1
|
Santana-Román ME, Ramírez-Carreto S, Maycotte P, Pando-Robles V. Alteration of mitochondrial function in arthropods during arboviruses infection: a review of the literature. Front Physiol 2025; 16:1507059. [PMID: 40017802 PMCID: PMC11865064 DOI: 10.3389/fphys.2025.1507059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/20/2025] [Indexed: 03/01/2025] Open
Abstract
Arthropods serve as vectors for numerous arboviruses responsible for diseases worldwide. Despite their medical, veterinary, and economic significance, the interaction between arboviruses and arthropods remains poorly understood. Mitochondria in arthropods play a crucial role by supplying energy for cell survival and viral replication. Some arboviruses can replicate within arthropod vectors without harming the host. Successful transmission depends on efficient viral replication in the vector's tissues, ultimately reaching the salivary glands for transmission to a vertebrate host, including humans, via blood-feeding. This review summarizes current knowledge of mitochondrial function in arthropods during arbovirus infection, highlighting gaps compared to studies in mammals and other pathogens relevant to arthropods. It emphasizes mitochondrial processes in insects that require further investigation to uncover the mechanisms underlying arthropod-borne transmission.
Collapse
Affiliation(s)
- María E. Santana-Román
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Santos Ramírez-Carreto
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Paola Maycotte
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Puebla, Mexico
| | - Victoria Pando-Robles
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| |
Collapse
|
2
|
Falvo CA, Crowley DE, Benson E, Hall MN, Schwarz B, Bohrnsen E, Ruiz-Aravena M, Hebner M, Ma W, Schountz T, Rynda-Apple A, Plowright RK. Diet-induced changes in metabolism influence immune response and viral shedding in Jamaican fruit bats. Proc Biol Sci 2025; 292:20242482. [PMID: 39968620 PMCID: PMC11836708 DOI: 10.1098/rspb.2024.2482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/09/2025] [Accepted: 01/24/2025] [Indexed: 02/20/2025] Open
Abstract
Land-use change may drive viral spillover from bats into humans, partly through dietary shifts caused by decreased availability of native foods and increased availability of cultivated foods. We experimentally manipulated diets of Jamaican fruit bats to investigate whether diet influences viral shedding. To reflect dietary changes experienced by wild bats during periods of nutritional stress, Jamaican fruit bats were fed either a standard diet or a putative suboptimal diet, which was deprived of protein (suboptimal-sugar diet) and/or supplemented with fat (suboptimal-fat diet). Upon H18N11 influenza A-virus infection, bats fed on the suboptimal-sugar diet shed the most viral RNA for the longest period, but bats fed the suboptimal-fat diet shed the least viral RNA for the shortest period. Bats on both suboptimal diets ate more food than the standard diet, suggesting nutritional changes may alter foraging behaviour. This study serves as an initial step in understanding whether and how dietary shifts may influence viral dynamics in bats, which alters the risk of spillover to humans.
Collapse
Affiliation(s)
- Caylee A. Falvo
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY14853, USA
| | - Daniel E. Crowley
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY14853, USA
| | - Evelyn Benson
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT59717, USA
| | - Monica N. Hall
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT59717, USA
| | - Benjamin Schwarz
- Research and Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT59840, USA
| | - Eric Bohrnsen
- Research and Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT59840, USA
| | - Manuel Ruiz-Aravena
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY14853, USA
- Department of Wildlife, Fisheries and Aquaculture, Mississippi State University, Starkville, MS39762, USA
| | - Madison Hebner
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT59717, USA
| | - Wenjun Ma
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO65211, USA
| | - Tony Schountz
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO80523, USA
| | - Agnieszka Rynda-Apple
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT59717, USA
| | - Raina K. Plowright
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY14853, USA
| |
Collapse
|
3
|
Bursali F, Ulug D, Touray M. Clash of mosquito wings: Larval interspecific competition among the mosquitoes, Culex pipiens, Aedes albopictus and Aedes aegypti reveals complex population dynamics in shared habitats. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:462-471. [PMID: 38980066 DOI: 10.1111/mve.12742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
Globalisation, climate change and international trade are the factors contributing to the spread of Aedes albopictus (Diptera: Culicidae) and Ae. aegypti into new areas. In newly invaded habitats, these non-native species can serve as arbovirus disease vectors or increase the risk of disease spill over. These mosquitoes continue to emerge in new areas where they have or will have overlapping ranges with other resident mosquito species. The study investigates how invasive Aedes mosquitoes compete with the native Culex pipiens in Türkiye, which might affect the overall mosquito population dynamics and disease transmission risks. Both Aedes species exhibited contrasting responses to interspecific competition with Cx. pipiens. While Ae. albopictus suffers reduced emergence primarily in larger containers with abundant food, Ae. aegypti surprisingly thrives in mixed cultures under all food conditions. Adult Cx. pipiens emergence drops by half against Ae. albopictus and under specific conditions with Ae. aegypti. Competition influences mosquito size differently across species and life stages. Culex pipiens females grow larger when competing with Ae. aegypti, potentially indicating resource advantage or compensatory strategies. However, Ae. albopictus size shows more nuanced responses, suggesting complex interactions at play. Understanding how invasive and native mosquitoes interact with each other can provide insights into how they adapt and coexist in shared habitats. This knowledge can inform effective control strategies. The study highlights the differential responses of invasive Aedes species and the potential for managing populations based on their competitive interactions with the native Cx. pipiens. It can contribute to improved monitoring and prediction systems for the spread of invasive mosquitoes and the associated disease risks.
Collapse
Affiliation(s)
- Fatma Bursali
- Biology Department, Faculty of Science, Aydin Adnan Menderes University, Aydin, Türkiye
| | - Derya Ulug
- Biology Department, Faculty of Science, Aydin Adnan Menderes University, Aydin, Türkiye
| | - Mustapha Touray
- Biology Department, Faculty of Science, Aydin Adnan Menderes University, Aydin, Türkiye
| |
Collapse
|
4
|
Javed N, Paradkar PN, Bhatti A. An overview of technologies available to monitor behaviours of mosquitoes. Acta Trop 2024; 258:107347. [PMID: 39103110 DOI: 10.1016/j.actatropica.2024.107347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
Mosquito-borne diseases such as malaria, dengue, Zika, and chikungunya cause significant morbidity and mortality globally, resulting in over 600,000 deaths from malaria and around 36,000 deaths from dengue each year, with millions of people infected annually, leading to substantial economic losses. The existing mosquito control measures, such as long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS), helped to reduce the infections. However, mosquito-borne diseases are still among the deadliest diseases, forcing us to improve the existing control methods and look for alternative methods simultaneously. Advanced monitoring techniques, including remote sensing, and geographic information systems (GIS) have significantly enhanced the efficiency and effectiveness of mosquito control measures. Mosquitoes' behavioural traits, such as locomotion, blood-feeding, and fertility are the key determinants of disease transmission and epidemiology. Technological advancements, such as high-resolution cameras, infrared imaging, and artificial intelligence (AI) driven object detection models, including groundbreaking convolutional neural networks, have provided efficient and precise options to monitor various mosquito behaviours, including locomotion, oviposition, fertility, and host-seeking. However, they are not commonly employed in mosquito-based research. This review highlights the novel and significant advancements in behaviour-monitoring tools, mostly from the last decade, due to cutting-edge video monitoring technology and artificial intelligence. These advancements can offer enhanced accuracy, efficiency, and the ability to quickly process large volumes of data, enabling detailed behavioural analysis over extended periods and large sample sizes, unlike traditional manual methods prone to human error and labour-intensive. The use of behaviour-assaying techniques can support or replace existing monitoring techniques and directly contribute to improving control measures by providing more accurate and real-time data on mosquito activity patterns and responses to interventions. This enhanced understanding can help establish the role of behavioural changes in improving epidemiological models, making them more precise and dynamic. As a result, mosquito management strategies can become more adaptive and responsive, leading to more effective and targeted interventions. Ultimately, this will reduce disease transmission and significantly improve public health outcomes.
