1
|
Peixoto-Rodrigues MC, Monteiro-Neto JR, Teglas T, Toborek M, Soares Quinete N, Hauser-Davis RA, Adesse D. Early-life exposure to PCBs and PFAS exerts negative effects on the developing central nervous system. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136832. [PMID: 39689563 DOI: 10.1016/j.jhazmat.2024.136832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/18/2024] [Accepted: 12/08/2024] [Indexed: 12/19/2024]
Abstract
Persistent organic pollutants (POPs) are ubiquitous in the environment and display the capacity to bioaccumulate in living organisms, constituting a hazard to both wildlife and humans. Although restrictions have been applied to prohibit the production of several POPs since the 1960s, high levels of these compounds can still be detected in many environmental and biological matrices, due to their chemical properties and significantly long half-lives. Some POPs can be passed from mother to the fetus and can gain entry to the central nervous system (CNS), by crossing the blood-brain barrier (BBB), resulting in significant deleterious effects, including neurocognitive and psychiatric abnormalities, which may lead to long-term socio-economic burdens. A growing body of evidence obtained from clinical and experimental studies has increasingly indicated that these POPs may influence neurodevelopment through several cellular and molecular mechanisms. However, studies assessing their mechanisms of action are still incipient, requiring further research. Polychlorinated biphenyls (PCBs) and per- and polyfluoroalkyl substances (PFAS) are two of the main classes of POPs associated with disturbances in different human systems, mainly the nervous and endocrine systems. This narrative review discusses the main PCB and PFAS effects on the CNS, focusing on neuroinflammation and oxidative stress and their consequences for neural development and BBB integrity. Moreover, we propose which mechanisms could be involved in POP-induced neurodevelopmental defects. In this sense, we highlight potential cellular and molecular pathways by which these POPs can affect neurodevelopment and could be further explored to propose preventive therapies and formulate public health policies.
Collapse
Affiliation(s)
- Maria Carolina Peixoto-Rodrigues
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fiocruz, Brazil; Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Brazil
| | | | - Timea Teglas
- Research Institute of Sport Science, Hungarian University of Sports Science, Budapest, Hungary; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Hungarian University of Sports Science, Budapest, Hungary
| | - Michal Toborek
- Institute of Physiotherapy and Health Sciences, Blood-Brain Barrier Research Center, Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Natalia Soares Quinete
- Departament of Chemistry and Biochemistry & Institute of Environment, Florida International University, Miami, Florida, United States
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fiocruz, Brazil
| | - Daniel Adesse
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Brazil; Laboratory of Ocular Immunology and Transplantation, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States.
| |
Collapse
|
2
|
Yuzhu M, Wei L, Ying L, Yong C, Kesheng H. Association between polychlorinated biphenyls and circulatory immune markers: results from NHANES 1999-2004. Cent Eur J Public Health 2024; 32:263-272. [PMID: 39903597 DOI: 10.21101/cejph.a8056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/17/2024] [Indexed: 02/06/2025]
Abstract
OBJECTIVES Polychlorinated biphenyls (PCBs), a family of persistent toxic and organic environmental pollutants, were associated with multiple organ damages in humans once accumulating. However, association between PCBs exposure and circulatory immune markers were not clear. METHODS Data was collected from participants enrolled in the National Health and Nutrition Examination Survey in 1999-2004. PCBs were categorized by latent class analysis (LCA). Weighted quantile sum (WQS) regression was used to investigate effects of PCBs exposure on circulatory immune markers including leukocyte counts, monocyte-lymphocyte ratio (MLR), neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR), and systemic immune-inflammation index (SII). RESULTS There were 3,109 participants included in the final analysis with blood PCBs levels presented as 3 classes. The high PCBs group had a higher rate of comorbidities. Leukocyte, lymphocyte and neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR) and system immune-inflammation index (SII) were significantly lower in the high PCBs group than in the low PCBs group (all p-values < 0.05). After adjusting for covariant variables, the low PCBs group was positively associated with SII (p = 0.021) and NLR (p = 0.006) in multivariate regression. Significantly negative correlations between PCBs classification and SII (β = -14.513, p = 0.047), and NLR (β = -0.035, p = 0.017) were found in WQS models. LBX028LA showed the most significant contribution in the associations between PCBs and SII, and LBX128LA contributed most significantly to associations with NLR. CONCLUSION Our study adds novel evidence that exposures to PCBs may be adversely associated with the circulatory immune markers, indicating the potential toxic effect of PCBs on the human immune system.
Collapse
Affiliation(s)
- Ma Yuzhu
- Department of Clinical Laboratory, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Li Wei
- Department of Endocrinology, Armed Police Corps Hospital of Guangdong Province, Guangzhou, China
| | - Liu Ying
- Department of Cardiac Surgery, YueBei People's Hospital, Shaoguan City, China
| | - Chen Yong
- Department of Cardiac Surgery, YueBei People's Hospital, Shaoguan City, China
| | - Hu Kesheng
- Department of Lab Medicine, Armed Police Corps Hospital of Guangdong Province, Guangzhou, China
| |
Collapse
|
3
|
Walker KA, Rhodes ST, Liberman DA, Gore AC, Bell MR. Microglial responses to inflammatory challenge in adult rats altered by developmental exposure to polychlorinated biphenyls in a sex-specific manner. Neurotoxicology 2024; 104:95-115. [PMID: 39038526 PMCID: PMC11548868 DOI: 10.1016/j.neuro.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Polychlorinated biphenyls are ubiquitous environmental contaminants linkedc with peripheral immune and neural dysfunction. Neuroimmune signaling is critical to brain development and later health; however, effects of PCBs on neuroimmune processes are largely undescribed. This study extends our previous work in neonatal or adolescent rats by investigating longer-term effects of perinatal PCB exposure on later neuroimmune responses to an inflammatory challenge in adulthood. Male and female Sprague-Dawley rats were exposed to a low-dose, environmentally relevant, mixture of PCBs (Aroclors 1242, 1248, and 1254, 1:1:1, 20 μg / kg dam BW per gestational day) or oil control during gestation and via lactation. Upon reaching adulthood, rats were given a mild inflammatory challenge with lipopolysaccharide (LPS, 50 μg / kg BW, ip) or saline control and then euthanized 3 hours later for gene expression analysis or 24 hours later for immunohistochemical labeling of Iba1+ microglia. PCB exposure did not alter gene expression or microglial morphology independently, but instead interacted with the LPS challenge in brain region- and sex-specific ways. In the female hypothalamus, PCB exposure blunted LPS responses of neuroimmune and neuromodulatory genes without changing microglial morphology. In the female prefrontal cortex, PCBs shifted Iba1+ cells from reactive to hyperramified morphology in response to LPS. Conversely, in the male hypothalamus, PCBs shifted cell phenotypes from hyperramified to reactive morphologies in response to LPS. The results highlight the potential for long-lasting effects of environmental contaminants that are differentially revealed over a lifetime, sometimes only after a secondary challenge. These neuroimmune endpoints are possible mechanisms for PCB effects on a range of neural dysfunction in adulthood, including mental health and neurodegenerative disorders. The findings suggest possible interactions with other environmental challenges that also influence neuroimmune systems.
