric and young adult onset in Metropolitan Mexico City (MMC). The SARS-CoV-2 neurotropic RNA virus is triggering neurological complications and deep concern regarding acceleration of neuroinflammatory and neurodegenerative processes already in progress. This review, based on our MMC experience, will discuss two major issues: 1) why residents chronically exposed to air pollution are likely to be more susceptible to SARS-CoV-2 systemic and brain effects and 2) why young people with AD and PD already in progress will accelerate neurodegenerative processes. Secondary mental consequences of social distancing and isolation, fear, financial insecurity, violence, poor health support, and lack of understanding of the complex crisis are expected in MMC residents infected or free of SARS-CoV-2. MMC residents with pre-SARS-CoV-2 accumulation of misfolded proteins diagnostic of AD and PD and metal-rich, magnetic nanoparticles damaging key neural organelles are an ideal host for neurotropic SARS-CoV-2 RNA virus invading the body through the same portals damaged by nanoparticles: nasal olfactory epithelium, the gastrointestinal tract, and the alveolar-capillary portal. We urgently need MMC multicenter retrospective-prospective neurological and psychiatric population follow-up and intervention strategies in place in case of acceleration of neurodegenerative processes, increased risk of suicide, and mental disease worsening. Identification of vulnerable populations and continuous effort to lower air pollution ought to be critical steps.
Collapse
Affiliation(s)
| | - Ricardo Torres-Jardón
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Maricela Franco-Lira
- Colegio de Bachilleres Militarizado, "General Mariano Escobedo", Monterrey, N.L., México
| | - Randy Kulesza
- Auditory Research Center, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | | | | | | | | | | | | | | | | | - Partha S Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata, India
| | | |
Collapse
|
30
|
The Relationship Between Air Pollution and Cognitive Functions in Children and Adolescents: A Systematic Review. Cogn Behav Neurol 2020; 33:157-178. [PMID: 32889949 DOI: 10.1097/wnn.0000000000000235] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Air pollution has a negative impact on one's health and on the central nervous system. We decided to assess studies that evaluated the relationship between air pollution and cognitive functions in children and adolescents by reviewing studies that had been published between January 2009 and May 2019. We searched three major databases for original works (26 studies) and for studies using brain imaging methods based on MRI (six studies). Adverse effects of air pollutants on selected cognitive or psychomotor functions were found in all of the studies. Exposure to nitrogen dioxide, for example, was linked to impaired working memory, general cognitive functions, and psychomotor functions; particulate matter 2.5 was linked to difficulties in working memory, short-term memory, attention, processing speed, and fine motor function; black carbon was linked to poor verbal intelligence, nonverbal intelligence, and working memory; airborne copper was linked to impaired attentiveness and fine motor skills; isophorone was linked to lower mathematical skills; and polycyclic aromatic hydrocarbons in fetal life were linked to lower intelligence scores. The studies using MRI showed that high concentrations of air pollutants were linked to changes in the brain's white matter or lower functional integration and segregation in children's brain networks. In view of the global increase in air pollution, there is a need for further research to elucidate the relationship between air pollution and cognitive and motor development in children. According to some studies, neuroinflammation, the e4 allele of the apolipoprotein E gene, and gutathione-S-transferase gene polymorphism processes may play a role.
Collapse
|
31
|
Narayanan J, Simon KC, Choi J, Dobrin S, Rubin S, Taber J, Wang C, Pham A, Chesis R, Hadsell B, Epshteyn A, Wilk G, Tideman S, Meyers S, Frigerio R, Maraganore D. Factors Affecting Cognition and Depression in Adult Patients with Epilepsy. J Epilepsy Res 2020; 9:103-110. [PMID: 32509545 PMCID: PMC7251347 DOI: 10.14581/jer.19018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/24/2020] [Accepted: 01/31/2020] [Indexed: 11/17/2022] Open
Abstract
Background and Purpose Epilepsy patients are more likely to experience depressive symptoms and cognitive impairment compared to individuals in the general population. As the reasons for this are not definitively known, we sought to determine what factors correlate most strongly with cognition and a screening test for depression in epilepsy patients. Methods Our study population included 379 adult patients diagnosed with epilepsy or seizure in our neurology clinic. We collected detailed demographic and clinical data during patient visits using structured clinical documentation support tools that we have built within our commercial electronic medical records system (Epic), including a depression score (Neurological Disorders Depression Inventory for Epilepsy, NDDIE) and cognition score test measures (specifically in this study, Mini-Mental State Examination [MMSE]). Medication, age, gender, body mass index, duration of epilepsy, seizure frequency, current number of anti-epileptic medications, years of education were assessed in relation to baseline score as well as change in score from initial visit to first annual follow-up. Results Of the analyzed factors, two statistically significant associations were found after correction for multiple testing. Male gender and lower anti-seizure medication count were associated with better mood, as assessed by NDDIE score, at initial visit. Specifically, male gender was associated with a 1.3 decrease in NDDIE and for each additional anti-seizure medication, there was an associated 1.2 increase in NDDIE. Conclusions However, these factors were not associated with change in NDDIE score from initial to first annual follow-up visit. These findings, although interesting, are preliminary. Additionally, these findings were based on a homogenous (mainly Caucasian) clinic-based population and detailed information on previous medication use was lacking. Further work is needed to replicate these findings and to understand any mechanisms that may explain these associations.