Collapse
Affiliation(s)
- Nouman Javed
- Institute for Intelligent Systems Research and Innovation, Deakin University, Geelong, Victoria 3216 Australia.
| | - Prasad N Paradkar
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, Victoria 3220 Australia
| | - Asim Bhatti
- Institute for Intelligent Systems Research and Innovation, Deakin University, Geelong, Victoria 3216 Australia
| |
Collapse
|
5
|
Gao L, Zhang B, Feng Y, Yang W, Zhang S, Wang J. Host 5-HT affects Plasmodium transmission in mosquitoes via modulating mosquito mitochondrial homeostasis. PLoS Pathog 2024; 20:e1012638. [PMID: 39405338 PMCID: PMC11508672 DOI: 10.1371/journal.ppat.1012638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/25/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
Malaria parasites hijack the metabolism of their mammalian host during the blood-stage cycle. Anopheles mosquitoes depend on mammalian blood to lay eggs and to transmit malaria parasites. However, it remains understudied whether changes in host metabolism affect parasite transmission in mosquitoes. In this study, we discovered that Plasmodium infection significantly decreased the levels of the tryptophan metabolite, 5-hydroxytryptamine (5-HT), in both humans and mice. The reduction led to the decrease of 5-HT in mosquitoes. Oral supplementation of 5-HT to Anopheles stephensi enhanced its resistance to Plasmodium berghei infection by promoting the generation of mitochondrial reactive oxygen species. This effect was due to the accumulation of dysfunctional mitochondria caused by 5-HT-mediated inhibition of mitophagy. Elevating 5-HT levels in mouse serum significantly suppressed parasite infection in mosquitoes. In summary, our data highlight the critical role of metabolites in animal blood in determining the capacity of mosquitoes to control parasite infection.
Collapse
Affiliation(s)
- Li Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Benguang Zhang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, P.R. China
| | - Yuebiao Feng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Wenxu Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Shibo Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Jingwen Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P.R. China
| |
Collapse
|
6
|
Bursali F, Touray M. The complexities of blood-feeding patterns in mosquitoes and sandflies and the burden of disease: A minireview. Vet Med Sci 2024; 10:e1580. [PMID: 39171609 PMCID: PMC11339650 DOI: 10.1002/vms3.1580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Mosquitoes and sandflies exhibit a wide range of blood feeding patterns, targeting a wide range of vertebrate species, including birds, mammals, reptiles, and amphibians, for proteins vital for egg development. This broad host range increases the opportunity for them to acquire pathogens of numerous debilitating-and-fatal diseases from various animal reservoirs, playing a significant role in disease crossover between animals and humans, also known as zoonotic transmission. This review focuses on the intricate blood-feeding habits of these dipteran vectors, their sensory systems and the complex dance between host and pathogen during disease transmission. We delve into the influence of blood sources on pathogen spread by examining the insect immune response and its intricate interplay with pathogens. The remarkable sense of smell guiding them towards food sources and hosts is explored, highlighting the interplay of multiple sensory cues in their navigation. Finally, we examine the challenges in mosquito control strategies and explore innovations in this field, emphasizing the need for sustainable solutions to combat this global health threat. By understanding the biology and behaviour of these insects, we can develop more effective strategies to protect ourselves and mitigate the burden of vector-borne diseases.
Collapse
Affiliation(s)
- Fatma Bursali
- Biology Department, Faculty of ScienceAydin Adnan Menderes UniversityAydinTürkiye
| | - Mustapha Touray
- Biology Department, Faculty of ScienceAydin Adnan Menderes UniversityAydinTürkiye
| |
Collapse
|
7
|
Dutra HLC, Marshall DJ, Comerford B, McNulty BP, Diaz AM, Jones MJ, Mejia AJ, Bjornstad ON, McGraw EA. Larval crowding enhances dengue virus loads in Aedes aegypti, a relationship that might increase transmission in urban environments. PLoS Negl Trop Dis 2024; 18:e0012482. [PMID: 39255310 DOI: 10.1371/journal.pntd.0012482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/20/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Climate change and urbanization will alter the global distribution of disease vectors, changing the disease burden in yet unpredictable ways. Aedes aegypti is a mosquito responsible for transmitting dengue, Zika, chikungunya, and yellow fever viruses that breeds in containers associated with urban environments. We sought to understand how ambient temperature and larval densities in the immature aquatic phases determine adult life history traits and dengue virus loads post-infection. We predicted that larval crowding and high temperatures would both lead to smaller mosquitoes that might struggle to invest in an immune response and, hence, would exhibit high viral loads. METHODS We first examined larval densities from urban and rural areas via a meta-analysis. We then used these data to inform a laboratory-based 2x2 design examining the interacting effects of temperature (21 vs. 26°C) and density (0.2 vs. 0.4 larvae/mL) on adult life history and dengue virus loads. RESULTS We found that urban areas had an ~8-fold increase in larval densities compared to more rural sites. In the lab, we found that crowding had more impact on mosquito traits than temperature. Crowding led to slower development, smaller mosquitoes, less survival, lower fecundity, and higher viral loads, as predicted. The higher temperature led to faster development, reduced fecundity, and lower viral loads. The virus-reducing effect of higher temperature rearing was, however, overwhelmed by the impact of larval crowding when both factors were present. CONCLUSIONS These data reveal complex interactions between the environmental effects experienced by immature mosquitoes and adult traits. They especially highlight the importance of crowding with respect to adult viral loads. Together, these data suggest that urban environments might enhance dengue virus loads and, therefore, possibly transmission, a concerning result given the increasing rates of urbanization globally.
Collapse
Affiliation(s)
- Heverton L C Dutra
- The Biology Department, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- The Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Dustin J Marshall
- The School of Life Sciences, Monash University, Melbourne, Australia
| | - Belinda Comerford
- The School of Life Sciences, Monash University, Melbourne, Australia
| | - Brianna P McNulty
- The Biology Department, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- The Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Anastacia M Diaz
- The Biology Department, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- The Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Matthew J Jones
- The Biology Department, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- The Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Austin J Mejia
- The Biology Department, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- The Entomology Department, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Ottar N Bjornstad
- The Biology Department, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- The Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- The Entomology Department, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Elizabeth A McGraw
- The Biology Department, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- The Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- The Entomology Department, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
8
|
Costa MM, Corbel V, Ben Hamouda R, Almeras L. MALDI-TOF MS Profiling and Its Contribution to Mosquito-Borne Diseases: A Systematic Review. INSECTS 2024; 15:651. [PMID: 39336619 PMCID: PMC11432722 DOI: 10.3390/insects15090651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024]
Abstract
Mosquito-borne diseases are responsible for hundreds of thousands of deaths per year. The identification and control of the vectors that transmit pathogens to humans are crucial for disease prevention and management. Currently, morphological classification and molecular analyses via DNA barcoding are the standard methods used for vector identification. However, these approaches have several limitations. In the last decade, matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) profiling has emerged as an innovative technology in biological sciences and is now considered as a relevant tool for the identification of pathogens and arthropods. Beyond species identification, this tool is also valuable for determining various life traits of arthropod vectors. The purpose of the present systematic review was to highlight the contribution of MALDI-TOF MS to the surveillance and control of mosquito-borne diseases. Published articles from January 2003 to August 2024 were retrieved, focusing on different aspects of mosquito life traits that could be determinants in disease transmission and vector management. The screening of the scientific literature resulted in the selection of 54 published articles that assessed MALDI-TOF MS profiling to study various mosquito biological factors, such species identification, life expectancy, gender, trophic preferences, microbiota, and insecticide resistance. Although a large majority of the selected articles focused on species identification, the present review shows that MALDI-TOF MS profiling is promising for rapidly identifying various mosquito life traits, with high-throughput capacity, reliability, and low cost. The strengths and weaknesses of this proteomic tool for vector control and surveillance are discussed.
Collapse
Affiliation(s)
- Monique Melo Costa
- Unité de Parasitologie et Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (M.M.C.); (R.B.H.)
