1
|
Reji T, Walter AD, Hioki Y, Curran T, Hassig MQ, Badr HO, Schwenk GR, Torita T, Creighton MA, Barsoum MW. Hierarchically Porous Anatase Nanoparticles Derived from One-Dimensional Lepidocrocite Titanate for Bisphenol-A Photodegradation. ACS OMEGA 2025; 10:4406-4417. [PMID: 39959044 PMCID: PMC11822498 DOI: 10.1021/acsomega.4c07224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 02/18/2025]
Abstract
Herein, we discuss the conversion of one-dimensional lepidocrocite (1DL) titanate nanofilaments to anatase. Upon heating at temperatures >400 °C, the hierarchical 1DLs porous mesostructured particles transform to anatase, while retaining their morphology. These assemblies are characterized via X-ray diffraction, scanning and transmission electron microscopy, Fourier transform infrared spectroscopy, and solid-state ultraviolet absorbance. The assemblies were tested in the photodegradation of a water-soluble, endocrine-disrupting organic compound, bisphenol A (BPA). Using ultraviolet-visible spectroscopy, we show that 95% of BPA is degraded in 1 h under 1 sun of the simulated solar spectrum. Under the same conditions, the total organic carbon of the solution was reduced by 70%.
Collapse
Affiliation(s)
- Treesa Reji
- Department
of Materials Science and Engineering, Drexel
University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Adam D. Walter
- Department
of Materials Science and Engineering, Drexel
University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Yasunori Hioki
- MuRata
Manufacturing Co., Ltd., 10-1 Higashikotari 1-chome, Nagaokakyo-shi, Kyoto 617-8555, Japan
| | - Tracey Curran
- Academy
of Natural Sciences of Drexel University, 1900 Benjamin Franklin Pkwy, Philadelphia, Pennsylvania 19103, United States
| | - Mary Qin Hassig
- Department
of Materials Science and Engineering, Drexel
University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Hussein O. Badr
- Department
of Materials Science and Engineering, Drexel
University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Gregory R. Schwenk
- Department
of Materials Science and Engineering, Drexel
University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Takeshi Torita
- MuRata
Manufacturing Co., Ltd., 10-1 Higashikotari 1-chome, Nagaokakyo-shi, Kyoto 617-8555, Japan
| | - Megan A. Creighton
- Department
of Chemical and Biological Engineering, Drexel University, 3141
Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Michel W. Barsoum
- Department
of Materials Science and Engineering, Drexel
University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
2
|
Majee PS, Ohshima H. On Diffusiophoresis of a Soft Particle with a Hydrophobic Inner Core: A Semianalytical Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1469-1479. [PMID: 39772749 DOI: 10.1021/acs.langmuir.4c04525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The current study deals with a theoretical analysis of diffusiophoresis of a soft particle, consisting of a hydrophobic charged rigid core coated with an ion- and fluid-penetrable charged polymer layer suspending in an electrolyte medium in reaction to an applied concentration gradient. The inner core's hydrophobicity is assumed to be characterized by a surface-charge-dependent slip length parameter. Based on a weak particle charge consideration, the governing equations describing the flow phenomena are solved theoretically to deduce a semianalytic general diffusiophoretic mobility expression applied to an arbitrary Debye layer thickness. A closed-form analytic solution is also obtained, which applies to a thin Debye length and low permeable porous layer. The impact of the charge-dependent wettability of the rigid core on the particle's diffusiophoretic motion is analyzed. We found that the inner core's hydrophobicity profoundly influences the particle mobility at a thicker Debye layer with a constant surface charge density when the chemiphoresis and electrophoresis components assist each other. At a fixed ζ-potential, the effect of the hydrophobic core is substantial for a thinner Debye length. In addition, with a critical selection of core and polymer layer charges, mobility reversal is demonstrated by modulating the salt concentration and slip length parameters.
Collapse
Affiliation(s)
- Partha Sarathi Majee
- Department of Mathematics, Birla Institute of Technology Mersa, Ranchi 835215, India
| | - Hiroyuki Ohshima
- Faculty of Pharmaceutical Sciences, Tokyo University of Sciences, 2461 Yamazaki Noda, Chiba 278-8510, Japan
| |
Collapse
|
3
|
Nazzari EC, Wernke G, Magalhães Ghiotto GAV, Bergamasco R, Gomes RG. Hydrogel Biocomposite of Alginate and Mucilage of Opuntia ficus-indica Cactus in the Adsorption of Methylene Blue in Aqueous Solution. ACS OMEGA 2025; 10:627-636. [PMID: 39829539 PMCID: PMC11739939 DOI: 10.1021/acsomega.4c07325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025]
Abstract
This work analyzes the production of a hydrogel composed of mucilage from the cactus Opuntia ficus-indica (OFI) and sodium alginate. In obtaining the new material, green synthesis was used, free of chemical compounds, and applied in the treatment of textile effluent for the adsorption of methylene blue (MB). The hydrogel was characterized by FT-IR, XRD, SEM, and zeta potential. The swelling study showed a maximum value of 262% at pH 6.0. Adsorption studies revealed a maximum adsorptive capacity of 7.21 mg g-1 in 400 min at 298 K. Furthermore, the experimental data showed better fit to the pseudo-second order and Langmuir models for kinetic and isothermal studies, respectively. The adsorptive process showed spontaneous and exothermic behavior as well as a chemisorptive nature. It is noteworthy that in the studies conducted at a higher concentration of the contaminant, the maximum adsorption was 760 mg g-1. The reuse of the hydrogel was effective for five cycles, maintaining the adsorption of approximately 50% MB removal. Therefore, the biodegradable hydrogel is a material that contributes to the environment, is low cost, with simple synthesis, and is a promising new material for large-scale applications, considering its sustainable character and high efficiency in the adsorption of MB in aqueous solution.
Collapse
Affiliation(s)
- Estefane Caetano Nazzari
- Department
of Biotechnology, Genetics and Cell Biology, Biological Sciences Center, State University of Maringá, Maringá, Paraná 87020-900, Brazil
| | - Gessica Wernke
- Department
of Chemical Engineering, Technology Center, State University of Maringá, Maringá, Paraná 87020-900, Brazil
| | - Grace Anne Vieira Magalhães Ghiotto
- Department
of Biotechnology, Genetics and Cell Biology, Biological Sciences Center, State University of Maringá, Maringá, Paraná 87020-900, Brazil
| | - Rosângela Bergamasco
- Department
of Chemical Engineering, Technology Center, State University of Maringá, Maringá, Paraná 87020-900, Brazil
| | - Raquel Guttierres Gomes
- Department
of Food Engineering, Technology Center, State University of Maringá, Maringá, Paraná 87020-900, Brazil
| |
Collapse
|
4
|
Nguyen NTT, Tran TT, Lam TV, Phung SC, Nguyen DTC. Simultaneous optimization of production yield and sulfadiazine adsorption of MgFe 2O 4 loaded on prickly pear biochars using Box-Behnken design. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:67382-67396. [PMID: 38159191 DOI: 10.1007/s11356-023-31679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
A major challenge that humans facing is the uncontrolled discharge of antibiotic-containing wastewater into the environment, accompanying with huge threats to human community. The utilization of cost-effective biomass-based adsorbents is considered a potential solution for the treatment of antibiotic wastewater. This study aims to optimize the synthesis of MgFe2O4 nanoparticles loaded on prickly pear biochar (PPB) with outstanding sulfadiazine adsorbability using response surface methodology. Thirteen materials (MgFe2O4-PPB) produced based on Box-Behnken design were tested to evaluate the impact of the main factors on the material preparation process, including ratio of MgFe2O4:PPB precursors, calcination temperature and calcination time. Under optimized conditions, i.e., MgFe2O4:PPB ratio 0.5, temperature 600 °C and time 1 h, the production yield of 46.5% and sulfadiazine removal percentage of 85.4% were obtained. Characterization of optimized MgFe2O4-PPB indicated the good porosity and functionality suitable for the adsorption of sulfadiazine. Elovich model showed the best description of kinetic process. Temkin model was considered to be an accurate description of the isotherm adsorption. Proposed mechanism for antibiotic adsorption onto MgFe2O4-PPB was described. We clarify cost-benefit analysis to asses the importance of MgFe2O4-PPB as well as the economic and environmental impacts of biochar-based composites.