Collapse
Affiliation(s)
- Katherine A Walker
- Departments of Biological Sciences and Health Sciences, DePaul University, Chicago, IL 60614, USA.
| | - Simone T Rhodes
- Departments of Biological Sciences and Health Sciences, DePaul University, Chicago, IL 60614, USA.
| | - Deborah A Liberman
- Departments of Biological Sciences and Health Sciences, DePaul University, Chicago, IL 60614, USA.
| | - Andrea C Gore
- Division of Pharmacology and Toxicology, College of Pharmacy and Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA.
| | - Margaret R Bell
- Departments of Biological Sciences and Health Sciences, DePaul University, Chicago, IL 60614, USA; Division of Pharmacology and Toxicology, College of Pharmacy and Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
4
|
Wei H, Liu Y, Huang L, Wang L, Fang J, Liu R. Determining the abundance, composition and spatial distribution of organohalogens in marine sediments using combustion-ion chromatography. MARINE ENVIRONMENTAL RESEARCH 2024; 199:106626. [PMID: 38950495 DOI: 10.1016/j.marenvres.2024.106626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
Understanding the distribution of halogenated organic compounds (HOCs) in marine sediments is essential for understanding the marine carbon and halogen cycling, and also important for assessing the ecosystem health. In this study, a method based on combustion-ion chromatography was developed for determination of the composition and abundance of HOCs in marine sediments. The method showed high accuracy, precision and reproducibility in determining the content of adsorbable organic halogens (AOX), including fluorine, chlorine and bromine (AOF, AOCl, AOBr) and the corresponding insoluble organic halogens (IOF, IOCl, IOBr, IOX), as well as total organic halogen contents (TOX). Application of the method in coastal and deep-sea sediments revealed high ratios of organic halogens in the organic carbon pool of marine sediments, suggesting that organic halogen compounds represent an important yet previously overlooked stock of carbon and energy in marine sediments. Both the TOX and the proportion of organohalogens in organic carbon (X:C ratio) showed an increasing trend from the coast to the deep-sea sediments, indicating an increased significance of HOCs in deep-sea environments. The developed method and the findings of this study lay the foundation for further studies on biogeochemical cycling of HOCs in the ocean.
Collapse
Affiliation(s)
- Hui Wei
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Yuheng Liu
- Jiangsu Product Quality Testing & Inspection Institute, Nanjing, China
| | - Liting Huang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Li Wang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China.
| | - Jiasong Fang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Department of Natural Sciences, Hawaii Pacific University, Honolulu, HI, USA
| | - Rulong Liu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
5
|
Agarwal M, Roth K, Yang Z, Sharma R, Maddipati K, Westrick J, Petriello MC. Loss of flavin-containing monooxygenase 3 modulates dioxin-like polychlorinated biphenyl 126-induced oxidative stress and hepatotoxicity. ENVIRONMENTAL RESEARCH 2024; 250:118492. [PMID: 38373550 PMCID: PMC11102846 DOI: 10.1016/j.envres.2024.118492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
Dioxin-like pollutants (DLPs), such as polychlorinated biphenyl 126 (PCB 126), are synthetic chemicals classified as persistent organic pollutants. They accumulate in adipose tissue and have been linked to cardiometabolic disorders, including fatty liver disease. The toxicity of these compounds is associated with activation of the aryl hydrocarbon receptor (Ahr), leading to the induction of phase I metabolizing enzyme cytochrome P4501a1 (Cyp1a1) and the subsequent production of reactive oxygen species (ROS). Recent research has shown that DLPs can also induce the xenobiotic detoxification enzyme flavin-containing monooxygenase 3 (FMO3), which plays a role in metabolic homeostasis. We hypothesized whether genetic deletion of Fmo3 could protect mice, particularly in the liver, where Fmo3 is most inducible, against PCB 126 toxicity. To test this hypothesis, male C57BL/6 wild-type (WT) mice and Fmo3 knockout (Fmo3 KO) mice were exposed to PCB 126 or vehicle (safflower oil) during a 12-week study, at weeks 2 and 4. Various analyses were performed, including hepatic histology, RNA-sequencing, and quantitation of PCB 126 and F2-isoprostane concentrations. The results showed that PCB 126 exposure caused macro and microvesicular fat deposition in WT mice, but this macrovesicular fatty change was absent in Fmo3 KO mice. Moreover, at the pathway level, the hepatic oxidative stress response was significantly different between the two genotypes, with the induction of specific genes observed only in WT mice. Notably, the most abundant F2-isoprostane, 8-iso-15-keto PGE2, increased in WT mice in response to PCB 126 exposure. The study's findings also demonstrated that hepatic tissue concentrations of PCB 126 were higher in WT mice compared to Fmo3 KO mice. In summary, the absence of FMO3 in mice led to a distinctive response to dioxin-like pollutant exposure in the liver, likely due to alterations in lipid metabolism and storage, underscoring the complex interplay of genetic factors in the response to environmental toxins.
Collapse
Affiliation(s)
- Manisha Agarwal
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, 48202, USA; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Katherine Roth
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Zhao Yang
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Rahul Sharma
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Krishnarao Maddipati
- Department of Pathology, Lipidomic Core Facility, Wayne State University, Detroit, MI, 48202, USA
| | - Judy Westrick
- Department of Chemistry, Lumigen Instrumentation Center, Wayne State University, Detroit, MI, 48202, USA
| | - Michael C Petriello
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, 48202, USA; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
6
|
Okeke ES, Feng W, Luo M, Mao G, Chen Y, Zhao T, Wu X, Yang L. RNA-Seq analysis offers insight into the TBBPA-DHEE-induced endocrine-disrupting effect and neurotoxicity in juvenile zebrafish (Danio rerio). Gen Comp Endocrinol 2024; 350:114469. [PMID: 38360373 DOI: 10.1016/j.ygcen.2024.114469] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 02/17/2024]
Abstract
Tetrabromobisphenol A bis(2-hydroxyethyl) ether (TBBPA-DHEE) is the major TBBPA derivative. It has been detected in different environmental samples. Previous studies show that TBBPA-DHEE caused neurotoxicity in rats. In this study, juvenile zebrafish were exposed to various concentrations of TBBPA-DHEE to ascertain the potential neurotoxicity of TBBPA-DHEE, the chemical, and its possible molecular mechanism of action. Behavioral analysis revealed that TBBPA-DHEE could significantly increase the swimming distance and speed in the 1.5 mg/L group compared to the control. In contrast, the swimming distance and speed were significantly reduced in the 0.05 and 0.3 mg/L groups, affecting learning, memory, and neurodevelopment. Similarly, TBBPA-DHEE exposure caused a concentration-dependent significant increase in the levels of excitatory neurotransmitters, namely, dopamine, norepinephrine, and epinephrine, which could be attributed to the change observed in zebrafish behavior. This demonstrates the neurotoxicity of TBBPA-DHEE on juvenile zebrafish. The concentration-dependent increase in the IBR value revealed by the IBR index reveals the noticeable neurotoxic effect of TBBPA-DHEE. Transcriptomic analysis shows that TBBPA-DHEE exposure activated the PPAR signaling pathways, resulting in a disturbance of fatty acid (FA) metabolism and changes in the transcript levels of genes involved in these pathways, which could lead to lipotoxicity and hepatotoxicity. Our findings demonstrate a distinct endocrine-disrupting response to TBBPA-DHEE exposure, possibly contributing to abnormal behavioral alterations. This study provides novel insights into underlying the mechanisms and effects of TBBPA-DHEE on aquatic organisms, which may be helpful forenvironmental/human health risk assessments of the emerging pollutant.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd, 212013 Zhenjiang, Jiangsu, China; Department of Biochemistry, Faculty of Biological Sciences University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | - Weiwei Feng
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd, 212013 Zhenjiang, Jiangsu, China.
| | - Mengna Luo
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd, 212013 Zhenjiang, Jiangsu, China
| | - Guanghua Mao
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd, 212013 Zhenjiang, Jiangsu, China
| | - Yao Chen
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd, 212013 Zhenjiang, Jiangsu, China
| | - Ting Zhao
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd, 212013 Zhenjiang, Jiangsu, China.