- Aix Marseille Univ, SSA, AP-HM, RITMES, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Vincent Corbel
- Institut de Recherche pour le Développement (IRD), MIVEGEC, Univ. Montpellier, CNRS, IRD, 911 Av. Agropolis, 34394 Montpellier, France;
- Laboratório de Fisiologia e Controle de Artrópodes Vetores (Laficave), Fundação Oswaldo Cruz (FIOCRUZ), Instituto Oswaldo Cruz (IOC), Avenida Brasil, 4365 Manguinhos, Rio de Janeiro 21040-360, Brazil
| | - Refka Ben Hamouda
- Unité de Parasitologie et Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (M.M.C.); (R.B.H.)
- Aix Marseille Univ, SSA, AP-HM, RITMES, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Lionel Almeras
- Unité de Parasitologie et Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (M.M.C.); (R.B.H.)
- Aix Marseille Univ, SSA, AP-HM, RITMES, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
| |
Collapse
|
9
|
Marques J, Seabra SG, Almeida I, Gomes J, Alves AC, Silveira H. Long-term blood-free rearing of Anopheles mosquitoes with no effect on fitness, Plasmodium infectivity nor microbiota composition. Sci Rep 2024; 14:19473. [PMID: 39174598 PMCID: PMC11341565 DOI: 10.1038/s41598-024-70090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
Mosquito-borne diseases kill millions of people each year. Therefore, many innovative research and population control strategies are being implemented but, most of them require large-scale production of mosquitoes. Mosquito rearing depends on fresh blood from human donors, experimentation animals or slaughterhouses, which constitutes a strong drawback since high blood quantities are needed, raising ethical and financial constraints. To eliminate blood dependency and the use of experimentation animals, we previously developed BLOODless, a patented diet that represents an important advance towards sustainable mosquito breeding in captivity. BLOODless diet was used to maintain a colony of Anopheles stephensi for 40 generations. Bloodmeal appetite, fitness, Plasmodium berghei infectivity, whole genome sequencing and microbiota were evaluated over time. Here we show that BLOODless can be implemented in Anopheles insectaries since it allows long-term rearing of mosquitoes in captivity, without a detectable effect on their fitness, infectivity, nor on their midgut and salivary microbiota composition.
Collapse
Affiliation(s)
- Joana Marques
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, IHMT-NOVA, Rua da Junqueira 100, 1349-008, Lisboa, Portugal.
| | - Sofia G Seabra
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, IHMT-NOVA, Rua da Junqueira 100, 1349-008, Lisboa, Portugal
| | - Inês Almeida
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, IHMT-NOVA, Rua da Junqueira 100, 1349-008, Lisboa, Portugal
| | - Joana Gomes
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, IHMT-NOVA, Rua da Junqueira 100, 1349-008, Lisboa, Portugal
| | - Ana Catarina Alves
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, IHMT-NOVA, Rua da Junqueira 100, 1349-008, Lisboa, Portugal
| | - Henrique Silveira
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, IHMT-NOVA, Rua da Junqueira 100, 1349-008, Lisboa, Portugal.
| |
Collapse
|
10
|
Boanyah GY, Koekemoer LL, Herren JK, Bukhari T. Effect of Microsporidia MB infection on the development and fitness of Anopheles arabiensis under different diet regimes. Parasit Vectors 2024; 17:294. [PMID: 38982472 PMCID: PMC11234536 DOI: 10.1186/s13071-024-06365-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Microsporidia MB (MB) is a naturally occurring symbiont of Anopheles and has recently been identified as having a potential to inhibit the transmission of Plasmodium in mosquitoes. MB intensity is high in mosquito gonads, with no fitness consequences for the mosquito, and is linked to horizontal (sexual) and vertical (transovarial) transmission from one mosquito to another. Maximising MB intensity and transmission is important for maintaining heavily infected mosquito colonies for experiments and ultimately for mosquito releases. We have investigated how diet affects the MB-Anopheles arabiensis symbiosis phenotypes, such as larval development and mortality, adult size and survival, as well as MB intensity in both larvae and adults. METHODS F1 larvae of G0 females confirmed to be An. arabiensis and infected with MB were either combined (group lines [GLs]) or reared separately (isofemale lines [IMLs]) depending on the specific experiment. Four diet regimes (all mg/larva/day) were tested on F1 GLs: Tetramin 0.07, Tetramin 0.3, Gocat 0.3 and Cerelac 0.3. GLs reared on Tetramin 0.3 mg/larva/day were then fed either a 1% or 6% glucose diet to determine adult survival. Larvae of IMLs were fed Tetramin 0.07 mg and Tetramin 0.3 mg for larval experiments. The mosquitoes in the adult experiments with IMLs were reared on 1% or 6% glucose. RESULTS Amongst the four larval diet regimes tested on An. arabiensis development in the presence of MB, the fastest larval development highest adult emergence, largest body size of mosquitoes, highest prevalence and highest density of MB occurred in those fed Tetramin 0.3 mg/larva/day. Although adult MB-positive mosquitoes fed on 6% glucose survived longer than MB-negative mosquitoes, there was no such effect for those fed on the 1% glucose diet. Development time, wing length and adult survival were not significantly different between MB-infected and uninfected An. arabiensis fed on the Tetramin 0.07 mg/larva/day diet, demonstrating that the MB-conferred fitness advantage was diet-dependent. CONCLUSIONS Microsporidia MB does not adversely impact the development and fitness of An. arabiensis, even under limited dietary conditions. The diet regime of Tetramin 0.3 mg/larva/day + 6% glucose for adults is the superior diet for the mass rearing of MB-infected An. arabiensis mosquitoes. These results are important for rearing MB-infected An. arabiensis in the laboratory for experiments and the mass rearing required for field releases.
Collapse
Affiliation(s)
- Godfred Yaw Boanyah
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lizette L Koekemoer
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Emerging Zoonotic & Parasitic Diseases, Division of the National Health Laboratory Service, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Jeremy K Herren
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya.
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Tullu Bukhari
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya.
| |
Collapse
|
11
|
Shiau JC, Garcia-Diaz N, Kyle DE, Pathak AK. The influence of oviposition status on measures of transmission potential in malaria-infected mosquitoes depends on sugar availability. Parasit Vectors 2024; 17:236. [PMID: 38783366 PMCID: PMC11118549 DOI: 10.1186/s13071-024-06317-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Like other oviparous organisms, the gonotrophic cycle of mosquitoes is not complete until they have selected a suitable habitat to oviposit. In addition to the evolutionary constraints associated with selective oviposition behavior, the physiological demands relative to an organism's oviposition status also influence their nutrient requirement from the environment. Yet, studies that measure transmission potential (vectorial capacity or competence) of mosquito-borne parasites rarely consider whether the rates of parasite replication and development could be influenced by these constraints resulting from whether mosquitoes have completed their gonotrophic cycle. METHODS Anopheles stephensi mosquitoes were infected with Plasmodium berghei, the rodent analog of human malaria, and maintained on 1% or 10% dextrose and either provided oviposition sites ('oviposited' herein) to complete their gonotrophic cycle or forced to retain eggs ('non-oviposited'). Transmission potential in the four groups was measured up to 27 days post-infection as the rates of (i) sporozoite appearance in the salivary glands ('extrinsic incubation period' or EIP), (ii) vector survival and (iii) sporozoite densities. RESULTS In the two groups of oviposited mosquitoes, rates of sporozoite appearance and densities in the salivary glands were clearly dependent on sugar availability, with shorter EIP and higher sporozoite densities in mosquitoes fed 10% dextrose. In contrast, rates of appearance and densities in the salivary glands were independent of sugar concentrations in non-oviposited mosquitoes, although both measures were slightly lower than in oviposited mosquitoes fed 10% dextrose. Vector survival was higher in non-oviposited mosquitoes. CONCLUSIONS Costs to parasite fitness and vector survival were buffered against changes in nutritional availability from the environment in non-oviposited but not oviposited mosquitoes. Taken together, these results suggest vectorial capacity for malaria parasites may be dependent on nutrient availability and oviposition/gonotrophic status and, as such, argue for more careful consideration of this interaction when estimating transmission potential. More broadly, the complex patterns resulting from physiological (nutrition) and evolutionary (egg-retention) trade-offs described here, combined with the ubiquity of selective oviposition behavior, implies the fitness of vector-borne pathogens could be shaped by selection for these traits, with implications for disease transmission and management. For instance, while reducing availability of oviposition sites and environmental sources of nutrition are key components of integrated vector management strategies, their abundance and distribution are under strong selection pressure from the patterns associated with climate change.