Collapse
Affiliation(s)
- Ngoan Thi Thao Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam
| | - Tuu Thi Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam
| | - Tan Van Lam
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam
| | - Sy Chi Phung
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam.
| |
Collapse
|
5
|
Alkhair S, Zouari N, Ibrahim Ahmad Ibrahim M, Al-Ghouti MA. Efficacy of adsorption processes employing green nanoparticles for bisphenol A decontamination in water: A review. ENVIRONMENTAL NANOTECHNOLOGY, MONITORING & MANAGEMENT 2024; 22:100963. [DOI: 10.1016/j.enmm.2024.100963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Su X, Wu L, Chen G, Zheng C, Shan B, Tian Y, Ma J, Gu C. Organic conjugated polymer nanoparticles enhanced tyrosinase electrochemical biosensor for selective, sensitive and rapid detection of bisphenol A. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175765. [PMID: 39209166 DOI: 10.1016/j.scitotenv.2024.175765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Bisphenol A (BPA) has been widely used in the production of polycarbonate (PC) plastics, flame retardants and epoxy resins, which is one of the most important endocrine disrupting chemicals and can cause damage to the estrogen system of human. In this work, organic conjugated polymer nanoparticles (CPNPs) were synthesized through nanoprecipitation method using liposome 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000] (DSPE-mPEG2000) coated poly[(4,4'-bis(2-ethylhexyl)-dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-4,7-di(4-hexyl-2-thienyl)-5,6-difluoro-2,1,3-benzothiadiazole] (PDTS-hDTBT) and poly[(4,4'-bis(2-ethylhexyl)-dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-4,7-di(4-(2-ethylhexyl)-2-thienyl)-5,6-difluoro-2,1,3-benzothiadiazole] (PDTS-ehDTBT). These two polymers have different side chains, which can affect the configuration of the polymers, thereby affecting the π-π interaction between BPA and CPNPs. The resultant two CPNPs were explored as extremely attractive matrix for tyrosinase immobilization to construct electrochemical biosensing platforms for sensitive and rapid detection of BPA in water environments. The electrochemical performance of these two biosensors was significantly enhanced, benefiting from the large specific surface area and excellent biocompatibility of CPNPs, as well as the strong π-π interaction between CPNPs and BPA. The current response of PDTS-ehDTBT-Tyr-Chi/GCE exhibited a good linear relationship with BPA concentration ranging from 0.02 to 3.0 μM with a low detection limit of 11.83 nM and a high sensitivity of 0.9724 μA μM-1 cm-2. The fabricated biosensor was further used for BPA detection in actual samples with a recovery rate of 92.0 %-99.4 %. With the remarkable advantages, CPNPs-based biosensor provides a highly sensitive detection tool for rapid detection of BPA in actual samples, which has broad application prospects.
Collapse
Affiliation(s)
- Xinze Su
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Lingxia Wu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Guangshuai Chen
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Chunying Zheng
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Bin Shan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Yong Tian
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Jiping Ma
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Chuantao Gu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China; State Key Laboratory of Bio-Fibers and Eco-Textiles (Qingdao University), Qingdao 266071, China.
| |
Collapse
|
7
|
Jayaraman J, Kumaraswamy J, Rao YKSS, Karthick M, Baskar S, Anish M, Sharma A, Yadav AS, Alam T, Ammarullah MI. Wastewater treatment by algae-based membrane bioreactors: a review of the arrangement of a membrane reactor, physico-chemical properties, advantages and challenges. RSC Adv 2024; 14:34769-34790. [PMID: 39483379 PMCID: PMC11526280 DOI: 10.1039/d4ra04417g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/02/2024] [Indexed: 11/03/2024] Open
Abstract
Reducing wastewater contaminants is an emerging area of particular concern for many industrialized and developing countries in improving the ecological quality of their water sources. In this case, the use of algae-based microbial reactors for wastewater treatment has attracted increasing attention in recent years. The advantages of both conventional microbial membrane bioreactors (MBRs) and algae-based treatment are combined in algae-based MBRs. According to the literature, previous studies did not fully discuss the techniques and performance of algae-based bioreactor systems in the treatment of wastewater. In particular, little attention has been paid to the types of waste, their consequences, and the ways in which they are treated. This makes it more difficult to develop and scale up efficient systems to treat waste discharge from industry, agriculture, and urban areas. Thus, the objective of this study is to critically evaluate algae as a valuable biological resource for wastewater treatment, with the goal of reducing emerging contaminants and increasing the chemical oxygen demand (COD) in wastewater. The most common wastewater treatment techniques employed for addressing these wastes are examined together with a brief discussion on contaminants in wastewater. Furthermore, algae-based wastewater treatment arrangements, particularly hybrid configurations, are carefully studied in relation to techniques for removing contaminants using algae. After analysing the key physicochemical characteristics that affect the ability of algal-bioremediation to remove developing contaminants, the benefits of algal-bioremediation systems are compared to those of other techniques. Lastly, an investigation is conducted into the technological difficulties associated with employing algal-bioremediation systems to eliminate emerging contaminants.