Collapse
Affiliation(s)
- Jaishree Narayanan
- NorthShore Neurological Institute, NorthShore University HealthSystem, Evanston, IL, USA
| | - Kelly Claire Simon
- NorthShore Neurological Institute, NorthShore University HealthSystem, Evanston, IL, USA
| | - Janet Choi
- NorthShore Neurological Institute, NorthShore University HealthSystem, Evanston, IL, USA
| | - Sofia Dobrin
- NorthShore Neurological Institute, NorthShore University HealthSystem, Evanston, IL, USA
| | - Susan Rubin
- NorthShore Neurological Institute, NorthShore University HealthSystem, Evanston, IL, USA
| | - Jesse Taber
- NorthShore Neurological Institute, NorthShore University HealthSystem, Evanston, IL, USA
| | - Charles Wang
- NorthShore Neurological Institute, NorthShore University HealthSystem, Evanston, IL, USA
| | - Anna Pham
- NorthShore Neurological Institute, NorthShore University HealthSystem, Evanston, IL, USA
| | - Richard Chesis
- Health Information Technology, NorthShore University HealthSystem, Evanston, IL, USA
| | - Bryce Hadsell
- Health Information Technology, NorthShore University HealthSystem, Evanston, IL, USA
| | - Alexander Epshteyn
- Health Information Technology, NorthShore University HealthSystem, Evanston, IL, USA
| | - Gary Wilk
- Health Information Technology, NorthShore University HealthSystem, Evanston, IL, USA
| | - Samuel Tideman
- Health Information Technology, NorthShore University HealthSystem, Evanston, IL, USA
| | - Steven Meyers
- NorthShore Neurological Institute, NorthShore University HealthSystem, Evanston, IL, USA
| | - Roberta Frigerio
- NorthShore Neurological Institute, NorthShore University HealthSystem, Evanston, IL, USA
| | | |
Collapse
|
32
|
Impairment of mitochondrial function by particulate matter: Implications for the brain. Neurochem Int 2020; 135:104694. [DOI: 10.1016/j.neuint.2020.104694] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022]
|
33
|
Calderón-Garcidueñas L, Torres-Jardón R, Kulesza RJ, Mansour Y, González-González LO, Gónzalez-Maciel A, Reynoso-Robles R, Mukherjee PS. Alzheimer disease starts in childhood in polluted Metropolitan Mexico City. A major health crisis in progress. ENVIRONMENTAL RESEARCH 2020; 183:109137. [PMID: 32006765 DOI: 10.1016/j.envres.2020.109137] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 05/20/2023]
Abstract
Exposures to fine particulate matter (PM2.5) and ozone (O3) above USEPA standards are associated with Alzheimer's disease (AD) risk. Metropolitan Mexico City (MMC) youth have life time exposures to PM2.5 and O3 above standards. We focused on MMC residents ≤30 years and reviewed 134 consecutive autopsies of subjects age 20.03 ± 6.38 y (range 11 months to 30 y), the staging of Htau and ß amyloid, the lifetime cumulative PM2.5 (CPM 2.5) and the impact of the Apolipoprotein E (APOE) 4 allele, the most prevalent genetic risk for AD. We also reviewed the results of the Montreal Cognitive Assessment (MoCA) and the brainstem auditory evoked potentials (BAEPs) in clinically healthy young cohorts. Mobile sources, particularly from non-regulated diesel vehicles dominate the MMC pollutant emissions exposing the population to PM2.5 concentrations above WHO and EPA standards. Iron-rich,magnetic, highly oxidative, combustion and friction-derived nanoparticles (CFDNPs) are measured in the brain of every MMC resident. Progressive development of Alzheimer starts in childhood and in 99.25% of 134 consecutive autopsies ≤30 years we can stage the disease and its progression; 66% of ≤30 years urbanites have cognitive impairment and involvement of the brainstem is reflected by auditory central dysfunction in every subject studied. The average age for dementia using MoCA is 20.6 ± 3.4 y. APOE4 vs 3 carriers have 1.26 higher odds of committing suicide. PM2.5 and CFDNPs play a key role in the development of neuroinflammation and neurodegeneration in young urbanites. A serious health crisis is in progress with social, educational, judicial, economic and overall negative health impact for 25 million residents. Understanding the neural circuitry associated with the earliest cognitive and behavioral manifestations of AD is needed. Air pollution control should be prioritised-including the regulation of diesel vehicles- and the first two decades of life ought to be targeted for neuroprotective interventions. Defining paediatric environmental, nutritional, metabolic and genetic risk factor interactions is a multidisciplinary task of paramount importance to prevent Alzheimer's disease. Current and future generations are at risk.
Collapse
Affiliation(s)
| | - Ricardo Torres-Jardón
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, 04310, Ciudad de México, Mexico
| | - Randy J Kulesza
- Auditory Research Center, Lake Erie College of Osteopathic Medicine, Erie, PA, 16509, USA
| | - Yusra Mansour
- Auditory Research Center, Lake Erie College of Osteopathic Medicine, Erie, PA, 16509, USA
| | | | | | | | - Partha S Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, 700108, Kolkata, India
| |
Collapse
|
34
|
Miller MR, Newby DE. Air pollution and cardiovascular disease: car sick. Cardiovasc Res 2020; 116:279-294. [PMID: 31583404 DOI: 10.1093/cvr/cvz228] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/03/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
The cardiovascular effects of inhaled particle matter (PM) are responsible for a substantial morbidity and mortality attributed to air pollution. Ultrafine particles, like those in diesel exhaust emissions, are a major source of nanoparticles in urban environments, and it is these particles that have the capacity to induce the most significant health effects. Research has shown that diesel exhaust exposure can have many detrimental effects on the cardiovascular system both acutely and chronically. This review provides an overview of the cardiovascular effects on PM in air pollution, with an emphasis on ultrafine particles in vehicle exhaust. We consider the biological mechanisms underlying these cardiovascular effects of PM and postulate that cardiovascular dysfunction may be implicated in the effects of PM in other organ systems. The employment of multiple strategies to tackle air pollution, and especially ultrafine particles from vehicles, is likely to be accompanied by improvements in cardiovascular health.
