1
|
Han NN, Wang XP, Jin JA, Li WH, Yang WY, Fan NS, Jin RC. Underrated risk of antibiotic resistance genes dissemination mediated by bioaerosols released from anaerobic biological wastewater treatment system. WATER RESEARCH 2025; 279:123463. [PMID: 40073489 DOI: 10.1016/j.watres.2025.123463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
Antibiotic resistance has been recognized as one of the most prevalent public health problems. The bioaerosol-mediated spread of antibiotic resistance genes (ARGs) is an important but underrated pathway. Therefore, this work investigated the comprehensive resistome and pathogen-induced risk in bioaerosols released from anaerobic ammonium oxidation (anammox) process under antibiotic stress. The results showed that the bioaerosol oxidation potential increased by 2.7 times after the addition of sulfamethoxazole (SMX) into the anammox system. Based on the metagenomic analyses, abundant ARGs were enriched in bioaerosols, especially novA, olec, msbA and patA. There were many antibiotic resistance contigs carrying at least two mobile genetic elements (MGEs) in bioaerosols. Compared to the control, SMX caused the significant increase in ARGs proportion in plasmids from 11.4 % to 19.4 %. Similarly, the abundance of the type IV secretion system protein encoding genes (mtrA and mtrB) increased by 30.2 % and 31.5 %, respectively, which was conducive to gene transfer between bacteria. In addition, SMX stress induced the reactive oxygen species (ROS) production and the upregulation of genes related to membrane protein and DNA replication, further facilitating ARGs transfer. The co-occurrence networks showed that Aquamicrobium and Microbacterium probably were the hosts of most ARGs. Notably, four abundant human pathogens were detected in bioaerosols from the anammox system, which raised concerns on the health risk of resistant bioaerosol diffusion. These findings reveal the potential of horizontal gene transfer through bioaerosols and provide a guidance for systematically assessing the risk of environmental antibiotic resistance and relevant pathogens.
Collapse
Affiliation(s)
- Na-Na Han
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Xue-Ping Wang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Jing-Ao Jin
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Wen-Hui Li
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Wen-Ya Yang
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Nian-Si Fan
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Ren-Cun Jin
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| |
Collapse
|
2
|
Heibati B, Renz H, Lacy P. Wildfire and wood smoke effects on human airway epithelial cells: A scoping review. ENVIRONMENTAL RESEARCH 2025; 272:121153. [PMID: 39986423 DOI: 10.1016/j.envres.2025.121153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/29/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND Wildfires, which occur naturally but are increasingly intensified by climate change, release a complex mixture of organic and inorganic pollutants. These emissions have significant public health implications, contributing to increased morbidity and mortality. Epidemiological and clinical studies have consistently shown that exposure to wildfire smoke exacerbates respiratory conditions such as chronic obstructive pulmonary disease (COPD) and asthma. There are many epidemiological studies of the potential impact of smoke on human health; however, there are remarkably few in vitro studies, and an investigation of the underlying mechanisms of wildfire and wood smoke exposure on airway epithelial cells is required to better understand their toxicity and significance. OBJECTIVES This scoping review aimed to critically examine studies on the association between wildfire and wood smoke exposure and airway epithelial cell responses. METHODS We conducted a systematic search of relevant studies that used a combination of keywords related to wood smoke, wildfire, and epithelial cells and were published up to May 2024. Studies were retrieved from MEDLINE, PubMed, Google Scholar, and Web of Science. RESULTS Twenty-three studies fulfilled our inclusion criteria and were included. This review highlights inflammation, oxidative stress, and cytotoxicity as key impacts of wildfire and wood smoke on airway epithelial cells, causing lung damage. More studies are needed to understand these effects and guide prevention strategies. DISCUSSION This scoping review underscores the need for further research to better understand the complex biological endpoints associated with exposure to wildfire/wood smoke, informing strategies to mitigate health effects, ultimately improving health and well-being of population exposed to wildfire/wood smoke.
Collapse
Affiliation(s)
- Behzad Heibati
- Alberta Respiratory Centre (ARC), Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Harald Renz
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL) and the Lung Center of the Universities of Giessen and Marburg (UGMLC), Philipps University Marburg, Marburg, Germany; Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
| | - Paige Lacy
- Alberta Respiratory Centre (ARC), Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
3
|
Chang H, Pan K, Zhang X, Lu Z, Wang Y, Liu D, Lin Y, Wu Y, Lin Y, Huang Q, Duan J, Sun Z, Zhao J, Shen H. Ambient PM 2.5 exposure, physical activity, and cardiovascular dysfunction: Analysis of CHARLS data and experimental study in mice. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138377. [PMID: 40280061 DOI: 10.1016/j.jhazmat.2025.138377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/03/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Previous studies have confirmed ambient fine particulate matter (PM2.5) as a major environmental risk factor for cardiovascular diseases (CVDs), yet the specific molecular pathways remain poorly understood. Furthermore, while physical activity benefits cardiovascular health, its protective effects against PM2.5-induced damage need further explored. We aimed to investigate the relationship between long-term PM2.5 exposure, physical activity, and cardiovascular health, and explore the potential molecular mechanisms. This research combined epidemiological and experimental approaches. The epidemiological study analyzed data from the China Health and Retirement Longitudinal Study (CHARLS) to investigate the associations among long-term PM2.5 exposure, physical activity, and CVDs. For the experimental study, C57BL/6 male mice were assigned to either regular physical activity or sedentary behavior, and were exposed to PM2.5 or filtered air (FA) for 2, 4, and 6 months. We observed that long-term PM2.5 exposure significantly increased cardiovascular disease risk, while physical activity exhibited protective effects and can partially mitigate the adverse impacts of PM2.5 on heart disease and dyslipidemia. In animal study, mice with long-term exposure to PM2.5 demonstrated elevated blood pressure, disrupted adipokine levels, altered lipid profiles, and mitochondrial damage. Regular physical activity partially mitigated these adverse effects. Lipidomics and proteomics analyses revealed that PM2.5 exposure disrupted lipid metabolism networks and protein regulatory pathways, while regular physical activity mitigated these perturbations through the modulation of lipid metabolism, the coagulation cascade, and immune responses. These findings underscore the importance of regular physical activity in public health strategies, while prioritizing PM2.5 reduction measures for cardiovascular disease prevention.
Collapse
Affiliation(s)
- Hao Chang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Kun Pan
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200030, China; Hangzhou Shangcheng District Center for Disease Control and Prevention (Hangzhou Shangcheng District Health Supervision Institution), Hangzhou 310043, PR China
| | - Xi Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhonghua Lu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yihui Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Di Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yafen Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yan Wu
- Department of Health Inspection and Quarantine, The School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yi Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jinzhuo Zhao
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200030, China.
| | - Heqing Shen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; Department of Obstetrics and Gynecology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen university, Xiamen 361102, China.
| |
Collapse
|
4
|
Ashraf A, Zechmann B, Bruce ED. Hypoxia-inducible factor 1α modulates acrolein-induced cellular damage in bronchial epithelial cells. Toxicology 2025; 515:154158. [PMID: 40252947 DOI: 10.1016/j.tox.2025.154158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/14/2025] [Accepted: 04/17/2025] [Indexed: 04/21/2025]
Abstract
Acrolein, a highly reactive α,β-unsaturated aldehyde, is a widespread environmental pollutant. It is generated during the incomplete combustion of materials such as tobacco smoke, petrol, coal, forest fires, and plastics, as well as from the overheating of frying oils. Acrolein is known to induce cellular damage and oxidative stress. This study investigates the critical role of hypoxia-inducible factor 1α (HIF-1α), which is a transcription factor required to regulate cell survival and angiogenesis, in protecting bronchial epithelial cells from acrolein-induced cytotoxicity and DNA damage under normoxic and hypoxic conditions. To our knowledge, no prior study has comprehensively evaluated the effects of HIF-1α on cellular responses to acrolein under normoxic and hypoxic conditions in vitro. Therefore, the goal of this study was to explore how silencing HIF-1α influences cellular responses to acrolein, and our study focused on changes in cytotoxicity, metabolic activity, DNA damage, and oxidative stress using the BEAS-2B cell line. We observed enhanced cell damage and reduced viability in cells exposed to acrolein when silenced with HIF-1α, particularly in hypoxic environments. While results indicate that silencing HIF-1α significantly increases cytotoxicity and DNA damage under hypoxia compared to normoxic conditions, oxidative stress indicator levels did not rise noticeably under hypoxia following HIF-1α silencing. This research warrants further investigation to indicate the importance of HIF-1α in adapting to environmental and hypoxic stressors, which are commonly found in chronic lung diseases and ischemic conditions.
Collapse
Affiliation(s)
- Asha Ashraf
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76706, USA
| | - Bernd Zechmann
- Center for Microscopy and Imaging, Baylor University, Waco, TX, USA
| | - Erica D Bruce
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76706, USA.
| |
Collapse
|
5
|
Li C, Zhao L, Fan J, Qi W, Li X, Li Y, Tian P, Wu Y, Gu S. The Alleviative Effects of Weizmannia coagulans CGMCC 9951 on the Reproductive Toxicity of Caenorhabditis elegans Induced by Polystyrene Microplastics. Microorganisms 2025; 13:497. [PMID: 40142390 PMCID: PMC11944320 DOI: 10.3390/microorganisms13030497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/22/2025] [Accepted: 02/03/2025] [Indexed: 03/28/2025] Open
Abstract
The increased emission and accumulation of microplastics pose a severe threat to humans and the environment. As effective biological agents for alleviating the effects of microplastics, the mechanism of action of probiotics remains unclear. In this study, based on the successful establishment of a reproductive virulence model of Caenorhabditis elegans (C. elegans), we explored the effect and mechanism of Weizmannia coagulans CGMCC 9951 (W. coagulans CGMCC 9951) on the reproductive toxicity of C. elegans. Our results showed that the gonad area and the number of offspring increased but the number of germ cells undergoing apoptosis decreased by 14% and 24% in C. elegans, after CGMCC 9951 treatments. Antioxidant test results showed that CGMCC 9951 increased the activity of Superoxide Dismutase (SOD), Catalase (CAT), and the content of Glutathione (GSH) in C. elegans. In addition, it was found by qPCR and mutagenesis experiments verified that CGMCC 9951 alleviated reproductive toxicity through the DNA checkpoint signaling pathway. Our findings suggested that CGMCC 9951 could alleviate the reproductive toxicity of polystyrene microplastics in C. elegans by enhancing antioxidant capacity and inhibiting DNA damage checkpoint signaling pathway. The above results suggest that probiotics can be used as a potential approach to alleviate the reproductive toxicity induced by polystyrene microplastics in humans.
Collapse
Affiliation(s)
- Chengmei Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Lina Zhao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Jiajia Fan
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Wentong Qi
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Xuan Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
- Henan Engineering Research Center of Food Microbiology, Luoyang 471000, China
| | - Yuwan Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Pingping Tian
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
- National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang 471000, China
| | - Ying Wu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
- Henan Engineering Research Center of Food Microbiology, Luoyang 471000, China
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
- Henan Engineering Research Center of Food Microbiology, Luoyang 471000, China
- National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang 471000, China
| |
Collapse
|
6
|
Craze AM, Bartle C, Roper C. Impact of PM 2.5 filter extraction solvent on oxidative potential and chemical analysis. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2025; 75:52-71. [PMID: 39436942 DOI: 10.1080/10962247.2024.2417736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/20/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Fine particulate matter (PM2.5) is hypothesized to induce oxidative stress, and has been linked to acute and chronic adverse health effects. To better understand the risks and underlying mechanisms following exposure, PM2.5 is collected onto filters but prior to toxicological analysis, particles must be removed from filters. There is no standard method for filter extraction, which creates the possibility that the methods of extraction selected can alter the chemical composition and ultimately the biological implications. In this study, comparisons were made between extraction solvents (methanol (MeOH), dichloromethane (DCM), 0.9% saline, and Milli-Q water) and the results of oxidative potential and elemental concentration analysis of PM2.5 collected across sites in Arkansas, USA. Significant differences were observed between solvents, with DCM having significantly different results compared to all other extraction solvents (p ≤ 0.001). Significant correlations between element, black carbon, and PM2.5 concentrations and oxidative potential were observed. The observed correlations were extraction solvent dependent. For example, in saline extracted samples, oxidative potential had significant negative correlations with: Ba, Cd, Ce, Co, Ga, Mn and significant positive correlations with: Cr, Ni, Th, U. While in MeOH extracted samples, significant positive correlations were only between oxidative potential and Ga, U and significant negative correlations with V. This indicates that PM2.5 samples extracted with different solvents will yield different conclusions about the causal components. This study highlights the importance of filter extraction methods in interpretation of oxidative potential results and comparisons between studies.Implications: While there is no standard method for PM2.5 filter extraction, variation of extraction methods impact analytical results. This project identifies that extraction method variation, particularly extraction solvent selection, leads to discrepancies in chemical and toxicological analysis for PM2.5 collected on the same filter. This work highlights the need for methods standardization to support accurate comparisons between PM2.5 research studies, thus providing better understanding of PM2.5 across the globe.
Collapse
Affiliation(s)
- Amelia M Craze
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA
| | - Christopher Bartle
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA
| | - Courtney Roper
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA
| |
Collapse
|
7
|
Wāng Y. Ambient fine particulate matter provokes multiple modalities of cell death via perturbation of subcellular structures. ENVIRONMENT INTERNATIONAL 2025; 195:109193. [PMID: 39721566 DOI: 10.1016/j.envint.2024.109193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 12/28/2024]
Abstract
Fine particulate matter (PM2.5) is increasingly recognized for its detrimental effects on human health, with substantial evidence linking exposure to various forms of cell death and dysfunction across multiple organ systems. This review examines key cell death mechanisms triggered by PM2.5, including PANoptosis, necroptosis, autophagy, and ferroptosis, while other forms such as oncosis, paraptosis, and cuprotosis remain unreported in relation to PM2.5 exposure. Mitochondria, endoplasmic reticulum, and lysosomes emerge as pivotal organelles in the disruption of cellular homeostasis, with mitochondrial dysfunction particularly implicated in metabolic dysregulation and the activation of pro-apoptotic pathways. Although PM2.5 primarily affects the nucleus, cytoskeleton, mitochondria, endoplasmic reticulum, and lysosomes, other organelles like ribosomes, Golgi apparatus, and peroxisomes have received limited attention. Interactions between these organelles, such as endoplasmic reticulum-associated mitochondrial membranes, lysosome-associated mitophagy, and mitochondria-nuclei retro-signaling may significantly contribute to the cytotoxic effects of PM2.5. The mechanisms of PM2.5 toxicity, encompassing oxidative stress, inflammatory responses, and metabolic imbalances, are described in detail. Notably, PM2.5 activates the NLRP3 inflammasome, amplifying inflammatory responses and contributing to chronic diseases. Furthermore, PM2.5 exposure disrupts genetic and epigenetic regulation, often resulting in cell cycle arrest and exacerbating cellular damage. The composition, concentration, and seasonal variability of PM2.5 modulate these effects, underscoring the complexity of PM2.5-induced cellular dysfunction. Despite significant advances in understanding these pathways, further research is required to elucidate the long-term effects of chronic PM2.5 exposure, the role of epigenetic regulation, and potential strategies to mitigate its harmful impact on human health.
