1
|
Cesarini G, Arcangeli A, Scalici M, Crosti R. Computing riverine inputs of macrolitter into the Central Tyrrhenian Sea (Western Mediterranean Sea) from the Tiber River during the 1st post-pandemic year. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178669. [PMID: 39893814 DOI: 10.1016/j.scitotenv.2025.178669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
This study addresses the critical knowledge gap on riverine macroplastic inputs to marine litter, focusing on changes in waste composition in a post-pandemic context. While marine plastic pollution has been widely documented, data on floating macrolitter from urban rivers remain limited. The first comprehensive, year-round assessment of floating macrolitter at both branches of the Tiber River mouth were conducted, using the harmonized RIMMEL approach using a dedicated android App. The simultaneous monitoring conducted at two sites (TIB2 and TIB3), recorded abundance, material composition, size and common item types, revealing an estimated annual transport rate of 9 × 105 items/year from the Tiber River to the Mediterranean Sea. Specifically, the transport rate was 104 ± 87 items/h and density of 1170 ± 151 items/km2. The litter transport rate exhibited seasonal variability, with the highest peak observed in autumn and the lowest in summer. Findings reveal a post-pandemic reduction of <34 % in total macrolitter items, countered by a rise in single-use items, such as plastic cups, plastic bottles label and lids plastic stick from cotton bud and lollies, sanitary towel and condom. COVID-19-related items such as single-use face masks and gloves were also recorded. Over half of the items were under 10 cm, suggesting fragmentation before reaching the sea. This study enhances understanding of riverine litter in a big European capital, providing a post-pandemic dataset to identify pollution patterns and track the evolution of COVID-19-related waste.
Collapse
Affiliation(s)
- Giulia Cesarini
- Department of Sciences, University of Roma Tre, viale G. Marconi 446, 00146 Rome, Italy; National Research Council-Water Research Institute (CNR-IRSA), Corso Tonolli 50, 28922 Verbania Pallanza, Italy.
| | | | - Massimiliano Scalici
- Department of Sciences, University of Roma Tre, viale G. Marconi 446, 00146 Rome, Italy; National Biodiversity Future Center (NBFC), Universita ` di Palermo, Piazza Marina 61, 90133 Palermo, Italy
| | - Roberto Crosti
- ISPRA, Dipartimento BIO, Via Brancati 48, 00144 Roma, Italy; Università Ca' Foscari, Master in Diritto dell'Ambiente e del Territorio, Venezia, Parco Vega, Italy
| |
Collapse
|
2
|
Panda US, Naik S, Pradhan U, Vashi A, Mishra P, Murthy MVR. A repercussion of COVID-19 lockdown on water quality along the east coast of India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:1873-1885. [PMID: 39751678 DOI: 10.1007/s11356-024-35843-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/21/2024] [Indexed: 01/04/2025]
Abstract
The COVID-19 pandemic and subsequent lockdown measures significantly impacted various sectors, including coastal environments. While restrictions led to temporary improvements in air quality, their effects on coastal waters remained understudy. This research conducted four cruises along the east coast of India during pre- and post-COVID-19 lockdown to assess the water quality changes. Results show a significant increase in Chl-a (31.8%), DO (28.1%), and SDD (7.7%), while reductions in NO3 (34.7%), PO4 (51.7%), SiO4 (16.2%), TSM (25.4%), TC (72.3%), and FC (83.3%) were observed. Multivariate analysis identified land-based pollution as the primary source of pollution in coastal waters. Overall, the findings suggest improved coastal water quality during the lockdown. However, for the sustainability of coastal waters, it is proposed that raw sewage, wastewater, and atmospheric fluxes affecting coastal water quality must be regulated.
Collapse
Affiliation(s)
- Uma Sankar Panda
- Ministry of Earth Sciences, National Centre for Coastal Research, Chennai, 600100, India.
| | - Subrat Naik
- Ministry of Earth Sciences, National Centre for Coastal Research, Chennai, 600100, India
| | - Umakanta Pradhan
- Ministry of Earth Sciences, National Centre for Coastal Research, Chennai, 600100, India
| | - Athan Vashi
- Ministry of Earth Sciences, National Centre for Coastal Research, Chennai, 600100, India
| | - Pravakar Mishra
- Ministry of Earth Sciences, National Centre for Coastal Research, Chennai, 600100, India
| | | |
Collapse
|
3
|
Yang Y, Dong Y, Li G, Yin B, Tang X, Jia L, Zhang X, Yang W, Wang C, Peng X, Zhang Y, Cao Y, Xu X. Pregnancy outcomes following natural conception and assisted reproduction treatment in women who received COVID-19 vaccination prior to conception: a population-based cohort study in China. Front Med (Lausanne) 2023; 10:1250165. [PMID: 37886353 PMCID: PMC10598612 DOI: 10.3389/fmed.2023.1250165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
Introduction The coronavirus disease-2019 (COVID-19) pandemic has swept across the world and continues to exert serious adverse effects on vulnerable populations, including pregnant women and neonates. The vaccines available at present were designed to prevent infection from COVID-19 strains and control viral spread. Although the incidence of pregnancy cycle outcomes are not likely to increase patients vaccinated prior to pregnancy compared with unvaccinated patients based on our knowledge of vaccination safety, there is no specific evidence to support this hypothesis. Therefore, the current study aimed to investigate the association between maternal vaccination prior to conception and pregnancy outcomes. Methods We retrospectively analyzed 2,614 women who received prenatal care and delivered in the Obstetrical Department of The First Affiliated Hospital of Anhui Medical University between February 2022 and November 2022. Of the 1,380 eligible pregnant women, 899 women who had received preconception vaccination were assigned to a vaccine group and 481 women who were not vaccinated were control group. Of the enrolled patients, 291 women received fertility treatment (141 vaccinated women, 150 unvaccinated women). The primary outcomes were pregnancy complications (hypothyroidism, gestational diabetes mellitus, pregnancy-induced hypertension, polyhydramnios, oligohydramnios, premature rupture of membranes and postpartum hemorrhage), obstetric outcomes (preterm birth rate, cesarean section rate) and neonatal outcomes (birth-weight, body length, low-birth-weight rate, rate of congenital defects, neonatal mortality and admission to the neonatal intensive care unit). Results There was no significant difference in the incidence of complications during pregnancy and delivery when compared between the vaccine group and control group in either univariate- or multivariate-models. The type of vaccine was not associated with the odds of adverse pregnancy outcome. Among the women with infertility treatment, the vaccinated group and the unvaccinated group had similar pregnancy outcomes. Conclusion Women who received COVID-19 vaccination prior to conception had similar maternal and neonatal outcomes as women who were unvaccinated. Our findings indicate that COVID-19 vaccinations can be safely administered prior to pregnancy in women who are planning pregnancy or assisted reproductive treatment. During new waves of COVID-19 infection, women who are planning pregnancy should be vaccinated as soon as possible to avoid subsequent infections.