Collapse
Affiliation(s)
- Mark R Miller
- University/BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH4 3RL, UK
| | - David E Newby
- University/BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH4 3RL, UK
| |
Collapse
|
35
|
Xing X, Hu L, Guo Y, Bloom MS, Li S, Chen G, Yim SHL, Gurram N, Yang M, Xiao X, Xu S, Wei Q, Yu H, Yang B, Zeng X, Chen W, Hu Q, Dong G. Interactions between ambient air pollution and obesity on lung function in children: The Seven Northeastern Chinese Cities (SNEC) Study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134397. [PMID: 31677469 DOI: 10.1016/j.scitotenv.2019.134397] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/23/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Children are vulnerable to air pollution-induced lung function deficits, and the prevalence of obesity has been increasing in children. To evaluate the joint effects of long-term PM1 (particulate matter with an aerodynamic diameter ≤ 1.0 μm) exposure and obesity on children's lung function, a cross-sectional sample of 6740 children (aged 7-14 years) was enrolled across seven northeastern Chinese cities from 2012 to 2013. Weight and lung function, including forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), peak expiratory flow (PEF), and maximal mid-expiratory flow (MMEF), were measured according to standardized protocols. Average PM1, PM2.5, PM10 and nitrogen dioxide (NO2) exposure levels were estimated using a spatiotemporal model, and sulphur dioxide (SO2) and ozone (O3) exposure were estimated using data from municipal air monitoring stations. Two-level logistic regression and general linear models were used to analyze the joint effects of body mass index (BMI) and air pollutants. The results showed that long-term air pollution exposure was associated with lung function impairment and there were significant interactions with BMI. Associations were stronger among obese and overweight than normal weight participants (the adjusted odds ratios (95% confidence intervals) for PM1 and lung function impairments in three increasing BMI categories were 1.50 (1.07-2.11) to 2.55 (1.59-4.07) for FVC < 85% predicted, 1.44 (1.03-2.01) to 2.51 (1.53-4.11) for FEV1 < 85% predicted, 1.34 (0.97-1.84) to 2.04 (1.24-3.35) for PEF < 75% predicted, and 1.34 (1.01-1.78) to 1.93 (1.26-2.95) for MMEF < 75% predicted). Consistent results were detected in linear regression models for PM1, PM2.5 and SO2 on FVC and FEV1 impairments (PInteraction < 0.05). These modification effects were stronger among females and older participants. These results can provide policy makers with more comprehensive information for to develop strategies for preventing air pollution induced children's lung function deficits among children.
Collapse
Affiliation(s)
- Xiumei Xing
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Liwen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Michael S Bloom
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer, NY 12144, USA; Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Gongbo Chen
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, China
| | - Steve Hung Lam Yim
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Namratha Gurram
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Mo Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiang Xiao
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shuli Xu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qi Wei
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hongyao Yu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Boyi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaowen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wen Chen
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qiang Hu
- Department of Pediatric Surgery, Weifang People's Hospital, Weifang 261041, China.
| | - Guanghui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
36
|
Kim H, Noh J, Noh Y, Oh SS, Koh SB, Kim C. Gender Difference in the Effects of Outdoor Air Pollution on Cognitive Function Among Elderly in Korea. Front Public Health 2019; 7:375. [PMID: 31921740 PMCID: PMC6915851 DOI: 10.3389/fpubh.2019.00375] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 11/22/2019] [Indexed: 12/17/2022] Open
Abstract
Background/Aim: Given a fast-growing aging population in South Korea, the prevalence of cognitive impairment in elderly is increasing. Despite growing evidence of air pollution exposure as one of the risk factors for declining cognition, few studies have been conducted on gender difference in the relation of cognitive function associated with outdoor air pollution. The aim of this study is to investigate the effect modification of gender difference in the association between cognitive function and air pollutant exposure (PM10, PM2.5−10, and NO2). Methods: The study focused on elderly, and the resulting sample included 1,484 participants aged 55 and older with no neurologic diseases, recruited from the four regions in Korea (Seoul, Incheon, Pyeongchang, and Wonju). We used the Mini-Mental State Examination (MMSE) score (with the conventional cut-off point “23–24”) to assess cognitive decline as the primary outcome of the study. Air pollution data used in this study were based on the 5-year average of predicted PM10 and NO2 concentrations, as well as the 2015 average PM2.5 concentration. Additionally, a survey questionnaire was utilized to obtain information about general health assessment. To explore gender differences in the effects of air pollution exposure on cognitive function, we used penalized logistic regression, negative binomial regression, and generalized linear mixed model analyses. Subgroup analyses were also performed by the geographic location of residence (metropolitan vs. non-metropolitan). Results: We found that women than men had a higher risk for decreased cognitive function associated with increased exposure to PM10 and PM2.5−10, respectively, even after adjustments for confounding factors (OR 1.01 [95%CI 1.00-1.03] in PM10; OR 1.03 [95%CI 1.01–1.07] in PM2.5−10). After stratification by metropolitan status, we also found that the adverse effect of NO2 exposure on cognitive function was higher in women than men [OR 1.02 [95%CI 1.00–1.05] in metropolitan; OR 1.12 [95%CI 1.04–1.20] in non-metropolitan]. Notably, the magnitude of the effect sizes was greater among those in non-metropolitan regions than metropolitan ones. Conclusions: Although our findings suggest that the adverse effects of outdoor air pollution on cognitive function appeared to be higher in women than men, this should be tentatively reflected due to some limitations in our results. While additional research is warranted to confirm or dispute our results, our findings suggest an indication of the need for developing and implementing prevention or interventions with a focus on elderly women with increased risk for air pollution exposure.