Collapse
Affiliation(s)
- Yán Wāng
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China.
| |
Collapse
|
8
|
Taylor-Blair HC, Siu ACW, Haysom-McDowell A, Kokkinis S, Bani Saeid A, Chellappan DK, Oliver BGG, Paudel KR, De Rubis G, Dua K. The impact of airborne particulate matter-based pollution on the cellular and molecular mechanisms in chronic obstructive pulmonary disease (COPD). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176413. [PMID: 39322084 DOI: 10.1016/j.scitotenv.2024.176413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Inhalation of particulate matter (PM), one of the many components of air pollution, is associated with the development and exacerbation of chronic respiratory diseases, such as chronic obstructive pulmonary disease (COPD). COPD is one of the leading causes of global mortality and morbidity, with a paucity of therapeutic options and a significant contributor to global health expenditure. This review aims to provide a mechanistic understanding of the cellular and molecular pathways that lead to the development of COPD following chronic PM exposure. Our review describes how the inhalation of PM can lead to lung parenchymal destruction and cellular senescence due to chronic pulmonary inflammation and oxidative stress. Following inhalation of PM, significant increases in a range of pro-inflammatory cytokines, mediated by the nuclear factor kappa B pathway are reported. This review also highlights how the inhalation of PM can lead to deleterious chronic oxidative stress persisting in the lung post-exposure. Furthermore, our work summarises how PM inhalation can lead to airway remodelling, with increases in pro-fibrotic cytokines and collagen deposition, typical of COPD. This paper also accentuates the interconnection and possible synergism between the pathophysiological mechanisms leading to COPD. Our work emphasises the serious health consequences of PM exposure on respiratory health. Elucidation of the cellular and molecular mechanisms can provide insight into possible therapeutic options. Finally, this review should serve as a stark reminder of the need for genuine action on air pollution to decrease the associated health burden on our growing global population.
Collapse
Affiliation(s)
- Hudson C Taylor-Blair
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Alexander Chi Wang Siu
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Adam Haysom-McDowell
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sofia Kokkinis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ayeh Bani Saeid
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Brian G G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia; Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Macquarie Park, NSW 2113, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute, University of Technology Sydney, School of Life Sciences, Faculty of Science, Ultimo, NSW 2007, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
9
|
Salana S, Verma V. Review of in vitro studies evaluating respiratory toxicity of aerosols: impact of cell types, chemical composition, and atmospheric processing. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1922-1954. [PMID: 39291816 DOI: 10.1039/d4em00475b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In recent decades, several cell-based and acellular methods have been developed to evaluate ambient particulate matter (PM) toxicity. Although cell-based methods provide a more comprehensive assessment of PM toxicity, their results are difficult to comprehend due to the diversity in cellular endpoints, cell types, and assays and the interference of PM chemical components with some of the assays' techniques. In this review, we attempt to clarify some of these issues. We first discuss the morphological and immunological differences among various macrophage and epithelial cells, belonging to the respiratory systems of human and murine species, used in the in vitro studies evaluating PM toxicity. Then, we review the current state of knowledge on the role of different PM chemical components and the relevance of atmospheric processing and aging of aerosols in the respiratory toxicity of PM. Our review demonstrates the need to adopt more physiologically relevant cellular models such as epithelial (or endothelial) cells instead of macrophages for oxidative stress measurement. We suggest limiting macrophages for investigating other cellular responses (e.g., phagocytosis, inflammation, and DNA damage). Unlike monocultures (of macrophages and epithelial cells), which are generally used to study the direct effects of PM on a given cell type, the use of co-culture systems should be encouraged to investigate a more comprehensive effect of PM in the presence of other cells. Our review has identified two major groups of toxic PM chemical species from the existing literature, i.e., metals (Fe, Cu, Mn, Cr, Ni, and Zn) and organic compounds (PAHs, ketones, aliphatic and chlorinated hydrocarbons, and quinones). However, the relative toxicities of these species are still a matter of debate. Finally, the results of the existing studies investigating the effect of aging on PM toxicity are ambiguous, with varying results due to different cell types, different aging conditions, and the presence/absence of specific oxidants. More systematic studies are necessary to understand the role of different SOA precursors, interactions between different PM components, and aging conditions in the overall toxicity of PM. We anticipate that our review will guide future investigations by helping researchers choose appropriate cell models, resulting in a more meaningful interpretation of cell-based assays and thus ultimately leading to a better understanding of the health effects of PM exposure.
Collapse
Affiliation(s)
- Sudheer Salana
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, 61801, USA.
| | - Vishal Verma
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, 61801, USA.
| |
Collapse
|
10
|
Kang JY, Choi H, Oh JM, Kim M, Lee DC. PM 2.5 Induces Pyroptosis via Activation of the ROS/NF-κB Signaling Pathway in Bronchial Epithelial Cells. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1434. [PMID: 39336475 PMCID: PMC11434086 DOI: 10.3390/medicina60091434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024]
Abstract
Background and Objectives: Fine particulate matter, PM2.5, is becoming a major threat to human health, particularly in terms of respiratory diseases. Pyroptosis is a recently discovered and distinct form of cell death, characterized by pore formation in the cell membrane and secretions of proinflammatory cytokines. There has been little research on the effect of PM2.5 on pyroptosis, especially in airway epithelium. We investigated whether PM2.5-related oxidative stress induces pyroptosis in bronchial epithelial cells and defined the underlying mechanisms. Materials and Methods: After exposure of a BEAS-2B cell line to PM2.5 concentration of 20 µg/mL, reactive oxygen species (ROS) levels, parameters related to pyroptosis, and NF-κB signaling were measured by Western blotting, immunofluorescence, and ELISA (Enzyme-linked immunosorbent assay). Results: PM2.5 induced pyroptotic cell death, accompanied by LDH (Lactate dehydrogenase) release and increased uptake of propidium iodide in a dose-dependent manner. PM2.5 activated the NLRP3-casp1-gasdermin D pathway, with resulting secretions of the proinflammatory cytokines IL-1β and IL-18. The pyroptosis activated by PM2.5 was alleviated significantly by NLRP3 inhibitor. In PM2.5-exposed BEAS-2B cells, levels of intracellular ROS and NF-κB p65 increased. ROS scavenger inhibited the expression of the NLRP3 inflammasome, and the NF-κB inhibitor attenuated pyroptotic cell death triggered by PM2.5 exposure, indicating that the ROS/NF-κB pathway is involved in PM2.5-induced pyroptosis. Conclusions: These findings show that PM2.5 exposure can cause cell injury by NLRP3-inflammasome-mediated pyroptosis by upregulating the ROS/NF-κB pathway in airway epithelium.
Collapse
Affiliation(s)
- Ji-Young Kang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Jeju National University Hospital, 15 Aran 13-gil, Jeju-si 63241, Republic of Korea
| | - Hyunsu Choi
- Clinical Research Institute, Daejeon St. Mary's Hospital, Daeheung-dong, Jung-gu, Daejeon 34943, Republic of Korea
| | - Jeong-Min Oh
- Clinical Research Institute, Daejeon St. Mary's Hospital, Daeheung-dong, Jung-gu, Daejeon 34943, Republic of Korea
| | - Minsu Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 64 Daeheung-ro, Jung-gu, Daejeon 34943, Republic of Korea
| | - Dong-Chang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 64 Daeheung-ro, Jung-gu, Daejeon 34943, Republic of Korea
| |
Collapse
|
11
|
Poblano-Bata J, Zaragoza-Ojeda M, De Vizcaya-Ruiz A, Arenas-Huertero F, Amador-Muñoz O. Toxicological effects of solvent-extracted organic matter associated with PM 2.5 on human bronchial epithelial cell line NL-20. CHEMOSPHERE 2024; 362:142622. [PMID: 38880264 DOI: 10.1016/j.chemosphere.2024.142622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/02/2024] [Accepted: 06/14/2024] [Indexed: 06/18/2024]
Abstract
The heterogeneity and complexity of solvent-extracted organic matter associated with PM2.5 (SEOM-PM2.5) is well known; however, there is scarce information on its biological effects in human cells. This work aimed to evaluate the effect of SEOM-PM2.5 collected in northern Mexico City during the cold-dry season (November 2017) on NL-20 cells, a human bronchial epithelial cell line. The SEOM obtained accounted for 15.5% of the PM2.5 mass and contained 21 polycyclic aromatic hydrocarbons (PAHs). The cell viability decreased following exposure to SEOM-PM2.5, and there were noticeable morphological changes such as increased cell size and the presence of cytoplasmic vesicles in cells treated with 5-40 μg/mL SEOM-PM2.5. Exposure to 5 μg/mL SEOM-PM2.5 led to several alterations compared with the control cells, including the induction of double-stranded DNA breaks based (p < 0.001); nuclear fragmentation and an increased mitotic index (p < 0.05); 53BP1 staining, a marker of DNA repair by non-homologous end-joining (p < 0.001); increased BiP protein expression; and reduced ATF6, IRE1α, and PERK gene expression. Conversely, when exposed to 40 μg/mL SEOM-PM2.5, the cells showed an increase in reactive oxygen species formation (p < 0.001), BiP protein expression (p < 0.05), and PERK gene expression (p < 0.05), indicating endoplasmic reticulum stress. Our data suggest concentration-dependent toxicological effects of SEOM-PM2.5 on NL-20 cells, including genotoxicity, genomic instability, and endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Josefina Poblano-Bata
- Especiación Química de Aerosoles Orgánicos Atmosféricos, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México. Investigación Científica s/n, C.U., Coyoacán, Mexico City, 04510, Mexico; Centro de Investigación en Biomedicina y Bioseguridad, Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, 06720, Mexico.
| | - Montserrat Zaragoza-Ojeda
- Centro de Investigación en Biomedicina y Bioseguridad, Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, 06720, Mexico.
| | - Andrea De Vizcaya-Ruiz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados-IPN, Ciudad de México, 07360, Mexico.
| | - Francisco Arenas-Huertero
- Centro de Investigación en Biomedicina y Bioseguridad, Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, 06720, Mexico.
| | - Omar Amador-Muñoz
- Especiación Química de Aerosoles Orgánicos Atmosféricos, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México. Investigación Científica s/n, C.U., Coyoacán, Mexico City, 04510, Mexico.
| |
Collapse
|
12
|
Roh S, Hwang J, Park JH, Song DJ, Gim JA. Particulate matter-induced gene expression patterns in human-derived cells based on 11 public gene expression datasets. Genes Genomics 2024; 46:743-749. [PMID: 38733519 DOI: 10.1007/s13258-024-01512-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/04/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Exposure to particulate matter (PM) and house dust mite (HDM) can change the expression patterns of inflammation-, oxidative stress-, and cell death-related genes. We investigated the changes in gene expression patterns owing to PM exposure. OBJECTIVE This study examined the changes in gene expression patterns following PM exposure. METHODS We searched for differentially expressed genes (DEGs) following PM exposure using five cell line-based RNA-seq or microarray datasets and six human-derived datasets. The enrichment terms of the DEGs were assessed. RESULTS DEG analysis yielded two gene sets. Thus, enrichment analysis was performed for each gene set, and the enrichment terms related to respiratory diseases were presented. The intersection of six human-derived datasets and two gene sets was obtained, and the expression patterns following PM exposure were observed. CONCLUSIONS Two gene sets were obtained for cells treated with PM and their expression patterns were presented following verification in human-derived cells. Our findings suggest that exposure to PM2.5 and HDM may reveal changes in genes that are associated with diseases, such as allergies, highlighting the importance of mitigating PM2.5 and HDM exposure for disease prevention.
Collapse
Affiliation(s)
- Sanghyun Roh
- Department of Medical Science, Soonchunhyang University, Asan, 31538, Korea
| | - Jeongeun Hwang
- Department of Medical IT Engineering, Soonchunhyang University, Asan, 31538, Korea
| | - Joo-Hoo Park
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University College of Medicine, Seoul, 08308, Korea
| | - Dae Jin Song
- Department of Pediatrics, Korea University Guro Hospital, Seoul, 08308, Korea.
| | - Jeong-An Gim
- Department of Medical Science, Soonchunhyang University, Asan, 31538, Korea.
| |
Collapse
|
13
|
Guan X, Meng X, Zhong G, Zhang Z, Wang C, Xiao Y, Fu M, Zhao H, Zhou Y, Hong S, Xu X, Bai Y, Kan H, Chen R, Wu T, Guo H. Particulate matter pollution, polygenic risk score and mosaic loss of chromosome Y in middle-aged and older men from the Dongfeng-Tongji cohort study. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134315. [PMID: 38678703 DOI: 10.1016/j.jhazmat.2024.134315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/04/2024] [Accepted: 04/14/2024] [Indexed: 05/01/2024]
Abstract
Mosaic loss of chromosome Y (mLOY) is the most common somatic alteration as men aging and may reflect genome instability. PM exposure is a major health concern worldwide, but its effects with genetic factors on mLOY has never been investigated. Here we explored the associations of PM2.5 and PM10 exposure with mLOY of 10,158 males measured via signal intensity of 2186 probes in male-specific chromosome-Y region from Illumina array data. The interactive and joint effects of PM2.5 and PM10 with genetic factors and smoking on mLOY were further evaluated. Compared with the lowest tertiles of PM2.5 levels in each exposure window, the highest tertiles in the same day, 7-, 14-, 21-, and 28-day showed a 0.005, 0.006, 0.007, 0.007, and 0.006 decrease in mLRR-Y, respectively (all P < 0.05), with adjustment for age, BMI, smoking pack-years, alcohol drinking status, physical activity, education levels, season of blood draw, and experimental batch. Such adverse effects were also observed in PM10-mLOY associations. Moreover, the unweighted and weighted PRS presented significant negative associations with mLRR-Y (both P < 0.001). Participants with high PRS and high PM2.5 or PM10 exposure in the 28-day separately showed a 0.018 or 0.019 lower mLRR-Y level [β (95 %CI) = -0.018 (-0.023, -0.012) and - 0.019 (-0.025, -0.014), respectively, both P < 0.001], when compared to those with low PRS and low PM2.5 or PM10 exposure. We also observed joint effects of PM with smoking on exacerbated mLOY. This large study is the first to elucidate the impacts of PM2.5 exposure on mLOY, and provides key evidence regarding the interactive and joint effects of PM with genetic factors on mLOY, which may promote understanding of mLOY development, further modifying and increasing healthy aging in males.