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
7
|
Ghitti E, Rolli E, Vergani L, Borin S. Flavonoids influence key rhizocompetence traits for early root colonization and PCB degradation potential of Paraburkholderia xenovorans LB400. FRONTIERS IN PLANT SCIENCE 2024; 15:1325048. [PMID: 38371405 PMCID: PMC10869545 DOI: 10.3389/fpls.2024.1325048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024]
Abstract
Introduction Flavonoids are among the main plant root exudation components, and, in addition to their role in symbiosis, they can broadly affect the functionality of plant-associated microbes: in polluted environments, for instance, flavonoids can induce the expression of the enzymatic degradative machinery to clean-up soils from xenobiotics like polychlorinated biphenyls (PCBs). However, their involvement in root community recruitment and assembly involving non-symbiotic beneficial interactions remains understudied and may be crucial to sustain the holobiont fitness under PCB stress. Methods By using a set of model pure flavonoid molecules and a natural blend of root exudates (REs) with altered flavonoid composition produced by Arabidopsis mutant lines affected in flavonoid biosynthesis and abundance (null mutant tt4, flavonoid aglycones hyperproducer tt8, and flavonoid conjugates hyperaccumulator ttg), we investigated flavonoid contribution in stimulating rhizocompetence traits and the catabolic potential of the model bacterial strain for PCB degradation Paraburkholderia xenovorans LB400. Results Flavonoids influenced the traits involved in bacterial recruitment in the rhizoplane by improving chemotaxis and motility responses, by increasing biofilm formation and by promoting the growth and activation of the PCB-degradative pathway of strain LB400, being thus potentially exploited as carbon sources, stimulating factors and chemoattractant molecules. Indeed, early rhizoplane colonization was favored in plantlets of the tt8 Arabidopsis mutant and reduced in the ttg line. Bacterial growth was promoted by the REs of mutant lines tt4 and tt8 under control conditions and reduced upon PCB-18 stress, showing no significant differences compared with the WT and ttg, indicating that unidentified plant metabolites could be involved. PCB stress presumably altered the Arabidopsis root exudation profile, although a sudden "cry-for-help" response to recruit strain LB400 was excluded and flavonoids appeared not to be the main determinants. In the in vitro plant-microbe interaction assays, plant growth promotion and PCB resistance promoted by strain LB400 seemed to act through flavonoid-independent mechanisms without altering bacterial colonization efficiency and root adhesion pattern. Discussions This study further contributes to elucidate the vast array of functions provided by flavonoids in orchestrating the early events of PCB-degrading strain LB400 recruitment in the rhizosphere and to support the holobiont fitness by stimulating the catabolic machinery involved in xenobiotics decomposition and removal.
Collapse
Affiliation(s)
| | - Eleonora Rolli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | | | | |
Collapse
|
8
|
Duffel MW, Lehmler HJ. Complex roles for sulfation in the toxicities of polychlorinated biphenyls. Crit Rev Toxicol 2024; 54:92-122. [PMID: 38363552 PMCID: PMC11067068 DOI: 10.1080/10408444.2024.2311270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic toxicants derived from legacy pollution sources and their formation as inadvertent byproducts of some current manufacturing processes. Metabolism of PCBs is often a critical component in their toxicity, and relevant metabolic pathways usually include their initial oxidation to form hydroxylated polychlorinated biphenyls (OH-PCBs). Subsequent sulfation of OH-PCBs was originally thought to be primarily a means of detoxication; however, there is strong evidence that it may also contribute to toxicities associated with PCBs and OH-PCBs. These contributions include either the direct interaction of PCB sulfates with receptors or their serving as a localized precursor for OH-PCBs. The formation of PCB sulfates is catalyzed by cytosolic sulfotransferases, and, when transported into the serum, these metabolites may be retained, taken up by other tissues, and subjected to hydrolysis catalyzed by intracellular sulfatase(s) to regenerate OH-PCBs. Dynamic cycling between PCB sulfates and OH-PCBs may lead to further metabolic activation of the resulting OH-PCBs. Ultimate toxic endpoints of such processes may include endocrine disruption, neurotoxicities, and many others that are associated with exposures to PCBs and OH-PCBs. This review highlights the current understanding of the complex roles that PCB sulfates can have in the toxicities of PCBs and OH-PCBs and research on the varied mechanisms that control these roles.
Collapse
Affiliation(s)
- Michael W. Duffel
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa, 52242, United States
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, Iowa, 52242, United States
| |
Collapse
|
9
|
Sun L, Ouyang M, Liu M, Liu J, Zhao X, Yu Q, Zhang Y. Enrichment, bioaccumulation and human health assessment of organochlorine pesticides in sediments and edible fish of a plateau lake. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9669-9690. [PMID: 37801211 DOI: 10.1007/s10653-023-01762-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023]
Abstract
The organochlorine pesticides (OCPs) are with features of persistence, high toxicity, bioaccumulation and adverse impact on ecosystems and human beings. Although OCPs pollutions have been observed in the plateau lakes, comprehensive understandings in the distribution characteristics and human health risks of OCPs in these valuable but fragile ecosystems are limited. We here investigated the distribution, bioaccumulation process and health risks of OCPs in the Jianhu lake, a representative plateau lake in China. The endrin ketone, endrin aldehyde and heptachlor were the most dominant species in surface and columnar sediments. Their total contents ranged between 0 ~ 1.92 × 103 ng·g-1. The distribution of OCPs in sediment cores combined with chronology information indicated that the fast accumulation of OCPs happened during the last decades. Combining the distribution features of OCPs in different sources with mixing model results of carbon isotope (δ13C), farming area was identified as the main source (46%), and the OCPs were transported to lake by inflow-rivers (37%). The enrichment of OCPs in sediments caused considerable bioaccumulation of OCPs in local fish (∑OCPs 0-3199.93 ng·g-1, dw) with the bio-sediment accumulation factor (BSAF) ranging from ND to 9.41. Moreover, growing time was another key factor governing the accumulation in specific species (Carassius auratus and Cyprinus carpio). Eventually, the carcinogenic risk index (CRI) and exposure risk index (ERI) of the endrin category and aldrin exceeded the reference value, indicating relatively high health risks through consumption of fish. Overall, this study systematically illustrated the bioaccumulation process and health risks of OCPs in the typical plateau lake, providing theoretical support for the better protection of this kind of lakes.
Collapse
Affiliation(s)
- Lei Sun
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, No.300 of Bailong Road, Panlong District, Kunming, 650224, China
- National Plateau Wetlands Research Center/College of Wetlands, Southwest Forestry University, Kunming, 650224, China
| | - Min Ouyang
- Kunming Institute of Physics, Kunming, 650223, China
| | - Min Liu
- Yunnan Center for Disease Control and Prevention, Kunming, 650022, China
| | - Jianhui Liu
- Yunnan Center for Disease Control and Prevention, Kunming, 650022, China
| | - Xiaohui Zhao
- Yunnan Center for Disease Control and Prevention, Kunming, 650022, China
| | - Qingguo Yu
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, No.300 of Bailong Road, Panlong District, Kunming, 650224, China
- National Plateau Wetlands Research Center/College of Wetlands, Southwest Forestry University, Kunming, 650224, China
| | - Yinfeng Zhang
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, No.300 of Bailong Road, Panlong District, Kunming, 650224, China.