Collapse
Affiliation(s)
- Jayaprabakar Jayaraman
- Department of Mechanical Engineering, Sathyabama Institute of Science & Technology Chennai 600119 Tamil Nadu India
| | - J Kumaraswamy
- Department of Mechanical Engineering, R. L. Jalappa Institute of Technology, Affiliated to Visvesvaraya Technological University (V.T.U) Belagavi 590018 Karnataka India
| | - Yarrapragada K S S Rao
- Department of Mechanical Engineering, Aditya University Surampalem 533437 Andhra Pradesh India
| | - M Karthick
- Department of Mechanical Engineering, Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology Chennai 600062 Tamil Nadu India
| | - S Baskar
- School of Engineering, Vels Institute of Science, Technology & Advanced Studies Chennai 600117 Tamil Nadu India
| | - M Anish
- Department of Mechanical Engineering, Sathyabama Institute of Science & Technology Chennai 600119 Tamil Nadu India
| | - Abhishek Sharma
- Department of Mechanical Engineering, Government Engineering College (Department of Higher and Technical Education, Govt. of Jharkhand) Medininagar 822118 Jharkhand India
| | - Anil Singh Yadav
- Department of Mechanical Engineering, Bakhtiyarpur College of Engineering (Science, Technology and Technical Education Department, Govt. of Bihar) Bakhtiyarpur Patna 803212 Bihar India
| | - Tabish Alam
- Architecture Planning and Energy Efficiency, CSIR-Central Building Research Institute Roorkee 247667 Uttarakhand India
| | - Muhammad Imam Ammarullah
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Diponegoro Semarang 50275 Central Java Indonesia
- Undip Biomechanics Engineering & Research Centre (UBM-ERC), Universitas Diponegoro Semarang 50275 Central Java Indonesia
| |
Collapse
|
8
|
Sabri M, Kazim H, Tawalbeh M, Al-Othman A, Almomani F. A review of advancements in humic acid removal: Insights into adsorption techniques and hybrid solutions. CHEMOSPHERE 2024; 365:143373. [PMID: 39306101 DOI: 10.1016/j.chemosphere.2024.143373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Humic acid (HA) is a prominent contaminant in wastewater, and its elimination is crucial to ensure purified drinking water. A variety of sources of HA in wastewater exist, ranging from agricultural runoff, industrial discharges, and natural decomposition. Adsorption is a technique that has been heavily investigated in this direction. The process complexities, technological advancements, and sustainable approaches are discussed in this review. A range of adsorbents can be employed for HA removal, including modified membranes, carbon nanotubes (CNTs), clay nanoparticles, and acid-modified natural materials. This work compares the effectiveness of the preceding adsorbents along with their advantages and limitations. This review also discusses the optimization of various process parameters, such as pH, ionic strength, and temperature, with an emphasis on response surface methodology for process optimization. Furthermore, the challenges and limitations associated with each removal technique are discussed, along with the potential areas for improvement and future directions in the field of wastewater treatment.
Collapse
Affiliation(s)
- Moin Sabri
- Department of Computer Science and Engineering, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| | - Hisham Kazim
- Department of Computer Science and Engineering, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| | - Muhammad Tawalbeh
- Sustainable and Renewable Energy Engineering Department, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates; Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Amani Al-Othman
- Department of Chemical Engineering, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates; Energy, Water and Sustainable Environment Research Center, College of Engineering, American University of Sharjah, PO. Box 26666, Sharjah, United Arab Emirates
| | - Fares Almomani
- Department of Chemical Engineering, Qatar University, Qatar.
| |
Collapse
|
9
|
Sirajudheen P, Vigneshwaran S, Thomas N, Selvaraj M, Assiri MA, Park CM. Critical assessment of recent advancements in chitosan-functionalized iron and geopolymer-based adsorbents for the selective removal of arsenic from water. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:946. [PMID: 39289191 DOI: 10.1007/s10661-024-13087-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/31/2024] [Indexed: 09/19/2024]
Abstract
Inorganic arsenic (As), a known carcinogen and major contaminant in drinking water, affects over 140 million people globally, with levels exceeding the World Health Organization's (WHO) guidelines of 10 μg L-1. Developing innovative technologies for effluent handling and decontaminating polluted water is critical. This paper summarizes the fundamental characteristics of chitosan-embedded composites for As adsorption from water. The primary challenge in selectively removing As ions is the presence of phosphate, which is chemically similar to As(V). This study evaluates and summarizes innovative As adsorbents based on chitosan and its composite modifications, focusing on factors influencing their adsorption affinity. The kinetics, isotherms, column models, and thermodynamic aspects of the sorption processes were also explored. Finally, the adsorption process and implications of functionalized chitosan for wastewater treatment were analyzed. There have been minimal developments in water disinfection using metal-biopolymer composites for environmental purposes. This field of study offers numerous research opportunities to expand the use of biopolymer composites as detoxifying materials and to gain deeper insights into the foundations of biopolymer composite adsorbents, which merit further investigation to enhance adsorbent stability.
Collapse
Affiliation(s)
- P Sirajudheen
- Department of Chemistry, Pocker Sahib Memorial Orphanage College, Tirurangadi, Malappuram, Kerala, 676306, India.
| | - S Vigneshwaran
- Environmental System Laboratory, Department of Civil Engineering, Kyung Hee University Global Campus, Seoul, 1732 Deogyong-daero, Giheung-Gu, Yongin-Si, Gyeonggi-Do, 16705, Republic of Korea
| | - Nygil Thomas
- Department of Chemistry, Nirmalagiri College, Kuthuparamba, Nirmalagiri P.O, Kannur, Kerala, 670701, India
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, 61413, Abha, Saudi Arabia
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University, PO Box 9004, Abha, 61413, Saudi Arabia
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, 61413, Abha, Saudi Arabia
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University, PO Box 9004, Abha, 61413, Saudi Arabia
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-Ro, Buk-Gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
10
|
Chen F, Jiang F, Ma J, Alghamdi MA, Zhu Y, Yong JWH. Intersecting planetary health: Exploring the impacts of environmental stressors on wildlife and human health. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116848. [PMID: 39116691 DOI: 10.1016/j.ecoenv.2024.116848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
This comprehensive review articulates critical insights into the nexus of environmental stressors and their health impacts across diverse species, underscoring significant findings that reveal profound effects on both wildlife and human health systems. Central to our examination is the role of pollutants, climate variables, and pathogens in contributing to complex disease dynamics and physiological disruptions, with particular emphasis on immune and endocrine functions. This research brings to light emerging evidence on the severe implications of environmental pressures on a variety of taxa, including predatory mammals, raptorial birds, seabirds, fish, and humans, which are pivotal as indicators of broader ecosystem health and stability. We delve into the nuanced interplay between environmental degradation and zoonotic diseases, highlighting novel intersections that pose significant risks to biodiversity and human populations. The review critically evaluates current methodologies and advances in understanding the morphological, histopathological, and biochemical responses of these organisms to environmental stressors. We discuss the implications of our findings for conservation strategies, advocating for a more integrated approach that incorporates the dynamics of zoonoses and pollution control. This synthesis not only contributes to the academic discourse but also aims to influence policy by aligning with the Global Goals for Sustainable Development. It underscores the urgent need for sustainable interactions between humans and their environments, which are critical for preserving biodiversity and ensuring global health security. By presenting a detailed analysis of the interdependencies between environmental stressors and biological health, this review highlights significant gaps in current research and provides a foundation for future studies aimed at mitigating these pressing issues. Our study is significant as it proposes integrative and actionable strategies to address the challenges at the intersection of environmental change and public health, marking a crucial step forward in planetary health science.
Collapse
Affiliation(s)
- Fu Chen
- School of Public Administration, Hohai University, Nanjing 211100, China.
| | - Feifei Jiang
- School of Public Administration, Hohai University, Nanjing 211100, China.
| | - Jing Ma
- School of Public Administration, Hohai University, Nanjing 211100, China.
| | - Mohammed A Alghamdi
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca, Saudi Arabia.
| | - Yanfeng Zhu
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221000, China.