Collapse
Affiliation(s)
- Yulu Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei, China
| | - Yujie Dong
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei, China
| | - Guojing Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei, China
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Biqi Yin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Department of Obstetrics and Gynecology, The Hefei First People’s Hospital, Hefei, China
| | - Xiong Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei, China
| | - Liangfang Jia
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Xueke Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Wenjuan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei, China
| | - Chao Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Xiaoqing Peng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Ying Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei, China
| | - Xiaofeng Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei, China
| |
Collapse
|
4
|
Popescu IM, Baditoiu LM, Reddy SR, Nalla A, Popovici ED, Margan MM, Anghel M, Laitin SMD, Toma AO, Herlo A, Fericean RM, Baghina N, Anghel A. Environmental Factors Influencing the Dynamics and Evolution of COVID-19: A Systematic Review on the Study of Short-Term Ozone Exposure. Healthcare (Basel) 2023; 11:2670. [PMID: 37830707 PMCID: PMC10572520 DOI: 10.3390/healthcare11192670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/14/2023] Open
Abstract
The potential influence of environmental factors, particularly air pollutants such as ozone (O3), on the dynamics and progression of COVID-19 remains a significant concern. This study aimed to systematically review and analyze the current body of literature to assess the impact of short-term ozone exposure on COVID-19 transmission dynamics and disease evolution. A rigorous systematic review was conducted in March 2023, covering studies from January 2020 to January 2023 found in PubMed, Web of Science, and Scopus. We followed the PRISMA guidelines and PROSPERO criteria, focusing exclusively on the effects of short-term ozone exposure on COVID-19. The literature search was restricted to English-language journal articles, with the inclusion and exclusion criteria strictly adhered to. Out of 4674 identified studies, 18 fulfilled the inclusion criteria, conducted across eight countries. The findings showed a varied association between short-term ozone exposure and COVID-19 incidence, severity, and mortality. Some studies reported a higher association between ozone exposure and incidence in institutional settings (OR: 1.06, 95% CI: 1.00-1.13) compared to the general population (OR: 1.00, 95% CI: 0.98-1.03). The present research identified a positive association between ozone exposure and both total and active COVID-19 cases as well as related deaths (coefficient for cases: 0.214; for recoveries: 0.216; for active cases: 0.467; for deaths: 0.215). Other studies also found positive associations between ozone levels and COVID-19 cases and deaths, while fewer reports identified a negative association between ozone exposure and COVID-19 incidence (coefficient: -0.187) and mortality (coefficient: -0.215). Conversely, some studies found no significant association between ozone exposure and COVID-19, suggesting a complex and potentially region-specific relationship. The relationship between short-term ozone exposure and COVID-19 dynamics is complex and multifaceted, indicating both positive and negative associations. These variations are possibly due to demographic and regional factors. Further research is necessary to bridge current knowledge gaps, especially considering the potential influence of short-term O3 exposure on COVID-19 outcomes and the broader implications on public health policy and preventive strategies during pandemics.
Collapse
Affiliation(s)
- Irina-Maria Popescu
- Department of Infectious Diseases, Discipline of Epidemiology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (I.-M.P.); (L.M.B.); (E.D.P.); (M.A.); (S.M.D.L.)
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
| | - Luminita Mirela Baditoiu
- Department of Infectious Diseases, Discipline of Epidemiology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (I.-M.P.); (L.M.B.); (E.D.P.); (M.A.); (S.M.D.L.)
| | - Sandhya Rani Reddy
- Department of General Medicine, Prathima Institute of Medical Sciences, Nagunur 505417, Telangana, India;
| | - Akhila Nalla
- Department of General Medicine, MNR Medical College, Sangareddy 502294, Telangana, India;
| | - Emilian Damian Popovici
- Department of Infectious Diseases, Discipline of Epidemiology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (I.-M.P.); (L.M.B.); (E.D.P.); (M.A.); (S.M.D.L.)
| | - Madalin-Marius Margan
- Department of Functional Sciences, Discipline of Public Health, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
| | - Mariana Anghel
- Department of Infectious Diseases, Discipline of Epidemiology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (I.-M.P.); (L.M.B.); (E.D.P.); (M.A.); (S.M.D.L.)
| | - Sorina Maria Denisa Laitin
- Department of Infectious Diseases, Discipline of Epidemiology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (I.-M.P.); (L.M.B.); (E.D.P.); (M.A.); (S.M.D.L.)
| | - Ana-Olivia Toma
- Department of Dermatology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Alexandra Herlo
- Department of Infectious Diseases, Discipline of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
| | - Roxana Manuela Fericean
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
| | - Nina Baghina
- National Meteorological Administration of Romania, Soseaua Bucuresti-Ploiesti 97, 013686 Bucuresti, Romania;
| | - Andrei Anghel
- Department of Biochemistry and Pharmacology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
| |
Collapse
|
5
|
Mishra A, Mohan Viswanathan P, Ramasamy N, Panchatcharam S, Sabarathinam C. Spatiotemporal distribution of microplastics in Miri coastal area, NW Borneo: inference from a periodical observation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:103225-103243. [PMID: 37688695 PMCID: PMC10567912 DOI: 10.1007/s11356-023-29582-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/25/2023] [Indexed: 09/11/2023]
Abstract
The current study aims to investigate the spatiotemporal distribution of microplastics (MPs) in the Miri coast, targeting their occurrences, characterisation, and potential sources. For a periodical study, coastal sediments were collected from three different time intervals (monsoon, post-monsoon, and post-COVID) and subjected to stereomicroscope, ATR-FTIR, and SEM-EDX analyses. These results show a significant increase of MPs in post-COVID samples by approximately 218% and 148% comparatively with monsoon and post-monsoon samples, respectively. The highest concentration of MPs was detected near the river mouths and industrial areas where the waste discharge rate and anthropogenic activities dominate. Fibre-type MPs are the most abundant, with an average of nearly 64%, followed by fragments, films, microbeads, and foams. The most dominant polymer types were polytetrafluoroethylene (PTFE), polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyester (PET). Overall, the current study shows a better understanding of MPs occurrence and potential sources in the Miri coastal area.
Collapse
Affiliation(s)
- Anshuman Mishra
- Department of Applied Sciences, Faculty of Engineering and Science, Curtin University, Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Prasanna Mohan Viswanathan
- Department of Applied Sciences, Faculty of Engineering and Science, Curtin University, Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia.
| | - Nagarajan Ramasamy
- Department of Applied Sciences, Faculty of Engineering and Science, Curtin University, Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | | | | |
Collapse
|
6
|
Hu R, Huang Q, Liu G, Jiao W, Yang Q, Wang X, Yu J, Ding B. Polylactic Acid/Calcium Stearate Hydrocharging Melt-Blown Nonwoven Fabrics for Respirator Applications. ACS APPLIED POLYMER MATERIALS 2023; 5:4372-4379. [PMID: 37552710 PMCID: PMC10231341 DOI: 10.1021/acsapm.3c00500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/21/2023] [Indexed: 08/05/2023]
Abstract
Non-biodegradable polypropylene, which poses a serious threat to the environment, is the most utilized material in air filtration systems. Moreover, under conditions of high temperature and high humidity, the electrostatic charge in melt-blown nonwoven fabrics treated with traditional corona electrets will quickly dissipate. Here, biodegradable polylactic acid, calcium stearate, and an innovative hydrocharging technique are reported to develop environmentally friendly polylactic acid/calcium stearate hydrocharging melt-blown nonwoven fabrics with high charge stability. Compared with polylactic acid melt-blown nonwoven fabrics, the crystallization structure and charge storage of polylactic acid/calcium stearate melt-blown nonwoven fabrics have been greatly improved due to the presence of calcium stearate. In PM0.3, it exhibited a high filtration efficiency (96.78%), a low pressure drop (65.20 Pa), and a good quality factor (0.053 Pa-1), which can meet the N95 respirator standard. Furthermore, it is worth mentioning that the filtration performance remained at a high level (>95.00%) after 2 months. Importantly, based on the test and analysis of surface electrostatic potential, crystallization, and charge storage and distribution, we proposed plausible charge generation and stable storage mechanisms. It demonstrated more potential for electret air filtration and smart respirators as the further possible step of research in the field.
Collapse
Affiliation(s)
| | | | | | - Wenling Jiao
- State Key Laboratory of Textile Science & Technology, Ministry of
Education, College of Textiles, Donghua University, Shanghai
201620, China
| | - Qi Yang
- State Key Laboratory of Textile Science & Technology, Ministry of
Education, College of Textiles, Donghua University, Shanghai
201620, China
| | - Xianfeng Wang
- State Key Laboratory of Textile Science & Technology, Ministry of
Education, College of Textiles, Donghua University, Shanghai
201620, China
| | - Jianyong Yu
- State Key Laboratory of Textile Science & Technology, Ministry of
Education, College of Textiles, Donghua University, Shanghai
201620, China
| | - Bin Ding
- State Key Laboratory of Textile Science & Technology, Ministry of
Education, College of Textiles, Donghua University, Shanghai
201620, China
| |
Collapse
|
7
|
Gea M, Macrì M, Marangon D, Pitasi FA, Fontana M, Schilirò T, Bonetta S. Biological effects of particulate matter samples during the COVID-19 pandemic: a comparison with the pre-lockdown period in Northwest Italy. AIR QUALITY, ATMOSPHERE, & HEALTH 2023; 16:1-16. [PMID: 37359393 PMCID: PMC10243887 DOI: 10.1007/s11869-023-01381-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/24/2023] [Indexed: 06/28/2023]
Abstract
In 2020, during the COVID-19 pandemic, containment measures were applied inducing potential changes in air pollutant concentrations and thus in air toxicity. This study evaluates the role of restrictions on biological effects of particulate matter (PM) in different Northwest Italy sites: urban background, urban traffic, rural, and incinerator. Daily PM samples collected in 2020 were pooled according to restrictions: January/February (no restrictions), March and April (first lockdown), May/June and July/August/September (low restrictions), October/November/December (second lockdown). The 2019 samples (pre-pandemic period) were pooled as 2020 for comparison. Pools were extracted with organic solvents and extracts were tested to assess cytotoxicity (WST-1 assay) and genotoxicity (comet assay) on BEAS-2B cells, mutagenicity (Ames test) on TA98 and TA100 Salmonella typhimurium strains, and estrogenic activity (gene reporter assay) on MELN cells. Pollutant concentrations were also analyzed (PM10, PM2.5, polycyclic aromatic hydrocarbons). No difference was observed for PM and polycyclic aromatic hydrocarbon concentrations between 2020 and 2019. During lockdown months (2020), PM cytotoxicity/genotoxicity was significantly lower in some sites than during 2019, while considering PM mutagenicity/estrogenic activity some differences were detected but without statistical significance. PM extract effects decreased in some sites during 2020; this may be due to lockdowns that reduced/modified pollutant emissions and may be related also to complex PM origin/formation and to meteorological conditions. In conclusion, the study confirms that PM biological effects cannot be assessed considering only the PM concentration and suggests to include a battery of bioassay for air quality monitoring in order to protect human health from air pollution effects. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s11869-023-01381-6.