Collapse
Affiliation(s)
- Xin Guan
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Xia Meng
- Department of Environment Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Guorong Zhong
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Zirui Zhang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Chenming Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Yang Xiao
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Ming Fu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Hui Zhao
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Yuhan Zhou
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Shiru Hong
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Xuedan Xu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Yansen Bai
- Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Haidong Kan
- Department of Environment Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Renjie Chen
- Department of Environment Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Tangchun Wu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Huan Guo
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China.
| |
Collapse
|
14
|
Herath HMUL, Piao MJ, Kang KA, Fernando PDSM, Hyun JW. Protective effect of 3-bromo-4,5-dihydroxybenzaldehyde against PM 2.5-induced cell cycle arrest and autophagy in keratinocytes. Mol Cells 2024; 47:100066. [PMID: 38679413 PMCID: PMC11126928 DOI: 10.1016/j.mocell.2024.100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/21/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024] Open
Abstract
Particulate matter 2.5 (PM2.5) poses a serious threat to human health and is responsible for respiratory disorders, cardiovascular diseases, and skin disorders. 3-Bromo-4,5-dihydroxybenzaldehyde (3-BDB), abundant in marine red algae, exhibits anti-inflammatory, antioxidant, and antidiabetic activities. In this study, we investigated the protective mechanisms of 3-BDB against PM2.5-induced cell cycle arrest and autophagy in human keratinocytes. Intracellular reactive oxygen species generation, DNA damage, cell cycle arrest, intracellular Ca2+ level, and autophagy activation were tested. 3-BDB was found to restore cell proliferation and viability which were reduced by PM2.5. Furthermore, 3-BDB reduced PM2.5-induced reactive oxygen species levels, DNA damage, and attenuated cell cycle arrest. Moreover, 3-BDB ameliorated the PM2.5-induced increases in cellular Ca2+ level and autophagy activation. While PM2.5 treatment reduced cell growth and viability, these were restored by the treatment with the autophagy inhibitor bafilomycin A1 or 3-BDB. The findings indicate that 3-BDB ameliorates skin cell death caused by PM2.5 via inhibiting cell cycle arrest and autophagy. Hence, 3-BDB can be exploited as a preventive/therapeutic agent for PM2.5-induced skin impairment.
Collapse
Affiliation(s)
- Herath Mudiyanselage Udari Lakmini Herath
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea; Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Mei Jing Piao
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea; Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Kyoung Ah Kang
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea; Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Pincha Devage Sameera Madushan Fernando
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea; Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea; Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
15
|
Melzi G, Massimi L, Frezzini MA, Iulini M, Tarallo N, Rinaldi M, Paglione M, Nozza E, Crova F, Valentini S, Valli G, Costabile F, Canepari S, Decesari S, Vecchi R, Marinovich M, Corsini E. Redox-activity and in vitro effects of regional atmospheric aerosol pollution: Seasonal differences and correlation between oxidative potential and in vitro toxicity of PM 1. Toxicol Appl Pharmacol 2024; 485:116913. [PMID: 38522584 DOI: 10.1016/j.taap.2024.116913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Particulate Matter (PM) is a complex and heterogeneous mixture of atmospheric particles recognized as a threat to human health. Oxidative Potential (OP) measurement is a promising and integrative method for estimating PM-induced health impacts since it is recognized as more closely associated with adverse health effects than ordinarily used PM mass concentrations. OP measurements could be introduced in the air quality monitoring, along with the parameters currently evaluated. PM deposition in the lungs induces oxidative stress, inflammation, and DNA damage. The study aimed to compare the OP measurements with toxicological effects on BEAS-2B and THP-1 cells of winter and summer PM1 collected in the Po Valley (Italy) during 2021. PM1 was extracted in deionized water by mechanical agitation and tested for OP and, in parallel, used to treat cells. Cytotoxicity, genotoxicity, oxidative stress, and inflammatory responses were assessed by MTT test, DCFH-DA assay, micronucleus, γ-H2AX, comet assay modified with endonucleases, ELISA, and Real-Time PCR. The evaluation of OP was performed by applying three different assays: dithiothreitol (OPDTT), ascorbic acid (OPAA), and 2',7'-dichlorofluorescein (OPDCFH), in addition, the reducing potential was also analysed (RPDPPH). Seasonal differences were detected in all the parameters investigated. The amount of DNA damage detected with the Comet assay and ROS formation highlights the presence of oxidative damage both in winter and in summer samples, while DNA damage (micronucleus) and genes regulation were mainly detected in winter samples. A positive correlation with OPDCFH (Spearman's analysis, p < 0.05) was detected for IL-8 secretion and γ-H2AX. These results provide a biological support to the implementation in air quality monitoring of OP measurements as a useful proxy to estimate PM-induced cellular toxicological responses. In addition, these results provide new insights for the assessment of the ability of secondary aerosol in the background atmosphere to induce oxidative stress and health effects.
Collapse
Affiliation(s)
- Gloria Melzi
- Department of Pharmacological and Biomolecular Science (DiSFeB) "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy.
| | - Lorenzo Massimi
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Rome, Italy; Institute of Atmospheric Pollution Research, National Research Council, Via Salaria, Km 29,300, Monterotondo St., 00015 Rome, Italy
| | - Maria Agostina Frezzini
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Rome, Italy; ARPA Lazio, Regional Environmental Protection Agency, Via Boncompagni 101, 00187 Rome, Italy
| | - Martina Iulini
- Department of Pharmacological and Biomolecular Science (DiSFeB) "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Naima Tarallo
- Department of Pharmacological and Biomolecular Science (DiSFeB) "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Matteo Rinaldi
- Institute of Atmospheric Sciences and Climate, National Research Council, 40129 Bologna, Italy; National Biodiversity Future Center, NBFC, 90133 Palermo, Italy
| | - Marco Paglione
- Institute of Atmospheric Sciences and Climate, National Research Council, 40129 Bologna, Italy; National Biodiversity Future Center, NBFC, 90133 Palermo, Italy
| | - Emma Nozza
- Department of Pharmacological and Biomolecular Science (DiSFeB) "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; Experimental Medicine, Università degli Studi di Milano, Via L. Vanvitelli 32, 20129 Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via della Commenda 19, 20122 Milan, Italy
| | - Federica Crova
- Department of Physics, Università degli Studi di Milano & INFN-Milano, Via Celoria 16, 20133 Milan, Italy
| | - Sara Valentini
- Department of Physics, Università degli Studi di Milano & INFN-Milano, Via Celoria 16, 20133 Milan, Italy
| | - Gianluigi Valli
- Department of Physics, Università degli Studi di Milano & INFN-Milano, Via Celoria 16, 20133 Milan, Italy
| | - Francesca Costabile
- National Biodiversity Future Center, NBFC, 90133 Palermo, Italy; Institute of Atmospheric Sciences and Climate, National Research Council, Via Fosso del Cavaliere 100, Rome, Italy
| | - Silvia Canepari
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Rome, Italy; Institute of Atmospheric Pollution Research, National Research Council, Via Salaria, Km 29,300, Monterotondo St., 00015 Rome, Italy
| | - Stefano Decesari
- Institute of Atmospheric Sciences and Climate, National Research Council, 40129 Bologna, Italy; National Biodiversity Future Center, NBFC, 90133 Palermo, Italy
| | - Roberta Vecchi
- Department of Physics, Università degli Studi di Milano & INFN-Milano, Via Celoria 16, 20133 Milan, Italy
| | - Marina Marinovich
- Department of Pharmacological and Biomolecular Science (DiSFeB) "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Emanuela Corsini
- Department of Pharmacological and Biomolecular Science (DiSFeB) "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| |
Collapse
|
16
|
Chen W, Ge P, Deng M, Liu X, Lu Z, Yan Z, Chen M, Wang J. Toxicological responses of A549 and HCE-T cells exposed to fine particulate matter at the air-liquid interface. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27375-27387. [PMID: 38512571 PMCID: PMC11052810 DOI: 10.1007/s11356-024-32944-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
Fine particulate matter (PM2.5) can enter the human body in various ways and have adverse effects on human health. Human lungs and eyes are exposed to the air for a long time and are the first to be exposed to PM2.5. The "liquid immersion exposure method" has some limitations that prevent it from fully reflecting the toxic effects of particulate matter on the human body. In this study, the collected PM2.5 samples were chemically analyzed. An air-liquid interface (ALI) model with a high correlation to the in vivo environment was established based on human lung epithelial cells (A549) and immortalized human corneal epithelial cells (HCE-T). The VITROCELL Cloud 12 system was used to distribute PM2.5 on the cells evenly. After exposure for 6 h and 24 h, cell viability, apoptosis rate, reactive oxygen species (ROS) level, expression of inflammatory factors, and deoxyribonucleic acid (DNA) damage were measured. The results demonstrated significant dose- and time-dependent effects of PM2.5 on cell viability, cell apoptosis, ROS generation, and DNA damage at the ALI, while the inflammatory factors showed dose-dependent effects only. It should be noted that even short exposure to low doses of PM2.5 can cause cell DNA double-strand breaks and increased expression of γ-H2AX, indicating significant genotoxicity of PM2.5. Increased abundance of ROS in cells plays a crucial role in the cytotoxicity induced by PM2.5 exposure These findings emphasize the significant cellular damage and genotoxicity that may result from short-term exposure to low levels of PM2.5.
Collapse
Affiliation(s)
- Wankang Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Pengxiang Ge
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Minjun Deng
- Ningxia Meteorological Service Center, Yinchuan, 750002, China
| | - Xiaoming Liu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Zhenyu Lu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Zhansheng Yan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Mindong Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Junfeng Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| |
Collapse
|
17
|
Tian S, Liu W, Liu B, Ye F, Xu Z, Wan Q, Li Y, Zhang X. Mechanistic study of C 5F 10O-induced lung toxicity in rats: An eco-friendly insulating gas alternative to SF 6. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170271. [PMID: 38262248 DOI: 10.1016/j.scitotenv.2024.170271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/23/2023] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
The global warming and other environmental problems caused by SF6 emissions can be reduced due to the widespread use of eco-friendly insulating gas, perfluoropentanone (C5F10O). However, there is an exposure risk to populations in areas near C5F10O equipment, so it is important to clarify its biosafety and pathogenesis before large-scale application. In this paper, histopathology, transcriptomics, 4D-DIA proteomics, and LC-MS metabolomics of rats exposed to 2000 ppm and 6000 ppm C5F10O are analyzed to reveal the mechanisms of toxicity and health risks. Histopathological shows that inflammatory cell infiltration, epithelial cell hyperplasia, and alveolar atrophy accompanied by alveolar wall thickening are present in both low-dose and high-dose groups. Analysis of transcriptomic and 4D-DIA proteomic show that Cell cycle and DNA replication can be activated by both 2000 ppm and 6000 ppm C5F10O to induce cell proliferation. In addition, it also leads to the activation of pathways such as Antigen processing and presentation, Cell adhesion molecules and Complement and coagulation cascades, T cell receptor signal path, Th1 and T cell receptor signal path, Th1 and Th2 cell differentiation, complement and coagulation cascades. Finally, LC-MS metabolomics analysis confirms that the metabolic pathways associated with glycerophospholipids, arachidonic acid, and linoleic acid are disrupted and become more severe with increasing doses. The mechanism of lung toxicity caused by C5F10O is systematically expounded based on the multi-omics analysis and provided biosafety references for further promotion and application of C5F10O.
Collapse
Affiliation(s)
- Shuangshuang Tian
- Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan 430068, China
| | - Weihao Liu
- Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan 430068, China
| | - Benli Liu
- Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan 430068, China
| | - Fanchao Ye
- Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan 430068, China
| | - Zhenjie Xu
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Qianqian Wan
- Zhongnan Hospital, Wuhan University, Wuhan, China.
| | - Yi Li
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, China
| | - Xiaoxing Zhang
- Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan 430068, China; School of Electrical Engineering and Automation, Wuhan University, Wuhan, China.
| |
Collapse
|
18
|
Yang ZY, Liu H, Li JY, Bao YB, Yang J, Li L, Zhao ZY, Zheng QX, Xiang P. Road dust exposure and human corneal damage in a plateau high geological background provincial capital city: Spatial distribution, sources, bioaccessibility, and cytotoxicity of dust heavy metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169140. [PMID: 38070561 DOI: 10.1016/j.scitotenv.2023.169140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/17/2023] [Accepted: 11/25/2023] [Indexed: 01/18/2024]
Abstract
Ocular surface diseases are common in the plateau city, Kunming China, the continued daily exposure to heavy metals in dust may be an important inducement. In this study, the 150 road dust samples from five functional areas in Kunming were collected. The concentrations, distribution, possible sources, and bioaccessibility of heavy metals were analyzed. The adverse effects of dust extracts on human corneal epithelial cells and the underlying mechanisms were also assessed. The concentrations (mg·kg-1) of As (19.1), Cd (2.67), Cr (90.5), Cu (123), Pb (78.4), and Zn (389) in road dust were higher than the soil background, with commercial and residential areas showing the highest pollution. Their bioaccessibility in artificial tears was As (6.59 %) > Cu (5.11 %) > Ni (1.47 %) > Cr (1.17 %) > Mn (0.84 %) > Cd (0.76 %) > Zn (0.50 %) > Pb (0.31 %). The two main sources of heavy metals included tire and mechanical abrasion (24.5 %) and traffic exhaust (21.6 %). All dust extracts induced cytotoxicity, evidenced by stronger inhibition of cell viability, higher production of ROS, and altered mRNA expression of antioxidant enzymes and cell cycle-related genes, with commercial- areas-2 (CA2)-dust extract showing the greatest oxidative damage and cell cycle arrest. Our data may provide new evidence that dust exposure in high geological background cities could trigger human cornea damage.