Collapse
Affiliation(s)
- Justine C Shiau
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
- Center for the Ecology of Infectious Diseases, Athens, GA, USA
| | - Nathan Garcia-Diaz
- The NSF-REU Program, Odum School of Ecology, Athens, GA, USA
- Department of Biology, Willamette University, Salem, OR, USA
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Dennis E Kyle
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Ashutosh K Pathak
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA.
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA.
- Center for the Ecology of Infectious Diseases, Athens, GA, USA.
| |
Collapse
|
12
|
Garrigós M, Garrido M, Morales-Yuste M, Martínez-de la Puente J, Veiga J. Survival effects of antibiotic exposure during the larval and adult stages in the West Nile virus vector Culex pipiens. INSECT SCIENCE 2024; 31:542-550. [PMID: 37559499 DOI: 10.1111/1744-7917.13259] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/26/2023] [Accepted: 07/15/2023] [Indexed: 08/11/2023]
Abstract
The ability of mosquitoes to transmit a pathogen is affected, among other factors, by their survival rate, which is partly modulated by their microbiota. Mosquito microbiota is acquired during the larval phase and modified during their development and adult feeding behavior, being highly dependent on environmental factors. Pharmaceutical residues including antibiotics are widespread pollutants potentially being present in mosquito breeding waters likely affecting their microbiota. Here, we used Culex pipiens mosquitoes to assess the impact of antibiotic exposure during the larval and adult stages on the survival rate of adult mosquitoes. Wild-collected larvae were randomly assigned to two treatments: larvae maintained in water supplemented with antibiotics and control larvae. Emerged adults were subsequently assigned to each of two treatments, fed with sugar solution with antibiotics and fed only with sugar solution (controls). Larval exposure to antibiotics significantly increased the survival rate of adult females that received a control diet. In addition, the effect of adult exposure to antibiotics on the survival rate of both male and female mosquitoes depended on the number of days that larvae fed ad libitum in the laboratory before emergence. In particular, shorter larval ad libitum feeding periods reduced the survival rate of antibiotic-treated adult mosquitoes compared with those that emerged after a longer larval feeding period. These differences were not found in control adult mosquitoes. Our results extend the current understanding of the impact of antibiotic exposure of mosquitoes on a key component of vectorial capacity, that is the vector survival rate.
Collapse
Affiliation(s)
- Marta Garrigós
- Faculty of Pharmacy, Department of Parasitology, University of Granada, Granada, Spain
| | - Mario Garrido
- Faculty of Pharmacy, Department of Parasitology, University of Granada, Granada, Spain
| | - Manuel Morales-Yuste
- Faculty of Pharmacy, Department of Parasitology, University of Granada, Granada, Spain
| | - Josué Martínez-de la Puente
- Faculty of Pharmacy, Department of Parasitology, University of Granada, Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jesús Veiga
- Faculty of Pharmacy, Department of Parasitology, University of Granada, Granada, Spain
| |
Collapse
|
13
|
Santos NAC, Martins MM, Andrade AO, Bastos AS, Pontual JDC, Araújo JE, Rocha ML, Medeiros JF, Araujo MS. Effects of Carbohydrate Intake on Anopheles darlingi and Anopheles deaneorum Fitness under Lab-Reared Conditions. INSECTS 2024; 15:240. [PMID: 38667370 PMCID: PMC11050594 DOI: 10.3390/insects15040240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
The maintenance of a highly productive colony of anopheline mosquitoes requires standardized methods in order to obtain a sufficient number of homogeneous individuals for malaria research. In this context, nutritional status may affect survival, fecundity, and the capacity to support pathogen development. Here we assess the effects of carbohydrate sources on fecundity, survival, and susceptibility to Plasmodium vivax infection in colonies of Anopheles darlingi and Anopheles deaneorum mosquitoes. Newly emerged females from each species were fed either 10% sugar or 15% honey solutions until the end of each experiment. The type of carbohydrate meal did not impact any entomological parameters for An. deaneorum, except for survival. For both species, honey meal significantly increased median survival post-emergence by three to four days, probably due to its nutritional value. For An. darlingi fed with honey, a higher mean frequency in stage 5 was observed at 48 h post-blood-meal, which could indicate a delay in the digestion process. However, no effects on fecundity parameters were observed. Regarding susceptibility, An. darlingi fed with sugar exhibited a low intensity of sporozoites, although any negative effects of sucrose on sporozoites invasions in the salivary glands are unknown. Based on the increase in mosquito survival, a carbohydrate source composed of 15% honey solution could be better for maintaining An. darlingi and An. deaneorum in the lab-rearing context.
Collapse
Affiliation(s)
- Najara A. C. Santos
- Plataforma de Produção e Infecção de Vetores da Malária (PIVEM), Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho 76812-245, RO, Brazil; (N.A.C.S.); (A.O.A.); (A.S.B.); (J.D.C.P.); (J.E.A.); (M.L.R.); (J.F.M.)
- Instituto Nacional de Epidemiologia da Amazônia Ocidental (INCT-EpiAMO), Porto Velho 76812-245, RO, Brazil
| | - Mirilene M. Martins
- Programa de Pós-Graduação em Biologia Experimental, Fundação Universidade Federal de Rondônia, Fiocruz Rondônia, Porto Velho 76812-245, RO, Brazil;
| | - Alice O. Andrade
- Plataforma de Produção e Infecção de Vetores da Malária (PIVEM), Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho 76812-245, RO, Brazil; (N.A.C.S.); (A.O.A.); (A.S.B.); (J.D.C.P.); (J.E.A.); (M.L.R.); (J.F.M.)
- Programa de Pós-Graduação em Saúde Pública, Faculdade de Saúde Pública, Universidade Federal de São Paulo, São Paulo 01246-904, SP, Brazil
| | - Alessandra S. Bastos
- Plataforma de Produção e Infecção de Vetores da Malária (PIVEM), Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho 76812-245, RO, Brazil; (N.A.C.S.); (A.O.A.); (A.S.B.); (J.D.C.P.); (J.E.A.); (M.L.R.); (J.F.M.)
- Instituto Nacional de Epidemiologia da Amazônia Ocidental (INCT-EpiAMO), Porto Velho 76812-245, RO, Brazil
| | - José D. C. Pontual
- Plataforma de Produção e Infecção de Vetores da Malária (PIVEM), Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho 76812-245, RO, Brazil; (N.A.C.S.); (A.O.A.); (A.S.B.); (J.D.C.P.); (J.E.A.); (M.L.R.); (J.F.M.)
- Instituto Nacional de Epidemiologia da Amazônia Ocidental (INCT-EpiAMO), Porto Velho 76812-245, RO, Brazil
| | - Jéssica E. Araújo
- Plataforma de Produção e Infecção de Vetores da Malária (PIVEM), Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho 76812-245, RO, Brazil; (N.A.C.S.); (A.O.A.); (A.S.B.); (J.D.C.P.); (J.E.A.); (M.L.R.); (J.F.M.)
- Programa de Pós-Graduação em Biologia Experimental, Fundação Universidade Federal de Rondônia, Fiocruz Rondônia, Porto Velho 76812-245, RO, Brazil;
| | - Marina L. Rocha
- Plataforma de Produção e Infecção de Vetores da Malária (PIVEM), Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho 76812-245, RO, Brazil; (N.A.C.S.); (A.O.A.); (A.S.B.); (J.D.C.P.); (J.E.A.); (M.L.R.); (J.F.M.)