Collapse
Affiliation(s)
- Hyunmin Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Division of Health Systems Management and Policy, University of Memphis School of Public Health, Memphis, TN, United States
| | - Juhwan Noh
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Institute of Human Complexity and Systems Science, Yonsei University, Incheon, South Korea
| | - Young Noh
- Department of Neurology, Gachon University Gil Medical Center, Incheon, South Korea
| | - Sung Soo Oh
- Department of Occupational and Environmental Medicine, Wonju Severance Christian Hospital, Wonju College of Medicine, Yonsei University, Wonju, South Korea
| | - Sang-Baek Koh
- Department of Preventive Medicine, Wonju Severance Christian Hospital, Wonju College of Medicine, Yonsei University, Wonju, South Korea
| | - Changsoo Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Institute of Human Complexity and Systems Science, Yonsei University, Incheon, South Korea
| |
Collapse
|
37
|
Calderón-Garcidueñas L, Mukherjee PS, Waniek K, Holzer M, Chao CK, Thompson C, Ruiz-Ramos R, Calderón-Garcidueñas A, Franco-Lira M, Reynoso-Robles R, Gónzalez-Maciel A, Lachmann I. Non-Phosphorylated Tau in Cerebrospinal Fluid is a Marker of Alzheimer's Disease Continuum in Young Urbanites Exposed to Air Pollution. J Alzheimers Dis 2019; 66:1437-1451. [PMID: 30412505 DOI: 10.3233/jad-180853] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Long-term exposure to fine particulate matter (PM2.5) and ozone (O3) above USEPA standards is associated with Alzheimer's disease (AD) risk. Metropolitan Mexico City (MMC) children exhibit subcortical pretangles in infancy and cortical tau pre-tangles, NFTs, and amyloid phases 1-2 by the 2nd decade. Given their AD continuum, we measured in 507 normal cerebrospinal fluid (CSF) samples (MMC 354, controls 153, 12.82±6.73 y), a high affinity monoclonal non-phosphorylated tau antibody (non-P-Tau), as a potential biomarker of AD and axonal damage. In 81 samples, we also measured total tau (T-Tau), tau phosphorylated at threonine 181 (P-Tau), amyloid-β1-42, BDNF, and vitamin D. We documented by electron microscopy myelinated axonal size and the pathology associated with combustion-derived nanoparticles (CDNPs) in anterior cingulate cortex white matter in 6 young residents (16.25±3.34 y). Non-P-Tau showed a strong increase with age significantly faster among MMC versus controls (p = 0.0055). Aβ1 - 42 and BDNF concentrations were lower in MMC children (p = 0.002 and 0.03, respectively). Anterior cingulate cortex showed a significant decrease (p = <0.0001) in the average axonal size and CDNPs were associated with organelle pathology. Significant age increases in non-P-Tau support tau changes early in a population with axonal pathology and evolving AD hallmarks in the first two decades of life. Non-P-Tau is an early biomarker of axonal damage and potentially valuable to monitor progressive longitudinal changes along with AD multianalyte classical CSF markers. Neuroprotection of young urbanites with PM2.5 and CDNPs exposures ought to be a public health priority to halt the development of AD in the first two decades of life.
Collapse
Affiliation(s)
| | | | | | - Max Holzer
- Paul-Flechsig-Institute for Brain Research, Leipzig, Germany
| | | | | | - Rubén Ruiz-Ramos
- Instituto de Medicina Forense, Universidad Veracruzana, Boca del Rio, Mexico
| | | | | | | | | | | |
Collapse
|
38
|
Zielinska MA, Hamulka J. Protective Effect of Breastfeeding on the Adverse Health Effects Induced by Air Pollution: Current Evidence and Possible Mechanisms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E4181. [PMID: 31671856 PMCID: PMC6862650 DOI: 10.3390/ijerph16214181] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 02/08/2023]
Abstract
Air pollution is a major social, economic, and health problem around the world. Children are particularly susceptible to the negative effects of air pollution due to their immaturity and excessive growth and development. The aims of this narrative review were to: (1) summarize evidence about the protective effects of breastfeeding on the adverse health effects of air pollution exposure, (2) define and describe the potential mechanisms underlying the protective effects of breastfeeding, and (3) examine the potential effects of air pollution on breastmilk composition and lactation. A literature search was conducted using electronic databases. Existing evidence suggests that breastfeeding has a protective effect on adverse outcomes of indoor and outdoor air pollution exposure in respiratory (infections, lung function, asthma symptoms) and immune (allergic, nervous and cardiovascular) systems, as well as under-five mortality in both developing and developed countries. However, some studies reported no protective effect of breastfeeding or even negative effects of breastfeeding for under-five mortality. Several possible mechanisms of the breastfeeding protective effect were proposed, including the beneficial influence of breastfeeding on immune, respiratory, and nervous systems, which are related to the immunomodulatory, anti-inflammatory, anti-oxidant, and neuroprotective properties of breastmilk. Breastmilk components responsible for its protective effect against air pollutants exposure may be long chain polyunsaturated fatty acids (LC PUFA), antioxidant vitamins, carotenoids, flavonoids, immunoglobins, and cytokines, some of which have concentrations that are diet-dependent. However, maternal exposure to air pollution is related to increased breastmilk concentrations of pollutants (e.g., Polycyclic aromatic hydrocarbons (PAHs) or heavy metals in particulate matter (PM)). Nonetheless, environmental studies have confirmed that breastmilk's protective effects outweigh its potential health risk to the infant. Mothers should be encouraged and supported to breastfeed their infants due to its unique health benefits, as well as its limited ecological footprint, which is associated with decreased waste production and the emission of pollutants.