- National Plateau Wetlands Research Center/College of Wetlands, Southwest Forestry University, Kunming, 650224, China.
| |
Collapse
|
10
|
Rosolen V, Giordani E, Mariuz M, Parpinel M, Mustieles V, Gilles L, Govarts E, Rodriguez Martin L, Baken K, Schoeters G, Sepai O, Sovcikova E, Fabelova L, Kohoutek J, Jensen TK, Covaci A, Roggeman M, Melymuk L, Klánová J, Castano A, Esteban López M, Barbone F. Cognitive Performance and Exposure to Organophosphate Flame Retardants in Children: Evidence from a Cross-Sectional Analysis of Two European Mother-Child Cohorts. TOXICS 2023; 11:878. [PMID: 37999530 PMCID: PMC10675051 DOI: 10.3390/toxics11110878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 11/25/2023]
Abstract
The knowledge of the effects of organophosphate flame retardants on children's neurodevelopment is limited. The purpose of the present research is to evaluate the association between exposure to organophosphate flame retardants and children's neurodevelopment in two European cohorts involved in the Human Biomonitoring Initiative Aligned Studies. The participants were school-aged children belonging to the Odense Child Cohort (Denmark) and the PCB cohort (Slovakia). In each cohort, the children's neurodevelopment was assessed through the Full-Scale Intelligence Quotient score of the Wechsler Intelligence Scale for Children, using two different editions. The children's urine samples, collected at one point in time, were analyzed for several metabolites of organophosphate flame retardants. The association between neurodevelopment and each organophosphate flame retardant metabolite was explored by applying separate multiple linear regressions based on the approach of MM-estimation in each cohort. In the Danish cohort, the mean ± standard deviation for the neurodevelopment score was 98 ± 12; the geometric mean (95% confidence interval (95% CI)) of bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) standardized by creatinine (crt) was 0.52 µg/g crt (95% CI = 0.49; 0.60), while that of diphenyl phosphate (DPHP) standardized by crt was 1.44 µg/g crt (95% CI = 1.31; 1.58). The neurodevelopment score showed a small, negative, statistically imprecise trend with BDCIPP standardized by crt (β = -1.30; 95%CI = -2.72; 0.11; p-value = 0.07) and no clear association with DPHP standardized by crt (β = -0.98; 95%CI = -2.96; 0.99; p-value = 0.33). The neurodevelopment score showed a negative trend with BDCIPP (β = -1.42; 95% CI = -2.70; -0.06; p-value = 0.04) and no clear association with DPHP (β = -1.09; 95% CI = -2.87; 0.68; p-value = 0.23). In the Slovakian cohort, the mean ± standard deviation for the neurodevelopment score was 81 ± 15; the geometric mean of BDCIPP standardized by crt was 0.18 µg/g crt (95% CI = 0.16; 0.20), while that of DPHP standardized by crt was 2.24 µg/g crt (95% CI = 2.00; 3.52). The association of the neurodevelopment score with BDCIPP standardized by crt was -0.49 (95%CI = -1.85; 0.87; p-value = 0.48), and with DPHP standardized by crt it was -0.35 (95%CI = -1.90; 1.20; p-value = 0.66). No clear associations were observed between the neurodevelopment score and BDCIPP/DPHP concentrations that were not standardized by crt. No clear associations were observed with bis(1-chloro-2-propyl) phosphate (BCIPP) in either cohort, due to the low detection frequency of this compound. In conclusion, this study provides only limited evidence of an inverse association between neurodevelopment and exposure to BDCIPP and DPHP. The timing of exposure and effect modification of other organophosphate flame retardant metabolites and other substances should be the subject of further investigations that address this scientific hypothesis.
Collapse
Affiliation(s)
- Valentina Rosolen
- Central Directorate for Health, Social Policies and Disability, Friuli Venezia Giulia Region, Via Cassa Di Risparmio 10, 34121 Trieste, Italy
| | - Elisa Giordani
- Department of Medicine, University of Udine, Via Colugna 50, 33100 Udine, Italy
| | - Marika Mariuz
- Department of Medicine, University of Udine, Via Colugna 50, 33100 Udine, Italy
| | - Maria Parpinel
- Department of Medicine, University of Udine, Via Colugna 50, 33100 Udine, Italy
| | - Vicente Mustieles
- Center for Biomedical Research, University of Granada, 18012 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, 18012 Granada, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health, 28029 Madrid, Spain
| | - Liese Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | | | - Kirsten Baken
- BrabantAdvies, Brabantlaan 3, 5216 TV ‘s-Hertogenbosch, The Netherlands
| | - Greet Schoeters
- Department of Biomedical Sciences & Toxicological Centre, University of Antwerp—Campus Drie Eiken, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Ovnair Sepai
- Toxicology Department, Science Group, UK Health Security Agency, Harwell Science and Innovation Campus, Didcot OX11 0RQ, UK
| | - Eva Sovcikova
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, 83303 Bratislava, Slovakia
| | - Lucia Fabelova
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, 83303 Bratislava, Slovakia
| | - Jiři Kohoutek
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Tina Kold Jensen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, 5000 Odense, Denmark
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Wilrijk, 2610 Antwerp, Belgium
| | - Maarten Roggeman
- Toxicological Centre, University of Antwerp, Wilrijk, 2610 Antwerp, Belgium
| | - Lisa Melymuk
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Jana Klánová
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Argelia Castano
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Majadahonda, Spain
| | - Marta Esteban López
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Majadahonda, Spain
| | - Fabio Barbone
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume, 447, 34149 Trieste, Italy
| |
Collapse
|
11
|
Teglas T, Torices S, Taylor M, Coker D, Toborek M. Exposure to polychlorinated biphenyls selectively dysregulates endothelial circadian clock and endothelial toxicity. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131499. [PMID: 37126901 PMCID: PMC10202419 DOI: 10.1016/j.jhazmat.2023.131499] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Polychlorinated biphenyls (PCBs) are lipophilic and persistent environmental toxicants, which pose health threats to the exposed population. Among several organs and cell types, vascular tissue and endothelial cells are especially prone to PCB-induced toxicity. Exposure to PCBs can exert detrimental impacts on biological pathways, expression of transcription factors, and tight junction proteins that are integral to the functionality of endothelial cells. Because biological and cellular processes are tightly regulated by circadian rhythms, and disruption of the circadian system may cause several diseases, we evaluated if exposure to PCBs can alter the expression of the major endothelial circadian regulators. In addition, we studied if dysregulation of circadian rhythms by silencing the brain and muscle ARNT-like 1 (Bmal1) gene can contribute to alterations of brain endothelial cells in response to PCB treatment. We demonstrated that diminished expression of Bmal1 enhances PCB-induced dysregulation of tight junction complexes, such as the expression of occludin, JAM-2, ZO-1, and ZO-2 especially at pathologically relevant longer PCB exposure times. Overall, the obtained results imply that dysregulation of the circadian clock is involved in endothelial toxicity of PCBs. The findings provide new insights for toxicological studies focused on the interactions between environmental pollutants and regulation of circadian rhythms.