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp 23456, Sweden.
| |
Collapse
|
11
|
Raji F, Maghool S, Shayesteh H, Rahbar-Kelishami A. Effective adsorptive removal of Pb 2+ ions from aqueous solution using functionalized agri-waste biosorbent: New green mediation via Seidlitzia rosmarinus extract. CHEMOSPHERE 2024; 363:142759. [PMID: 38969218 DOI: 10.1016/j.chemosphere.2024.142759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Currently, the use of natural adsorbent for the elimination of pollutants, such as heavy metals, from water has been extensively investigated. However, the low adsorption capacity of these natural adsorbents has led researchers towards the use of synthetic surfactants, which themselves can become environmental pollutants. In this research, an investigation was conducted to examine the impact of a surfactant obtained from the Seidlitzia rosmarinus plant on the adsorption properties of Pumpkin seed shell (PSS), a natural adsorbent. As a result, a modified version of PSS, known as functionalized Pumpkin seed shell (FPSS), was developed, and the effect of these two adsorbents on the elimination of Pb2+ has been investigated. FESEM, EDS, FTIR, and BET analyses were conducted to get detailed information of the adsorbent. Additionally, the effects of contact time, dosage of the adsorbent, pH of the solution, and temperature on the adsorbent were studied. The experimental data was fitted using Langmuir, Freundlich, Temkin, and Jovanovic isotherms. The PSS adsorbent was fitted best with the Langmuir isotherm, showing an adsorption capacity of 160.80 mg g-1, while the FPSS adsorbent was fitted with the Jovanovic isotherm, exhibiting an adsorption capacity of 553.57 mg g-1. Furthermore, kinetic modeling results indicated that the data for these adsorbents follow pseudo-second-order kinetic. Finally, the impact of coexisting ions and reusability was examined, with the FPSS adsorbent outperforming PSS. Therefore, the investigation of all these aspects demonstrated that the use of this natural surfactant significantly improves the performance of the adsorbent.
Collapse
Affiliation(s)
- Farshad Raji
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Sina Maghool
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Hadi Shayesteh
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran, 16846-13114, Iran.
| | - Ahmad Rahbar-Kelishami
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran, 16846-13114, Iran.
| |
Collapse
|
12
|
Narayanasamy A, Patel SKS, Singh N, Rohit MV, Lee JK. Valorization of Algal Biomass to Produce Microbial Polyhydroxyalkanoates: Recent Updates, Challenges, and Perspectives. Polymers (Basel) 2024; 16:2227. [PMID: 39125253 PMCID: PMC11314723 DOI: 10.3390/polym16152227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Biopolymers are highly desirable alternatives to petrochemical-based plastics owing to their biodegradable nature. The production of bioplastics, such as polyhydroxyalkanoates (PHAs), has been widely reported using various bacterial cultures with substrates ranging from pure to biowaste-derived sugars. However, large-scale production and economic feasibility are major limiting factors. Now, using algal biomass for PHA production offers a potential solution to these challenges with a significant environmental benefit. Algae, with their unique ability to utilize carbon dioxide as a greenhouse gas (GHG) and wastewater as feed for growth, can produce value-added products in the process and, thereby, play a crucial role in promoting environmental sustainability. The sugar recovery efficiency from algal biomass is highly variable depending on pretreatment procedures due to inherent compositional variability among their cell walls. Additionally, the yields, composition, and properties of synthesized PHA vary significantly among various microbial PHA producers from algal-derived sugars. Therefore, the microalgal biomass pretreatments and synthesis of PHA copolymers still require considerable investigation to develop an efficient commercial-scale process. This review provides an overview of the microbial potential for PHA production from algal biomass and discusses strategies to enhance PHA production and its properties, focusing on managing GHGs and promoting a sustainable future.
Collapse
Affiliation(s)
- Anand Narayanasamy
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Anand 388120, Gujarat, India; (A.N.); (N.S.); (M.V.R.)
| | - Sanjay K. S. Patel
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar 246174, Uttarakhand, India;
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Neha Singh
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Anand 388120, Gujarat, India; (A.N.); (N.S.); (M.V.R.)
| | - M. V. Rohit
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Anand 388120, Gujarat, India; (A.N.); (N.S.); (M.V.R.)
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
13
|
Benedetti B, Ceccardi E, MacKeown H, Di Carro M, Magi E. Exploring the potentialities of a biodegradable polymeric film in sample preparation: An optimized "white" protocol to extract and quantify emerging contaminants in water. Anal Chim Acta 2024; 1311:342725. [PMID: 38816162 DOI: 10.1016/j.aca.2024.342725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/29/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND The introduction of white analytical chemistry encourages the development of methods characterized by a balance among greenness, productivity/feasibility and analytical performances. In the environmental analysis of emerging contaminants (ECs), for which high sensitivity and specificity are mandatory, the use of green and sustainable sample preparation needs to be coupled to a reliable analytical determination. Herein, an extraction method based on the use of a biodegradable polymeric film (Mater-Bi) and coupled to LC-MS/MS analysis was developed for the sensitive determination of ECs in wastewater. RESULTS The interaction among a range of ECs and the Mater-Bi film (a commercially available patented blend of polybutylene-terephthalate, starch and fatty acids) was investigated by two sequential experimental designs, to simultaneously study several factors and optimize extraction efficiency. The final method, resembling a fabric phase sorptive extraction, involved pH and ionic strength modification of the sample, 1h extraction and desorption in ethanol. Satisfactory recoveries from real wastewater were obtained for sixteen analytes (56-116 %), as well as excellent precision (inter-day relative standard deviations below 10 % for most compounds). Matrix effect was in the range 88-116 % at the lower pre-concentration factor, but also acceptable in most cases at the higher pre-concentration factor. LODs in matrix, from 0.004 to 0.159 μg L-1, were lower than or comparable to those from recent studies employing green extraction procedures. The method demonstrated its applicability to samples from wastewater treatment plants, allowing quantification of pharmaceuticals and UV filters at the μg L-1 and ng L-1 levels, respectively. SIGNIFICANCE For the first time, the synthetic biopolymer Mater-Bi, so far unexplored for the use in analytical chemistry, was exploited for a green, simple and extremely cheap extraction protocol. The optimized method is suitable for several ECs, guaranteeing very good accuracy, precision and specificity, also thanks to the LC-MS/MS analysis. The evaluation by green and white analytical chemistry metrics highlighted its superiority to conventional extraction methods.
Collapse
Affiliation(s)
- Barbara Benedetti
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146, Genova, Italy.
| | - Erica Ceccardi
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146, Genova, Italy
| | - Henry MacKeown
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146, Genova, Italy
| | - Marina Di Carro
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146, Genova, Italy
| | - Emanuele Magi
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146, Genova, Italy
| |
Collapse
|
14
|
Chauhan K, Singh P, Sen K, Singhal RK, Thakur VK. Recent Advancements in the Field of Chitosan/Cellulose-Based Nanocomposites for Maximizing Arsenic Removal from Aqueous Environment. ACS OMEGA 2024; 9:27766-27788. [PMID: 38973859 PMCID: PMC11223156 DOI: 10.1021/acsomega.3c09713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024]
Abstract
Water remediation, acknowledged as a significant scientific topic, guarantees the safety of drinking water, considering the diverse range of pollutants that can contaminate it. Among these pollutants, arsenic stands out as a particularly severe threat to human health, significantly compromising the overall quality of life. Despite widespread awareness of the harmful effects of arsenic poisoning, there remains a scarcity of literature on the utilization of biobased polymers as sustainable alternatives for comprehensive arsenic removal in practical concern. Cellulose and chitosan, two of the most prevalent biopolymers in nature, provide a wide range of potential benefits in cutting-edge industries, including water remediation. Nanocomposites derived from cellulose and chitosan offer numerous advantages over their larger equivalents, including high chelating properties, cost-effective production, strength, integrity during usage, and the potential to close the recycling loop. Within the sphere of arsenic remediation, this Review outlines the selection criteria for novel cellulose/chitosan-nanocomposites, such as scalability in synthesis, complete arsenic removal, and recyclability for technical significance. Especially, it aims to give an overview of the historical development of research in cellulose and chitosan, techniques for enhancing their performance, the current state of the art of the field, and the mechanisms underlying the adsorption of arsenic using cellulose/chitosan nanocomposites. Additionally, it extensively discusses the impact of shape and size on adsorbent efficiency, highlighting the crucial role of physical characteristics in optimizing performance for practical applications. Furthermore, this Review addresses regeneration, reuse, and future prospects for chitosan/cellulose-nanocomposites, which bear practical relevance. Therefore, this Review underscores the significant research gap and offers insights into refining the structural features of adsorbents to improve total inorganic arsenic removal, thereby facilitating the transition of green-material-based technology into operational use.