Collapse
Affiliation(s)
- Monika A Zielinska
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences-SGGW, 159C Nowoursynowska Street, 02-776 Warsaw, Poland.
| | - Jadwiga Hamulka
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences-SGGW, 159C Nowoursynowska Street, 02-776 Warsaw, Poland.
| |
Collapse
|
39
|
Calderón-Garcidueñas L, Reynoso-Robles R, González-Maciel A. Combustion and friction-derived nanoparticles and industrial-sourced nanoparticles: The culprit of Alzheimer and Parkinson's diseases. ENVIRONMENTAL RESEARCH 2019; 176:108574. [PMID: 31299618 DOI: 10.1016/j.envres.2019.108574] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/11/2019] [Accepted: 07/02/2019] [Indexed: 05/20/2023]
Abstract
Redox-active, strongly magnetic, combustion and friction-derived nanoparticles (CFDNPs) are abundant in particulate matter air pollution. Urban children and young adults with Alzheimer disease Continuum have higher numbers of brain CFDNPs versus clean air controls. CFDNPs surface charge, dynamic magnetic susceptibility, iron content and redox activity contribute to ROS generation, neurovascular unit (NVU), mitochondria, and endoplasmic reticulum (ER) damage, and are catalysts for protein misfolding, aggregation and fibrillation. CFDNPs respond to external magnetic fields and are involved in cell damage by agglomeration/clustering, magnetic rotation and/or hyperthermia. This review focus in the interaction of CFDNPs, nanomedicine and industrial NPs with biological systems and the impact of portals of entry, particle sizes, surface charge, biomolecular corona, biodistribution, mitochondrial dysfunction, cellular toxicity, anterograde and retrograde axonal transport, brain dysfunction and pathology. NPs toxicity information come from researchers synthetizing particles and improving their performance for drug delivery, drug targeting, magnetic resonance imaging and heat mediators for cancer therapy. Critical information includes how these NPs overcome all barriers, the NPs protein corona changes as they cross the NVU and the complexity of NPs interaction with soluble proteins and key organelles. Oxidative, ER and mitochondrial stress, and a faulty complex protein quality control are at the core of Alzheimer and Parkinson's diseases and NPs mechanisms of action and toxicity are strong candidates for early development and progression of both fatal diseases. Nanoparticle exposure regardless of sources carries a high risk for the developing brain homeostasis and ought to be included in the AD and PD research framework.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- The University of Montana, Missoula, MT, 59812, USA; Universidad Del Valle de México, 04850, Mexico City, Mexico.
| | | | | |
Collapse
|
40
|
Calderón-Garcidueñas L, González-Maciel A, Kulesza RJ, González-González LO, Reynoso-Robles R, Mukherjee PS, Torres-Jardón R. Air Pollution, Combustion and Friction Derived Nanoparticles, and Alzheimer’s Disease in Urban Children and Young Adults. J Alzheimers Dis 2019; 70:343-360. [DOI: 10.3233/jad-190331] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | - Randy J. Kulesza
- Department of Anatomy, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | | | | | | | - Ricardo Torres-Jardón
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, UNAM, Mexico City, Mexico
| |
Collapse
|
41
|
Norwood JN, Zhang Q, Card D, Craine A, Ryan TM, Drew PJ. Anatomical basis and physiological role of cerebrospinal fluid transport through the murine cribriform plate. eLife 2019; 8:44278. [PMID: 31063132 PMCID: PMC6524970 DOI: 10.7554/elife.44278] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/06/2019] [Indexed: 12/25/2022] Open
Abstract
Cerebrospinal fluid (CSF) flows through the brain, transporting chemical signals and removing waste. CSF production in the brain is balanced by a constant outflow of CSF, the anatomical basis of which is poorly understood. Here, we characterized the anatomy and physiological function of the CSF outflow pathway along the olfactory sensory nerves through the cribriform plate, and into the nasal epithelia. Chemical ablation of olfactory sensory nerves greatly reduced outflow of CSF through the cribriform plate. The reduction in CSF outflow did not cause an increase in intracranial pressure (ICP), consistent with an alteration in the pattern of CSF drainage or production. Our results suggest that damage to olfactory sensory neurons (such as from air pollution) could contribute to altered CSF turnover and flow, providing a potential mechanism for neurological diseases.