Collapse
Affiliation(s)
- Marta Gea
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5 Bis, 10126 Turin, Italy
| | - Manuela Macrì
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Turin, Italy
| | - Daniele Marangon
- Regional Agency for Environmental Protection of Piedmont (ARPA Piemonte), Via Sabaudia 164, 10095 Grugliasco, Italy
| | - Francesco Antonio Pitasi
- Regional Agency for Environmental Protection of Piedmont (ARPA Piemonte), Via Sabaudia 164, 10095 Grugliasco, Italy
| | - Marco Fontana
- Regional Agency for Environmental Protection of Piedmont (ARPA Piemonte), Via Sabaudia 164, 10095 Grugliasco, Italy
| | - Tiziana Schilirò
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5 Bis, 10126 Turin, Italy
| | - Sara Bonetta
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5 Bis, 10126 Turin, Italy
| |
Collapse
|
8
|
Pal T, Anand U, Sikdar Mitra S, Biswas P, Tripathi V, Proćków J, Dey A, Pérez de la Lastra JM. Harnessing and bioprospecting botanical-based herbal medicines against potential drug targets for COVID-19: a review coupled molecular docking studies. J Biomol Struct Dyn 2023:1-23. [PMID: 37105230 DOI: 10.1080/07391102.2023.2187634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Since the end of February 2020, the world has come to a standstill due to the virus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2). Since then, the global scientific community has explored various remedies and treatments against this virus, including natural products that have always been a choice because of their many benefits. Various known phytochemicals are well documented for their antiviral properties. Research is being carried out to discover new natural plant products or existing ones as a treatment measure for this disease. The three important targets in this regard are-papain like protease (PLpro), spike protein, and 3 chymotrypsin like proteases (3CLpro). Various docking studies are also being elucidated to identify the phytochemicals that modulate crucial proteins of the virus. The paper is simultaneously a comprehensive review that covers recent advances in the domain of the effect of various botanically derived natural products as an alternative treatment approach against Coronavirus Disease 2019 (COVID-19). Furthermore, the docking analyses revealed that rutin (inhibitor of the major protease of SARS-CoV-2), gallocatechin (e.g., interacting with 03 hydrogen bonds with a spike-like protein), lycorine (showing the best binding affinity with amino acids GLN498, THR500 and GLY446 of the spike-like protein), and quercetrin (inhabiting at its residues ASP216, PHE219, and ILE259) are promising inhibitors of SARS‑CoV‑2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tarun Pal
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | | | - Shreya Sikdar Mitra
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Protha Biswas
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, India
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - José M Pérez de la Lastra
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, IPNA-CSIC, Tenerife, Spain
| |
Collapse
|
9
|
Sagar P, Aseem A, Banjara SK, Veleri S. The role of food chain in antimicrobial resistance spread and One Health approach to reduce risks. Int J Food Microbiol 2023; 391-393:110148. [PMID: 36868045 DOI: 10.1016/j.ijfoodmicro.2023.110148] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/14/2023] [Accepted: 02/18/2023] [Indexed: 02/26/2023]
Abstract
The incidence of antimicrobial resistance (AMR) is rapidly spreading worldwide. It is depleting the repertoire of antibiotics in use but the pace of development of new antibiotics is stagnant for decades. Annually, millions of people are killed by AMR. This alarming situation urged both scientific and civil bodies to take steps to curb AMR as a top priority. Here we review the various sources of AMR in the environment, especially focusing on the food chain. Food chain inculcates pathogens with AMR genes and serves as a conduit for its transmission. In certain countries, the antibiotics are more used in livestock than in humans. It is also used in agriculture crops of high value products. The indiscriminate use of antibiotics in livestock and agriculture increased rapid emergence of AMR pathogens. In addition, in many countries nosocomial settings are spewing AMR pathogens, which is a serious health hazard. Both the developed and low and middle income countries (LMIC) face the phenomenon of AMR. Therefore, a comprehensive approach for monitoring all sectors of life is required to identify the emerging trend of AMR in environment. AMR genes' mode of action must be understood to develop strategies to reduce risk. The new generation sequencing technologies, metagenomics and bioinformatics capabilities can be resorted to quickly identify and characterize AMR genes. The sampling for AMR monitoring can be done from multiples nodes of the food chain as envisioned and promoted by the WHO, FAO, OIE and UNEP under the One Health approach to overcome threat of AMR pathogens.
Collapse
Affiliation(s)
- Prarthi Sagar
- Drug Safety Division, ICMR-National Institute of Nutrition, Hyderabad 500007, India
| | - Ajmal Aseem
- Drug Safety Division, ICMR-National Institute of Nutrition, Hyderabad 500007, India
| | | | - Shobi Veleri
- Drug Safety Division, ICMR-National Institute of Nutrition, Hyderabad 500007, India.
| |
Collapse
|
10
|
Han J, Yin J, Wu X, Wang D, Li C. Environment and COVID-19 incidence: A critical review. J Environ Sci (China) 2023; 124:933-951. [PMID: 36182196 PMCID: PMC8858699 DOI: 10.1016/j.jes.2022.02.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/27/2022] [Accepted: 02/10/2022] [Indexed: 05/19/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is an unprecedented worldwide health crisis. Many previous research studies have found and investigated its links with one or some natural or human environmental factors. However, a review on the relationship between COVID-19 incidence and both the natural and human environment is still lacking. This review summarizes the inter-correlation between COVID-19 incidence and environmental factors. Based on keyword searching, we reviewed 100 relevant peer-reviewed articles and other research literature published since January 2020. This review is focused on three main findings. One, we found that individual environmental factors have impacts on COVID-19 incidence, but with spatial heterogeneity and uncertainty. Two, environmental factors exert interactive effects on COVID-19 incidence. In particular, the interactions of natural factors can affect COVID-19 transmission in micro- and macro- ways by impacting SARS-CoV-2 survival, as well as human mobility and behaviors. Three, the impact of COVID-19 incidence on the environment lies in the fact that COVID-19-induced lockdowns caused air quality improvement, wildlife shifts and socio-economic depression. The additional value of this review is that we recommend future research perspectives and adaptation strategies regarding the interactions of the environment and COVID-19. Future research should be extended to cover both the effects of the environment on the COVID-19 pandemic and COVID-19-induced impacts on the environment. Future adaptation strategies should focus on sustainable environmental and public policy responses.