Collapse
Affiliation(s)
- Kalpana Chauhan
- Chemistry
under School of Engineering and Technology, Central University of Haryana, Mahendragarh, Haryana 123031, India
| | - Prem Singh
- Shoolini
University, Solan, Himachal Pradesh 173229, India
| | - Kshipra Sen
- Shoolini
University, Solan, Himachal Pradesh 173229, India
| | - Rakesh Kumar Singhal
- Analytical
Chemistry Division, Bhabha Atomic Research
Centre, Mumbai 400085, India
| | - Vijay Kumar Thakur
- Biorefining
and Advanced Materials Research Centre, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, United Kingdom
| |
Collapse
|
15
|
Rodríguez EM. Endocrine disruption in crustaceans: New findings and perspectives. Mol Cell Endocrinol 2024; 585:112189. [PMID: 38365065 DOI: 10.1016/j.mce.2024.112189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
A significant advance has been made, especially during the last two decades, in the knowledge of the effects on crustacean species of pollutants proven to be endocrine disruptors in vertebrates. Such effects have been also interpreted in the light of recent studies on crustacean endocrinology. Year after year, the increased number of reports refer to the effects of endocrine disruptors on several processes hormonally controlled. This review is aimed at summarizing and discussing the effects of several kinds of endocrine disruptors on the hormonal control of reproduction (including gonadal growth, sexual differentiation, and offspring development), molting, and intermediate metabolism of crustaceans. A final discussion about the state of the art, as well as the perspective of this toxicological research line is given.
Collapse
Affiliation(s)
- Enrique M Rodríguez
- Universidad de Buenos Aires. CONICET. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA). Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental. Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina.
| |
Collapse
|
16
|
Das KP, Chauhan P, Staudinger U, Satapathy BK. Sustainable adsorbent frameworks based on bio-resourced materials and biodegradable polymers in selective phosphate removal for waste-water remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31691-31730. [PMID: 38649601 DOI: 10.1007/s11356-024-33253-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
Phosphorus to an optimum extent is an essential nutrient for all living organisms and its scarcity may cause food security, and environmental preservation issues vis-à-vis agroeconomic hurdles. Undesirably excess phosphorus intensifies the eutrophication problem in non-marine water bodies and disrupts the natural nutrient balance of the ecosystem. To overcome such dichotomy, biodegradable polymer-based adsorbents have emerged as a cost-effective and implementable approach in striking a "desired optimum-undesired excess" balance pertaining to phosphate in a sustainable manner. So far, the reports on adopting such adsorbent-approach for wastewater remediation remained largely scattered, unstructured, and poorly correlated. In this background, the contextual review comprehensively discusses the current state-of-the-art in utilizing biodegradable polymeric frameworks as an adsorbent system for phosphate removal and its efficient recovery from the aquatic ecosystem, while highlighting their characteristics-specific functional efficiency vis-à-vis easiness of synthetic and commercial viability. The overview further delves into the sources and environmental ramifications of excessive phosphorus in water bodies and associated mechanistic pathways of phosphorus removal via adsorption, precipitation, and membrane filtration enabled by biodegradable (natural and synthetic) polymeric substrates. Finally, functionality optimization, degradability tuning, and adsorption selectivity of biodegradable polymers are highlighted, while aiming to strike a balance in "removal-recovery-reuse" dynamics of phosphate. Thus, the current review not only paves the way for future exploration of biodegradable polymers in sustainable cost-effective adsorbents for phosphorus removal but also can serve as a guide for researchers dealing with this critical issue.
Collapse
Affiliation(s)
- Krishna Priyadarshini Das
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, Hauz Khas, 110016, India
| | - Pooja Chauhan
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, Hauz Khas, 110016, India
| | - Ulrike Staudinger
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069, Dresden, Germany
| | - Bhabani Kumar Satapathy
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, Hauz Khas, 110016, India.
| |
Collapse
|
17
|
Hyder A, Ali A, Buledi JA, Memon R, Al-Anzi BS, Memon AA, Kazi M, Solangi AR, Yang J, Thebo KH. A NiO-nanostructure-based electrochemical sensor functionalized with supramolecular structures for the ultra-sensitive detection of the endocrine disruptor bisphenol S in an aquatic environment. Phys Chem Chem Phys 2024; 26:10940-10950. [PMID: 38526327 DOI: 10.1039/d4cp00138a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Herein, NiO nanoparticles (NPs) functionalized with a para-hexanitrocalix[6]arene derivative (p-HNC6/NiO) were synthesized by using a facile method and applied as a selective electrochemical sensor for the determination of bisphenol S (BPS) in real samples. Moreover, the functional interactions, phase purities, surface morphologies and elemental compositions of the synthesized p-HNC6/NiO NPs were investigated via advanced analytical tools, such as Fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). Additionally, the synthesized p-HNC6/NiO NPs were cast on the surface of a bare glassy carbon electrode (GCE) via a drop casting method, which resulted in uniform deposition of p-HNC6/NiO/GCE over the surface of the GCE. Additionally, the developed p-HNC6/NiO/GCE sensor demonstrated an outstanding electrochemical response to BPS under optimized conditions, including a supporting electrolyte, a Briton-Robinson buffer electrolyte at pH 4, a scan rate of 110 mV s-1 and a potential window of between -0.2 and 1.0 V. The wide linear dynamic range was optimized to 0.8-70 μM to obtain a brilliant linear calibration curve for BPS. The limit of detection (LOD) and limit of quantification (LOQ) of the developed sensor were estimated to be 0.0059 and 0.019 μM, respectively, which are lower than those of reported sensors for BPS. The feasibility of the developed method was successfully assessed by analyzing the content of BPS in waste water samples, and good recoveries were achieved.
Collapse
Affiliation(s)
- Ali Hyder
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan.
| | - Akbar Ali
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering (IPE), Chinese Academy of Sciences, Beijing 100F190, China.
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jamil Ahmed Buledi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan.
| | - Roomia Memon
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Tuzla, 34956, Istanbul, Turkey
| | - Bader S Al-Anzi
- Department of Environmental Sciences, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait.
| | - Ayaz Ali Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan.
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box-2457, Riyadh 11451, Saudi Arabia
| | - Amber Rehana Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan.
| | - Jun Yang
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering (IPE), Chinese Academy of Sciences, Beijing 100F190, China.