Collapse
Affiliation(s)
- Jordan N Norwood
- Cellular and Developmental Biology Graduate Program, Pennsylvania State University, University Park, United States
| | - Qingguang Zhang
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, United States
| | - David Card
- Department of Physics, Pennsylvania State University, University Park, United States
| | - Amanda Craine
- Department of Biomedical Engineering, Pennsylvania State University, University Park, United States
| | - Timothy M Ryan
- Department of Anthropology, Pennsylvania State University, University Park, United States
| | - Patrick J Drew
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, United States.,Department of Biomedical Engineering, Pennsylvania State University, University Park, United States.,Department of Neurosurgery, Pennsylvania State University, University Park, United States
| |
Collapse
|
42
|
Reynolds CA, Smolen A, Corley RP, Munoz E, Friedman NP, Rhee SH, Stallings MC, DeFries JC, Wadsworth SJ. APOE effects on cognition from childhood to adolescence. Neurobiol Aging 2019; 84:239.e1-239.e8. [PMID: 31126628 DOI: 10.1016/j.neurobiolaging.2019.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 04/13/2019] [Accepted: 04/14/2019] [Indexed: 01/10/2023]
Abstract
The ε4 allele of APOE is a well-established genetic risk factor for cognitive aging and dementia, but its influence on early life cognition is unknown. Consequently, we assessed associations of APOE genotypes with cognitive performance during 7, 12, and 16 year-assessments in our ongoing Colorado Adoption/Twin Study of Lifespan behavioral development (CATSLife). In general, APOE ε4 was associated with lower Verbal, Performance, and Full Scale IQ scores during childhood and adolescence (e.g., Full Scale IQ was lower by 1.91 points per ε4 allele, d = -0.13), with larger effects in females (e.g., average Full Scale IQ scores were 3.41 points lower in females per each ε4 allele vs. 0.33 points lower in males). Thus, these results suggest that deleterious effects of the APOE ε4 allele are manifested before adulthood, especially in females, and support both early origin theories and differential life-course vulnerabilities for later cognitive impairment.
Collapse
Affiliation(s)
- Chandra A Reynolds
- Department of Psychology, University of California, Riverside, Riverside, CA, USA.
| | - Andrew Smolen
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Robin P Corley
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Elizabeth Munoz
- Department of Psychology, University of California, Riverside, Riverside, CA, USA
| | - Naomi P Friedman
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Soo Hyun Rhee
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Michael C Stallings
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - John C DeFries
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Sally J Wadsworth
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
43
|
Mansour Y, Blackburn K, González-González LO, Calderón-Garcidueñas L, Kulesza RJ. Auditory Brainstem Dysfunction, Non-Invasive Biomarkers for Early Diagnosis and Monitoring of Alzheimer’s Disease in Young Urban Residents Exposed to Air Pollution. J Alzheimers Dis 2019; 67:1147-1155. [DOI: 10.3233/jad-181186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yusra Mansour
- Department of Anatomy, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | - Kaitlyn Blackburn
- Department of Neurology, University of Pittsburgh Medical Center, Erie, PA, USA
| | | | | | - Randy J. Kulesza
- Department of Anatomy, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| |
Collapse
|
44
|
Croze ML, Zimmer L. Ozone Atmospheric Pollution and Alzheimer's Disease: From Epidemiological Facts to Molecular Mechanisms. J Alzheimers Dis 2019; 62:503-522. [PMID: 29480184 DOI: 10.3233/jad-170857] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Atmospheric pollution is a well-known environmental hazard, especially in developing countries where millions of people are exposed to airborne pollutant levels above safety standards. Accordingly, several epidemiological and animal studies confirmed its role in respiratory and cardiovascular pathologies and identified a strong link between ambient air pollution exposure and adverse health outcomes such as hospitalization and mortality. More recently, the potential deleterious effect of air pollution inhalation on the central nervous system was also investigated and mounting evidence supports a link between air pollution exposure and neurodegenerative pathologies, especially Alzheimer's disease (AD). The focus of this review is to highlight the possible link between ozone air pollution exposure and AD incidence. This review's approach will go from observational and epidemiological facts to the proposal of molecular mechanisms. First, epidemiological and postmortem human study data concerning residents of ozone-severely polluted megacities will be presented and discussed. Then, the more particular role of ozone air pollution in AD pathology will be described and evidenced by toxicological studies in rat or mouse with ozone pollution exposure only. The experimental paradigms used to reproduce in rodent the human exposure to ozone air pollution will be described. Finally, current insights into the molecular mechanisms through which ozone inhalation can affect the brain and play a role in AD development or progression will be recapitulated.
Collapse
Affiliation(s)
- Marine L Croze
- Université Claude Bernard Lyon 1, INSERM, CNRS, Lyon Neuroscience Research Center, Lyon, France
| | - Luc Zimmer
- Université Claude Bernard Lyon 1, INSERM, CNRS, Lyon Neuroscience Research Center, Lyon, France.,Hospices Civils de Lyon, CERMEP-Imaging Platform, Bron, France
| |
Collapse
|
45
|
Weissberger GH, Nation DA, Nguyen CP, Bondi MW, Han SD. Meta-analysis of cognitive ability differences by apolipoprotein e genotype in young humans. Neurosci Biobehav Rev 2018; 94:49-58. [PMID: 30125600 DOI: 10.1016/j.neubiorev.2018.08.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/21/2018] [Accepted: 08/16/2018] [Indexed: 12/14/2022]
Abstract
The apolipoprotein (APOE) ε4 allele has been proposed as an example of an antagonistic pleiotropy gene, conferring a beneficial effect on cognition in early life and a detrimental impact on cognition during later years. However, findings on the cognitive associations of the ε4 allele in younger persons are mixed. This PRISMA conforming study aimed to investigate APOE genotype (e4/non-e4) associations across seven cognitive domains (intelligence/achievement, attention/working memory, executive functioning, memory, language, processing speed and visuospatial abilities) in younger humans using a meta-analytic approach. Of 689 records reviewed, 29 studies (34 data-points) were selected for the quantitative synthesis. Participants' ages ranged from 2-40. Results showed that young ε4 carriers did not statistically differ from non-ε4 carriers across any cognitive domains. Overall, findings do not provide compelling support for an antagonistic pleiotropic effect of the ε4 allele across the lifespan.