Collapse
Affiliation(s)
- Jiatong Han
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Jie Yin
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Xiaoxu Wu
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China.
| | - Danyang Wang
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Chenlu Li
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
11
|
Visalli G, Laganà A, Lo Giudice D, Calimeri S, Caccamo D, Trainito A, Di Pietro A, Facciolà A. Towards a Future of Personalized Vaccinology: Study on Individual Variables Influencing the Antibody Response to the COVID-19 Vaccine. Vaccines (Basel) 2023; 11:217. [PMID: 36851095 PMCID: PMC9961107 DOI: 10.3390/vaccines11020217] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
The COVID-19 pandemic has hugely impacted many different aspects of human health, and vaccination is one of the most effective weapons to manage it. However, many different factors, such as age, gender, comorbidities and lifestyles, play a role in the response to infections and vaccines. We carried out this study to evaluate the potential role played by some individual factors in the production of anti-COVID-19 antibodies in the light of personalized and future vaccinology. We conducted an observational study consisting of a retrospective phase, exploiting previous data about anti-COVID-19 antibody responses, with a prospective phase to investigate individual variables through the use of a questionnaire. The antibody response after the COVID-19 vaccination was inversely related to old age, increased BMI and the number of smoking years, while a positive correlation was found with moderate alcohol consumption and especially with circulating levels of vitamin D, as clearly shown by the multivariate regression analysis. Our study showed that a number of variables are involved in the COVID-19 vaccine antibody response. These findings are very important and can be considered in the light of a future and personalized vaccinology.
Collapse
Affiliation(s)
- Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - Antonio Laganà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
- Istituto Clinico Polispecialistico C.O.T. Cure Ortopediche Traumatologiche S.p.A., 98124 Messina, Italy
| | - Daniela Lo Giudice
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - Sebastiano Calimeri
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - Daniela Caccamo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - Alessandra Trainito
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - Angela Di Pietro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - Alessio Facciolà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| |
Collapse
|
12
|
Fang K, He J, Liu Q, Wang S, Geng Y, Heijungs R, Du Y, Yue W, Xu A, Fang C. Water footprint of nations amplified by scarcity in the Belt and Road Initiative. Heliyon 2023; 9:e12957. [PMID: 36820172 PMCID: PMC9938497 DOI: 10.1016/j.heliyon.2023.e12957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The growing water scarcity due to international trade poses a serious threat to global sustainability. Given the intensified international trade throughout the Belt and Road Initiative (BRI), this paper tracks the virtual water trade and water footprint of BRI countries in 2005-2015. By conducting a multi-model assessment, we observe a substantial increase in BRI's water footprint after taking water scarcity into account. Globally the BRI acts as a net exporter of virtual water, while the export volume experiences a decreasing trend. Noticeable transitions in nations' role (net exporters vs. net importers) are found between the BRI and global scales, but also between with and without considering water scarcity. Overall economic and population growth is major drivers of scarcity-weighted water footprint for BRI nations, as opposed to the promotion of water-use efficiency and production structure that can reduce water scarcity. Improving international trade and strengthening cooperation on water resources management deserve priority in alleviating the water scarcity of BRI.
Collapse
Affiliation(s)
- Kai Fang
- School of Public Affairs, Zhejiang University, Hangzhou, 310058, China,Center of Social Welfare and Governance, Zhejiang University, Hangzhou, 310058, China,Zhejiang Ecological Civilization Academy, Anji, 313300, China,Corresponding author. School of Public Affairs, Zhejiang University, Hangzhou, 310058, China.
| | - Jianjian He
- School of Public Affairs, Zhejiang University, Hangzhou, 310058, China
| | - Qingyan Liu
- China Unicom (Shanxi) Industry Internet Co., LTD, Taiyuan, 030032, China
| | - Siqi Wang
- School of Public Affairs, Zhejiang University, Hangzhou, 310058, China
| | - Yong Geng
- School of International and Public Affairs, Shanghai Jiao Tong University, Shanghai, 200030, China,School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China,China Institute of Urban Governance, Shanghai Jiao Tong University, Shanghai, 200030, China,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China,Corresponding author. School of International and Public Affairs, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Reinout Heijungs
- Department of Operations Analytics, Vrije Universiteit Amsterdam, De Boelelaan 1105, Amsterdam, 1081, HV, the Netherlands,Institute of Environmental Sciences, Leiden University, Leiden, 2300RA, the Netherlands
| | - Yueyue Du
- Fujian Tourism Development Group, Fuzhou, 350003, China
| | - Wenze Yue
- School of Public Affairs, Zhejiang University, Hangzhou, 310058, China
| | - Anqi Xu
- School of Public Affairs, Zhejiang University, Hangzhou, 310058, China
| | - Chuanglin Fang
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, China
| |
Collapse
|
13
|
Suligowski R, Ciupa T. Five waves of the COVID-19 pandemic and green-blue spaces in urban and rural areas in Poland. ENVIRONMENTAL RESEARCH 2023; 216:114662. [PMID: 36374652 PMCID: PMC9617687 DOI: 10.1016/j.envres.2022.114662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/18/2022] [Accepted: 10/23/2022] [Indexed: 05/19/2023]
Abstract
Several waves of COVID-19 caused by different SARS-CoV-2 variants have been recorded worldwide. During this period, many publications were released describing the influence of various factors, such as environmental, social and economic factors, on the spread of COVID-19. This paper presents the results of a detailed spatiotemporal analysis of the course of COVID-19 cases and deaths in five waves in Poland in relation to green‒blue spaces. The results, based on 380 counties, reveal that the negative correlation between the indicator of green‒blue space per inhabitant and the average daily number of COVID-19 cases and deaths was clearly visible during all waves. These relationships were described by a power equation (coefficient of determination ranging from 0.83 to 0.88) with a high level of significance. The second important discovery was the fact that the rates of COVID-19 cases and deaths were significantly higher in urban counties (low values of the green-blue space indicator in m2/people) than in rural areas. The developed models can be used in decision-making by local government authorities to organize anti-COVID-19 prevention measures, including local lockdowns, especially in urban areas.
Collapse
Affiliation(s)
- Roman Suligowski
- Institute of Geography and Environmental Sciences, Jan Kochanowski University in Kielce, Poland.
| | - Tadeusz Ciupa
- Institute of Geography and Environmental Sciences, Jan Kochanowski University in Kielce, Poland.
| |
Collapse
|
14
|
Chen J, Hassan T, Zhao D. Does awareness of environmental pollution increase electricity consumption? A view from household survey of China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13532-13550. [PMID: 36136184 DOI: 10.1007/s11356-022-23070-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Household electricity conservation is a non-negligible aspect of environmental pollution with growing importance for an eco-friendly economy and society. However, debates regarding household electricity consumption have placed more emphasis on the physical attributes of the dwellings, demographic characteristics and the socioeconomic behaviour of households; few studies have directly discussed the awareness of environmental pollution. Based on the 'China Family Panel Studies' surveys with an extracted 8249 households in 25 provinces from 2014 to 2018, we analyse whether or not and to what extent the awareness of environmental pollution impacts household electricity consumption. The study finds that the awareness of environmental pollution rather than actual environmental pollution increases household electricity consumption. The finding is robust under various model specifications. Given a 1% increase in the awareness of environmental pollution, households living in southern China, located in eastern China or living in an urban area were found to have higher electricity consumption. To address possible estimation bias due to self-selection, we design a quasi-policy-shock variable to describe the severity of the perceived environmental pollution and run the propensity score matching regression (PSM). The finding still holds.
Collapse
Affiliation(s)
- Jian Chen
- School of Economics and Management, Southeast University, Nanjing, China.
| | - Taimoor Hassan
- School of Economics and Management, Anhui Polytechnic University, Wuhu, China
| | - Di Zhao
- School of Business, Jinling Institute of Technology, Nanjing, China
| |
Collapse
|
15
|
Rojo-Perez F, Rodriguez-Rodriguez V, Fernandez-Mayoralas G, Sánchez-González D, Perez de Arenaza Escribano C, Rojo-Abuin JM, Forjaz MJ, Molina-Martínez MÁ, Rodriguez-Blazquez C. Residential Environment Assessment by Older Adults in Nursing Homes during COVID-19 Outbreak. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16354. [PMID: 36498426 PMCID: PMC9739633 DOI: 10.3390/ijerph192316354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
The most vulnerable residential settings during the COVID-19 pandemic were older adult's nursing homes, which experienced high rates of incidence and death from this cause. This paper aims to ascertain how institutionalized older people assessed their residential environment during the pandemic and to examine the differences according to personal and contextual characteristics. The COVID-19 Nursing Homes Survey (Madrid region, Spain) was used. The residential environment assessment scale (EVAER) and personal and contextual characteristics were selected. Descriptive and multivariate statistical analysis were applied. The sample consisted of 447 people (mean age = 83.8, 63.1% = women, 50.8% = widowed, 40% = less than primary studies). Four residential assessment subscales (relationships, mobility, residential aspects, privacy space) and three clusters according to residential rating (medium-high with everything = 71.5% of cases, low with mobility = 15.4%, low with everything = 13.1%) were obtained. The logistic regression models for each cluster category showed to be statistically significant. Showing a positive affect (OR = 1.08), fear of COVID-19 (OR = 1.06), high quality of life (OR = 1.05), not having suspicion of depression (OR = 0.75) and performing volunteer activities (OR = 3.67) were associated with the largest cluster. It is concluded that a better residential evaluation was related to more favourable personal and contextual conditions. These results can help in the design of nursing homes for older adults in need of accommodation and care to facilitate an age-friendly environment.