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Khalid Hussain Thebo
- Institute of Metal Research (IMR), Chinese Academy of Science, 2 Wenhua Rood, Shenyang, China.
| |
Collapse
|
18
|
Reghioua A, Atia D, Hamidi A, Jawad AH, Abdulhameed AS, Mbuvi HM. Production of eco-friendly adsorbent of kaolin clay and cellulose extracted from peanut shells for removal of methylene blue and congo red removal dyes. Int J Biol Macromol 2024; 263:130304. [PMID: 38382796 DOI: 10.1016/j.ijbiomac.2024.130304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 02/06/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
This present work targets the production of an eco-friendly adsorbent (hereinafter KA/CEL) from kaolin clay functionalized with cellulose extract obtained from peanut shells. The adsorbents were used for decolorization of two different types of organic dyes (cationic: methylene blue, MB; anionic: Congo red, CR) from an aqueous environment. Several analytical methods, including Brunauer-Emmett-Teller (surface properties), Fourier Transforms infrared (functionality), scanning electron microscope, Energy dispersive X-Ray (morphology), and pHpzc test (surface charge), were used to attain the physicochemical characteristics of KA/CEL. The Box-Behnken Design (BBD) was applied to determine the crucial factors affecting adsorption performance. These included cellulose loading at 25 %, an adsorbent dose of 0.06 g, solution pH set at 10 for MB and 7 for CR, a temperature of 45 °C, and contact times of 12.5 min for MB and 20 min for CR dye. The adsorption data exhibited better agreement with the pseudo-second-order kinetic and Freundlich models. The Langmuir model estimated the monolayer capacity to be 291.5 mg/g for MB and 130.7 mg/g for CR at a temperature of 45 °C. This study's pivotal finding underscores the promising potential of KA/CEL as an effective adsorbent for treating wastewater contaminated with organic dyes.
Collapse
Affiliation(s)
- Abdallah Reghioua
- Fac. Technology, University of El Oued, 39000 El Oued, Algeria; Laboratory of Applied Chemistry and Environment, University of El Oued, 39000 El Oued, Algeria; Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.
| | - Djamal Atia
- Fac. Exact Sciences, University of El Oued, 39000 El Oued, Algeria
| | | | - Ali H Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Advanced Biomaterials and Carbon Development Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah 64001, Iraq
| | - Ahmed Saud Abdulhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Anbar, Ramadi, Iraq; College of Engineering, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Harun M Mbuvi
- Department of Chemistry, Kenyatta University Nairobi, Kenya
| |
Collapse
|
19
|
Narindri Rara Winayu B, Chu FJ, Sutopo CCY, Chu H. Bioprospecting photosynthetic microorganisms for the removal of endocrine disruptor compounds. World J Microbiol Biotechnol 2024; 40:120. [PMID: 38433170 DOI: 10.1007/s11274-024-03910-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/26/2024] [Indexed: 03/05/2024]
Abstract
Endocrine disruption compounds can be found in various daily products, like pesticides, along with cosmetic and pharmaceutical commodities. Moreover, occurrence of EDCs in the wastewater alarms the urgency for their removal before discharge owing to the harmful effect for the environment and human health. Compared to implementation of physical and chemical strategies, cultivation of photosynthetic microorganisms has been acknowledged for their high efficiency and eco-friendly process in EDCs removal along with accumulation of valuable byproducts. During the process, photosynthetic microorganisms remove EDCs via photodegradation, bio-adsorption, -accumulation, and -degradation. Regarding their high tolerance in extreme environment, photosynthetic microorganisms have high feasibility for implementation in wastewater treatment plant. However, several considerations are critical for their scaling up process. This review discussed the potency of EDCs removal by photosynthetic microorganisms and focused on the efficiency, mechanism, challenge, along with the prospect. Details on the mechanism's pathway, accumulation of valuable byproducts, and recent progress in scaling up and application in real wastewater were also projected in this review.
Collapse
Affiliation(s)
| | - Feng-Jen Chu
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, Anhui, China
| | - Christoper Caesar Yudho Sutopo
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Hsin Chu
- Department of Environmental Engineering, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
20
|
Saleem MH, Mfarrej MFB, Khan KA, Alharthy SA. Emerging trends in wastewater treatment: Addressing microorganic pollutants and environmental impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169755. [PMID: 38176566 DOI: 10.1016/j.scitotenv.2023.169755] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
This review focuses on the challenges and advances associated with the treatment and management of microorganic pollutants, encompassing pesticides, industrial chemicals, and persistent organic pollutants (POPs) in the environment. The translocation of these contaminants across multiple media, particularly through atmospheric transport, emphasizes their pervasive nature and the subsequent ecological risks. The urgency to develop cost-effective remediation strategies for emerging organic contaminants is paramount. As such, wastewater-based epidemiology and the increasing concern over estrogenicity are explored. By incorporating conventional and innovative wastewater treatment techniques, this article highlights the integration of environmental management strategies, analytical methodologies, and the importance of renewable energy in waste treatment. The primary objective is to provide a comprehensive perspective on the current scenario, imminent threats, and future directions in mitigating the effects of these pollutants on the environment. Furthermore, the review underscores the need for international collaboration in developing standardized guidelines and policies for monitoring and controlling these microorganic pollutants. It advocates for increased investment in research and development of advanced materials and technologies that can efficiently remove or neutralize these contaminants, thereby safeguarding environmental health and promoting sustainable practice.
Collapse
Affiliation(s)
- Muhammad Hamzah Saleem
- Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar.
| | - Manar Fawzi Bani Mfarrej
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates.
| | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.
| | - Saif A Alharthy
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; Toxicology and Forensic Sciences Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
21
|
You SM, Choi JH, Ryu SY, Byeon JW, Kim H, Cha HG. Investigation of lignin substructures participating in self-assembly for the synthesis of monodisperse lignin spherical particles. Int J Biol Macromol 2024; 259:129214. [PMID: 38185300 DOI: 10.1016/j.ijbiomac.2024.129214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
The intricate structure of lignin, characterized by a mix of hydrophilic components and hydrophobic structures from its aliphatic and aromatic constituents, poses challenges in creating monodisperse particles. This is due to the need for precise modulation of self-assembly kinetics. Herein, we explore a correlation between the substructure of lignin and its capacity for self-assembly. We have conducted an in-depth investigation into the interactions between hydrophilic groups, such as phenolic and aromatic-OH, and monolignols with interunit linkages that are involved in the formation of lignin particles (LPs). A high degree of hydrophilicity with a condensed structure is crucial for high supersaturation levels, which in turn determines the growth phase and leads to small LPs. An approach based on tailoring the supersaturation level which is contingent on the structural characteristics of extracted organosolv lignin was used to obtain remarkably uniform LPs with mean diameters of approximately 230 and 480 nm. The results of this study have the potential to serve as a foundation for the preparation of monodisperse LPs derived from various lignin sources as well as for the development of methods to extract lignin containing a specific chemical substructure.