- Programa de Pós-Graduação em Conservação e uso de Recursos Naturais—PPGReN, Fundação Universidade Federal de Rondônia, Porto Velho 76812-245, RO, Brazil
| | - Jansen F. Medeiros
- Plataforma de Produção e Infecção de Vetores da Malária (PIVEM), Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho 76812-245, RO, Brazil; (N.A.C.S.); (A.O.A.); (A.S.B.); (J.D.C.P.); (J.E.A.); (M.L.R.); (J.F.M.)
- Instituto Nacional de Epidemiologia da Amazônia Ocidental (INCT-EpiAMO), Porto Velho 76812-245, RO, Brazil
- Programa de Pós-Graduação em Biologia Experimental, Fundação Universidade Federal de Rondônia, Fiocruz Rondônia, Porto Velho 76812-245, RO, Brazil;
| | - Maisa S. Araujo
- Plataforma de Produção e Infecção de Vetores da Malária (PIVEM), Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho 76812-245, RO, Brazil; (N.A.C.S.); (A.O.A.); (A.S.B.); (J.D.C.P.); (J.E.A.); (M.L.R.); (J.F.M.)
- Instituto Nacional de Epidemiologia da Amazônia Ocidental (INCT-EpiAMO), Porto Velho 76812-245, RO, Brazil
- Programa de Pós-Graduação em Saúde Pública, Faculdade de Saúde Pública, Universidade Federal de São Paulo, São Paulo 01246-904, SP, Brazil
- Programa de Pós-Graduação em Conservação e uso de Recursos Naturais—PPGReN, Fundação Universidade Federal de Rondônia, Porto Velho 76812-245, RO, Brazil
- Laboratório de Pesquisa Translacional e Clínica, Centro de Pesquisa em Medicina Tropical (CEPEM), Porto Velho 76812-329, RO, Brazil
| |
Collapse
|
14
|
Avramov M, Thaivalappil A, Ludwig A, Miner L, Cullingham CI, Waddell L, Lapen DR. Relationships between water quality and mosquito presence and abundance: a systematic review and meta-analysis. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:1-33. [PMID: 37832159 PMCID: PMC10784781 DOI: 10.1093/jme/tjad139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023]
Abstract
Mosquito-borne diseases (MBDs) are emerging in response to climate and land use changes. As mosquito (Diptera: Culicidae) habitat selection is often contingent on water availability for egg and larval development, studies have recognized water quality also influences larval habitats. However, underlying species-, genera-, and mosquito level preferences for water quality conditions are varied. This systematic review and meta-analysis aimed to identify, characterize, appraise, and synthesize available global data on the relationships between water quality and mosquito presence and abundance (MPA); with the goal to further our understanding of the geographic expansion of MBD risks. A systematic review was conducted to identify studies investigating the relationships between water quality properties and MPA. Where appropriate, random-effects meta-analyses were conducted to provide pooled estimates for the association between the most reported water quality properties and MPA. The most reported water quality parameters were pH (87%), nitrogen concentrations (56%), turbidity (56%), electrical conductivity (54%), dissolved oxygen (43%), phosphorus concentrations (30%), and alkalinity (10%). Overall, pH (P = 0.05), turbidity (P < 0.0001), electrical conductivity (P = 0.005), dissolved oxygen (P < 0.0001), nitrogen (P < 0.0001), and phosphorus (P < 0.0001) showed significantly positive pooled correlations with MPA, while alkalinity showed a nonsignificant null pooled correlation (P = 0.85). We observed high heterogeneity in most meta-analyses, and climate zonation was shown to influence the pooled estimates. Linkages between MPA and water quality properties will enhance our capacity to predict MBD risks under changing environmental and land use changes.
Collapse
Affiliation(s)
- Marc Avramov
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
- National Microbiology Laboratory Branch, Public Health Agency of Canada, 3200 rue Sicotte, C.P. 5000, St. Hyacinthe, QC J2S 2M2, Canada
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada
| | - Abhinand Thaivalappil
- Department of Population Medicine, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Antoinette Ludwig
- National Microbiology Laboratory Branch, Public Health Agency of Canada, 3200 rue Sicotte, C.P. 5000, St. Hyacinthe, QC J2S 2M2, Canada
| | - Lauren Miner
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Catherine I Cullingham
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Lisa Waddell
- National Microbiology Laboratory Branch, Public Health Agency of Canada, 370 Speedvale Avenue West, Guelph, ON N1H 7M7, Canada
| | - David R Lapen
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada
| |
Collapse
|
15
|
Viginier B, Raquin V. Aedes aegypti Vector Competence Assay for Rift Valley Fever Virus Using Artificial Blood Meal. Methods Mol Biol 2024; 2824:15-25. [PMID: 39039403 DOI: 10.1007/978-1-0716-3926-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Vector competence assays allow to measure, in the laboratory, the ability of a mosquito to get infected and then retransmit an arbovirus while mimicking natural vector infection route. Aedes aegypti is a major vector of arboviruses worldwide and thus a reference species used in vector competence assays. Rift Valley fever virus (RVFV) is a major public health threat, mostly in Africa, that infects humans and animals through the bite of mosquito vectors. Here, we describe vector competence assay of Aedes aegypti mosquitoes for RVFV, from mosquito exposure to the virus through an infectious artificial blood meal to the measurement of virus prevalence in the mosquito's body, head, and saliva.
Collapse
Affiliation(s)
- Barbara Viginier
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, Université PSL, Lyon, France
| | - Vincent Raquin
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, Université PSL, Lyon, France.
| |
Collapse
|
16
|
Ayele S, Wegayehu T, Eligo N, Tamiru G, Lindtjørn B, Massebo F. Maize pollen diet enhances malaria mosquito longevity and infectivity to Plasmodium parasites in Ethiopia. Sci Rep 2023; 13:14490. [PMID: 37660195 PMCID: PMC10475124 DOI: 10.1038/s41598-023-41826-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 08/31/2023] [Indexed: 09/04/2023] Open
Abstract
Although larval diet quality may affect adult mosquito fitness, its impact on parasite development is scarce. Plant pollen from Zea mays, Typha latifolia, and Prosopis juliflora was ultraviolet-sterilized and examined for effects on larval development, pupation rate, adult mosquito longevity, survival and infectivity. The control larvae were fed Tetramin fish food as a comparator food. Four treatment and two control groups were used for each pollen diet, and each experimental tray had 25 larvae. Female An. arabiensis were starved overnight and exposed to infectious blood using a membrane-feeding system. The Kaplan-Meier curves and log-rank test were used for analysis. The Z. mays pollen diet increased malaria mosquito survival and pupation rate (91.3%) and adult emergence (85%). Zea mays and Tetramin fish food had comparable adulthood development times. Adults who emerged from larvae fed Z. mays pollen had the longest average wing length (3.72 mm) and were more permissive to P. vivax (45%) and P. falciparum (27.5%). They also survived longer after feeding on infectious blood and had the highest number of P. vivax oocysts. Zea mays pollen improved larval development, adult mosquito longevity, survival and infectivity to Plasmodium. Our findings suggest that malaria transmission in Z. mays growing villages should be monitored.
Collapse
Affiliation(s)
- Shilimat Ayele
- Department of Biology, Wachemo University, Hossana, Ethiopia
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia
| | - Teklu Wegayehu
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia
| | - Nigatu Eligo
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia
| | - Girum Tamiru
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia
| | - Bernt Lindtjørn
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia
- Centre for International Health, University of Bergen, Bergen, Norway
| | - Fekadu Massebo
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia.
| |
Collapse
|
17
|
Taka NJ, Yee DA. Plant pollen as a resource affecting the development and survival of the mosquitoes Anopheles quadrimaculatus and Culex quinquefasciatus (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:511-517. [PMID: 36946497 DOI: 10.1093/jme/tjad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/12/2023] [Accepted: 02/14/2023] [Indexed: 05/13/2023]
Abstract
Mosquito larvae often subsist on inputs of terrestrial-derived resources, including leaves and dead insects. However, seasonal inputs of plant pollen is an underexplored resource for many species. We compared the effects of three levels (low, medium, high) of two pollen types (corn, pine) on development, mass, and survival in Anopheles quadrimaculatus (Say) and Culex quinquefasciatus (Say) (Diptera: Culcidae). We also examined the nutrient content of adults (%nitrogen, %carbon, C:N) and stable isotopes (δ15N, δ13C). Culex quinquefasciatus had the highest survival rates when grown on high and medium pine pollen compared with low pine. Survival of Culex quinquefasciatus was generally higher compared to that of An. quadrimaculatus on any level of pine, with the latter species having higher survival in high corn. Nutrient content for An. quadrimaculatus did not vary significantly in either pollen type or amount but were more enriched in δ15N in corn pollen relative to pine pollen. For Cx. quinquefasciatus, %N decreased and C:N ratio increased across low to high amounts of corn. Adults raised in corn had generally more δ13C compared to pine pollen. No developmental differences across diets were observed for either species, however both sexes of Cx. quinquefasciatus were generally larger when grown in high pine and medium and high corn pollen compared with other treatments. The poor performance of An. quadrimaculatus on corn pollen was unexpected, however, we show a benefit of corn pollen to Cx. quinquefasciatus with implications for West Nile virus transmission in the United States, especially around agricultural areas where corn is grown.