Collapse
Affiliation(s)
- Timea Teglas
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 33136, USA
| | - Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 33136, USA
| | - Madison Taylor
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 33136, USA
| | - Desiree Coker
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 33136, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 33136, USA; Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland.
| |
Collapse
|
12
|
Agarwal M, Hoffman J, Ngo Tenlep SY, Santarossa S, Pearson KJ, Sitarik AR, Cassidy-Bushrow AE, Petriello MC. Maternal polychlorinated biphenyl 126 (PCB 126) exposure modulates offspring gut microbiota irrespective of diet and exercise. Reprod Toxicol 2023; 118:108384. [PMID: 37061048 PMCID: PMC10257154 DOI: 10.1016/j.reprotox.2023.108384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
The gut microbiota plays an important role throughout the lifespan in maintaining host health, and several factors can modulate microbiota composition including diet, exercise, and environmental exposures. Maternal microbiota is transferred to offspring during early life; thus, environmental exposures before gestation may also modulate offspring microbiota. Here we aimed to investigate the effects of maternal exposure to dioxin-like polychlorinated biphenyls (PCBs) on the microbiota of aged offspring and to determine if lifestyle factors, including maternal exercise or offspring high-fat feeding alter these associations. To test this, dams were exposed to PCB 126 (0.5 μmole/kg body weight) or vehicle oil by oral gavage during preconception, gestation, and during lactation. Half of each group was allowed access to running wheels for ≥ 7 days before and during pregnancy and up through day 14 of lactation. Female offspring born from the 4 maternal groups (PCB exposure or not, with/without exercise) were subsequently placed either on regular diet or switched to a high-fat diet during adulthood. Microbiota composition was quantified in female offspring at 49 weeks of age by 16 S rRNA sequencing. Maternal exposure to PCB 126 resulted in significantly reduced richness and diversity in offspring microbiota regardless of diet or exercise. Overall compositional differences were largely driven by offspring diet, but alterations in specific taxa due to maternal PCB 126 exposure, included the depletion of Verrucomicrobiaceae and Akkermansia muciniphila, and an increase in Anaeroplasma. Perturbation of microbiota due to PCB 126 may predispose offspring to a variety of chronic diseases later in adulthood.
Collapse
Affiliation(s)
- Manisha Agarwal
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, 48202, USA
| | - Jessie Hoffman
- Department of Human Nutrition, Winthrop University, Rock Hill, SC 29733, USA
| | - Sara Y Ngo Tenlep
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, USA
| | - Sara Santarossa
- Department of Public Health Sciences, Henry Ford Health, Detroit, MI 48202, USA
| | - Kevin J Pearson
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, USA
| | - Alexandra R Sitarik
- Department of Public Health Sciences, Henry Ford Health, Detroit, MI 48202, USA
| | | | - Michael C Petriello
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, 48202, USA; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
13
|
Mondal T, Loffredo CA, Simhadri J, Nunlee-Bland G, Korba B, Johnson J, Cotin S, Moses G, Quartey R, Howell CD, Noreen Z, Arif M, Ghosh S. Insights on the pathogenesis of type 2 diabetes as revealed by signature genomic classifiers in an African American population in the Washington, DC area. Diabetes Metab Res Rev 2023; 39:e3589. [PMID: 36331813 DOI: 10.1002/dmrr.3589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/21/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
AIMS African Americans (AA) in the United States have a high risk of type 2 diabetes mellitus (T2DM) and suffer from disparities in the prevalence, mortality, and comorbidities of the disease compared to other Americans. The present study aimed to shed light on the molecular mechanisms of disease pathogenesis of T2DM among AA in the Washington, DC region. METHODS We performed TaqMan Low Density Arrays (TLDA) on 24 genes of interest that belong to three categories: metabolic disease and disorders, cancer-related genes, and neurobehavioural disorders genes. The 18 genes, viz. ARNT, CYP2D6, IL6, INSR, RRAD, SLC2A2 (metabolic disease and disorders), APC, BCL2, CSNK1D, MYC, SOD2, TP53 (Cancer-related), APBA1, APBB2, APOC1, APOE, GSK3B, and NAE1 (neurobehavioural disorders), were differentially expressed in T2DM participants compared to controls. RESULTS Our results suggest that factors including gender, smoking habits, and the severity or lack of control of T2DM (as indicated by HbA1c levels) were significantly associated with differential gene expression. APBA1 was significantly (p-value <0.05) downregulated in all diabetes participants. Upregulation of APOE and CYP2D6 genes and downregulation of the INSR gene were observed in the majority of diabetes patients. CONCLUSIONS Tobacco smoking and gender were significantly associated with case-control differences in expression of the APBA1 and APOE genes (connected with Alzheimer's disease) and the INSR and CYP2D6 (associated with metabolic disorders). The results highlight the need for more effective management of T2DM and for tobacco smoking cessation interventions in this community, and further research on the associations of T2DM with other disease processes, including cancer and neurobehavioral pathways.
Collapse
Affiliation(s)
- Tanmoy Mondal
- Department of Biology, Howard University, Washington, DC, USA
| | | | - Jyothirmai Simhadri
- Departments of Pediatrics and Child Health, College of Medicine, Howard University, Washington, DC, USA
| | - Gail Nunlee-Bland
- Departments of Pediatrics and Child Health, College of Medicine, Howard University, Washington, DC, USA
| | - Brent Korba
- Depaertment of Microbiology & Immunology, Georgetown University, Washington, DC, USA
| | | | - Sharleine Cotin
- Department of Biology, Howard University, Washington, DC, USA
| | - Gemeyel Moses
- Department of Biology, Howard University, Washington, DC, USA
| | - Ruth Quartey
- Viral Hepatitis Center, College of Medicine, Howard University, Washington, DC, USA
| | - Charles D Howell
- Viral Hepatitis Center, College of Medicine, Howard University, Washington, DC, USA
| | - Zarish Noreen
- Department of Healthcare Biotechnology, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Maria Arif
- Department of Biochemistry, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Somiranjan Ghosh
- Department of Biology, Howard University, Washington, DC, USA
- Departments of Pediatrics and Child Health, College of Medicine, Howard University, Washington, DC, USA
| |
Collapse
|
14
|
Petri BJ, Piell KM, Wahlang B, Head KZ, Andreeva K, Rouchka EC, Cave MC, Klinge CM. Polychlorinated biphenyls alter hepatic m6A mRNA methylation in a mouse model of environmental liver disease. ENVIRONMENTAL RESEARCH 2023; 216:114686. [PMID: 36341798 PMCID: PMC10120843 DOI: 10.1016/j.envres.2022.114686] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/30/2022] [Accepted: 10/25/2022] [Indexed: 05/21/2023]
Abstract
Exposure to polychlorinated biphenyls (PCBs) has been associated with liver injury in human cohorts and with nonalcoholic steatohepatitis (NASH) in mice fed a high fat diet (HFD). N (6)-methyladenosine (m6A) modification of mRNA regulates transcript fate, but the contribution of m6A modification on the regulation of transcripts in PCB-induced steatosis and fibrosis is unknown. This study tested the hypothesis that PCB and HFD exposure alters the levels of m6A modification in transcripts that play a role in NASH in vivo. Male C57Bl6/J mice were fed a HFD (12 wks) and administered a single oral dose of Aroclor1260, PCB126, or Aroclor1260 + PCB126. Genome-wide identification of m6A peaks was accomplished by m6A mRNA immunoprecipitation sequencing (m6A-RIP) and the mRNA transcriptome identified by RNA-seq. Exposure of HFD-fed mice to Aroclor1260 decreased the number of m6A peaks and m6A-containing genes relative to PCB vehicle control whereas PCB126 or the combination of Aroclor1260 + PCB126 increased m6A modification frequency. ∼41% of genes had one m6A peak and ∼49% had 2-4 m6A peaks. 117 m6A peaks were common in the four experimental groups. The Aroclor1260 + PCB126 exposure group showed the highest number (52) of m6A-peaks. qRT-PCR confirmed enrichment of m6A-containing fragments of the Apob transcript with PCB exposure. A1cf transcript abundance, m6A peak count, and protein abundance was increased with Aroclor1260 + PCB126 co-exposure. Irrespective of the PCB type, all PCB groups exhibited enriched pathways related to lipid/lipoprotein metabolism and inflammation through the m6A modification. Integrated analysis of m6A-RIP-seq and mRNA-seq identified 242 differentially expressed genes (DEGs) with increased or reduced number of m6A peaks. These data show that PCB exposure in HFD-fed mice alters the m6A landscape offering an additional layer of regulation of gene expression affecting a subset of gene responses in NASH.