Collapse
Affiliation(s)
- Sang-Mook You
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - June-Ho Choi
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - So Yeon Ryu
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Je Wook Byeon
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Hoyong Kim
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea.
| | - Hyun Gil Cha
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea.
| |
Collapse
|
22
|
Nayak A, Chaudhary P, Bhushan B, Ghai K, Singh S, Sillanpää M. Removal of emergent pollutants: A review on recent updates and future perspectives on polysaccharide-based composites vis-à-vis traditional adsorbents. Int J Biol Macromol 2024; 258:129092. [PMID: 38171444 DOI: 10.1016/j.ijbiomac.2023.129092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/16/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
There is a growing incidence in the presence of emergent pollutants like the pesticides and pharmaceuticals in water bodies. The matter of environmental concern is their synthetic and persistent nature which has resulted in induced toxicity/damaging effect to the vital functioning of the different organs in the aquatic community. Traditional adsorbents have exhibited limitations like low stability and minimum reuse ability. Composites of such adsorbents with polysaccharides have demonstrated distinct features like improved surface area, porosity, adsorptivity; improved reusability and structural integrity; improved mechanical strength, thermal stability when applied for the removal of the emergent pollutants. The biocompatibility and biodegradability of such fabricated composites is established; thereby making the water treatment process cost effective, sustainable and environmentally friendly. The present review has dealt with an in-depth, up-dated literature compilation of traditional as well as polysaccharide based composite adsorbents and addressed their performance evaluation for the removal of pharmaceuticals and pesticides from wastewater. A comparative study has revealed the merits of polysaccharide based composites and discussions have been made with a focus on future research directions in the related area.
Collapse
Affiliation(s)
- Arunima Nayak
- Department of Chemistry, Graphic Era University, 248002 Dehradun, India.
| | - Priya Chaudhary
- Department of Chemistry, Graphic Era University, 248002 Dehradun, India
| | - Brij Bhushan
- Department of Chemistry, Graphic Era University, 248002 Dehradun, India
| | - Kapil Ghai
- Department of Chemistry, Graphic Era Hill University, 248002 Dehradun, India
| | - Seema Singh
- School of Applied & Life Sciences, Uttaranchal University, Dehradun, Uttarakhand 248007,India
| | - Mika Sillanpää
- Sustainability Cluster, School of Advanced Engineering, UPES, Bidholi, Dehradun, Uttarakhand 248007, India; Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000 Aarhus C, Denmark
| |
Collapse
|
23
|
Al-Hazmi HE, Łuczak J, Habibzadeh S, Hasanin MS, Mohammadi A, Esmaeili A, Kim SJ, Khodadadi Yazdi M, Rabiee N, Badawi M, Saeb MR. Polysaccharide nanocomposites in wastewater treatment: A review. CHEMOSPHERE 2024; 347:140578. [PMID: 37939921 DOI: 10.1016/j.chemosphere.2023.140578] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023]
Abstract
In modern times, wastewater treatment is vital due to increased water contamination arising from pollutants such as nutrients, pathogens, heavy metals, and pharmaceutical residues. Polysaccharides (PSAs) are natural, renewable, and non-toxic biopolymers used in wastewater treatment in the field of gas separation, liquid filtration, adsorption processes, pervaporation, and proton exchange membranes. Since addition of nanoparticles to PSAs improves their sustainability and strength, nanocomposite PSAs has gained significant attention for wastewater treatment in the past decade. This review presents a comprehensive analysis of PSA-based nanocomposites used for efficient wastewater treatment, focusing on adsorption, photocatalysis, and membrane-based methods. It also discusses potential future applications, challenges, and opportunities in adsorption, filtration, and photocatalysis. Recently, PSAs have shown promise as adsorbents in biological-based systems, effectively removing heavy metals that could hinder microbial activity. Cellulose-mediated adsorbents have successfully removed various pollutants from wastewater, including heavy metals, dyes, oil, organic solvents, pesticides, and pharmaceutical residues. Thus, PSA nanocomposites would support biological processes in wastewater treatment plants. A major concern is the discharge of antibiotic wastes from pharmaceutical industries, posing significant environmental and health risks. PSA-mediated bio-adsorbents, like clay polymeric nanocomposite hydrogel beads, efficiently remove antibiotics from wastewater, ensuring water quality and ecosystem balance. The successful use of PSA-mediated bio-adsorbents in wastewater treatment depends on ongoing research to optimize their application and evaluate their potential environmental impacts. Implementing these eco-friendly adsorbents on a large scale holds great promise in significantly reducing water pollution, safeguarding ecosystems, and protecting human health.
Collapse
Affiliation(s)
- Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, 80-233, Gdańsk, Poland
| | - Justyna Łuczak
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233, Gdańsk, Poland
| | - Sajjad Habibzadeh
- Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Mohamed S Hasanin
- Cellulose and Paper Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Ali Mohammadi
- Department of Engineering and Chemical Sciences, Karlstad University, 65188, Karlstad, Sweden
| | - Amin Esmaeili
- Department of Chemical Engineering, School of Engineering Technology, and Industrial Trades, College of the North Atlantic-Qatar, Doha, Qatar
| | - Seok-Jhin Kim
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK, 74078, United States
| | - Mohsen Khodadadi Yazdi
- Division of Electrochemistry and Surface Physical Chemistry, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, 6150, Australia; School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Michael Badawi
- Université de Lorraine, CNRS, L2CM, F-57000 Metz, France
| | - Mohammad Reza Saeb
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland.
| |
Collapse
|
24
|
Silva MC, de Castro AA, Lopes KL, Ferreira IFL, Bretz RR, Ramalho TC. Combining computational tools and experimental studies towards endocrine disruptors mitigation: A review of biocatalytic and adsorptive processes. CHEMOSPHERE 2023; 344:140302. [PMID: 37788749 DOI: 10.1016/j.chemosphere.2023.140302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023]
Abstract
The endocrine disruptors (EDCs) are an important group of emerging contaminants, and their mitigation has been a huge challenge due to their chemistry complexity and variety of these compounds. The traditional treatments are inefficient to completely remove EDCs, and adsorptive processes are the major alternative investigated on their removal. Also, the use of EDCs degrading enzymes has been encouraged due to ecofriendly approach of biocatalytic processes. This paper highlights the occurrence, classification, and toxicity of EDCs with special focus in the use of enzyme-based and adsorptive technologies in the elimination of EDCs from ambiental matrices. Numerous prior reviews have focused on the discussions toward these technologies. However, the literature lacks theoretical discussions about important aspects of these methods such as the mechanisms of EDCs adsorption on the adsorbent surface or the interactions between degrading enzymes - EDCs. In this sense, theoretical calculations combined to experimental studies may help in the development of more efficient technologies to EDCs mitigation. In this review, we point out how computational tools such as molecular docking and molecular dynamics have to contribute to the design of new adsorbents and efficient catalytic processes towards endocrine disruptors mitigation.