Collapse
Affiliation(s)
- Gali H Weissberger
- Department of Family Medicine, USC Keck School of Medicine, 1000 S. Fremont Avenue, Unit 22, HSA Building A-6, 4thFloor, Room 6437A, Alhambra, CA, 91803, USA.
| | - Daniel A Nation
- Department of Psychology, USC Dornsife College of Letters, Arts, and Sciences, Los Angeles, 90089, CA, USA
| | - Caroline P Nguyen
- Department of Family Medicine, USC Keck School of Medicine, 1000 S. Fremont Avenue, Unit 22, HSA Building A-6, 4thFloor, Room 6437A, Alhambra, CA, 91803, USA
| | - Mark W Bondi
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive #9116-B, La Jolla, CA, 92093, USA
| | - S Duke Han
- Department of Family Medicine, USC Keck School of Medicine, 1000 S. Fremont Avenue, Unit 22, HSA Building A-6, 4thFloor, Room 6437A, Alhambra, CA, 91803, USA; Department of Psychology, USC Dornsife College of Letters, Arts, and Sciences, Los Angeles, 90089, CA, USA; USC School of Gerontology, Los Angeles, CA, 90089, USA; Department of Neurology, USC Keck School of Medicine, Los Angeles, 90033, CA, USA
| |
Collapse
|
46
|
Kilian J, Kitazawa M. The emerging risk of exposure to air pollution on cognitive decline and Alzheimer's disease - Evidence from epidemiological and animal studies. Biomed J 2018; 41:141-162. [PMID: 30080655 PMCID: PMC6138768 DOI: 10.1016/j.bj.2018.06.001] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 12/31/2022] Open
Abstract
As incidence of Alzheimer's disease (AD) and other neurodegenerative diseases rise, there is increasing interest in environmental factors which may contribute to disease onset and progression. Air pollution has been known as a major health hazard for decades. While its effects on cardiopulmonary morbidity and mortality have been extensively studied, growing evidence has emerged that exposure to polluted air is associated with impaired cognitive functions at all ages and increased risk of AD and other dementias in later life; this association is particularly notable with traffic related pollutants such as nitrogen dioxide, nitrous oxide, black carbon, and small diameter airborne solids and liquids known as particulate matter. The exact mechanisms by which air pollutants mediate neurotoxicity in the central nervous system (CNS) and lead to cognitive decline and AD remain largely unknown. Studies using animal and cell culture models indicate that amyloid-beta processing, anti-oxidant defense, and inflammation are altered following the exposure to constituents of polluted air. In this review, we summarize recent evidence supporting exposure to air pollution as a risk for cognitive decline at all ages and AD at later lifetime. Additionally, we review the current body of work investigating the molecular mechanisms by which air pollutants mediate damage in the CNS. Understanding of the neurotoxic effects of air pollution and its constituents is still limited, and further studies will be essential to better understand the cellular and molecular mechanisms linking air pollution and cognitive decline.
Collapse
Affiliation(s)
- Jason Kilian
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, CA, USA
| | - Masashi Kitazawa
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|
47
|
Calderón-Garcidueñas L, Gónzalez-Maciel A, Reynoso-Robles R, Delgado-Chávez R, Mukherjee PS, Kulesza RJ, Torres-Jardón R, Ávila-Ramírez J, Villarreal-Ríos R. Hallmarks of Alzheimer disease are evolving relentlessly in Metropolitan Mexico City infants, children and young adults. APOE4 carriers have higher suicide risk and higher odds of reaching NFT stage V at ≤ 40 years of age. ENVIRONMENTAL RESEARCH 2018; 164:475-487. [PMID: 29587223 DOI: 10.1016/j.envres.2018.03.023] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
Exposures to fine particulate matter (PM2.5) and ozone (O3) above USEPA standards are associated with Alzheimer's disease (AD) risk. Metropolitan Mexico City (MMC) residents have life time exposures to PM2.5 and O3 above USEPA standards. We investigated AD intra and extracellular protein aggregates and ultrastructural neurovascular pathology in 203 MMC residents age 25.36 ± 9.23 y. Immunohistochemical methods were used to identify AT8 hyperphosphorilated tau (Htau) and 4G8 (amyloid β 17-24). Primary outcomes: staging of Htau and amyloid, per decade and cumulative PM2.5 (CPM2.5) above standard. Apolipoprotein E allele 4 (APOE4), age and cause of death were secondary outcomes. Subcortical pretangle stage b was identified in an 11month old baby. Cortical tau pre-tangles, neurofibrillary tangles (NFT) Stages I-II, amyloid phases 1-2, Htau in substantia nigrae, auditory, oculomotor, trigeminal and autonomic systems were identified by the 2nd decade. Progression to NFT stages III-V was present in 24.8% of 30-40 y old subjects. APOE4 carriers have 4.92 times higher suicide odds (p = 0.0006), and 23.6 times higher odds of NFT V (p < 0.0001) v APOE4 non-carriers having similar CPM2.5 exposure and age. Age (p = 0.0062) and CPM2.5 (p = 0.0178) were significant for developing NFT V. Combustion-derived nanoparticles were associated with early and progressive damage to the neurovascular unit. Alzheimer's disease starting in the brainstem of young children and affecting 99.5% of young urbanites is a serious health crisis. Air pollution control should be prioritised. Childhood relentless Htau makes a fundamental target for neuroprotective interventions and the first two decades are critical. We recommend the concept of preclinical AD be revised and emphasize the need to define paediatric environmental, nutritional, metabolic and genetic risk factor interactions of paramount importance to prevent AD. AD evolving from childhood is threating the wellbeing of our children and future generations.