Collapse
Affiliation(s)
- Zi-Yue Yang
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Hai Liu
- Affiliated Hospital of Yunnan University, Eye Hospital of Yunnan Province, Kunming 650224, China
| | - Jing-Ya Li
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Ya-Bo Bao
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Ji Yang
- Affiliated Hospital of Yunnan University, Eye Hospital of Yunnan Province, Kunming 650224, China
| | - Li Li
- Precious Metal Testing Co. LTD of Yunnan Gold Mining Group, Kunming 650215, China
| | - Zi-Yu Zhao
- Precious Metal Testing Co. LTD of Yunnan Gold Mining Group, Kunming 650215, China
| | - Qin-Xiang Zheng
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo 315040, China.
| | - Ping Xiang
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
19
|
Ahn Y, Yim YH, Yoo HM. Particulate Matter Induces Oxidative Stress and Ferroptosis in Human Lung Epithelial Cells. TOXICS 2024; 12:161. [PMID: 38393256 PMCID: PMC10893167 DOI: 10.3390/toxics12020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/11/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Numerous toxicological studies have highlighted the association between urban particulate matter (PM) and increased respiratory infections and lung diseases. The adverse impact on the lungs is directly linked to the complex composition of particulate matter, initiating reactive oxygen species (ROS) production and consequent lipid peroxidation. Excessive ROS, particularly within mitochondria, can destroy subcellular organelles through various pathways. In this study, we confirmed the induction of ferroptosis, an iron-dependent cell death, upon exposure to an urban PM using RT-qPCR and signaling pathway analysis. We used KRISS CRM 109-02-004, the certified reference material for the analysis of particulate matter, produced by the Korea Research Institute of Standards and Science (KRISS). To validate that ferroptosis causes lung endothelial toxicity, we assessed intracellular mitochondrial potential, ROS overproduction, lipid peroxidation, and specific ferroptosis biomarkers. Following exposure to the urban PM, a significant increase in ROS generation and a decrease in mitochondrial potential were observed. Furthermore, it induced hallmarks of ferroptosis, including the accumulation of lipid peroxidation, the loss of antioxidant defenses, and cellular iron accumulation. In addition, the occurrence of oxidative stress as a key feature of ferroptosis was confirmed by increased expression levels of specific oxidative stress markers such as NQO1, CYP1B1, FTH1, SOD2, and NRF. Finally, a significant increase in key ferroptosis markers was observed, including xCT/SLC7A11, NQO1, TRIM16, HMOX-1, FTL, FTH1, CYP1B1, CHAC1, and GPX4. This provides evidence that elevated ROS levels induce oxidative stress, which ultimately triggers ferroptosis. In conclusion, our results show that the urban PM, KRISS CRM, induces cellular and mitochondrial ROS production, leading to oxidative stress and subsequent ferroptosis. These results suggest that it may induce ferroptosis through ROS generation and may offer potential strategies for the treatment of lung diseases.
Collapse
Affiliation(s)
- Yujin Ahn
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
- Department of Precision Measurement, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Yong-Hyeon Yim
- Department of Precision Measurement, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Inorganic Metrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
| | - Hee Min Yoo
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
- Department of Precision Measurement, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
20
|
Rahmatinia M, Mohseni-Bandpei A, Khodagholi F, Abdollahifar MA, Amouei Torkmahalleh M, Hassani Moghaddam M, Hopke PK, Ghavimehr E, Bazzazpour S, Shahsavani A. Exposure to different PM 2.5 extracts induces gliosis and changes behavior in male rats similar to autism spectrum disorders features. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122804. [PMID: 37907193 DOI: 10.1016/j.envpol.2023.122804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023]
Abstract
Epidemiological studies have documented that exposure to fine particulate matter (PM2.5) could affect neurodevelopment, thereby leading to autism spectrum disorders (ASD). Nevertheless, there is little laboratory data to support this epidemiological evidence. In the current study, we carried out a series of experiments to assess whether developmental exposures to different extracts of PM2.5 can result in ASD-like behavioral, biochemical, and immunohistochemical characteristics in male rat offspring. PM2.5 samples were collected daily for a year, and monthly composites were extracted with an acetone-hexane mixture. The extracts were analyzed for their chemical constituents. Three groups of rats were exposed to the different PM2.5 extracts during pre- and postnatal periods. All exposed groups of rats exhibited typical behavioral features of ASD, including increased repetitive and depression-related behaviors. We also found microglia and astrocytes activation and decreased concentrations of oxytocin (OXT) in the brain regions of exposed rats compared with control rats. Comparing the current results with a prior study, the induced biological effects followed a sequence of whole particles of PM2.5 > organic extract > inorganic extract. These findings indicated that exposure to PM2.5 can elicit ASD-like features in rats and raise concerns about particulate matter as a possible trigger for the induction of ASD in humans; therefore, mitigating the contents of the PAHs and metals could reduce the PM2.5 neurotoxicity.
Collapse
Affiliation(s)
- Masoumeh Rahmatinia
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Air Quality and Climate Change Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anoushiravan Mohseni-Bandpei
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Air Quality and Climate Change Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Amouei Torkmahalleh
- Division of Environmental and Occupational Health Sciences, School of Public Health, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Meysam Hassani Moghaddam
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Ehsan Ghavimehr
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shahriyar Bazzazpour
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Shahsavani
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Air Quality and Climate Change Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Petpiroon N, Netkueakul W, Sukrak K, Wang C, Liang Y, Wang M, Liu Y, Li Q, Kamran R, Naruse K, Aueviriyavit S, Takahashi K. Development of lung tissue models and their applications. Life Sci 2023; 334:122208. [PMID: 37884207 DOI: 10.1016/j.lfs.2023.122208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/04/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
The lungs are important organs that play a critical role in the development of specific diseases, as well as responding to the effects of drugs, chemicals, and environmental pollutants. Due to the ethical concerns around animal testing, alternative methods have been sought which are more time-effective, do not pose ethical issues for animals, do not involve species differences, and provide easy investigation of the pathobiology of lung diseases. Several national and international organizations are working to accelerate the development and implementation of structurally and functionally complex tissue models as alternatives to animal testing, particularly for the lung. Unfortunately, to date, there is no lung tissue model that has been accepted by regulatory agencies for use in inhalation toxicology. This review discusses the challenges involved in developing a relevant lung tissue model derived from human cells such as cell lines, primary cells, and pluripotent stem cells. It also introduces examples of two-dimensional (2D) air-liquid interface and monocultured and co-cultured three-dimensional (3D) culture techniques, particularly organoid culture and 3D bioprinting. Furthermore, it reviews development of the lung-on-a-chip model to mimic the microenvironment and physiological performance. The applications of lung tissue models in various studies, especially disease modeling, viral respiratory infection, and environmental toxicology will be also introduced. The development of a relevant lung tissue model is extremely important for standardizing and validation the in vitro models for inhalation toxicity and other studies in the future.
Collapse
Affiliation(s)
- Nalinrat Petpiroon
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Woranan Netkueakul
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Kanokwan Sukrak
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Thailand Network Center on Air Quality Management: TAQM, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chen Wang
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Yin Liang
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Mengxue Wang
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Yun Liu
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Qiang Li
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Rumaisa Kamran
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Keiji Naruse
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Sasitorn Aueviriyavit
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Ken Takahashi
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan.
| |
Collapse
|
22
|
Déciga-Alcaraz A, Tlazolteotl Gómez de León C, Morales Montor J, Poblano-Bata J, Martínez-Domínguez YM, Palacios-Arreola MI, Amador-Muñoz O, Rodríguez-Ibarra C, Vázquez-Zapién GJ, Mata-Miranda MM, Sánchez-Pérez Y, Chirino YI. Effects of solvent extracted organic matter from outdoor air pollution on human type II pneumocytes: Molecular and proteomic analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122551. [PMID: 37714400 DOI: 10.1016/j.envpol.2023.122551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Outdoor air pollution is responsible for the exacerbation of respiratory diseases in humans. Particulate matter with an aerodynamic diameter ≤2.5 μm (PM2.5) is one of the main components of outdoor air pollution, and solvent extracted organic matter (SEOM) is adsorbed to the main PM2.5 core. Some of the biological effects of black carbon and polycyclic aromatic hydrocarbons, which are components of PM2.5, are known, but the response of respiratory cell lineages to SEOM exposure has not been described until now. The aim of this study was to obtain SEOM from PM2.5 and analyze the molecular and proteomic effects on human type II pneumocytes. PM2.5 was collected from Mexico City in the wildfire season and the SEOM was characterized to be exposed on human type II pneumocytes. The effects were compared with benzo [a] pyrene (B[a]P) and hydrogen peroxide (H2O2). The results showed that SEOM induced a decrease in surfactant and deregulation in the molecular protein and lipid pattern analyzed by reflection-Fourier transform infrared (ATR-FTIR) spectroscopy on human type II pneumocytes after 24 h. The molecular alterations induced by SEOM were not shared by those induced by B[a]P nor H2O2, which highlights specific SEOM effects. In addition, proteomic patterns by quantitative MS analysis revealed a downregulation of 171 proteins and upregulation of 134 proteins analyzed in the STRING database. The deregulation was associated with positive regulation of apoptotic clearance, removal of superoxide radicals, and positive regulation of heterotypic cell-cell adhesion processes, while ATP metabolism, nucleotide process, and cellular metabolism were also affected. Through this study, we conclude that SEOM extracted from PM2.5 exerts alterations in molecular patterns of protein and lipids, surfactant expression, and deregulation of metabolic pathways of type II pneumocytes after 24 h of exposure in absence of cytotoxicity, which warns about apparent SEOM silent effects.
Collapse
Affiliation(s)
- Alejandro Déciga-Alcaraz
- Laboratorio de Especiación Química de Aerosoles Orgánicos Atmosféricos, Instituto de Ciencias de La Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, CP, 04510, Ciudad de México, Mexico; Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de Los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz, CP, 54090, Estado de México, Mexico.
| | - Carmen Tlazolteotl Gómez de León
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, CP, 04510, Ciudad de México, Mexico.
| | - Jorge Morales Montor
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, CP, 04510, Ciudad de México, Mexico.
| | - Josefina Poblano-Bata
- Laboratorio de Especiación Química de Aerosoles Orgánicos Atmosféricos, Instituto de Ciencias de La Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, CP, 04510, Ciudad de México, Mexico.
| | - Yadira Margarita Martínez-Domínguez
- Laboratorio de Especiación Química de Aerosoles Orgánicos Atmosféricos, Instituto de Ciencias de La Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, CP, 04510, Ciudad de México, Mexico.
| | - M Isabel Palacios-Arreola
- Departamento de Investigación en Toxicología y Medicina Ambiental, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, CP, 14080, Ciudad de México, Mexico.
| | - Omar Amador-Muñoz
- Laboratorio de Especiación Química de Aerosoles Orgánicos Atmosféricos, Instituto de Ciencias de La Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, CP, 04510, Ciudad de México, Mexico.
| | - Carolina Rodríguez-Ibarra
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de Los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz, CP, 54090, Estado de México, Mexico.
| | - Gustavo J Vázquez-Zapién
- Laboratorio de Embriología, Escuela Militar de Medicina, Centro Militar de Ciencias de La Salud, Secretaría de La Defensa Nacional, Cerrada de Palomas S/N, Lomas de San Isidro, Alcaldía Miguel Hidalgo, C.P, 11200, Ciudad de México, Mexico.
| | - Mónica M Mata-Miranda
- Laboratorio de Biología Celular y Tisular, Escuela Militar de Medicina, Centro Militar de Ciencias de La Salud, Secretaría de La Defensa Nacional, Cerrada de Palomas S/N, Lomas de San Isidro, Alcaldía Miguel Hidalgo, C.P, 11200, Ciudad de México, Mexico.
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de México, CP, 14080, Mexico.
| | - Yolanda I Chirino
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de Los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz, CP, 54090, Estado de México, Mexico.
| |
Collapse
|
23
|
Barbier E, Carpentier J, Simonin O, Gosset P, Platel A, Happillon M, Alleman LY, Perdrix E, Riffault V, Chassat T, Lo Guidice JM, Anthérieu S, Garçon G. Oxidative stress and inflammation induced by air pollution-derived PM 2.5 persist in the lungs of mice after cessation of their sub-chronic exposure. ENVIRONMENT INTERNATIONAL 2023; 181:108248. [PMID: 37857188 DOI: 10.1016/j.envint.2023.108248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023]
Abstract
More than 7 million early deaths/year are attributable to air pollution. Current health concerns are especially focused on air pollution-derived particulate matter (PM). Although oxidative stress-induced airway inflammation is one of the main adverse outcome pathways triggered by air pollution-derived PM, the persistence of both these underlying mechanisms, even after exposure cessation, remained poorly studied. In this study, A/JOlaHsd mice were also exposed acutely (24 h) or sub-chronically (4 weeks), with or without a recovery period (12 weeks), to two urban PM2.5 samples collected during contrasting seasons (i.e., autumn/winter, AW or spring/summer, SS). The distinct intrinsic oxidative potentials (OPs) of AW and SS PM2.5, as evaluated in acellular conditions, were closely related to their respective physicochemical characteristics and their respective ability to really generate ROS over-production in the mouse lungs. Despite the early activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) cell signaling pathway by AW and, in a lesser degree, SS PM2.5, in the murine lungs after acute and sub-chronic exposures, the critical redox homeostasis was not restored, even after the exposure cessation. Accordingly, an inflammatory response was reported through the activation of the nuclear factor-kappa B (NF-κB) cell signaling pathway activation, the secretion of cytokines, and the recruitment of inflammatory cells, in the murine lungs after the acute and sub-chronic exposures to AW and, in a lesser extent, to SS PM2.5, which persisted after the recovery period. Taken together, these original results provided, for the first time, new relevant insights that air pollution-derived PM2.5, with relatively high intrinsic OPs, induced oxidative stress and inflammation, which persisted admittedly at a lower level in the lungs after the exposure cessation, thereby contributing to the occurrence of molecular and cellular adverse events leading to the development and/or exacerbation of future chronic inflammatory lung diseases and even cancers.