Collapse
Affiliation(s)
- Nah Jelah Taka
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Donald A Yee
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| |
Collapse
|
18
|
Hellhammer F, Heinig-Hartberger M, Neuhof P, Teitge F, Jung-Schroers V, Becker SC. Impact of different diets on the survival, pupation, and adult emergence of Culex pipiens biotype molestus larvae, and infectability with the insect-specific Culex Y virus. FRONTIERS IN TROPICAL DISEASES 2023. [DOI: 10.3389/fitd.2023.1107857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
The current rapidly advancing climate change will affect the transmission of arthropod-borne viruses (arboviruses), mainly through changes in vector populations. Mosquitos of the Culex pipiens complex play a particularly prominent role in virus transmission in central Europe. Factors that contribute to the vector population density and the ability of those vectors to transmit viral pathogens (vector competence) can include nutrition during the larval stages. To test the influence of larval diet on larval survival and adult emergence, as well as vector competence, several diets varying in their nutritional composition were compared using a newly established assay. We tested the effects of 17 diets or diet combinations on the fitness of third-instar larvae of Culex pipiens biotype molestus. Larval survival rates at day 7 ranged from 43.33% to 94.44%. We then selected 3 of the 17 diets (Tetra Pleco, as the routine feed; JBL NovoTab, as the significantly inferior feed; and KG, as the significantly superior feed) and tested the effect of these diets, in combination with Culex Y virus infection, on larval survival rate. All Culex Y virus-infected larvae showed significantly lower larval survival, as well as low pupation and adult emergence rates. However, none of the tested diets in our study had a significant impact on larval survival in combination with viral infection. Furthermore, we were able to correlate several water quality parameters, such as phosphate, nitrate, and ammonium concentration, electrical conductivity, and low O2 saturations, with reduced larval survival. Thus, we were able to demonstrate that Culex Y virus could be a suitable agent to reduce mosquito population density by reducing larval density, pupation rate, and adult emergence rate. When combined with certain water quality parameters, these effects can be further enhanced, leading to a reduced mosquito population density, and reduce the cycle of transmission. Furthermore, we demonstrate, for the first time, the infection of larvae of the mosquito Culex pipiens biotype molestus with a viral pathogen.
Collapse
|
19
|
Valentine JC, Yee DA. Ontogenetic Changes in Nutrients and Stoichiometry in the Invasive Mosquito, Aedes albopictus (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:235-238. [PMID: 36394132 DOI: 10.1093/jme/tjac177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 06/16/2023]
Abstract
A variety of physiological, morphological, and behavioral changes occur throughout the life cycle of mosquitoes, which can be correlated with a shift from the aquatic to terrestrial environment. Aedes albopictus Skuse is an abundant invasive species from Asia that was introduced into the Americas in the 1980's and is responsible for transmitting several important human disease-causing pathogens. How physiological and anatomical changes within each instar and throughout the developmental stages are related to changes in carbon (C) and nitrogen (N) levels are an unexplored area of mosquito ecology. We hypothesized that these changes as well as stoichiometry (C:N) would vary with instar stage and larval diet. Cohorts of larvae were grown in three different diets: animal only (crickets), plant only (red maple leaves), and a mixture containing both types. Larval instars (1st-4th), pupae, and adults were raised in each diet and were separately analyzed for nutrient content (%C, %N) and stoichiometry (C:N). Significant changes in nutrient values occurred across the life cycle, with C:N values being lower in early instars versus adults or pupae, especially in animal only or mixed diets; few differences were detected in %C or %N across ontogeny. This knowledge may lead to a better understanding of mosquito ecology and pathogen transmission.
Collapse
Affiliation(s)
- James C Valentine
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Donald A Yee
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| |
Collapse
|
20
|
Comparison of diurnal biting activity, life table, and demographic attributes of Aedes albopictus (Asian tiger mosquito) from different urbanized settings in West Java, Indonesia. Acta Trop 2022; 241:106771. [PMID: 36414048 DOI: 10.1016/j.actatropica.2022.106771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
Abstract
The Asian tiger mosquito, Aedes albopictus has well-adaptive behavior to environmental changes, including human urbanization, and has an essential role as the main vector of important pathogenic arboviruses. This study aims to analyze the biology and life table of the Ae. albopictus populations collected from urban and peri-urban areas of Bogor, West Java, Indonesia under laboratory conditions. Mosquito eggs collection was carried out in urban and peri-urban areas using ovitraps. The observation of the life table experiment that followed the development of Ae. albopictus started from the emergence of the first individual to the last surviving individual. Several biological parameters comparing Ae. albopictus from two collection sites based on life table analysis were shown to be significantly different. Biting activity of all mosquitoes from urban and peri-urban areas showed a clear bimodal activity with morning peak at 09:00-10.00 and evening peak at 16:00-17:00. Ae. albopictus from the urban area have higher fecundity, considerably longer lifespan, more gonotrophic cycles, and a higher net reproduction rate (R0) than Ae. albopictus from the peri-urban area. These findings will provide valuable information about the well-adapted Ae. albopictus in urban areas and assist in providing basic reproductive data to improve vector control and current surveillance strategies especially in the study area.
Collapse
|
21
|
Salama SA, AL-Faifi ZE, El-Amier YA. Chemical Composition of Reichardia tingitana Methanolic Extract and Its Potential Antioxidant, Antimicrobial, Cytotoxic and Larvicidal Activity. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11152028. [PMID: 35956506 PMCID: PMC9370821 DOI: 10.3390/plants11152028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/24/2022] [Accepted: 07/29/2022] [Indexed: 06/07/2023]
Abstract
The biggest challenges are locating effective, reasonably priced, and eco-friendly compounds to treat diseases caused by insects and microbes. The aim of this study was to employ GC-MS to assess the biological potency and chemical composition of the aerial parts of Reichardia tingitana (L.) Roth. Using this technique, 17 components were interpreted from the extracted plant, accounting for around 100% of total volatile compounds. Commonly, 6,10,14-trimethylpentadecan-2-one (21.98%) and methyl oleate (27.26%) were positioned as the major components, which were ascertained after 19.25, and 23.34 min, respectively. The major components were classified as hydrocarbons (23.82%), fatty acids, esters of fatty acids (57.46%), steroids (17.26%), and terpenes (1.48%). The DPPH antioxidant activity of the R. tingitana extracted components revealed that the shoot extract is the most powerful, with an IC50 value of 30.77 mg L−1 and a radical scavenging activity percentage of 71.91%. According to the current result, methanolic extract of R. tingitana had the maximum zone of inhibition against Salmonella typhimurium and Bacillus cereus (25.71 ± 1.63 and 24.42 ± 0.81 mm, respectively), while Clostridium tetani and Staphylococcus xylosus were the main resistant species. In addition, the 50% methanol crude shoot extract of R. tingitana showed greater potential anticancer activity with high cytotoxicity for two tumor cells HepG-2 and PC3 cells (IC50 = 29.977 and 40.479 µg mL−1, respectively) and noncytotoxic activity for WI-38 normal cells (IC50 = >100 µg mL−1). The MeOH extract of plant sample was more effective against Aedes aegypti larvae with LC50 of extract being 46.85, 35.75, and 29.38 mg L−1, whereas the LC90 is 82.66, 63.82, and 53.30 mg L−1 for the various time periods of 24, 48, and 72 h, respectively. R. tingitana is a possible biologically active plant. Future study will include pure chemical isolation and individual component bioactivity evaluation.