Collapse
Affiliation(s)
- Fermina Rojo-Perez
- Grupo de Investigacion sobre Envejecimiento (GIE), IEGD, CSIC, 28037 Madrid, Spain
| | | | | | - Diego Sánchez-González
- Department of Geography, National Distance Education University (UNED), 28040 Madrid, Spain
| | | | | | - Maria João Forjaz
- National Centre of Epidemiology and Health Service Research Network on Chronic Diseases (REDISSEC) and Research Network on Chronicity, Primary Care and Health Promotion (RICAPPS), Carlos III Institute of Health, 28029 Madrid, Spain
| | - María-Ángeles Molina-Martínez
- Department of Personality, Evaluation and Psychological Treatment, Faculty of Psychology, National Distance Education University (UNED), 28040 Madrid, Spain
| | - Carmen Rodriguez-Blazquez
- National Centre of Epidemiology and Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Carlos III Institute of Health, 28029 Madrid, Spain
| |
Collapse
|
16
|
CALIMERI SEBASTIANO, LO GIUDICE DANIELA, BUDA AGATA, LAGANÀ ANTONIO, FACCIOLÀ ALESSIO, DI PIETRO ANGELA, VISALLI GIUSEPPA. Role of the 1 st booster dose of COVID-19 vaccine in the protection against the infection: A fundamental public health tool. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2022; 63:E520-E526. [PMID: 36891000 PMCID: PMC9986990 DOI: 10.15167/2421-4248/jpmh2022.63.4.2742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/29/2022] [Indexed: 03/10/2023]
Abstract
Introduction The COVID-19 pandemic is having a huge impact on human health with high morbidity and mortality rates worldwide. Healthcare Workers (HCWs) are one of the most at risk categories to contract the infection. Effective anti-COVID-19 vaccines were approved in a very short time. Making the 1st booster dose is essential to induce a good protection against the infection. Methods We conducted a retrospective sero-epidemiological survey of already existing data concerning the antibody response of a HCWs sample vaccinated with the primary cycle and the 1st booster dose of the Pfizer-BioNTech COVID-19 mRNA vaccine and, specifically, after three weeks from the third dose of vaccination. Results In our analysis, after the primary cycle, a 95.15% efficacy was detected. Among the non-responders, women were significantly more frequent (69.56%). Moreover, we found a significant reverse correlation between the immune response and the age of the sample, especially in women. However, the 1st booster dose completely cancelled these differences. Conclusions Our data are perfectly in line with what has been declared by the conducted studies in terms of efficacy. However, it is important to highlight that people with only the primary cycle are at high risk to contract the COVID-19 infection. Therefore, it is necessary to not consider people vaccinated with the primary cycle completely risk-free and to stress the importance to perform the 1st booster dose.
Collapse
Affiliation(s)
- SEBASTIANO CALIMERI
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - DANIELA LO GIUDICE
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - AGATA BUDA
- Virology Operative Unit, University Hospital “G. Martino”, Messina
| | - ANTONIO LAGANÀ
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
- Istituto Clinico Polispecialistico C.O.T. Cure Ortopediche Traumatologiche S.p.A, Messina, Italy
| | - ALESSIO FACCIOLÀ
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
- Correspondence: Alessio Facciolà, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy. E-mail:
| | - ANGELA DI PIETRO
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - GIUSEPPA VISALLI
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
17
|
Han I, Mumtaz S, Choi EH. Nonthermal Biocompatible Plasma Inactivation of Coronavirus SARS-CoV-2: Prospects for Future Antiviral Applications. Viruses 2022; 14:2685. [PMID: 36560689 PMCID: PMC9785490 DOI: 10.3390/v14122685] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic has placed a massive impact on global civilization. Finding effective treatments and drugs for these viral diseases was crucial. This paper outlined and highlighted key elements of recent advances in nonthermal biocompatible plasma (NBP) technology for antiviral applications. We searched for papers on NBP virus inactivation in PubMed ePubs, Scopus, and Web of Science databases. The data and relevant information were gathered in order to establish a mechanism for NBP-based viral inactivation. NBP has been developed as a new, effective, and safe strategy for viral inactivation. NBP may be used to inactivate viruses in an ecologically friendly way as well as activate animal and plant viruses in a number of matrices. The reactive species have been shown to be the cause of viral inactivation. NBP-based disinfection techniques provide an interesting solution to many of the problems since they are simply deployable and do not require the resource-constrained consumables and reagents required for traditional decontamination treatments. Scientists are developing NBP technology solutions to assist the medical community in dealing with the present COVID-19 outbreak. NBP is predicted to be the most promising strategy for battling COVID-19 and other viruses in the future.
Collapse
Affiliation(s)
- Ihn Han
- Department of Plasma Bio-Display, Kwangwoon University, Seoul 01897, Republic of Korea
- Plasma Bioscience Research Center (PBRC), Applied Plasma Medicine Center, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Sohail Mumtaz
- Plasma Bioscience Research Center (PBRC), Applied Plasma Medicine Center, Kwangwoon University, Seoul 01897, Republic of Korea
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Eun Ha Choi
- Department of Plasma Bio-Display, Kwangwoon University, Seoul 01897, Republic of Korea
- Plasma Bioscience Research Center (PBRC), Applied Plasma Medicine Center, Kwangwoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
18
|
Kiong TC, Nordin N, Ahmad Ruslan NAA, Kan SY, Ismail NM, Zakaria Z, Bidai JA, Wang Y, Ariffin F, Chia PW. Valorization of discarded face mask for bioactive compound synthesis and photodegradation of dye. ENVIRONMENTAL RESEARCH 2022; 213:113737. [PMID: 35752328 PMCID: PMC9351616 DOI: 10.1016/j.envres.2022.113737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/01/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
To keep COVID-19 at bay, most countries have mandated the use of face masks in public places and imposed heavy penalties for those who fail to do so. This has inadvertently created a huge demand for disposable face masks and worsened the problem of littering, where a large number of used masks are constantly discarded into the environment. As such, an efficient and innovative waste management strategy for the discarded face mask is urgently needed. This study presents the transformation of discarded face mask into catalyst termed 'mask waste ash catalyst (MWAC)' to synthesise bisindolylmethanes (BIMs), alkaloids that possess antibacterial, antioxidant and antiviral properties. Using commercially available aldehydes and indole, an excellent yield of reaction (62-94%) was achieved using the MWAC in the presence of water as the sole solvent. On the other hand, the FT-IR spectrum of MWAC showed the absorption bands at 2337 cm-1, 1415 cm-1 and 871 cm-1, which correspond to the signals of calcium oxide. It is then proposed that the calcium oxides mainly present in MWAC can protonate oxygen atoms in the carbonyl molecule of the aldehyde group, thus facilitating the nucleophile attack by indole which consequently improved the product yield. Moreover, the MWAC is also observed to facilitate the photodegradation of methylene blue with an efficiency of up to 94.55%. Our results showed the potential applications of the MWAC derived from discarded face masks as a sustainable catalyst for bioactive compound synthesis and photodegradation of dye compounds.