Collapse
Affiliation(s)
- Emeline Barbier
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR4483-IMPECS, France
| | - Jessica Carpentier
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR4483-IMPECS, France
| | - Ophélie Simonin
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR4483-IMPECS, France
| | - Pierre Gosset
- Service d'Anatomo-pathologie, Hôpital Saint Vincent de Paul, Lille, France
| | - Anne Platel
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR4483-IMPECS, France
| | - Mélanie Happillon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR4483-IMPECS, France
| | - Laurent Y Alleman
- IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Energy and Environment, Lille, France
| | - Esperanza Perdrix
- IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Energy and Environment, Lille, France
| | - Véronique Riffault
- IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Energy and Environment, Lille, France
| | - Thierry Chassat
- Institut Pasteur de Lille, Plateforme d'Expérimentation et de Haute Technologie Animale, Lille, France
| | | | | | - Guillaume Garçon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR4483-IMPECS, France.
| |
Collapse
|
24
|
Bongaerts E, Mamia K, Rooda I, Björvang RD, Papaikonomou K, Gidlöf SB, Olofsson JI, Ameloot M, Alfaro-Moreno E, Nawrot TS, Damdimopoulou P. Ambient black carbon particles in human ovarian tissue and follicular fluid. ENVIRONMENT INTERNATIONAL 2023; 179:108141. [PMID: 37603992 DOI: 10.1016/j.envint.2023.108141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/10/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023]
Abstract
Evidence indicates a link between exposure to ambient air pollution and decreased female fertility. The ability of air pollution particles to reach human ovarian tissue and follicles containing the oocytes in various maturation stages has not been studied before. Particulate translocation might be an essential step in explaining reproductive toxicity and assessing associated risks. Here, we analysed the presence of ambient black carbon particles in (i) follicular fluid samples collected during ovum pick-up from 20 women who underwent assisted reproductive technology treatment and (ii) adult human ovarian tissue from 5 individuals. Follicular fluid and ovarian tissue samples were screened for the presence of black carbon particles from ambient air pollution using white light generation by carbonaceous particles under femtosecond pulsed laser illumination. We detected black carbon particles in all follicular fluid (n = 20) and ovarian tissue (n = 5) samples. Black carbon particles from ambient air pollution can reach the ovaries and follicular fluid, directly exposing the ovarian reserve and maturing oocytes. Considering the known link between air pollution and decreased fertility, the impact of such exposure on oocyte quality, ovarian ageing and fertility needs to be clarified urgently.
Collapse
Affiliation(s)
- Eva Bongaerts
- Centre for Environmental Sciences, Hasselt University, 3590 Hasselt, Belgium
| | - Katariina Mamia
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 86 Huddinge, Sweden; Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, 141 86 Huddinge, Sweden
| | - Ilmatar Rooda
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 86 Huddinge, Sweden; Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, 141 86 Huddinge, Sweden
| | - Richelle D Björvang
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 86 Huddinge, Sweden; Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, 141 86 Huddinge, Sweden; Department of Women's and Children's Health, Uppsala University, 75185 Uppsala, Sweden
| | - Kiriaki Papaikonomou
- Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, 141 86 Huddinge, Sweden; Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sebastian B Gidlöf
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 86 Huddinge, Sweden; Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, 141 86 Huddinge, Sweden; Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Jan I Olofsson
- Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Marcel Ameloot
- Biomedical Research Institute, Hasselt University, 3590 Hasselt, Belgium
| | - Ernesto Alfaro-Moreno
- Nanosafety Group, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, 3590 Hasselt, Belgium; Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 86 Huddinge, Sweden; Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, 141 86 Huddinge, Sweden.
| |
Collapse
|
25
|
Sun G, Wu X, Zhu H, Yuan K, Zhang Y, Zhang C, Deng Z, Zhou M, Zhang Z, Yang G, Chu H. Reactive Oxygen Species-Triggered Curcumin Release from Hollow Mesoporous Silica Nanoparticles for PM 2.5-Induced Acute Lung Injury Treatment. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37411033 DOI: 10.1021/acsami.3c07361] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Exposure to fine particulate matter with a diameter ≤2.5 μm (PM2.5) can result in serious inflammation and oxidative stress in lung tissue. However, there is presently very few effective treatments for PM2.5-induced many pulmonary diseases, such as acute lung injury (ALI). Herein, curcumin-loaded reactive oxygen species (ROS)-responsive hollow mesoporous silica nanoparticles (Cur@HMSN-BSA) are proposed for scavenging the intracellular ROS and suppressing inflammatory responses against PM2.5-induced ALI. The prepared nanoparticles were coated with bovine serum albumin (BSA) via an ROS-sensitive thioketal (TK)-containing linker, in which the TK-containing linker would be cleaved by the excessive amounts of ROS in inflammatory sites to induce the detachment of BSA from the nanoparticles surface and thus triggering release of loaded curcumin. The Cur@HMSN-BSA nanoparticles could be used as ROS scavengers because of their excellent ROS-responsiveness, which were able to efficiently consume high concentrations of intracellular ROS. Furthermore, it was also found that Cur@HMSN-BSA downregulated the secretion of several important pro-inflammatory cytokines and promoted the polarization from M1 phenotypic macrophages to M2 phenotypic macrophages for eliminating PM2.5-induced inflammatory activation. Therefore, this work provided a promising strategy to synergistically scavenge intracellular ROS and suppress the inflammation responses, which may serve as an ideal therapeutic platform for pneumonia treatment.
Collapse
Affiliation(s)
- Guanting Sun
- Department of Environmental Genomics, The Key Laboratory of Modern Toxicology of Ministry of Education, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xirui Wu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Huanhuan Zhu
- Department of Environmental Genomics, The Key Laboratory of Modern Toxicology of Ministry of Education, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Kangzhi Yuan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yifan Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Cai Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zheng Deng
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Meiyu Zhou
- Department of Environmental Genomics, The Key Laboratory of Modern Toxicology of Ministry of Education, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, The Key Laboratory of Modern Toxicology of Ministry of Education, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Guangbao Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Haiyan Chu
- Department of Environmental Genomics, The Key Laboratory of Modern Toxicology of Ministry of Education, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
26
|
Nan N, Yan Z, Zhang Y, Chen R, Qin G, Sang N. Overview of PM 2.5 and health outcomes: Focusing on components, sources, and pollutant mixture co-exposure. CHEMOSPHERE 2023; 323:138181. [PMID: 36806809 DOI: 10.1016/j.chemosphere.2023.138181] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
PM2.5 varies in source and composition over time and space as a complicated mixture. Consequently, the health effects caused by PM2.5 varies significantly over time and generally exhibit significant regional variations. According to numerous studies, a notable relationship exists between PM2.5 and the occurrence of many diseases, such as respiratory, cardiovascular, and nervous system diseases, as well as cancer. Therefore, a comprehensive understanding of the effect of PM2.5 on human health is critical. The toxic effects of various PM2.5 components, as well as the overall toxicity of PM2.5 are discussed in this review to provide a foundation for precise PM2.5 emission control. Furthermore, this review summarizes the synergistic effect of PM2.5 and other pollutants, which can be used to draft effective policies.
Collapse
Affiliation(s)
- Nan Nan
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Zhipeng Yan
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Yaru Zhang
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Rui Chen
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, 100054, PR China; Beijing City University, Beijing, 11418, PR China.
| | - Guohua Qin
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China.
| | - Nan Sang
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| |
Collapse
|
27
|
Zhang ZN, Yang DL, Liu H, Bi J, Bao YB, Ma JY, Zheng QX, Cui DL, Chen W, Xiang P. Effects of TCPP and TCEP exposure on human corneal epithelial cells: Oxidate damage, cell cycle arrest, and pyroptosis. CHEMOSPHERE 2023; 331:138817. [PMID: 37127200 DOI: 10.1016/j.chemosphere.2023.138817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/17/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Tris(2-chloroisopropyl) phosphate (TCPP) and Tris(2-chloroethyl) phosphate (TCEP) are the widely used organophosphorus flame retardants indoors and easily accessible to the eyes as the common adhesive components of dust and particle matter, however, hardly any evidence has demonstrated their corneal toxicity. In this study, the adverse effects of TCPP, TCEP, and TCPP + TCEP exposure on human corneal epithelial cells (HCECs) were investigated. The cell viability and morphology, intracellular reactive oxygen species (ROS), cell cycle, and the expressions of cell cycle and pyroptosis-related genes were assessed to explain the underlying mechanisms. Compared to individual exposure, co-exposure to TCPP20+TCEP20 showed higher cytotoxicity with a sharp decrease of >30% in viability and more serious oxidative damage by increasing ROS production to 110.92% compared to the control group. Furthermore, the cell cycle arrested at the S phase (36.20%) was observed after combined treatment, evidenced by the upregulation of cyclin D1, CDK2, CDK4, CDK6, p21, and p27. Interestingly, pyroptosis-related genes GSDMD, Caspase-1, NLRP3, IL-1β, IL-18, NLRP1, and NLRC4 expressions were promoted with cell swelling and glowing morphology. Oxidative stress and cell cycle arrest probably acted as a key role in TCPP20+TCEP20-induced cytotoxicity and pyroptosis in HCECs. Our results suggested that TCPP20+TCEP20 co-exposure induced severer corneal damage, further illustrating its significance in estimating indoor health hazards to humans.
Collapse
Affiliation(s)
- Zhen-Ning Zhang
- Yunnan Province Innovative Research Team of Environmental Pollution, Food SafetyAnd Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China
| | - Dan-Lei Yang
- Yunnan Province Innovative Research Team of Environmental Pollution, Food SafetyAnd Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China
| | - Hai Liu
- Affiliated Hospital of Yunnan University, Eye Hospital of Yunnan Province, Kunming, 650224, China
| | - Jue Bi
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agriculture Sciences, Baoshan, 678000, China
| | - Ya-Bo Bao
- Yunnan Province Innovative Research Team of Environmental Pollution, Food SafetyAnd Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China
| | - Jiao-Yang Ma
- Yunnan Province Innovative Research Team of Environmental Pollution, Food SafetyAnd Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China
| | - Qin-Xiang Zheng
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, 315040, China
| | - Dao-Lei Cui
- Yunnan Province Innovative Research Team of Environmental Pollution, Food SafetyAnd Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China
| | - Wei Chen
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, 315040, China.
| | - Ping Xiang
- Yunnan Province Innovative Research Team of Environmental Pollution, Food SafetyAnd Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China.
| |
Collapse
|
28
|
Melzi G, Nozza E, Frezzini MA, Canepari S, Vecchi R, Cremonesi L, Potenza M, Marinovich M, Corsini E. Toxicological Profile of PM from Different Sources in the Bronchial Epithelial Cell Line BEAS-2B. TOXICS 2023; 11:toxics11050413. [PMID: 37235228 DOI: 10.3390/toxics11050413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
The toxicity of particulate matter (PM) is strictly associated with its physical-chemical characteristics, such as size or chemical composition. While these properties depend on the origin of the particles, the study of the toxicological profile of PM from single sources has rarely been highlighted. Hence, the focus of this research was to investigate the biological effects of PM from five relevant sources of atmospheric PM: diesel exhaust particles, coke dust, pellet ashes, incinerator ashes, and brake dust. Cytotoxicity, genotoxicity, oxidative, and inflammatory response were assessed in a bronchial cell line (BEAS-2B). BEAS-2B cells were exposed to different concentrations (25, 50, 100, and 150 μg/mL medium) of particles suspended in water. The exposure lasted 24 h for all the assays performed, except for reactive oxygen species, which were evaluated after 30 min, 1 h, and 4 h of treatment. The results showed a different action of the five types of PM. All the tested samples showed a genotoxic action on BEAS-2B, even in the absence of oxidative stress induction. Pellet ashes seemed to be the only ones able to induce oxidative stress by boosting the formation of reactive oxygen species, while brake dust resulted in the most cytotoxic. In conclusion, the study elucidated the differential response of bronchial cells to PM samples generated by different sources. The comparison could be a starting point for a regulatory intervention since it highlighted the toxic potential of each type of PM tested.
Collapse
Affiliation(s)
- Gloria Melzi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Emma Nozza
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
- PhD Program in Experimental Medicine, Università degli Studi di Milano, Via L. Vanvitelli 32, 20129 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via della Commenda 19, 20122 Milan, Italy
| | - Maria Agostina Frezzini
- Department of Environmental Biology, Sapienza University of Rome, Via C. De Lollis 21, 00185 Rome, Italy
| | - Silvia Canepari
- Department of Environmental Biology, Sapienza University of Rome, Via C. De Lollis 21, 00185 Rome, Italy
| | - Roberta Vecchi
- Department of Physics, Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy
| | - Llorenç Cremonesi
- Department of Physics, Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy
| | - Marco Potenza
- Department of Physics, Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy
| | - Marina Marinovich
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Emanuela Corsini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| |
Collapse
|
29
|
Yang M, Zeng HX, Wang XF, Hakkarainen H, Leskinen A, Komppula M, Roponen M, Wu QZ, Xu SL, Lin LZ, Liu RQ, Hu LW, Yang BY, Zeng XW, Dong GH, Jalava P. Sources, chemical components, and toxicological responses of size segregated urban air PM samples in high air pollution season in Guangzhou, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161092. [PMID: 36586693 DOI: 10.1016/j.scitotenv.2022.161092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
The sources, sizes, components, and toxicological responses of particulate matter (PM) have demonstrated remarkable spatiotemporal variability. However, associations between components, sources, and toxicological effects in different-sized PM remain unclear. The purposes of this study were to 1) determine the sources of PM chemical components, 2) investigate the associations between components and toxicology of PM from Guangzhou high air pollution season. We collected size-segregated PM samples (PM10-2.5, PM2.5-1, PM1-0.2, PM0.2) from December 2017 to March 2018 in Guangzhou. PM sources and components were analyzed. RAW264.7 mouse macrophages were treated with PM samples for 24 h followed by measurements of toxicological responses. The concentrations of PM10-2.5 and PM1-0.2 were relatively high in all samples. Water-soluble ions and PAHs were more abundant in smaller-diameter PM, while metallic elements were more enriched in larger-diameter PM. Traffic exhaust, soil dust, and biomass burning/petrochemical were the most important sources of PAHs, metals and ions, respectively. The main contributions to PM were soil dust, coal combustion, and biomass burning/petrochemical. Exposure to PM10-2.5 induced the most significant reduction of cell mitochondrial activity, oxidative stress and inflammatory response, whereas DNA damage, an increase of Sub G1/G0 population, and impaired cell membrane integrity were most evident with PM1-0.2 exposure. There were moderate or strong correlations between most single chemicals and almost all toxicological endpoints as well as between various toxicological outcomes. Our findings highlight those various size-segregated PM-induced toxicological effects in cells, and identify chemical components and sources of PM that play the key role in adverse intracellular responses. Although fine and ultrafine PM have attracted much attention, the inflammatory damage caused by coarse PM cannot be ignored.