Collapse
Affiliation(s)
- Salama A. Salama
- Biology Department, Faculty of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
- Zoology Department, Faculty of Science, Damanhur University, Damanhour 22511, Egypt
| | - Zarraq E. AL-Faifi
- Center for Environmental Research and Studies, Jazan University, P.O. Box 2097, Jazan 42145, Saudi Arabia
| | - Yasser A. El-Amier
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
22
|
Investigation and Biological Assessment of Rumex vesicarius L. Extract: Characterization of the Chemical Components and Antioxidant, Antimicrobial, Cytotoxic, and Anti-Dengue Vector Activity. Molecules 2022; 27:molecules27103177. [PMID: 35630653 PMCID: PMC9147116 DOI: 10.3390/molecules27103177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
The objective of this study was to assess the biological potency and chemical composition of Rumex vesicarius aboveground parts using GC-MS. In this approach, 44 components were investigated, comprising 99.99% of the total volatile compounds. The major components were classified as fatty acids and lipids (51.36%), oxygenated hydrocarbons (33.59%), amines (7.35%), carbohydrates (6.06%), steroids (1.21%), and alkaloids (0.42%). The major components were interpreted as 1,3-dihydroxypropan-2-yl oleate (oxygenated hydrocarbons, 18.96%), ethyl 2-hydroxycyclohexane-1-carboxylate (ester of fatty acid, 17.56%), and 2-propyltetrahydro-2H-pyran-3-ol (oxygenated hydrocarbons, 11.18%). The DPPH antioxidant activity of the extracted components of R. vesicarius verified that the shoot extract was the most potent with IC50 = 28.89 mg/L, with the percentages of radical scavenging activity at 74.28% ± 3.51%. The extracted plant, on the other hand, showed substantial antibacterial activity against the diverse bacterial species, namely, Salmonella typhi (23.46 ± 1.69), Bacillus cereus (22.91 ± 0.96), E. coli (21.07 ± 0.80), and Staphylococcus aureus (17.83 ± 0.67). In addition, the extracted plant was in vitro assessed as a considerable anticancer agent on HepG2 cells, in which MTT, cell proliferation cycle, and DNA fragmentation assessments were applied on culture and treated cells. The larvicidal efficacy of the extracted plant was also evaluated against Aedes aegypti, the dengue disease vector. As a result, we may infer that R. vesicarius extract increased cytocompatibility and cell migratory capabilities, and that it may be effective in mosquito control without causing harm.
Collapse
|
23
|
Metabolic interactions between disease-transmitting vectors and their microbiota. Trends Parasitol 2022; 38:697-708. [DOI: 10.1016/j.pt.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022]
|
24
|
Murgia MV, Sharan S, Kaur J, Austin W, Hagen L, Wu L, Chen L, Scott JA, Flaherty DP, Scharf ME, Watts VJ, Hill CA. High-content phenotypic screening identifies novel chemistries that disrupt mosquito activity and development. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 182:105037. [PMID: 35249647 DOI: 10.1016/j.pestbp.2022.105037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/22/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
New classes of chemistries are needed to control insecticide resistant populations of mosquitoes and prevent transmission of vector-borne diseases (VBDs). Organismal screens of chemical collections have played an important role in the search for new vector insecticides and the identification of active ingredients (AIs) that cause rapid mortality of mosquitoes. Advances in image-based screening offer an opportunity to identify chemistries that operate via novel biochemical modes and investigate the range of phenotypes exhibited by mosquitoes following exposure to lethal and sub-lethal chemical dose. An automated, high throughput phenotypic screen (HTS) employing high-content imaging of first instar (L1) Aedes aegypti larvae was developed to identify chemistries associated with mortality and atypical morphological phenotypes. A pilot screen of the Library of Pharmacologically Active Compounds (LOPAC1280) identified 92 chemistries that disrupted larval activity and development, including conventional insecticides and chemistries known to modulate G protein-coupled receptors (GPCRs) and other molecular targets in mammalian systems. Secondary assay series were used to evaluate a selection of chemistries for impacts on mosquito activity, survival and development. Ritodrine hydrochloride reduced mobility of larvae but had no observable effect on survival and development of mosquitoes. High doses of metergoline suppressed larval activity and sub-lethal dose resulted in pupal mortality. Assay data support the utility of phenotypic screening and diverse entomological end-points for discovery of novel insecticidal chemical scaffolds. The insecticide discovery process must consider how multi-modal efficacy spectra contribute to vector and VBD control.
Collapse
Affiliation(s)
- M V Murgia
- Department Entomology, Purdue University, West Lafayette, IN 47907-2089, USA
| | - S Sharan
- Department Entomology, Purdue University, West Lafayette, IN 47907-2089, USA
| | - J Kaur
- Department Entomology, Purdue University, West Lafayette, IN 47907-2089, USA
| | - W Austin
- Department Entomology, Purdue University, West Lafayette, IN 47907-2089, USA
| | - L Hagen
- Department Entomology, Purdue University, West Lafayette, IN 47907-2089, USA
| | - L Wu
- Chemical Genomics Facility at Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907-2089, USA
| | - L Chen
- Chemical Genomics Facility at Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907-2089, USA
| | - J A Scott
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907-2089, USA
| | - D P Flaherty
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907-2089, USA
| | - M E Scharf
- Department Entomology, Purdue University, West Lafayette, IN 47907-2089, USA
| | - V J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907-2089, USA
| | - C A Hill
- Department Entomology, Purdue University, West Lafayette, IN 47907-2089, USA.
| |
Collapse
|
25
|
Competition and resource depletion shape the thermal response of population fitness in Aedes aegypti. Commun Biol 2022; 5:66. [PMID: 35046515 PMCID: PMC8770499 DOI: 10.1038/s42003-022-03030-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/29/2021] [Indexed: 01/28/2023] Open
Abstract
Mathematical models that incorporate the temperature dependence of lab-measured life history traits are increasingly being used to predict how climatic warming will affect ectotherms, including disease vectors and other arthropods. These temperature-trait relationships are typically measured under laboratory conditions that ignore how conspecific competition in depleting resource environments—a commonly occurring scenario in nature—regulates natural populations. Here, we used laboratory experiments on the mosquito Aedes aegypti, combined with a stage-structured population model, to investigate this issue. We find that intensified larval competition in ecologically-realistic depleting resource environments can significantly diminish the vector’s maximal population-level fitness across the entire temperature range, cause a ~6 °C decrease in the optimal temperature for fitness, and contract its thermal niche width by ~10 °C. Our results provide evidence for the importance of considering intra-specific competition under depleting resources when predicting how arthropod populations will respond to climatic warming. Huxley et al. use laboratory experiments to examine how environmental resource depletion impacts temperature-dependent traits observed in Aedes aegypti mosquitoes. The authors find that the conspecific competition dynamics of larvae significantly alter how the mosquito’s population-level fitness responds to temperature, shedding light on how arthropods and other disease vectors may respond to environmental change.
Collapse
|
26
|
Viglietta M, Bellone R, Blisnick AA, Failloux AB. Vector Specificity of Arbovirus Transmission. Front Microbiol 2021; 12:773211. [PMID: 34956136 PMCID: PMC8696169 DOI: 10.3389/fmicb.2021.773211] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
More than 25% of human infectious diseases are vector-borne diseases (VBDs). These diseases, caused by pathogens shared between animals and humans, are a growing threat to global health with more than 2.5 million annual deaths. Mosquitoes and ticks are the main vectors of arboviruses including flaviviruses, which greatly affect humans. However, all tick or mosquito species are not able to transmit all viruses, suggesting important molecular mechanisms regulating viral infection, dissemination, and transmission by vectors. Despite the large distribution of arthropods (mosquitoes and ticks) and arboviruses, only a few pairings of arthropods (family, genus, and population) and viruses (family, genus, and genotype) successfully transmit. Here, we review the factors that might limit pathogen transmission: internal (vector genetics, immune responses, microbiome including insect-specific viruses, and coinfections) and external, either biotic (adult and larvae nutrition) or abiotic (temperature, chemicals, and altitude). This review will demonstrate the dynamic nature and complexity of virus–vector interactions to help in designing appropriate practices in surveillance and prevention to reduce VBD threats.