Collapse
Affiliation(s)
- Teo Chook Kiong
- Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Nurhamizah Nordin
- Eco-Innovation Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - Nur Aimi Aqilah Ahmad Ruslan
- Eco-Innovation Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - Su-Yin Kan
- Faculty of Health Sciences, Universiti Sultan Zainal Abidin, 21300, Kuala Nerus, Terengganu, Malaysia
| | - Noor Maizura Ismail
- Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Zainal Zakaria
- Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Joseph Anak Bidai
- Institute of Oceanography and Environment (INOS), Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - Yi Wang
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, China
| | - Fazilah Ariffin
- Biological Security and Sustainability Research Group, Universiti Malaysia Terengganu, 21300 Kuala Nerus, Terengganu, Malaysia
| | - Poh Wai Chia
- Eco-Innovation Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Terengganu, Malaysia.
| |
Collapse
|
19
|
Zoran MA, Savastru RS, Savastru DM, Tautan MN. Cumulative effects of air pollution and climate drivers on COVID-19 multiwaves in Bucharest, Romania. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION : TRANSACTIONS OF THE INSTITUTION OF CHEMICAL ENGINEERS, PART B 2022; 166:368-383. [PMID: 36034108 PMCID: PMC9391082 DOI: 10.1016/j.psep.2022.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Over more than two years of global health crisis due to ongoing COVID-19 pandemic, Romania experienced a five-wave pattern. This study aims to assess the potential impact of environmental drivers on COVID-19 transmission in Bucharest, capital of Romania during the analyzed epidemic period. Through descriptive statistics and cross-correlation tests applied to time series of daily observational and geospatial data of major outdoor inhalable particulate matter with aerodynamic diameter ≤ 2.5 µm (PM2.5) or ≤ 10 µm (PM10), nitrogen dioxide (NO2), ozone (O3), sulfur dioxide (SO2), carbon monoxide (CO), Aerosol Optical Depth at 550 nm (AOD) and radon (222Rn), we investigated the COVID-19 waves patterns under different meteorological conditions. This study examined the contribution of individual climate variables on the ground level air pollutants concentrations and COVID-19 disease severity. As compared to the long-term average AOD over Bucharest from 2015 to 2019, for the same year periods, this study revealed major AOD level reduction by ~28 % during the spring lockdown of the first COVID-19 wave (15 March 2020-15 May 2020), and ~16 % during the third COVID-19 wave (1 February 2021-1 June 2021). This study found positive correlations between exposure to air pollutants PM2.5, PM10, NO2, SO2, CO and 222Rn, and significant negative correlations, especially for spring-summer periods between ground O3 levels, air temperature, Planetary Boundary Layer height, and surface solar irradiance with COVID-19 incidence and deaths. For the analyzed time period 1 January 2020-1 April 2022, before and during each COVID-19 wave were recorded stagnant synoptic anticyclonic conditions favorable for SARS-CoV-2 virus spreading, with positive Omega surface charts composite average (Pa/s) at 850 mb during fall- winter seasons, clearly evidenced for the second, the fourth and the fifth waves. These findings are relevant for viral infections controls and health safety strategies design in highly polluted urban environments.
Collapse
Key Words
- 222Rn
- 222Rn, Radon
- AOD, Total Aerosol Optical Depth at 550 nm
- Aerosol Optical Depth (AOD)
- CAMS, Copernicus Atmosphere Monitoring Service
- CO, Carbon monoxide
- COVID, 19 Coronavirus Disease 2019
- COVID-19 disease
- Climate variables
- DNC, Daily New COVID-19 positive cases
- DND, Daily New COVID-19 Deaths
- MERS, CoV Middle East respiratory syndrome coronavirus
- NO2, Nitrogen dioxide
- NOAA, National Oceanic and Atmospheric Administration U.S.A.
- O3, Ozone
- Outdoor air pollutants
- PBL, Planetary Boundary Layer height
- PM, Particulate Matter: PM1(1 µm), PM2.5 (2.5 µm) and PM10(10.0 µm) diameter
- RH, Air relative humidity
- SARS, CoV Severe Outdoor Respiratory Syndrome Coronavirus
- SARS, CoV-2 Severe Outdoor Respiratory Syndrome Coronavirus 2
- SI, Surface solar global irradiance
- SO2, Sulfur dioxide
- Synoptic meteorological circulation
- T, Air temperature at 2 m height
- p, Air pressure
- w, Wind speed intensity
Collapse
Affiliation(s)
- Maria A Zoran
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele, Bucharest 077125, Romania
| | - Roxana S Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele, Bucharest 077125, Romania
| | - Dan M Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele, Bucharest 077125, Romania
| | - Marina N Tautan
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele, Bucharest 077125, Romania
| |
Collapse
|
20
|
Armeanu DS, Gherghina SC, Andrei JV, Joldes CC. Modeling the impact of the COVID‐19 outbreak on environment, health sector and energy market. SUSTAINABLE DEVELOPMENT 2022; 30. [PMCID: PMC9111086 DOI: 10.1002/sd.2299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The global outbreak of COVID‐19 disease had a significant impact on the entire globe. Such a notable public health event can be seen as a “black swan” that brings unpredictable and unusual forces into the economic context and that it could typically lead to a chain of adverse reactions and market disruptions. Hence, the purpose of this study is to examine how COVID‐19 affects the environment, health, and the oil and energy markets. To achieve this objective, we used daily data for several measures that refer to the environment, health, and oil and energy, for the first wave of the COVID‐19 pandemic (December 31, 2019–May 22, 2020). The variable integration mix led to the approach of the ARDL model, and the Granger causality test was also employed. These empirical techniques allowed us to examine the cointegration between variables and causal relationships. The econometric results of the ARDL models exhibited that the global new cases and new deaths of COVID‐19 have short and long‐term effects on the environment, the health sector, the oil, and energy measures. However, no significant causal connection was found between the pandemic and the environment, the health sector, or the oil and energy industry, according to the Granger causality test. The uniqueness of current approach consists in the investigation of pandemic impact on the health, environment, oil, and energy sector by applying the ARDL model that permits the analysis of cointegration both in the long run and in the short term. This study provides important insights for investors and policy makers.
Collapse
Affiliation(s)
- Daniel Stefan Armeanu
- Faculty of Finance, Insurance, Banking and Stock Exchange, Department of FinanceThe Bucharest University of Economic StudiesBucharestRomania
| | - Stefan Cristian Gherghina
- Faculty of Finance, Insurance, Banking and Stock Exchange, Department of FinanceThe Bucharest University of Economic StudiesBucharestRomania
| | - Jean Vasile Andrei
- Faculty of Economic SciencesPetroleum‐Gas University of PloiestiPloiestiPrahovaRomania
- National Institute for Economic Research ‘Costin C. Kiritescu’Romanian AcademyBucharestRomania
| | - Camelia Catalina Joldes
- Faculty of Finance, Insurance, Banking and Stock Exchange, Department of FinanceThe Bucharest University of Economic StudiesBucharestRomania
| |
Collapse
|
21
|
Rai PK, Sonne C, Song H, Kim KH. The effects of COVID-19 transmission on environmental sustainability and human health: Paving the way to ensure its sustainable management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156039. [PMID: 35595144 PMCID: PMC9113776 DOI: 10.1016/j.scitotenv.2022.156039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/02/2022] [Accepted: 05/14/2022] [Indexed: 05/02/2023]
Abstract
The transmission dynamics and health risks of coronavirus disease 2019 (COVID-19) pandemic are inextricably linked to ineract with environment, climate, air pollution, and meteorological conditions. The spread of COVID-19 infection can thus perturb the 'planetary health' and livelihood by exerting impacts on the temporal and spatial variabilities of environmental pollution. Prioritization of COVID-19 by the health-care sector has been posing a serious threat to economic progress while undermining the efforts to meet the United Nations' Sustainable Development Goals (SDGs) for environmental sustainability. Here, we review the multifaceted effects of COVID-19 with respect to environmental quality, climatic variables, SDGs, energy resilience, and sustainability programs. It is well perceived that COVID-19 may have long-lasting and profound effects on socio-economic systems, food security, livelihoods, and the 'nexus' indicators. To seek for the solution of these problems, consensus can be drawn to establish and ensure a sound health-care system, a sustainable environment, and a circular bioeconomy. A holistic analysis of COVID-19's effects on multiple sectors should help develop nature-based solutions, cleaner technologies, and green economic recovery plans to help maintain environmental sustainability, ecosystem resilience, and planetary health.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Phyto-Technologies and Plant Invasion Lab, Department of Environmental Science, School of Earth Sciences and Natural Resources Management, Mizoram University, Aizawl, Mizoram, India
| | - C Sonne
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - H Song
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
22
|
Zoran MA, Savastru RS, Savastru DM, Tautan MN. Impacts of exposure to air pollution, radon and climate drivers on the COVID-19 pandemic in Bucharest, Romania: A time series study. ENVIRONMENTAL RESEARCH 2022; 212:113437. [PMID: 35594963 PMCID: PMC9113773 DOI: 10.1016/j.envres.2022.113437] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 05/05/2023]
Abstract
During the ongoing global COVID-19 pandemic disease, like several countries, Romania experienced a multiwaves pattern over more than two years. The spreading pattern of SARS-CoV-2 pathogens in the Bucharest, capital of Romania is a multi-factorial process involving among other factors outdoor environmental variables and viral inactivation. Through descriptive statistics and cross-correlation analysis applied to daily time series of observational and geospatial data, this study aims to evaluate the synergy of COVID-19 incidence and lethality with air pollution and radon under different climate conditions, which may exacerbate the coronavirus' effect on human health. During the entire analyzed period 1 January 2020-21 December 2021, for each of the four COVID-19 waves were recorded different anomalous anticyclonic synoptic meteorological patterns in the mid-troposphere, and favorable stability conditions during fall-early winter seasons for COVID-19 disease fast-spreading, mostly during the second, and the fourth waves. As the temporal pattern of airborne SARS-CoV-2 and its mutagen variants is affected by seasonal variability of the main air pollutants and climate parameters, this paper found: 1) the daily outdoor exposures to air pollutants (particulate matter PM2.5 and PM10, nitrogen dioxide-NO2, sulfur dioxide-SO2, carbon monoxide-CO) and radon - 222Rn, are directly correlated with the daily COVID-19 incidence and mortality, and may contribute to the spread and the severity of the pandemic; 2) the daily ground ozone-O3 levels, air temperature, Planetary Boundary Layer height, and surface solar irradiance are anticorrelated with the daily new COVID-19 incidence and deaths, averageingful for spring-summer periods. Outdoor exposure to ambient air pollution associated with radon is a non-negligible driver of COVID-19 transmission in large metropolitan areas, and climate variables are risk factors in spreading the viral infection. The findings of this study provide useful information for public health authorities and decision-makers to develop future pandemic diseases strategies in high polluted metropolitan environments.