Collapse
Affiliation(s)
- Mo Yang
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland; Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hui-Xian Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xin-Feng Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Henri Hakkarainen
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Ari Leskinen
- Finnish Meteorological Institute, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Mika Komppula
- Finnish Meteorological Institute, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Marjut Roponen
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Qi-Zhen Wu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shu-Li Xu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Zi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ru-Qing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Pasi Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
30
|
Despréaux P, Jeanton C, Desaulle D, Al Zallouha M, Verdin A, Momas I, Achard S. Innovative graph analysis method to assess gene expression modulation after fine particles exposures of 3D human airway epithelia. ENVIRONMENTAL RESEARCH 2023; 221:115296. [PMID: 36642119 DOI: 10.1016/j.envres.2023.115296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/27/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Environmental particles have dramatic consequences for health, especially for the most vulnerable people, such as asthmatics. To better understand the impact on gene expression modulation of fine particles (PM2.5-0.3) from different emission sources, a 3D-airway model, a human bronchial epithelium (MucilAir-HF™) reconstructed from primary cells from healthy (EpiH) or asthmatic (EpiA) donors, was used. Repeated air-liquid exposures were performed, and epithelia were sacrificed to extract RNAs and assess gene expression. Data were analyzed according to the emission sources, physiological status, and exposure doses using a recent model consisting in a graph analysis on pairwise expression ratio. The results were compared with those from the classical ΔΔCt method. The graph analysis method proved to have better statistical properties than the classical ΔΔCt method and demonstrated that repeated PM2.5-0.3 exposures induced a dose-dependent up-regulation of the metabolic gene (CYP1B1) and a down-regulation of the inflammation gene (CXCL10). These modulations were greater for "industrial" than for "urban traffic" fine particles, and the effects were found to be greater after exposure of EpiA than EpiH, thus emphasizing the importance of the epithelium's physiological status in sensitivity to particles. Our study is original in terms of the experimental conditions and the graphical statistical analysis model established. The results highlight the importance of particle chemistry on the modulation of cellular and molecular responses, which may vary according to the individual's vulnerability.
Collapse
Affiliation(s)
- Philomène Despréaux
- Université Paris Cité, Faculté de Pharmacie, CRESS INSERM UMR 1153, équipe HERA (Health Environmental Risk Assessment), Paris, France
| | - Capucine Jeanton
- Université Paris Cité, Faculté de Pharmacie, CRESS INSERM UMR 1153, équipe HERA (Health Environmental Risk Assessment), Paris, France
| | - Dorota Desaulle
- Université Paris Cité, Faculté de Pharmacie, UR 7537 - BioSTM (Biostatistique, Traitement et Modélisation des données biologiques), Paris, France
| | - Margueritta Al Zallouha
- Université Paris Cité, Faculté de Pharmacie, CRESS INSERM UMR 1153, équipe HERA (Health Environmental Risk Assessment), Paris, France
| | - Anthony Verdin
- Université du Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV) UR4492, SFR Condorcet CNRS 3417, Dunkerque, France
| | - Isabelle Momas
- Université Paris Cité, Faculté de Pharmacie, CRESS INSERM UMR 1153, équipe HERA (Health Environmental Risk Assessment), Paris, France
| | - Sophie Achard
- Université Paris Cité, Faculté de Pharmacie, CRESS INSERM UMR 1153, équipe HERA (Health Environmental Risk Assessment), Paris, France.
| |
Collapse
|
31
|
da Silva Junior FC, de Araújo LP, Freitas JPDM, de Oliveira Alves N, Bonassi S, Batistuzzo de Medeiros SR. Empirical relationship between chromosomal damage and airborne particulate matter: A systematic review and meta-analysis of studies in exposed populations. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 791:108454. [PMID: 36787824 DOI: 10.1016/j.mrrev.2023.108454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Ambient particulate matter (PM) has gained significant attention as an environmental risk factor for human health. Although the association between ambient PM and micronucleus (MN) induction has been investigated, the quantitative association of PM and genomic instability is inconclusive. We conducted a systematic review and meta-analysis to study the association between PM exposure and MN endpoint. Four databases were systematically searched for studies published up to November 2022, to find papers investigating the relationship between ambient PM and MN induction. Random effect models were conducted to estimate the overall effect based on the Ratio of Means (RoM) with 95% confidence intervals (95% CIs). Subgroup analysis, funnel plot, and Egger and Begg tests, were also performed. Twenty-three studies across nine countries, including 4450 participants, were included. A meta-RoM of 2.13 for MN (95% CI 1.63-2.79) was observed for individuals exposed to ambient PM compared to non-exposed. A significant difference in the subgroup test was found for buccal cells (3.16, 95% CI 2.20-4.52) and low economy level (3.61, 95% CI 1.44-9.01). Our meta-analysis suggests the presence of an association between PM exposure and the frequency of MN and identified the kind of cells and economic status as possible effect modifiers. The use of effective methods, such as the MN assay, enables identification of early genetic damage in humans, which in turn may anticipate the risk of developing respiratory diseases, including lung cancer.
Collapse
Affiliation(s)
- Francisco Carlos da Silva Junior
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Graduate Program in Biochemistry and Molecular Biology, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Leticya Pinto de Araújo
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - João Paulo de Mendonça Freitas
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Stefano Bonassi
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy; Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, 00166 Rome, Italy
| | - Silvia Regina Batistuzzo de Medeiros
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Graduate Program in Biochemistry and Molecular Biology, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil.
| |
Collapse
|
32
|
Wu M, Jiang M, Ding H, Tang S, Li D, Pi J, Zhang R, Chen W, Chen R, Zheng Y, Piao J. Nrf2 -/- regulated lung DNA demethylation and CYP2E1 DNA methylation under PM 2.5 exposure. Front Genet 2023; 14:1144903. [PMID: 37113990 PMCID: PMC10128193 DOI: 10.3389/fgene.2023.1144903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/08/2023] [Indexed: 04/29/2023] Open
Abstract
Cytochrome P450 (CYP450) can mediate fine particulate matter (PM2.5) exposure leading to lung injury. Nuclear factor E2-related factor 2 (Nrf2) can regulate CYP450 expression; however, the mechanism by which Nrf2-/- (KO) regulates CYP450 expression via methylation of its promoter after PM2.5 exposure remains unclear. Here, Nrf2-/- (KO) mice and wild-type (WT) were placed in a PM2.5 exposure chamber (PM) or a filtered air chamber (FA) for 12 weeks using the real-ambient exposure system. The CYP2E1 expression trends were opposite between the WT and KO mice following PM2.5 exposure. After exposure to PM2.5, CYP2E1 mRNA and protein levels were increased in WT mice but decreased in KO mice, and CYP1A1 expression was increased after exposure to PM2.5 in both WT and KO mice. CYP2S1 expression decreased after exposure to PM2.5 in both the WT and KO groups. We studied the effect of PM2.5 exposure on CYP450 promoter methylation and global methylation levels in WT and KO mice. In WT and KO mice in the PM2.5 exposure chamber, among the methylation sites examined in the CYP2E1 promoter, the CpG2 methylation level showed an opposite trend with CYP2E1 mRNA expression. The same relationship was evident between CpG3 unit methylation in the CYP1A1 promoter and CYP1A1 mRNA expression, and between CpG1 unit methylation in the CYP2S1 promoter and CYP2S1 mRNA expression. This data suggests that methylation of these CpG units regulates the expression of the corresponding gene. After exposure to PM2.5, the expression of the DNA methylation markers ten-eleven translocation 3 (TET3) and 5-hydroxymethylcytosine (5hmC) was decreased in the WT group but significantly increased in the KO group. In summary, the changes in CYP2E1, CYP1A1, and CYP2S1 expression in the PM2.5 exposure chamber of WT and Nrf2-/- mice might be related to the specific methylation patterns in their promoter CpG units. After exposure to PM2.5, Nrf2 might regulate CYP2E1 expression by affecting CpG2 unit methylation and induce DNA demethylation via TET3 expression. Our study revealed the underlying mechanism for Nrf2 to regulate epigenetics after lung exposure to PM2.5.
Collapse
Affiliation(s)
- Mengjie Wu
- School of Public Health, Qingdao University, Qingdao, China
| | - Menghui Jiang
- School of Public Health, Qingdao University, Qingdao, China
| | - Hao Ding
- The Municipal Government Hospital of Zibo, Zibo, Shandong, China
| | - Siying Tang
- Qingdao Chengyang District Center for Disease Control and Prevention, Qingdao, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Jingbo Pi
- School of Public Health, China Medical University, Shenyang, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Rui Chen
- School of Public Health, Capital Medical University, Beijing, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China
| | - Jinmei Piao
- School of Public Health, Qingdao University, Qingdao, China
- *Correspondence: Jinmei Piao,
| |
Collapse
|
33
|
Moufarrej L, Verdin A, Cazier F, Ledoux F, Courcot D. Oxidative stress response in pulmonary cells exposed to different fractions of PM 2.5-0.3 from urban, traffic and industrial sites. ENVIRONMENTAL RESEARCH 2023; 216:114572. [PMID: 36244444 DOI: 10.1016/j.envres.2022.114572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/29/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
The aim of this work was to study the relationship between oxidative stress damages and particulate matter (PM) chemical composition, sources, and PM fractions. PM2.5-0.3 (PM with equivalent aerodynamic diameter between 2.5 and 0.3 μm) were collected at urban, road traffic and industrial sites in the North of France, and were characterized for major and minor chemical species. Four different fractions (whole PM2.5-0.3, organic, water-soluble and non-extractable matter) were considered for each of the PM2.5-0.3 samples from the three sites. After exposure of BEAS-2B cells to the four different fractions, oxidative stress was studied in cells by quantifying reactive oxygen species (ROS) accumulation, oxidative damage to proteins (carbonylated proteins), membrane alteration (8-isoprostane) and DNA damages (8-OHdG). Whole PM2.5-0.3 was capable of inducing ROS overproduction and caused damage to proteins at higher levels than other fractions. Stronger cell membrane and DNA damages were found associated with PM and organic fractions from the urban site. ROS overproduction was correlated with level of expression of carbonylated proteins, DNA damages and membrane alteration markers. The PM2.5-0.3 collected under industrial influence appears to be the less linked to cell damages and ROS production in comparison with the other influences.
Collapse
Affiliation(s)
- Lamia Moufarrej
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV UR4492, SFR Condorcet FR CNRS 3417, Univ. Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140, Dunkerque, France
| | - Anthony Verdin
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV UR4492, SFR Condorcet FR CNRS 3417, Univ. Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140, Dunkerque, France
| | - Fabrice Cazier
- Centre Commun de Mesures, Univ. Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140, Dunkerque, France
| | - Frédéric Ledoux
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV UR4492, SFR Condorcet FR CNRS 3417, Univ. Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140, Dunkerque, France.
| | - Dominique Courcot
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV UR4492, SFR Condorcet FR CNRS 3417, Univ. Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140, Dunkerque, France
| |
Collapse
|
34
|
Liu L, Shi Q, Wang K, Qian Y, Zhou L, Bellusci S, Chen C, Dong N. Fibroblast growth factor 10 protects against particulate matter-induced lung injury by inhibiting oxidative stress-mediated pyroptosis via the PI3K/Akt/Nrf2 signaling pathway. Int Immunopharmacol 2022; 113:109398. [PMID: 36461597 DOI: 10.1016/j.intimp.2022.109398] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Particulate matter (PM) is a major environmental contaminant that causes and worsens respiratory diseases. Fibroblast growth factor 10 (FGF10), a paracrine fibroblast growth factor that specifically stimulates repair and regeneration after injury, has been shown to protect against PM-induced lung injury. However, the underlying mechanisms are still unclear. In this study, the protective effects of FGF10 were investigated using a PM-induced lung injury mouse model in vivo and BEAS-2B cells in vitro. According to the findings, FGF10 treatment alleviated PM-induced oxidative damage and pyroptosis in vivo and in vitro. Mechanistically, FGF10 activated antioxidative Nrf2 signaling. Inhibition of PI3K signaling with LY294002 or Nrf2 signaling with ML385 revealed that FGF10-mediated lung protection was mediated by the PI3K/Akt/Nrf2 pathway. These results collectively indicate that FGF10 inhibits oxidative stress-mediated pyroptosis via the PI3K/Akt/Nrf2 pathway, suggesting a possible therapy for PM-induced lung injury.