Collapse
Affiliation(s)
- Marine Viglietta
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| | - Rachel Bellone
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| | - Adrien Albert Blisnick
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| | - Anna-Bella Failloux
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| |
Collapse
|
27
|
Gil MF, Fassolari M, Battaglia ME, Berón CM. Culex quinquefasciatus larvae development arrested when fed on Neochloris aquatica. PLoS Negl Trop Dis 2021; 15:e0009988. [PMID: 34860833 PMCID: PMC8641890 DOI: 10.1371/journal.pntd.0009988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/09/2021] [Indexed: 11/28/2022] Open
Abstract
Culex quinquefasciatus is a cosmopolitan species widely distributed in the tropical and subtropical areas of the world. Due to its long history of close association with humans, the transmission of arboviruses and parasites have an important role in veterinary and public health. Adult females feed mainly on birds although they can also feed on humans and other mammals. On the other hand, larvae are able to feed on a great diversity of microorganisms, including microalgae, present in natural or artificial breeding sites with a high organic load. These two particularities, mentioned above, are some of the reasons why this mosquito is so successful in the environment. In this work, we report the identification of a microalga found during field sampling in artificial breeding sites, in a group of discarded tires with accumulated rainwater. Surprisingly, only one of them had a bright green culture without mosquito larvae while the other surrounding tires contained a large number of mosquito larvae. We isolated and identified this microorganism as Neochloris aquatica, and it was evaluated as a potential biological control agent against Cx. quinquefasciatus. The oviposition site preference in the presence of the alga by gravid females, and the effects on larval development were analyzed. Additionally, microalga effect on Cx. quinquefasciatus wild type, naturally infected with the endosymbiotic bacterium Wolbachia (w+) and Wolbachia free (w−) laboratory lines was explored. According to our results, even though it is chosen by gravid females to lay their eggs, the microalga had a negative effect on the development of larvae from both populations. Additionally, when the larvae were fed with a culture of alga supplemented with balanced fish food used as control diet, they were not able to reverse its effect, and were unable to complete development until adulthood. Here, N. aquatica is described as a biological agent, and as a potential source of bioactive compounds for the control of mosquito populations important in veterinary and human health. Culex quinquefasciatus, known as a southern house mosquito, is a domestic and cosmopolitan species widely distributed in the tropical and subtropical regions of the Americas, Asia, Africa, and Oceania. It is strongly associated with humans and other vertebrates, and it has been given a relevant role in the transmission of arboviruses and parasitic diseases, some of them very important in veterinary and human health. Adult females feed mainly on birds, although they can also feed on humans and other mammals, being effective not only in surviving in the environment, but in vectoring pathogens as well. In addition, Culex pipiens and Cx. quinquefasciatus, members of the Cx. pipiens complex, coexist in a distribution hybrid zone and their mating produces viable offspring, expanding its distribution even more. Moreover, larvae can be developed in different environments, including standing water generated by humans and livestock, being able to exploit food sources found in them. This ability to get adapted to different conditions make it a successful host with great potential to initiate and facilitate the transmission of pathogens, therefore it is essential to develop environmentally friendly control systems that can be used in integrated vector management programs. In this context, the use of microorganisms, like microalgae, with the capability to alter or slow down the development of insects such as Cx. quinquefasciatus must be exhaustively explored.
Collapse
Affiliation(s)
- M. Florencia Gil
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC—CONICET); Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Argentina
| | - Marisol Fassolari
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC—CONICET); Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Argentina
| | - Marina E. Battaglia
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC—CONICET); Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Argentina
- * E-mail: (MEB); (CMB)
| | - Corina M. Berón
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC—CONICET); Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Argentina
- * E-mail: (MEB); (CMB)
| |
Collapse
|
28
|
Buxton M, Nyamukondiwa C, Wasserman RJ, Othenin-Girard V, Pigeault R, Christe P, Glaizot O. Surveillance Studies Reveal Diverse and Potentially Pathogenic-Incriminated Vector Mosquito Species across Major Botswana Touristic Hotspots. INSECTS 2021; 12:913. [PMID: 34680682 PMCID: PMC8537495 DOI: 10.3390/insects12100913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022]
Abstract
Vector mosquitoes contribute significantly to the global burden of diseases in humans, livestock and wildlife. As such, the spatial distribution and abundance of mosquito species and their surveillance cannot be ignored. Here, we surveyed mosquito species across major tourism hotspots in semi-arid Botswana, including, for the first time, the Central Kalahari Game Reserve. Our results reported several mosquito species across seven genera, belonging to Aedes, Anopheles, Culex, Mansonia, Mimomyia, Coquillettidia and Uranotaenia. These results document a significant species inventory that may inform early warning vector-borne disease control systems and likely help manage the risk of emerging and re-emerging mosquito-borne infections.
Collapse
Affiliation(s)
- Mmabaledi Buxton
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, P/Bag 016, Palapye 10071, Botswana; (C.N.); (R.J.W.)
| | - Casper Nyamukondiwa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, P/Bag 016, Palapye 10071, Botswana; (C.N.); (R.J.W.)
| | - Ryan J. Wasserman
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, P/Bag 016, Palapye 10071, Botswana; (C.N.); (R.J.W.)
- Department of Zoology and Entomology, Rhodes University, Makhanda 6140, South Africa
| | - Victor Othenin-Girard
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland; (V.O.-G.); (R.P.); (P.C.); (O.G.)
| | - Romain Pigeault
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland; (V.O.-G.); (R.P.); (P.C.); (O.G.)
- EBI Ecologie & Biologie des Interactions (UMR 7267), Université de Poitiers, 86000 Poitiers, France
| | - Philippe Christe
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland; (V.O.-G.); (R.P.); (P.C.); (O.G.)
| | - Olivier Glaizot
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland; (V.O.-G.); (R.P.); (P.C.); (O.G.)
- Museum of Zoology, 1014 Lausanne, Switzerland
| |
Collapse
|
29
|
Cansado-Utrilla C, Zhao SY, McCall PJ, Coon KL, Hughes GL. The microbiome and mosquito vectorial capacity: rich potential for discovery and translation. MICROBIOME 2021; 9:111. [PMID: 34006334 PMCID: PMC8132434 DOI: 10.1186/s40168-021-01073-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/07/2021] [Indexed: 05/09/2023]
Abstract
Microbiome research has gained considerable interest due to the emerging evidence of its impact on human and animal health. As in other animals, the gut-associated microbiota of mosquitoes affect host fitness and other phenotypes. It is now well established that microbes can alter pathogen transmission in mosquitoes, either positively or negatively, and avenues are being explored to exploit microbes for vector control. However, less attention has been paid to how microbiota affect phenotypes that impact vectorial capacity. Several mosquito and pathogen components, such as vector density, biting rate, survival, vector competence, and the pathogen extrinsic incubation period all influence pathogen transmission. Recent studies also indicate that mosquito gut-associated microbes can impact each of these components, and therefore ultimately modulate vectorial capacity. Promisingly, this expands the options available to exploit microbes for vector control by also targeting parameters that affect vectorial capacity. However, there are still many knowledge gaps regarding mosquito-microbe interactions that need to be addressed in order to exploit them efficiently. Here, we review current evidence of impacts of the microbiome on aspects of vectorial capacity, and we highlight likely opportunities for novel vector control strategies and areas where further studies are required. Video abstract.
Collapse
Affiliation(s)
- Cintia Cansado-Utrilla
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Serena Y Zhao
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Philip J McCall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Kerri L Coon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|