Collapse
Affiliation(s)
- Belinda J Petri
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Kellianne M Piell
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Banrida Wahlang
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA; University of Louisville Hepatobiology and Toxicology Center, USA; The University of Louisville Superfund Research Center, USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, USA
| | - Kimberly Z Head
- University of Louisville Hepatobiology and Toxicology Center, USA
| | - Kalina Andreeva
- KY INBRE Bioinformatics Core, University of Louisville, USA; Department of Genetics, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Eric C Rouchka
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA; KY INBRE Bioinformatics Core, University of Louisville, USA
| | - Matthew C Cave
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, USA
| | - Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA; University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA.
| |
Collapse
|
15
|
Perumal S, Lee W, Atchudan R. A review on bismuth-based materials for the removal of organic and inorganic pollutants. CHEMOSPHERE 2022; 306:135521. [PMID: 35780986 DOI: 10.1016/j.chemosphere.2022.135521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/11/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Modernized lifestyle and increased industrialization threaten living organisms because of the pollutants released from industries and household wastes. The presence of even small amounts of pollutants (organic pollutants (OPs) and inorganic pollutants-heavy metals (HMs)) shows significant effects. Thus wastewater treatment is urgently needed before being subjected to use. Many methods and materials have been developed and reported for the removal of pollutants from wastewater. This review focused on the removal of both OPs and HMs using bismuth-based (Bi-based) materials because of their low toxicity and excellent properties compared to other metals. Bi-based materials as a photocatalyst for photodegradation of OPs are discussed in detail with synthesis methods. Further, since few reviews are available on the Bi-based material for the removal and sensing of HMs, this topic was intentionally summarized. About 200 published articles and reviews have been reviewed here. Additionally, the key point that needs to be focused on the development of Bi-based photocatalysts for the removal of OPs and for upgrading the Bi-based materials as adsorbents for HMs are conferred in the outlook. This will help many researchers in their upcoming work.
Collapse
Affiliation(s)
- Suguna Perumal
- Department of Chemistry, Sejong University, Seoul, 143747, Republic of Korea.
| | - Wonmok Lee
- Department of Chemistry, Sejong University, Seoul, 143747, Republic of Korea
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Tamil Nadu, India.
| |
Collapse
|
16
|
Fang L, Ou K, Huang J, Zhang S, Zhang Y, Zhao H, Chen M, Wang C. Long-term exposure to environmental levels of phenanthrene induces emaciation-thirst disease-like syndromes in female mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:120003. [PMID: 35995292 DOI: 10.1016/j.envpol.2022.120003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Phenanthrene (Phe) is a polycyclic aromatic hydrocarbon widely present in foods and drinking water. To explore the detrimental effects of Phe on body metabolism, female Kunming mice were treated with Phe in drinking water at concentrations of 0.05, 0.5 and 5 ng/mL. After exposure for 270 d, the animals exhibited dose-dependent reduced body weight and increased water consumption. The dose-dependent accumulation of Phe in the brain decreased hypothalamic neuron numbers, upregulated hypothalamic expression of anaplastic lymphoma kinase, elevated norepinephrine levels in white adipose tissue (WAT) and further activated lipolysis in WAT, leading to a reduction in fat mass. Brown adipose tissue formation was reduced, accompanied by the inhibition of the bone morphogenetic protein signaling pathway. A simultaneous reduced serum levels of antidiuretic hormone (arginine vasopressin) might be one of the reasons for increased water consumption. The present results indicate an environmental etiology and prevention way for the development of emaciation-thirst disease.
Collapse
Affiliation(s)
- Lu Fang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Kunlin Ou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Jie Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Shenli Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Ying Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Hezhen Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Meng Chen
- College of Environment & Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, PR China.
| |
Collapse
|
17
|
Petri BJ, Piell KM, Wahlang B, Head KZ, Andreeva K, Rouchka EC, Pan J, Rai SN, Cave MC, Klinge CM. Multiomics analysis of the impact of polychlorinated biphenyls on environmental liver disease in a mouse model. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103928. [PMID: 35803474 DOI: 10.1016/j.etap.2022.103928] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/27/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Exposure to high fat diet (HFD) and persistent organic pollutants including polychlorinated biphenyls (PCBs) is associated with liver injury in human populations and non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) in animal models. Previously, exposure of HFD-fed male mice to the non-dioxin-like (NDL) PCB mixture Aroclor1260, dioxin-like (DL) PCB126, or Aroclor1260 + PCB126 co-exposure caused toxicant-associated steatohepatitis (TASH) and differentially altered the liver proteome. Here unbiased mRNA and miRNA sequencing (mRNA- and miRNA- seq) was used to identify biological pathways altered in these liver samples. Fewer transcripts and miRs were up- or down- regulated by PCB126 or Aroclor1260 compared to the combination, suggesting that crosstalk between the receptors activated by these PCBs amplifies changes in the transcriptome. Pathway enrichment analysis identified "positive regulation of Wnt/β-catenin signaling" and "role of miRNAs in cell migration, survival, and angiogenesis" for differentially expressed mRNAs and miRNAs, respectively. We evaluated the five miRNAs increased in human plasma with PCB exposure and suspected TASH and found that miR-192-5p was increased with PCB exposure in mouse liver. Although we observed little overlap between differentially expressed mRNA transcripts and proteins, biological pathway-relevant PCB-induced miRNA-mRNA and miRNA-protein inverse relationships were identified that may explain protein changes. These results provide novel insights into miRNA and mRNA transcriptome changes playing direct and indirect roles in the functional protein pathways in PCB-related hepatic lipid accumulation, inflammation, and fibrosis in a mouse model of TASH and its relevance to human liver disease in exposed populations.