Collapse
Affiliation(s)
- Li Liu
- Zhejiang Provincial Key Laboratory of Interventional Pulmonology, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Qiangqiang Shi
- Department of Respiratory Medicine, Affiliated Dongyang Hospital of Wenzhou Medical University, Jinhua 322100, China
| | - Kankai Wang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yao Qian
- Zhejiang Provincial Key Laboratory of Interventional Pulmonology, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Liqin Zhou
- Zhejiang Provincial Key Laboratory of Interventional Pulmonology, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Saverio Bellusci
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany.
| | - Chengshui Chen
- Zhejiang Provincial Key Laboratory of Interventional Pulmonology, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China.
| | - Nian Dong
- Zhejiang Provincial Key Laboratory of Interventional Pulmonology, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
35
|
Fludioxonil, a phenylpyrrol pesticide, induces Cytoskeleton disruption, DNA damage and apoptosis via oxidative stress on rat glioma cells. Food Chem Toxicol 2022; 170:113464. [DOI: 10.1016/j.fct.2022.113464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/22/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
|
36
|
Sun J, Niu X, Zhang B, Zhang L, Yu J, He K, Zhang T, Wang Q, Xu H, Cao J, Shen Z. Clarifying winter clean heating importance: Insight chemical compositions and cytotoxicity exposure to primary and aged pollution emissions in China rural areas. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115822. [PMID: 35933878 DOI: 10.1016/j.jenvman.2022.115822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Residential solid fuel combustion (RSFC) is an important source of PM2.5. Here we investigate the cytotoxicity of primarily emitted and photochemically aged PM2.5 to A549 cells. Owing to the formation of water-soluble ions and organics (e.g., oPAHs and nPAHs), emission factors of PM2.5 were increased by 44.4% on average after 7-day equivalent photochemical aging, which greatly altered chemical profiles of freshly emitted PM2.5. Consequently, the cytotoxicity varied with aging duration that 2-day and 7-day aged PM2.5 induced 22.5% and 35.1%, respectively, higher levels of reactive oxygen species than primary emissions. Similar increases were also observed for multi-cytotoxicity. Correlation analysis and western blot results collectively confirmed HO-1/Nrf-2 signaling pathway dominated the cytotoxicity of aged PM2.5 from RSFC, which was regulated by the enhanced o-PAHs and n-PAHs during photochemical aging. Thus, aged and secondary aerosol exposure needs to be paid more attention due to the enhanced cytotoxicity and the vast crowd involved.
Collapse
Affiliation(s)
- Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xinyi Niu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bin Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Canada
| | - Jinjin Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Kun He
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tian Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qiyuan Wang
- Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710075, China
| | - Hongmei Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Junji Cao
- Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710075, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
37
|
Mechanisms of Cd-induced Cytotoxicity in Normal Human Skin Keratinocytes: Implication for Human Health. Int J Mol Sci 2022; 23:ijms231911767. [PMID: 36233064 PMCID: PMC9570009 DOI: 10.3390/ijms231911767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/17/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Cadmium (Cd) is one of the toxic heavy metals found widely in the environment. Skin is an important target organ of Cd exposure. However, the adverse effects of Cd on human skin are still not well known. In this study, normal human skin keratinocytes (HaCaT cells) were studied for changes in cell viability, morphology, DNA damage, cycle, apoptosis, and the expression of endoplasmic reticulum (ER) stress-related genes (XBP-1, BiP, ATF-4, and CHOP) after exposure to Cd for 24 h. We found that Cd decreased cell viability in a concentration-dependent manner, with a median lethal concentration (LC50) of 11 µM. DNA damage induction was evidenced by upregulation of the level of γ-H2AX. Furthermore, Cd induced G0/G1 phase cell cycle arrest and apoptosis in a dose-dependent manner and upregulated the mRNA levels of ER stress biomarker genes (XBP-1, BiP, ATF4, and CHOP). Taken together, our results showed that Cd induced cytotoxicity and DNA damage in HaCaT cells, eventually resulting in cell cycle arrest in the G0/G1 phase and apoptosis. In addition, ER stress may be involved in Cd-induced HaCaT apoptosis. Our data imply the importance of reducing Cd pollution in the environment to reduce its adverse impacts on human skin.
Collapse
|
38
|
Cochard M, Ledoux F, Courcot D, Landkocz Y. P13-05 Toxicity of airborne particulate matter from port, industrial and urban areas on lung cells. Toxicol Lett 2022. [DOI: 10.1016/j.toxlet.2022.07.544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
39
|
Candeias J, Zimmermann EJ, Bisig C, Gawlitta N, Oeder S, Gröger T, Zimmermann R, Schmidt-Weber CB, Buters J. The priming effect of diesel exhaust on native pollen exposure at the air-liquid interface. ENVIRONMENTAL RESEARCH 2022; 211:112968. [PMID: 35240115 DOI: 10.1016/j.envres.2022.112968] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/05/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
UNLABELLED Pollen related allergic diseases have been increasing for decades. The reasons for this increase are unknown, but environmental pollution like diesel exhaust seem to play a role. While previous studies explored the effects of pollen extracts, we studied here for the first time priming effects of diesel exhaust on native pollen exposure using a novel experimental setup. METHODS Human bronchial epithelial BEAS-2B cells were exposed to native birch pollen (real life intact pollen, not pollen extracts) at the air-liquid interface (pollen-ALI). BEAS-2B cells were also pre-exposed in a diesel-ALI to diesel CAST for 2 h (a model for diesel exhaust) and then to pollen in the pollen-ALI 24 h later. Effects were analysed by genome wide transcriptome analysis after 2 h 25 min, 6 h 50 min and 24 h. Selected genes were confirmed by qRT-PCR. RESULTS Bronchial epithelial cells exposed to native pollen showed the highest transcriptomic changes after about 24 h. About 3157 genes were significantly up- or down-regulated for all time points combined. After pre-exposure to diesel exhaust the maximum reaction to pollen had shifted to about 2.5 h after exposure, plus the reaction to pollen was desensitised as only 560 genes were differentially regulated. Only 97 genes were affected synergistically. Of these, enrichment analysis showed that genes involved in immune and inflammatory response were involved. CONCLUSION Diesel exhaust seems to prime cells to react more rapidly to native pollen exposure, especially inflammation related genes, a factor known to facilitate the development of allergic sensitization. The marker genes here detected could guide studies in humans when investigating whether modern and outdoor diesel exhaust exposure is still detrimental for the development of allergic disease.
Collapse
Affiliation(s)
- Joana Candeias
- Center Allergy & Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technical University Munich / Helmholtz Center Munich, Germany
| | - Elias J Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Center Munich, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr. Lorenzweg 2, D-18051, Rostock, Germany
| | - Christoph Bisig
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Center Munich, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Nadine Gawlitta
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Center Munich, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr. Lorenzweg 2, D-18051, Rostock, Germany
| | - Sebastian Oeder
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Center Munich, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Thomas Gröger
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Center Munich, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Ralf Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Center Munich, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr. Lorenzweg 2, D-18051, Rostock, Germany
| | - Carsten B Schmidt-Weber
- Center Allergy & Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technical University Munich / Helmholtz Center Munich, Germany
| | - Jeroen Buters
- Center Allergy & Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technical University Munich / Helmholtz Center Munich, Germany.
| |
Collapse
|
40
|
Silver and Copper Nanoparticles Induce Oxidative Stress in Bacteria and Mammalian Cells. NANOMATERIALS 2022; 12:nano12142402. [PMID: 35889626 PMCID: PMC9319685 DOI: 10.3390/nano12142402] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022]
Abstract
Silver and copper nanoparticles (AgNPs and CuNPs) coated with stabilizing moieties induce oxidative stress in both bacteria and mammalian cells. Effective antibacterial agents that can overcome existing mechanisms of antibacterial resistance will greatly improve biomedical interventions. In this study, we analyzed the effect of nanoparticle-induced stress. Escherichia coli and normal human bronchial epithelial (BEAS-2B) cells were selected for this study. The nanoparticle constructs tested showed low toxicity to mammalian cells except for the polyvinylpyrrolidone-surface-stabilized copper nanoparticles. In fact, both types of copper nanoparticles used in this study induced higher levels of reactive oxygen species than the surface-stabilized silver nanoparticles. In contrast to mammalian cells, the surface-stabilized silver and copper nanoparticles showed varying levels of toxicity to bacteria cells. These data are expected to aid in bridging the knowledge gap in differential toxicities of silver and copper nanoparticles against bacteria and mammalian cells and will also improve infection interventions.
Collapse
|
41
|
Kumar R, Manna C, Padha S, Verma A, Sharma P, Dhar A, Ghosh A, Bhattacharya P. Micro(nano)plastics pollution and human health: How plastics can induce carcinogenesis to humans? CHEMOSPHERE 2022; 298:134267. [PMID: 35301996 DOI: 10.1016/j.chemosphere.2022.134267] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/13/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) and nanoplastics (NPs) are key indicators of the plasticine era, widely spread across different ecosystems. MPs and NPs become global stressors due to their inherent physicochemical characteristics and potential impact on ecosystems and humans. MPs and NPs have been exposed to humans via various pathways, such as tap water, bottled water, seafood, beverages, milk, fish, salts, fruits, and vegetables. This paper highlights MPs and NPs pathways to the food chains and how these plastic particles can cause risks to human health. MPs have been evident in vivo and vitro and have been at health risks, such as respiratory, immune, reproductive, and digestive systems. The present work emphasizes how various MPs and NPs, and associated toxic chemicals, such as polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), impact human health. Polystyrene (PS) and polyvinyl chloride (PVC) are common MPs and NPs, reported in human implants via ingestion, inhalation, and dermal exposure, which can cause carcinogenesis, according to Agency for Toxic Substances and Disease Registry (ATSDR) reports. Inhalation, ingestion, and dermal exposure-response cause genotoxicity, cell division and viability, cytotoxicity, oxidative stress induction, metabolism disruption, DNA damage, inflammation, and immunological responses in humans. Lastly, this review work concluded with current knowledge on potential risks to human health and knowledge gaps with recommendations for further investigation in this field.
Collapse
Affiliation(s)
- Rakesh Kumar
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Bihar, 803116, India
| | - Camelia Manna
- Faculty of Veterinary & Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, 700037, India
| | - Shaveta Padha
- Department of Zoology, Central University of Jammu, Jammu and Kashmir, 181143, India
| | - Anurag Verma
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Bihar, 803116, India
| | - Prabhakar Sharma
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Bihar, 803116, India.
| | - Anjali Dhar
- Department of Zoology, Central University of Jammu, Jammu and Kashmir, 181143, India
| | - Ashok Ghosh
- Mahavir Cancer Sansthan and Research Centre, Phulwarisharif, Patna, 801505, Bihar, India; Bihar Pollution Control Board, Patna, 800010, Bihar, India
| | - Prosun Bhattacharya
- Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, SE-10044, Stockholm, Sweden
| |
Collapse
|
42
|
Particulate matter in COPD pathogenesis: an overview. Inflamm Res 2022; 71:797-815. [PMID: 35710643 DOI: 10.1007/s00011-022-01594-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive lung disorder with substantial patient burden and leading cause of death globally. Cigarette smoke remains to be the most recognised causative factor behind COPD pathogenesis. Given the alarming increase in prevalence of COPD amongst non-smokers in recent past, a potential role of air pollution particularly particulate matter (PM) in COPD development has gained much attention of the scientists. Indeed, several epidemiological studies indicate strong correlation between airborne PM and COPD incidence/exacerbations. PM-induced oxidative stress seems to be the major player in orchestrating COPD inflammatory cycle but the exact molecular mechanism(s) behind such a process are still poorly understood. This may be due to the complexity of multiple molecular pathways involved. Oxidative stress-linked mitochondrial dysfunction and autophagy have also gained importance and have been the focus of recent studies regarding COPD pathogenesis. Accordingly, the present review is aimed at understanding the key molecular players behind PM-mediated COPD pathogenesis through analysis of various experimental studies supported by epidemiological data to identify relevant preventive/therapeutic targets in the area.
Collapse
|
43
|
Niu X, Wang Y, Chuang HC, Shen Z, Sun J, Cao J, Ho KF. Real-time chemical composition of ambient fine aerosols and related cytotoxic effects in human lung epithelial cells in an urban area. ENVIRONMENTAL RESEARCH 2022; 209:112792. [PMID: 35093308 DOI: 10.1016/j.envres.2022.112792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/24/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Particulate matter with aerodynamic diameters ≤1 μm (PM1) in the atmosphere, especially that which is emitted from anthropogenic sources, can induce considerable negative effects on the cardiopulmonary system. To investigate the chemical emission characteristics and organic sources in Yuen Long (Hong Kong), both offline and online approaches for PM1 samples were applied by filter-based samplers and a Quadrupole Aerosol Chemical Speciation Monitor (Q-ACSM), respectively. The toxicological effects on human A549 lung alveolar epithelial cells were investigated, and associations between cytotoxicity and organic sources and compositions were evaluated. The organics from the Q-ACSM measurement were the largest contributor to submicron aerosols in both seasons of our study, and the mass fraction was higher in winter (60%) than it was in autumn (46%). Regarding organic sources, the mass fraction of hydrocarbon-like organics (HOA) increased from 7% in autumn to 38% in winter, whereas cooking organics (COA) decreased from 30% in autumn to 18% in winter, and oxygenated organics (OOA) decreased from 63% to 45%. Organic compounds contributed more during pollution episodes, and more secondary ions were formed by means of the oxidation process. Oxidative and inflammatory responses in A549 cells were found with PM1 exposures; the differences in chemical compositions resulted in the higher cytotoxicity in winter than autumn. The cooking organic aerosol in residential area was significantly correlated with cell inflammation. Both elemental carbon and specific inorganic ions (SO42- and Mg2+) contributed to the intracellular cytotoxicity. This study demonstrated that specific atmospheric particulate matter chemical properties and sources can trigger distinct cell reactions; the inorganic ions from cooking emissions cannot be disregarded in terms of their pulmonary health risks in residential areas.
Collapse
Affiliation(s)
- Xinyi Niu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Yichen Wang
- School of Public Policy and Administration, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Kin Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
44
|
Souza IDC, Morozesk M, Siqueira P, Zini E, Galter IN, Moraes DAD, Matsumoto ST, Wunderlin DA, Elliott M, Fernandes MN. Metallic nanoparticle contamination from environmental atmospheric particulate matter in the last slab of the trophic chain: Nanocrystallography, subcellular localization and toxicity effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152685. [PMID: 34974021 DOI: 10.1016/j.scitotenv.2021.152685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Atmospheric particulate material (PM) from mining and steel industries comprises several metallic contaminants. PM10 samples collected in a Brazilian region with a recognized influence of the steel and iron pelletizing industries were used to investigate metallic nanoparticle incorporation into human fibroblast cells (MRC-5). MRC-5 cells were exposed to 0 (control, ultrapure water), 2.5, 5, 10, 20 and 40 μg PM10 mL-1, for 24 h. Cytotoxic and genotoxic dose-response effects were observed on lysosome and DNA structure, and concentrations high as 20 and 40 μg PM10 mL-1 induced elevated cell death. Ultrastructure analyses showed aluminosilicate, iron, and the emerging metallic contaminants titanium, bismuth, and cerium nanoparticles were incorporated into lung cells, in which the nanocrystallography analysis indicated the bismuth as Bi2O3. All internalized metallic nanoparticles were free and unbound in the cytoplasm and nucleus thereby indicating bioavailability and potential interaction to biological processes and cellular structures. Pearson's correlation analysis showed Fe, Ni, Al, Cr, Pb and Hg as the main cytotoxic elements which are associated with the stainless steel production. The presence of internalized nanoparticles in human lung cells exposed to environmental atmospheric matter highlights the need for a greater effort by regulatory agencies to understand their potential damage and hence the need for future regulation, especially of emerging metallic contaminants.