Collapse
Affiliation(s)
- Maria A Zoran
- National Institute of R&D for Optoelectronics, Bucharest, Magurele, Romania.
| | - Roxana S Savastru
- National Institute of R&D for Optoelectronics, Bucharest, Magurele, Romania
| | - Dan M Savastru
- National Institute of R&D for Optoelectronics, Bucharest, Magurele, Romania
| | - Marina N Tautan
- National Institute of R&D for Optoelectronics, Bucharest, Magurele, Romania
| |
Collapse
|
23
|
Apostol GLC, Acolola AGA, Edillon MA, Valenzuela S. How comprehensive and effective are waste management policies during the COVID-19 pandemic? Perspectives from the Philippines. Front Public Health 2022; 10:958241. [PMID: 36062105 PMCID: PMC9432801 DOI: 10.3389/fpubh.2022.958241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/21/2022] [Indexed: 01/24/2023] Open
Abstract
This study presents a comprehensive analysis on policies governing the management of COVID-19 waste in the Philippines, highlighting gaps in pre-existing policies and opportunities for further policy development and adaptation in the context of present and future public health emergencies. A hybrid search strategy and consultative process identified fifty (50) policy documents directly impacting the management of wastes (general domestic, healthcare, and household healthcare waste) released prior to and during the pandemic. Content analysis revealed comprehensive policy coverage on managing general domestic waste and healthcare waste. However, there remains a dearth in policies for managing household healthcare waste, an emerging category for waste generated by patients isolating at home or in isolation facilities. Applicable, pre-existing policies were neither adequate nor specific to this category, and may therefore be subjected to variable interpretation and mismanagement when applied to this novel waste category. Assessment using the modified Cradle-to-End-Of-Life (CTEOL) framework revealed adequate policy coverage across the waste lifecycle stages. However, policies on reducing waste generation were relatively minimal and outdated, and policy gaps in waste segregation led to downstream inefficiencies and introduction of environmental health risks in waste collection, treatment, and disposal. The internal validity of policies was also evaluated against eleven (11) criteria adapted from Rütten et al. and Cheung et al. The criteria analysis revealed strong fulfillment of ensuring policy accessibility, goal clarity, provision of human resources, and strength of policy background, but weak fulfillment of criteria on providing adequate financing, organizational capacity building, monitoring and evaluation, and encouragement of opportunities for public participation. We conclude that existing waste management policies in the Philippines leave much room for improvement to ensure effective management of COVID-19 waste from various settings and circumstances. Hence, these policies are expected to adapt and evolve over time, utilizing the best available technology and environmental practices. Integrated, region-wide waste management systems, involving both government and society, and strengthened by equitable provisional support are needed for effective waste management that is both inclusive and resilient in the face of present and future pandemics.
Collapse
|
24
|
Bukha KK, Sharif EA, Eldaghayes IM. The One Health concept for the threat of severe acute respiratory syndrome coronavirus-2 to marine ecosystems. INTERNATIONAL JOURNAL OF ONE HEALTH 2022. [DOI: 10.14202/ijoh.2022.48-57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global health threat. This virus is the causative agent for coronavirus disease 2019 (COVID-19). Pandemic prevention is best addressed through an integrated One Health (OH) approach. Understanding zoonotic pathogen fatality and spillover from wildlife to humans are effective for controlling and preventing zoonotic outbreaks. The OH concept depends on the interface of humans, animals, and their environment. Collaboration among veterinary medicine, public health workers and clinicians, and veterinary public health is necessary for rapid response to emerging zoonotic pathogens. SARS-CoV-2 affects aquatic environments, primarily through untreated sewage. Patients with COVID-19 discharge the virus in urine and feces into residential wastewater. Thus, marine organisms may be infected with SARS-CoV-2 by the subsequent discharge of partially treated or untreated wastewater to marine waters. Viral loads can be monitored in sewage and surface waters. Furthermore, shellfish are vulnerable to SARS-CoV-2 infection. Filter-feeding organisms might be monitored to protect consumers. Finally, the stability of SARS-CoV-2 to various environmental factors aids in viral studies. This article highlights the presence and survival of SARS-CoV-2 in the marine environment and its potential to enter marine ecosystems through wastewater. Furthermore, the OH approach is discussed for improving readiness for successive outbreaks. This review analyzes information from public health and epidemiological monitoring tools to control COVID-19 transmission.
Collapse
Affiliation(s)
- Khawla K. Bukha
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Ehab A. Sharif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Ibrahim M. Eldaghayes
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| |
Collapse
|
25
|
Azhar A, Khan WH, Al-Hosaini K, Kamal MA. miRNAs in SARS-CoV-2 Infection: An Update. Curr Drug Metab 2022; 23:283-298. [PMID: 35319361 DOI: 10.2174/1389200223666220321102824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 02/08/2023]
Abstract
Coronavirus disease-2019 (COVID-19) is a highly infectious disease caused by newly discovered severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the inception of SARS-CoV-2 from Wuhan, China, the virus has traveled to more than 200 countries globally. The role of SARS-CoV-2 in COVID-19 has been thoroughly investigated and reviewed in the last 22 months or so; however, a comprehensive outline of miRNAs in SARS-CoV-2 infection is still missing. The genetic material of SARS-CoV-2 is a single-stranded RNA molecule nearly 29 kb in size. RNA is composed of numerous sub-constituents, including microRNAs (miRNAs). miRNAs play an essential role in biological processes like apoptosis, cellular metabolism, cell death, cell movement, oncogenesis, intracellular signaling, immunity, and infection. Lately, miRNAs have been involved in SARS-CoV-2 infection, though the clear demonstration of miRNAs in the SARS-CoV-2 infection is not fully elucidated. The present review article summarizes recent findings of miRNAs associated with SARS-CoV-2 infection. We presented various facets of miRNAs such as miRNAs as the protagonist in viral infection, the occurrence of miRNA in cellular receptors, expression of miRNAs in multiple diseases, miRNA as a biomarker, and miRNA as a therapeutic tool discussed in detail. We also presented the vaccine status available in various countries.