Collapse
Affiliation(s)
- Belinda J Petri
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine University of Louisville, Louisville, KY 40292, USA
| | - Kellianne M Piell
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine University of Louisville, Louisville, KY 40292, USA
| | - Banrida Wahlang
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA; University of Louisville Hepatobiology and Toxicology Center, USA; The University of Louisville Superfund Research Center, USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, USA
| | - Kimberly Z Head
- University of Louisville Hepatobiology and Toxicology Center, USA
| | | | - Eric C Rouchka
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine University of Louisville, Louisville, KY 40292, USA; KY INBRE Bioinformatics Core, University of Louisville, USA
| | - Jianmin Pan
- Biostatistics and Bioinformatics Facility, Brown Cancer Center, USA
| | - Shesh N Rai
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA; University of Louisville Hepatobiology and Toxicology Center, USA; Biostatistics and Bioinformatics Facility, Brown Cancer Center, USA
| | - Matthew C Cave
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine University of Louisville, Louisville, KY 40292, USA; University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA; University of Louisville Hepatobiology and Toxicology Center, USA; The University of Louisville Superfund Research Center, USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, USA
| | - Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine University of Louisville, Louisville, KY 40292, USA; University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA.
| |
Collapse
|
18
|
Ge C, Geng T, Cheng L, Zhang Y. Gestational exposure to PCB-118 impairs placental angiogenesis and fetal growth. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49126-49135. [PMID: 35217957 DOI: 10.1007/s11356-022-19240-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Maternal exposure to polychlorinated biphenyls (PCBs) results in adverse effects on fetal development. However, the underlying mechanism has not been sufficiently explored in respect to particular PCBs. Placental angiogenesis plays a crucial role in feto-maternal substances transportation and fetal development. The present study was conducted to investigate the effects of prenatal PCB118 exposure on placental angiogenesis and fetal growth. The pregnant dam received PCB118 at environmentally relevant doses (0, 20, or 100 μg/kg/day) intragastrically from gestational day (GD) 7.5-18.5 to establish an in vivo model. Compared with the control group, the fetal body and placental weights of the PCB118 (100 μg/kg/day) group were significantly decreased and the intrauterine growth retardation (IUGR) rates were increased both in the female and male fetus. Furthermore, we found that placental histology was significantly impaired and the number of blood vessels was decreased in the PCB118 group. Additionally, gestational exposure to PCB118 caused anomalous mRNA expression of the genes in the placenta regarding angiogenesis. These findings indicate that PCB118 may contribute to the occurrence of IUGR by provoking placental angiogenesis dysfunction. This study clarified the adverse effects and potential mechanism of prenatal PCBs exposure on fetal growth, providing a new theoretical and experimental basis for future treatment and prevention.
Collapse
Affiliation(s)
- Caiyun Ge
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, Hubei, People's Republic of China
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China
| | - Ting Geng
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, Hubei, People's Republic of China
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China
| | - Lin Cheng
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, Hubei, People's Republic of China
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China
| | - Yuanzhen Zhang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China.
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, Hubei, People's Republic of China.
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China.
| |
Collapse
|
19
|
Martyniuk CJ, Martínez R, Navarro-Martín L, Kamstra JH, Schwendt A, Reynaud S, Chalifour L. Emerging concepts and opportunities for endocrine disruptor screening of the non-EATS modalities. ENVIRONMENTAL RESEARCH 2022; 204:111904. [PMID: 34418449 PMCID: PMC8669078 DOI: 10.1016/j.envres.2021.111904] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/22/2021] [Accepted: 08/16/2021] [Indexed: 05/15/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are ubiquitous in the environment and involve diverse chemical-receptor interactions that can perturb hormone signaling. The Organization for Economic Co-operation and Development has validated several EDC-receptor bioassays to detect endocrine active chemicals and has established guidelines for regulatory testing of EDCs. Focus on testing over the past decade has been initially directed to EATS modalities (estrogen, androgen, thyroid, and steroidogenesis) and validated tests for chemicals that exert effects through non-EATS modalities are less established. Due to recognition that EDCs are vast in their mechanisms of action, novel bioassays are needed to capture the full scope of activity. Here, we highlight the need for validated assays that detect non-EATS modalities and discuss major international efforts underway to develop such tools for regulatory purposes, focusing on non-EATS modalities of high concern (i.e., retinoic acid, aryl hydrocarbon receptor, peroxisome proliferator-activated receptor, and glucocorticoid signaling). Two case studies are presented with strong evidence amongst animals and human studies for non-EATS disruption and associations with wildlife and human disease. This includes metabolic syndrome and insulin signaling (case study 1) and chemicals that impact the cardiovascular system (case study 2). This is relevant as obesity and cardiovascular disease represent two of the most significant health-related crises of our time. Lastly, emerging topics related to EDCs are discussed, including recognition of crosstalk between the EATS and non-EATS axis, complex mixtures containing a variety of EDCs, adverse outcome pathways for chemicals acting through non-EATS mechanisms, and novel models for testing chemicals. Recommendations and considerations for evaluating non-EATS modalities are proposed. Moving forward, improved understanding of the non-EATS modalities will lead to integrated testing strategies that can be used in regulatory bodies to protect environmental, animal, and human health from harmful environmental chemicals.
Collapse
Affiliation(s)
- Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
| | - Rubén Martínez
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain
| | - Laia Navarro-Martín
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain
| | - Jorke H Kamstra
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | - Adam Schwendt
- Division of Experimental Medicine, School of Medicine, Faculty of Medicine and Biomedical Sciences, McGill University, 850 Sherbrooke Street, Montréal, Québec, H3A 1A2, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec, H3T 1E2, Canada
| | - Stéphane Reynaud
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France
| | - Lorraine Chalifour
- Division of Experimental Medicine, School of Medicine, Faculty of Medicine and Biomedical Sciences, McGill University, 850 Sherbrooke Street, Montréal, Québec, H3A 1A2, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec, H3T 1E2, Canada
| |
Collapse
|
20
|
Integrated Genomic and Bioinformatics Approaches to Identify Molecular Links between Endocrine Disruptors and Adverse Outcomes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19010574. [PMID: 35010832 PMCID: PMC8744944 DOI: 10.3390/ijerph19010574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 12/04/2022]
Abstract
Exposure to Endocrine Disrupting Chemicals (EDC) has been linked with several adverse outcomes. In this review, we examine EDCs that are pervasive in the environment and are of concern in the context of human, animal, and environmental health. We explore the consequences of EDC exposure on aquatic life, terrestrial animals, and humans. We focus on the exploitation of genomics technologies and in particular whole transcriptome sequencing. Genome-wide analyses using RNAseq provides snap shots of cellular, tissue and whole organism transcriptomes under normal physiological and EDC perturbed conditions. A global view of gene expression provides highly valuable information as it uncovers gene families or more specifically, pathways that are affected by EDC exposures, but also reveals those that are unaffected. Hypotheses about genes with unknown functions can also be formed by comparison of their expression levels with genes of known function. Risk assessment strategies leveraging genomic technologies and the development of toxicology databases are explored. Finally, we review how the Adverse Outcome Pathway (AOP) has exploited this high throughput data to provide a framework for toxicology studies.
Collapse
|
21
|
Desforges JP, Legrand E, Boulager E, Liu P, Xia J, Butler H, Chandramouli B, Ewald J, Basu N, Hecker M, Head J, Crump D. Using Transcriptomics and Metabolomics to Understand Species Differences in Sensitivity to Chlorpyrifos in Japanese Quail and Double-Crested Cormorant Embryos. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:3019-3033. [PMID: 34293216 DOI: 10.1002/etc.5174] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/06/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Modern 21st-century toxicity testing makes use of omics technologies to address critical questions in toxicology and chemical management. Of interest are questions relating to chemical mechanisms of toxicity, differences in species sensitivity, and translation of molecular effects to observable apical endpoints. Our study addressed these questions by comparing apical outcomes and multiple omics responses in early-life stage exposure studies with Japanese quail (Coturnix japonica) and double-crested cormorant (Phalacrocorax auritus), representing a model and ecological species, respectively. Specifically, we investigated the dose-dependent response of apical outcomes as well as transcriptomics and metabolomics in the liver of each species exposed to chlorpyrifos, a widely used organophosphate pesticide. Our results revealed a clear pattern of dose-dependent disruption of gene expression and metabolic profiles in Japanese quail but not double-crested cormorant at similar chlorpyrifos exposure concentrations. The difference in sensitivity between species was likely due to higher metabolic transformation of chlorpyrifos in Japanese quail compared to double-crested cormorant. The most impacted biological pathways after chlorpyrifos exposure in Japanese quail included hepatic metabolism, oxidative stress, endocrine disruption (steroid and nonsteroid hormones), and metabolic disease (lipid and fatty acid metabolism). Importantly, we show consistent responses across biological scales, suggesting that significant disruption at the level of gene expression and metabolite profiles leads to observable apical responses at the organism level. Our study demonstrates the utility of evaluating effects at multiple biological levels of organization to understand how modern toxicity testing relates to outcomes of regulatory relevance, while also highlighting important, yet poorly understood, species differences in sensitivity to chemical exposure. Environ Toxicol Chem 2021;40:3019-3033. © 2021 SETAC.