Collapse
Affiliation(s)
- Iara da C Souza
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Ave. Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo, Brazil.
| | - Mariana Morozesk
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Ave. Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo, Brazil
| | - Priscila Siqueira
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Ave. Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo, Brazil
| | - Enzo Zini
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (DBV/UFES), Ave. Fernando Ferrari, 514, 29075-910 Vitória, Espírito Santo, Brazil
| | - Iasmini N Galter
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (DBV/UFES), Ave. Fernando Ferrari, 514, 29075-910 Vitória, Espírito Santo, Brazil
| | - Daniel A de Moraes
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, SP, Brazil
| | - Silvia T Matsumoto
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (DBV/UFES), Ave. Fernando Ferrari, 514, 29075-910 Vitória, Espírito Santo, Brazil
| | - Daniel A Wunderlin
- ICYTAC: Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET and Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cdad. Universitaria, 5000 Córdoba, Argentina
| | - Michael Elliott
- Department of Biological and Marine Sciences, University of Hull, Hull HU6 7RX, UK; International Estuarine & Coastal Specialists Ltd., Leven HU17 5LQ, UK
| | - Marisa N Fernandes
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Ave. Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo, Brazil
| |
Collapse
|
45
|
Cano-Granda DV, Ramírez-Ramírez M, M. Gómez D, Hernandez JC. Effects of particulate matter on endothelial, epithelial and immune system cells. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.01.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Particulate Matter (PM) is an air pollutant that is classified according to its aerodynamic diameter into particles with a diameter of less than 10 µm (PM10), a diameter of less than 2.5 µm (PM2.5), and particles ultra-fine with a diameter less than 0.1 µm (PM0.1). PM10 is housed in the respiratory system, while PM2.5 and 0.1 can pass into the circulation to generate systemic alterations. Although several diseases associated with PM exposure, such as respiratory, cardiovascular, and central nervous system, have been documented to cause 4.2 million premature deaths per year worldwide. Few reviews address cellular and molecular mechanisms in the epithelial and endothelial cells of the tissues exposed to PM, which can cause these diseases, this being the objective of the present review. For this, a search was carried out in the NCBI and Google Scholar databases focused on scientific publications that addressed the expression of pro-inflammatory molecules, adhesion molecules, and oxidative radicals, among others, and their relationship with the effects caused by the PM. The main findings include the increase in pro-inflammatory cytokines and dysfunction in the components of the immune response; the formation of reactive oxygen species; changes in epithelial and endothelial function, evidenced by altered expression of adhesion molecules; and the increase in molecules involved in coagulation. Complementary studies are required to understand the molecular effects of harmful health effects and the future approach to strategies to mitigate this response.
Collapse
Affiliation(s)
- Danna V. Cano-Granda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia 2 Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia. Medellín, Colombia
| | - Mariana Ramírez-Ramírez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia 2 Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia. Medellín, Colombia
| | - Diana M. Gómez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia. Medellín, Colombia
| | - Juan C. Hernandez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia. Medellín, Colombia
| |
Collapse
|
46
|
Sun J, Wang L, Yu J, Guo B, Chen L, Zhang Y, Wang D, Shen Z, Tsang DCW. Cytotoxicity of stabilized/solidified municipal solid waste incineration fly ash. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127369. [PMID: 34879564 DOI: 10.1016/j.jhazmat.2021.127369] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/19/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Low-carbon stabilization/solidification (S/S) is of increasing importance as an option for the treatment of municipal solid waste incineration fly ash (MIFA). This study tailored four binders (e.g., ordinary Portland cement (OPC), calcium aluminate cement (CAC), phosphate-modified OPC, and phosphate-modified CAC) for S/S of MIFA and evaluated the cytotoxicity of treated MIFA by using A549 cell-based in-vitro assay. After S/S treatment, the leachability of Cr, Cu, Zn and Pb from MIFA decreased by 76.1%, 93.4%, 69.6%, and 85.5%, respectively. Spectroscopic analysis indicated that the hydration products determined the immobilization efficiencies of various binders, and strong bonding between metallic cations and phosphate enhanced the immobilization efficiency. The treated MIFA showed significantly lower cellular reactive oxygen species (ROS)-inducing abilities than original MIFA, in which with phosphate-modified OPC treated MIFA showed the lowest ROS levels. Intracellular ROS and multicytotoxicity results also revealed that the treated MIFA not only decreased the cytotoxicity-inducing capability but also enhanced the tolerant dosage of cytotoxicity, in which phosphate-modified S/S treatments showed more effective mitigation (25% less cytotoxicity) than plain cement treatments due to the high-efficiency immobilization of potentially toxic elements. This study develops a pioneering assessment protocol to measure the success of sustainable treatment of MIFA in human health perspective.
Collapse
Affiliation(s)
- Jian Sun
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Wang
- Institute of Construction Materials, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Jinjin Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Binglin Guo
- Department of Earth Resources Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Liang Chen
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yuying Zhang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Diwei Wang
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhenxing Shen
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
47
|
Zhou Q, Chen J, Zhang J, Zhou F, Zhao J, Wei X, Zheng K, Wu J, Li B, Pan B. Toxicity and endocrine-disrupting potential of PM 2.5: Association with particulate polycyclic aromatic hydrocarbons, phthalate esters, and heavy metals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118349. [PMID: 34653588 DOI: 10.1016/j.envpol.2021.118349] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
The adverse effects of fine atmospheric particulate matter with aerodynamic diameters of ≤2.5 μm (PM2.5) are closely associated with particulate chemicals. In this study, PM2.5 samples were collected from highway and industry sites in Hangzhou, China, during the autumn and winter, and their cytotoxicity and pulmonary toxicity and endocrine-disrupting potential (EDP) were evaluated in vitro and in vivo; the particulate polycyclic aromatic hydrocarbons (PAHs), phthalate esters (PAEs), and heavy metals were then characterized. The toxicological results suggested that the PM2.5 from highway site induced higher cytotoxicity (cell viability inhibition, intracellular oxidative stress, and cell membrane injury) and pulmonary toxicity (inflammatory response (IR) and oxidative stress (OS)) than the samples from industry site, while the PM2.5 from industry site exhibited higher EDP (estrogenic and anti-androgenic activity). The cytotoxicity and pulmonary toxicity of PM2.5 in the winter were higher than those in the autumn, while no seasonal difference in the endocrine-disrupting potential was observed (p > 0.05). The Pearson correlation analysis between the biological effects and particulate chemicals revealed that the PM2.5-induced inflammatory response and oxidative stress were closely associated with the particulate PAHs and heavy metals (Pearson correlation coefficients: rIR, PAHs = 0.822-0.988, rIR, heavy metals = 0.895-0.971, rOS, PAHs = 0.843-0.986, and rOS, heavy metals = 0.887-0.933), while particulate di (2-ethylhexyl)phthalate (DEHP) substantially contributed to the EDP of PM2.5 (rEDP, DEHP = 0.981). This study indicated that the toxicity and EDP of PM2.5 could vary with the surrounding environment and season, which was closely associated with the variations of particulate chemicals. Further studies are needed to clarify the associations between the harmful effects of PM2.5 and other contributing factors.
Collapse
Affiliation(s)
- Qinghua Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Jinyuan Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Junfan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Feifei Zhou
- Departments of TCM Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingjing Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xiuzhen Wei
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Kaiyun Zheng
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Jian Wu
- Ecology and Environmental Science Research & Design Institute of Zhejiang Province, Hangzhou, China
| | - Bingjie Li
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Bingjun Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
48
|
Candeias J, Schmidt-Weber CB, Buters J. Dosing intact birch pollen grains at the air-liquid interface (ALI) to the immortalized human bronchial epithelial cell line BEAS-2B. PLoS One 2021; 16:e0259914. [PMID: 34784380 PMCID: PMC8594808 DOI: 10.1371/journal.pone.0259914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/28/2021] [Indexed: 12/04/2022] Open
Abstract
In real life, humans are exposed to whole pollen grains at the air epithelial barrier. We developed a system for in vitro dosing of whole pollen grains at the Air-Liquid Interface (ALI) and studied their effect on the immortalized human bronchial epithelial cell line BEAS-2B. Pollen are sticky and large particles. Dosing pollen needs resuspension of single particles rather than clusters, and subsequent transportation to the cells with little loss to the walls of the instrumentation i.e. in a straight line. To avoid high speed impacting insults to cells we chose sedimentation by gravity as a delivery step. Pollen was resuspended into single particles by pressured air. A pollen dispersion unit including PTFE coating of the walls and reduced air pressure limited impaction loss to the walls. The loss of pollen to the system was still about 40%. A linear dose effect curve resulted in 327-2834 pollen/cm2 (± 6.1%), the latter concentration being calculated as the amount deposited on epithelial cells on high pollen days. After whole pollen exposure, the largest differential gene expression at the transcriptomic level was late, about 7 hours after exposure. Inflammatory and response to stimulus related genes were up-regulated. We developed a whole pollen exposure air-liquid interface system (Pollen-ALI), in which cells can be gently and reliably dosed.
Collapse
Affiliation(s)
- Joana Candeias
- Center Allergy & Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technical University Munich, Helmholtz Center Munich, Munich, Germany
| | - Carsten B. Schmidt-Weber
- Center Allergy & Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technical University Munich, Helmholtz Center Munich, Munich, Germany
| | - Jeroen Buters
- Center Allergy & Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technical University Munich, Helmholtz Center Munich, Munich, Germany
| |
Collapse
|
49
|
Kermani M, Rahmatinia T, Oskoei V, Norzaee S, Shahsavani A, Farzadkia M, Kazemi MH. Potential cytotoxicity of trace elements and polycyclic aromatic hydrocarbons bounded to particulate matter: a review on in vitro studies on human lung epithelial cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55888-55904. [PMID: 34490568 DOI: 10.1007/s11356-021-16306-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
A large number of studies have been conducted for clarifying toxicological mechanisms of particulate matter (PM) aimed to investigate the physicochemical properties of PM and providing biological endpoints such as inflammation, perturbation of cell cycle, oxidative stress, or DNA damage. However, although several studies have presented some effects, there is still no consensus on the determinants of biological responses. This review attempts to summarize all past research conducted in recent years on the physicochemical properties of environmental PM in different places and the relationship between different PM components and PM potential cytotoxicity on the human lung epithelial cells. Among 447 papers with our initial principles, a total of 50 articles were selected from 1986 to April 2020 based on the chosen criteria for review. According to the results of selected studies, it is obvious that cytotoxicity in human lung epithelial cells is created both directly or indirectly by transition metals (such as Cu, Cr, Fe, Zn), polycyclic aromatic hydrocarbons (PAH), and ions that formed on the surface of particles. In the selected studies, the findings of the correlation analysis indicate that there is a significant relationship between cell viability reduction and secretion of inflammatory mediators. As a result, it seems that the observed biological responses are related to the composition and the physicochemical properties of the PMs. Therefore, the physicochemical properties of PM should be considered when explaining PM cytotoxicity, and long-term research data will lead to improved strategies to reduce air pollution.
Collapse
Affiliation(s)
- Majid Kermani
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Tahere Rahmatinia
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Vahide Oskoei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Norzaee
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Abbas Shahsavani
- Air Quality and Climate Change Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Farzadkia
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Kazemi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Chang-Chien J, Huang JL, Tsai HJ, Wang SL, Kuo ML, Yao TC. Particulate matter causes telomere shortening and increase in cellular senescence markers in human lung epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112484. [PMID: 34237641 DOI: 10.1016/j.ecoenv.2021.112484] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Exposure to particulate matter (PM) has been associated with DNA damage, but the relationships between PM, telomere length and cellular senescence remain unclear. This study aimed to investigate the effects and potential mechanisms of PM on telomere length and cellular senescence in human lung epithelial cells. Human lung epithelial A549 cells were exposed to PM for 24 h. Cell viability and cytotoxicity were measured by the WST-1 assay and the lactate dehydrogenase release, respectively. Cellular uptake of PM was observed using transmission electron microscopy. Telomere length was measured using qPCR and expressed as T/S ratio. Cell cycle progression was analyzed by flow cytometry. Expression of human telomerase reverse transcriptase (hTERT) and cell cycle regulators was measured using mRNA by qPCR and protein levels by Western blot. Cellular senescence was determined by the expression of senescence-associated β-galactosidase (SA-β-Gal) with fluorescent microscopy and flow cytometry. Exposed to PM at the concentration of 200 μg/ml decreased cell viability and increased LDH levels in culture medium. Remarkably increased uptake of PM, shortening of telomere length, induction of G0/G1 phase arrest, and increased expression of senescence hallmarks were observed after exposure to PM in A549 cells. PM exposure induced upregulation of p21 and downregulation of proliferating cell nuclear antigen (PCNA) and hTERT expression, but no significant change in p53 expression, in A549 cells. Overall, exposure to PM may downregulate hTERT and PCNA through p53-independent induction of p21 expression, leading to telomere shortening, G0/G1 arrest and the onset of cellular senescence in human lung epithelial cells.
Collapse
Affiliation(s)
- Ju Chang-Chien
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Hsin Street, Kweishan, Taoyuan 33305, Taiwan
| | - Jing-Long Huang
- School of Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan; Department of Pediatrics, New Taipei Municipal TuCheng Hospital, New Taipei, Taiwan; Community Medicine Research Center, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan
| | - Hui-Ju Tsai
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Shih-Ling Wang
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Hsin Street, Kweishan, Taoyuan 33305, Taiwan
| | - Ming-Ling Kuo
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Hsin Street, Kweishan, Taoyuan 33305, Taiwan; Department of Pediatrics, New Taipei Municipal TuCheng Hospital, New Taipei, Taiwan; Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wenhua 1st Road, Kweishan, Taoyuan 33302, Taiwan.
| | - Tsung-Chieh Yao
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Hsin Street, Kweishan, Taoyuan 33305, Taiwan; School of Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan; Community Medicine Research Center, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan.
| |
Collapse
|