Collapse
Affiliation(s)
| | | | | | | | | | - Randy J Kulesza
- Auditory Research Center, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
| | - Ricardo Torres-Jardón
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, 04310, Mexico
| | | | | |
Collapse
|
48
|
Nyarko JN, Quartey MO, Pennington PR, Heistad RM, Dea D, Poirier J, Baker GB, Mousseau DD. Profiles of β-Amyloid Peptides and Key Secretases in Brain Autopsy Samples Differ with Sex and APOE ε4 Status: Impact for Risk and Progression of Alzheimer Disease. Neuroscience 2018; 373:20-36. [DOI: 10.1016/j.neuroscience.2018.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/21/2017] [Accepted: 01/03/2018] [Indexed: 11/25/2022]
|
49
|
Fordyce TA, Leonhard MJ, Chang ET. A critical review of developmental exposure to particulate matter, autism spectrum disorder, and attention deficit hyperactivity disorder. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 53:174-204. [PMID: 29157090 DOI: 10.1080/10934529.2017.1383121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Autism spectrum disorder (ASD) and attention deficit (hyperactivity) disorder (ADD/ADHD) are key focuses of current health research due to their increasing prevalence. The objective of this systematic literature search and critical review was to evaluate whether the human epidemiologic data indicate a pattern of association between ASD or ADD/ADHD and developmental exposure to particulate matter (PM), with a focus on exposures encountered before the age of three. A MEDLINE and EMBASE search was conducted; following preliminary and full-text screening, 14 relevant articles were identified for review. Three of the 14 studies were prospective cohort studies evaluating exposure to PM10; 11 studies had a case-control design. There was no consistent association between developmental PM exposure and ASD across the three of the cohort studies. Seven of the case-control studies examined the relationship between PM2.5 and/or PM10 and ASD; four examined the relationship between developmental diesel PM exposure and ASD. Overall, there was low external consistency in results among studies of PM2.5/PM10 and ASD, with some reporting high internal consistency without significant associations, others showing associations with high internal consistency for specific exposure windows only (e.g., third trimester), and still others showing high consistency for moderate to strong associations between PM and ASD. The majority of studies reporting significant results had low effect sizes in conjunction with small sample sizes. The four studies of diesel PM and ASD also had low external consistency of results. Only one study evaluated associations with ADD/ADHD, and it found no significant associations with PM10. The inconsistent findings across studies of developmental exposure to PM and ASD may be attributed to differences in the study populations, exposure assessments, outcome assessments, or chance. Further research is needed to understand the underlying biological mechanisms that lead to ASD and ADD/ADHD and how PM might be involved in those mechanisms, if at all. High-quality epidemiologic studies are also needed to conclusively determine whether developmental PM exposure is a causal factor for ASD or ADD/ADHD, with focus on a well-developed exposure assessment.
Collapse
Affiliation(s)
- Tiffani A Fordyce
- a Exponent, Inc., Center for Health Sciences , Menlo Park , California , USA
| | - Megan J Leonhard
- b Exponent, Inc., Center for Health Sciences , Bellevue , Washington , USA
| | - Ellen T Chang
- a Exponent, Inc., Center for Health Sciences , Menlo Park , California , USA
| |
Collapse
|
50
|
Calderón-Garcidueñas L, Reynoso-Robles R, Pérez-Guillé B, Mukherjee PS, Gónzalez-Maciel A. Combustion-derived nanoparticles, the neuroenteric system, cervical vagus, hyperphosphorylated alpha synuclein and tau in young Mexico City residents. ENVIRONMENTAL RESEARCH 2017; 159:186-201. [PMID: 28803148 DOI: 10.1016/j.envres.2017.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/02/2017] [Accepted: 08/04/2017] [Indexed: 06/07/2023]
Abstract
Mexico City (MC) young residents are exposed to high levels of fine particulate matter (PM2.5), have high frontal concentrations of combustion-derived nanoparticles (CDNPs), accumulation of hyperphosphorylated aggregated α-synuclein (α-Syn) and early Parkinson's disease (PD). Swallowed CDNPs have easy access to epithelium and submucosa, damaging gastrointestinal (GI) barrier integrity and accessing the enteric nervous system (ENS). This study is focused on the ENS, vagus nerves and GI barrier in young MC v clean air controls. Electron microscopy of epithelial, endothelial and neural cells and immunoreactivity of stomach and vagus to phosphorylated ɑ-synuclein Ser129 and Hyperphosphorylated-Tau (Htau) were evaluated and CDNPs measured in ENS. CDNPs were abundant in erythrocytes, unmyelinated submucosal, perivascular and intramuscular nerve fibers, ganglionic neurons and vagus nerves and associated with organelle pathology. ɑSyn and Htau were present in 25/27 MC gastric,15/26 vagus and 18/27 gastric and 2/26 vagus samples respectively. We strongly suggest CDNPs are penetrating and damaging the GI barrier and reaching preganglionic parasympathetic fibers and the vagus nerve. This work highlights the potential role of CDNPs in the neuroenteric hyperphosphorylated ɑ-Syn and tau pathology as seen in Parkinson and Alzheimer's diseases. Highly oxidative, ubiquitous CDNPs constitute a biologically plausible path into Parkinson's and Alzheimer's pathogenesis.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- The University of Montana, Missoula, MT 59812, USA; Universidad del Valle de México, Mexico City 14370, Mexico.
| | | | | | | | | |
Collapse
|