Collapse
Affiliation(s)
- Jean-Pierre Desforges
- Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Elena Legrand
- Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Emily Boulager
- Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Peng Liu
- Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Jianguo Xia
- Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | | | | | - Jessica Ewald
- Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Markus Hecker
- Toxicology Centre and School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jessica Head
- Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Doug Crump
- Ecotoxicology and Wildlife Health Division, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
22
|
Lobstein T, Brownell KD. Endocrine-disrupting chemicals and obesity risk: A review of recommendations for obesity prevention policies. Obes Rev 2021; 22:e13332. [PMID: 34409721 DOI: 10.1111/obr.13332] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/20/2022]
Abstract
Emerging evidence indicates that industrially produced endocrine-disrupting chemicals (EDCs) may be as obesogenic as poor dietary patterns and should be considered in obesity prevention policies. The authors conducted two reviews: (a) a systematic search of four electronic databases for papers published since January 2010 to identify the policy recommendations contained in scientific reviews of EDC exposure and obesity risk and (b) a narrative review of obesity policy documents published since January 2012 to identify the recommendations of national and international agencies. A search of four electronic databases found 63 scientific reviews with policy recommendations, of which 26 suggested individual responsibility to avoid exposure, 11 suggested medical interventions to counter the effects of exposure, and 42 suggested regulatory control of hazardous chemicals. Of sixty policy documents examined, six mentioned pollutants as a possible risk factor for obesity, and only one made explicit reference to strategies for reducing exposure to EDCs. The UN Sustainable Development Goals include targets to prevent ill health from hazardous chemicals (Targets 3.9 and 12.4) and to remove unsafe industrial chemicals from the environment (Targets 6.3, 11.6, 12.4, and 14.1). The authors suggest these should be explicitly linked to World Health Assembly targets to halt the rise in obesity.
Collapse
Affiliation(s)
- Tim Lobstein
- World Obesity Federation, London, UK.,Boden Collaboration, University of Sydney, Camperdown, New South Wales, Australia
| | - Kelly D Brownell
- Duke World Food Policy Center, Sanford School of Public Policy, Durham, North Carolina, USA
| |
Collapse
|
23
|
Xu Y, Tang Y, Xu L, Wang Y, Liu Z, Qin Q. Effects of iron-carbon materials on microbial-catalyzed reductive dechlorination of polychlorinated biphenyls in Taihu Lake sediment microcosms: Enhanced chlorine removal, detoxification and shifts of microbial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148454. [PMID: 34465049 DOI: 10.1016/j.scitotenv.2021.148454] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Nano zero-valent iron particles (nZVI, 0.09 wt%), micro zero-valent iron particles (mZVI, 0.09 wt%), granular activated carbon (GAC, 3.03 wt%), GAC supported nZVI (nZVI/GAC, 3.12 wt%) and nZVI&GAC (nZVI 0.09 wt%, GAC 3.03 wt%) were evaluated for their effects on polychlorinated biphenyls (PCBs) anaerobic reductive dechlorination, detoxification, as well as microbial community structure in Taihu Lake (China) sediment microcosms. The results showed that all of these five materials could stimulate PCBs reductive dechlorination, especially for dioxin-like PCB congeners, and nZVI&GAC had the best removal effect on PCBs. The reduction of total PCBs increased from 13.5% to 33.2%. H2 generated by zero-valent iron corrosion was utilized by organohalide-respiring bacteria (OHRB) to enhance the dechlorination of PCBs predominantly via meta chlorine removal in the short term. The addition of ZVI had little impact on the total bacterial abundance and the microbial community structure. The adsorption of GAC and potential bioremediation properties of attached biofilm could promote the long-term removal of PCBs. GAC, nZVI/GAC, nZVI&GAC had different influences on the microbial structure. These findings provide insights into the biostimulation technique for in situ remediations of PCBs contaminated sediments.
Collapse
Affiliation(s)
- Yan Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| | - Yanqiang Tang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Lei Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Ying Wang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Zheming Liu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Qingdong Qin
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
24
|
Rolli E, Vergani L, Ghitti E, Patania G, Mapelli F, Borin S. 'Cry-for-help' in contaminated soil: a dialogue among plants and soil microbiome to survive in hostile conditions. Environ Microbiol 2021; 23:5690-5703. [PMID: 34139059 PMCID: PMC8596516 DOI: 10.1111/1462-2920.15647] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022]
Abstract
An open question in environmental ecology regards the mechanisms triggered by root chemistry to drive the assembly and functionality of a beneficial microbiome to rapidly adapt to stress conditions. This phenomenon, originally described in plant defence against pathogens and predators, is encompassed in the ‘cry‐for‐help’ hypothesis. Evidence suggests that this mechanism may be part of the adaptation strategy to ensure the holobiont fitness in polluted environments. Polychlorinated biphenyls (PCBs) were considered as model pollutants due to their toxicity, recalcitrance and poor phyto‐extraction potential, which lead to a plethora of phytotoxic effects and rise environmental safety concerns. Plants have inefficient detoxification processes to catabolize PCBs, even leading to by‐products with a higher toxicity. We propose that the ‘cry‐for‐help’ mechanism could drive the exudation‐mediated recruitment and sustainment of the microbial services for PCBs removal, exerted by an array of anaerobic and aerobic microbial degrading populations working in a complex metabolic network. Through this synergistic interaction, the holobiont copes with the soil contamination, releasing the plant from the pollutant stress by the ecological services provided by the boosted metabolism of PCBs microbial degraders. Improving knowledge of root chemistry under PCBs stress is, therefore, advocated to design rhizoremediation strategies based on plant microbiome engineering.
Collapse
Affiliation(s)
- Eleonora Rolli
- Department of Food, Environmental and Nutritional Sciences, DeFENS, University of Milan, Via Celoria 2, Milan, 20133, Italy
| | - Lorenzo Vergani
- Department of Food, Environmental and Nutritional Sciences, DeFENS, University of Milan, Via Celoria 2, Milan, 20133, Italy
| | - Elisa Ghitti
- Department of Food, Environmental and Nutritional Sciences, DeFENS, University of Milan, Via Celoria 2, Milan, 20133, Italy
| | - Giovanni Patania
- Department of Food, Environmental and Nutritional Sciences, DeFENS, University of Milan, Via Celoria 2, Milan, 20133, Italy
| | - Francesca Mapelli
- Department of Food, Environmental and Nutritional Sciences, DeFENS, University of Milan, Via Celoria 2, Milan, 20133, Italy
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences, DeFENS, University of Milan, Via Celoria 2, Milan, 20133, Italy
| |
Collapse
|