Collapse
Affiliation(s)
- Asim Azhar
- Aligarh College of Education, Aligarh, UP, India
| | - Wajihul Hasan Khan
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Khaled Al-Hosaini
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Post Box 2457, Riyadh 11451, Kingdom of Saudi Arabia
| | - Mohammad Amjad Kamal
- West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
- Enzymoics, NSW; Novel Global Community Educational Foundation, Australia
| |
Collapse
|
26
|
Patrício Silva AL, Tubić A, Vujić M, Soares AMVM, Duarte AC, Barcelò D, Rocha-Santos T. Implications of COVID-19 pandemic on environmental compartments: Is plastic pollution a major issue? JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2022; 5:100041. [PMID: 36743854 PMCID: PMC8702633 DOI: 10.1016/j.hazadv.2021.100041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/28/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
The COVID-19 anthropause has impacted human activities and behaviour, resulting in substantial environmental and ecological changes. It has assisted in restoring the ecological systems by improving, for instance, air and water quality and decreasing the anthropogenic pressure on wildlife and natural environments. Notwithstanding, such improvements recessed back, even to a greater extent, when considering increased medical waste, hazardous disinfectants and other chemical compounds, and plastic waste disposal or mismanagement. This work critically reviews the short- and long-term implications of measures against COVID-19 spreading, namely on human activities and different environmental compartments. Furthermore, this paper highlights strategies towards environmental restoration, as the recovery of the lost environment during COVID-19 lockdown suggests that the environmental degradation caused by humans can be reversible. Thus, we can no longer delay concerted international actions to address biodiversity, sustainable development, and health emergencies to ensure environmental resilience and equitable recovery.
Collapse
Affiliation(s)
- Ana L Patrício Silva
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| | - Aleksandra Tubić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, Novi Sad 21000, Serbia
| | - Maja Vujić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, Novi Sad 21000, Serbia
| | - Amadeu M V M Soares
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| | - Armando C Duarte
- Centre for Environmental and Marine Studies (CESAM) & Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Damià Barcelò
- Catalan Institute for Water Research (ICRA-CERCA), Scientific and Technological Park of the University of Girona, H2O Building, Emili Grahit 101, Girona 17003, Spain
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, Barcelona 08034, Spain
| | - Teresa Rocha-Santos
- Centre for Environmental and Marine Studies (CESAM) & Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| |
Collapse
|
27
|
Zoran MA, Savastru RS, Savastru DM, Tautan MN, Baschir LA, Tenciu DV. Assessing the impact of air pollution and climate seasonality on COVID-19 multiwaves in Madrid, Spain. ENVIRONMENTAL RESEARCH 2022; 203:111849. [PMID: 34370990 PMCID: PMC8343379 DOI: 10.1016/j.envres.2021.111849] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 05/17/2023]
Abstract
While the COVID-19 pandemic is still in progress, being under the fifth COVID-19 wave in Madrid, over more than one year, Spain experienced a four wave pattern. The transmission of SARS-CoV-2 pathogens in Madrid metropolitan region was investigated from an urban context associated with seasonal variability of climate and air pollution drivers. Based on descriptive statistics and regression methods of in-situ and geospatial daily time series data, this study provides a comparative analysis between COVID-19 waves incidence and mortality cases in Madrid under different air quality and climate conditions. During analyzed period 1 January 2020-1 July 2021, for each of the four COVID-19 waves in Madrid were recorded anomalous anticyclonic synoptic meteorological patterns in the mid-troposphere and favorable stability conditions for COVID-19 disease fast spreading. As airborne microbial temporal pattern is most affected by seasonal changes, this paper found: 1) a significant negative correlation of air temperature, Planetary Boundary Layer height, and surface solar irradiance with daily new COVID-19 incidence and deaths; 2) a similar mutual seasonality with climate variables of the first and the fourth COVID-waves from spring seasons of 2020 and 2021 years. Such information may help the health decision makers and public plan for the future.
Collapse
Affiliation(s)
- Maria A Zoran
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania.
| | - Roxana S Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Dan M Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Marina N Tautan
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Laurentiu A Baschir
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Daniel V Tenciu
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| |
Collapse
|
28
|
The Impact of the COVID-19 Pandemic on Cross-Border Mergers and Acquisitions’ Determinants: New Empirical Evidence from Quasi-Poisson and Negative Binomial Regression Models. ECONOMIES 2021. [DOI: 10.3390/economies9040184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cross-border movement of capital has suffered due to the COVID-19 pandemic since December 2019. Nevertheless, it is unrealistic for multinational companies to withdraw giant global value chains (GVCs) overnight because of the pandemic. Instead, active discussions and achievements of deals in cross-border mergers and acquisitions (M&As) are expected in the post-COVID-19 era among various other market entry modes, considering the growing demand in high technologies in societies. This paper analyzes particular determinants of cross-border mergers and acquisitions (M&As) during the pandemic year (2020) based on cross-sectional datasets by employing quasi-Poisson and negative binomial regression models. According to the empirical evidence, COVID-19 indices do not hamper M&A deals in general. This indicates that managerial capabilities of the coronavirus, not the outbreak itself, determined locational decisions of M&A deals during the pandemic. In this vein, it is expected that the vaccination rate will become a key factor of locational decision for M&A deals in the near future. Furthermore, countries that have been outstanding in coping with COVID-19 and thus serve as a good example for other nations may seize more opportunities to take a leap forward. In addition, as hypothesized, the results present positive and significant associations with M&A deals and the SDG index, confirming the resource-based theory of internationalization. In particular, the achievement of SDGs seems to exercise much influence in developing countries for M&A bidders during the pandemic year. This indicates that the pandemic demands a new zeitgeist that pursues growth while resolving existing but disregarded environmental issues and cherishes humanitarian values, for all countries, non-exceptionally, standing at the start line of the post-COVID-19 era.
Collapse
|
29
|
Margarucci LM, Gianfranceschi G, Romano Spica V, D’Ermo G, Refi C, Podico M, Vitali M, Romano F, Valeriani F. Photocatalytic Treatments for Personal Protective Equipment: Experimental Microbiological Investigations and Perspectives for the Enhancement of Antimicrobial Activity by Micrometric TiO 2. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:8662. [PMID: 34444411 PMCID: PMC8391258 DOI: 10.3390/ijerph18168662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/06/2021] [Accepted: 08/13/2021] [Indexed: 01/14/2023]
Abstract
The COVID-19 pandemic has led to countries enforcing the use of facial masks to prevent contagion. However, acquisition, reuse, and disposal of personal protective equipment (PPE) has generated problems, in regard to the safety of individuals and environmental sustainability. Effective strategies to reprocess and disinfect PPE are needed to improve the efficacy and durability of this equipment and to reduce waste load. Thus, the addition of photocatalytic materials to these materials, combined with light exposure at specific wavelengths, may represent promising solutions. To this aim, we prepared a series of masks by depositing micrometer-sized TiO2 on the external surfaces; the masks were then contaminated with droplets of bacteria suspensions and the coatings were activated by light radiation at different wavelengths. A significant reduction in the microbial load (over 90%, p < 0.01) was observed using both Gram negative (E. coli) and Gram positive (S. aureus) bacteria within 15 min of irradiation, with UV or visible light, including sunlight or artificial sources. Our results support the need for further investigations on self-disinfecting masks and other disposable PPE, which could positively impact (i) the safety of operators/workers, and (ii) environmental sustainability in different occupational or recreational settings.
Collapse
Affiliation(s)
- Lory Marika Margarucci
- Department of Movement, Human, and Health Sciences, Laboratory of Epidemiology and Biotechnologies, University of Rome “Foro Italico”, 00135 Rome, Italy; (L.M.M.); (G.G.); (F.V.)
| | - Gianluca Gianfranceschi
- Department of Movement, Human, and Health Sciences, Laboratory of Epidemiology and Biotechnologies, University of Rome “Foro Italico”, 00135 Rome, Italy; (L.M.M.); (G.G.); (F.V.)
| | - Vincenzo Romano Spica
- Department of Movement, Human, and Health Sciences, Laboratory of Epidemiology and Biotechnologies, University of Rome “Foro Italico”, 00135 Rome, Italy; (L.M.M.); (G.G.); (F.V.)
| | - Giuseppe D’Ermo
- Department of Surgery “P. Valdoni”, Sapienza University of Rome, 00185 Rome, Italy;
| | | | - Maurizio Podico
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy;
| | - Matteo Vitali
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (M.V.); (F.R.)
| | - Ferdinando Romano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (M.V.); (F.R.)
| | - Federica Valeriani
- Department of Movement, Human, and Health Sciences, Laboratory of Epidemiology and Biotechnologies, University of Rome “Foro Italico”, 00135 Rome, Italy; (L.M.M.); (G.G.); (F.V.)
| |
Collapse
|