Collapse
Affiliation(s)
- Maria Cristina Silva
- Department of Natural Sciences (DCNAT), Federal University of São João del-Rei, São João del Rei, Brazil.
| | | | - Karla Lara Lopes
- Department of Natural Sciences (DCNAT), Federal University of São João del-Rei, São João del Rei, Brazil
| | - Igor F Lara Ferreira
- Department of Natural Sciences (DCNAT), Federal University of São João del-Rei, São João del Rei, Brazil
| | - Raphael Resende Bretz
- Department of Natural Sciences (DCNAT), Federal University of São João del-Rei, São João del Rei, Brazil
| | - Teodorico C Ramalho
- Department of Chemistry, Federal University of Lavras, Lavras, Brazil; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
25
|
Ameen F, Tiri RNE, Bekmezci M, Karimi F, Bennini N, Sen F. Microwave-assisted synthesis of Vulcan Carbon supported Palladium-Nickel (PdNi@VC) bimetallic nanoparticles, and investigation of antibacterial and Safranine dye removing effects. CHEMOSPHERE 2023; 339:139630. [PMID: 37487984 DOI: 10.1016/j.chemosphere.2023.139630] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/24/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
As an alternative to antibiotics, nanoparticles (NPs) are increasingly being used for targeting bacteria. Nanotechnology holds great potential in the treatment of bacterial infections. Although the mechanisms of antibacterial activity of NPs are not fully understood, widely accepted explanations include oxidative stress induction, metal ion release, and non-oxidative processes. Several simultaneous gene changes would be required in the bacterial cell, making it difficult for bacterial cells to develop resistance to NPs. One important application of nanoparticles is in dye removal. Nanoparticle structures can be utilized effectively as adsorbents due to their reduced size and increased surface area, by combining noble metals, Palladium-Nickel (Pd-Ni), with a carbon structure known as Vulcan Carbon (VC), it is anticipated that the consumption of precious metals can be reduced while benefiting from the enhanced properties of the bimetallic structure. The PdNi@VC structure was synthesized using the microwave synthesis technique. Characterization techniques such as Transmission Electron Microscope (TEM) and X-Ray diffraction (XRD) were employed to confirm the formation of the bimetallic structure. According to the Debye-Scherrer equation, the size is 2.74 nm. In addition, photodegradation assays using simulator solar radiation yielded 67% efficacy against Safranine dye. In addition, The PdNi@VC had a high percentage of bacterial inhibition at the concentration of 200 g/ml against Staphylococcus aureus (S.aureus), and Escherichia coli (E.coli). This study focuses on the synthesis of bimetallic nanoparticles for antibacterial applications and investigates their effectiveness in dye removal from wastewater. The obtained results provide valuable insights for the implementation of innovative methods in these areas.
Collapse
Affiliation(s)
- Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Rima Nour Elhouda Tiri
- Sen Research Group, Department of Biochemistry, University of Dumlupinar, 43000, Kutahya, Turkey; SRG Incorporated Company, Kutahya Design & Technopole, Calca OSB Neighbourhood, 43100, Kutahya, Turkey
| | - Muhammed Bekmezci
- Sen Research Group, Department of Biochemistry, University of Dumlupinar, 43000, Kutahya, Turkey; SRG Incorporated Company, Kutahya Design & Technopole, Calca OSB Neighbourhood, 43100, Kutahya, Turkey; Department of Materials Science & Engineering, Faculty of Engineering, Dumlupinar University, Evliya Celebi Campus, 43000, Kutahya, Turkey
| | - Fatemeh Karimi
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O.Box 611731, Xiyuan Ave, Chengdu, China.
| | - Nihed Bennini
- Sen Research Group, Department of Biochemistry, University of Dumlupinar, 43000, Kutahya, Turkey
| | - Fatih Sen
- Sen Research Group, Department of Biochemistry, University of Dumlupinar, 43000, Kutahya, Turkey.
| |
Collapse
|
26
|
Kathalingam A, Santhoshkumar P, Ramesh S, Sivanesan I, Kim HS. Biogenic polymer nanoparticles to remove hydrophobic organic contaminants from water. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10935. [PMID: 37795743 DOI: 10.1002/wer.10935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/06/2023]
Abstract
Soil and water pollution is of significant concern worldwide because of the consequences of environmental degradation and harmful effects on human health. Water bodies are very much polluted by various organic and inorganic pollutants by different human activities, including industrial wastes. Environmental pollution remains high because of urbanization-induced industrial developments and human lifestyle. It accumulates pollutants in the environment including plants and living organisms. Even mothers' milk is poisoned because of the uncontrolled, widespread increase in pollution. The discharge levels of organic hydrophobic contaminants in the water and soil are increasing rapidly. This severe pollution must be remediated to upgrade the environment and ensure the safety of human beings. It is vital to eradicate soil and water pollution to guarantee sufficient food and water. Different techniques available to remove the pollutants vary according to the type of pollutants. Hydrophobic contaminants are more dangerous than heavy metals and other pollutants; they cannot be easily removed, requiring special care. Hydrophobic organoxenobiotics released in the environment pose severe contamination in soil and water. Therefore, developing efficient and cost-effective processes is necessary to remove hydrophobic contaminants from soil and water. With nanoparticle-mediated remediation techniques, the green-synthesized nanoparticles exhibit improved performance. This review consolidates reports on the remediation techniques of hydrophobic contaminants, focusing on green-synthesized remediation agents. The very limited works on green synthesis of polymeric nanoparticles, particularly polyurethane-based materials for organic contaminants removal demand more attention in this area. PRACTITIONER POINTS: Consolidated the effects of hydrophobic organic and plastic contaminants on environment degradation. Summarized the advantages of green synthesized polymer nanoparticles for efficient removal of hydrophobic contaminants. Discussed the different sources of pollution and remediation techniques referring 112 research works.
Collapse
Affiliation(s)
- Adaikalam Kathalingam
- Millimeter-Wave Innovation Technology (MINT) Research Centre, Dongguk University-Seoul, Seoul, Republic of Korea
| | - Palanisamy Santhoshkumar
- Millimeter-Wave Innovation Technology (MINT) Research Centre, Dongguk University-Seoul, Seoul, Republic of Korea
| | - Sivalingam Ramesh
- Department of Mechanical, Robotics and Energy Engineering, Dongguk University-Seoul, Seoul, Republic of Korea
| | - Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Institute of Natural Science and Agriculture, Konkuk University, Seoul, Republic of Korea
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, Republic of Korea
| |
Collapse
|
27
|
Ding R, Jiao H, Piao Y, Tian W. Knowledge mapping of immunotherapy for thyroid cancer from 1980 to 2022: A review. Medicine (Baltimore) 2023; 102:e35506. [PMID: 37773801 PMCID: PMC10545358 DOI: 10.1097/md.0000000000035506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/14/2023] [Indexed: 10/01/2023] Open
Abstract
With the gradual development of immunotherapy for thyroid cancer, relevant research has increased. To better understand the current situation, development trend, evolution process, and research hotspots of this field, we conducted this comprehensive bibliometrics visual analysis. We retrieved papers published from 1980 to 2022 from Web of Science Core Collection on January 31, 2023. CiteSpace, Pajek, VOSviewer, R-Bibliometrix, and Scimago Graphics are the tools to perform the analysis. Analysis methods mainly include co-occurrence analysis and cluster analysis. Analysis objects are countries or regions, institutions, authors, journals, and keywords, etc. In terms of publication number, the recent decade has witnessed rapid growth. USA was the most prolific country and has the most influence in the cooperation team. Sweden took the lead in focus on this research field and lasted for 21 years. Garden State Cancer Center was released most papers (28). INSERM played a major role in institutional cooperation. Goldenberg DM published the most papers (48), with H-Index 25 and G-Index 43. Journal of Nuclear Medicine has the greatest papers published (41). The average impactor factor of the top 10 journals is 7.2058. The top keywords with high burst strength are: radioimmunotherapy (14.85), monoclonal antibody (13.78), non hodgkins lymphoma (12.54). The research field of immunotherapy for thyroid cancer will be further developed. This study provides a valuable reference for future research in the field.
Collapse
Affiliation(s)
- Ran Ding
- School of Health Preservation of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, People’s Republic of China
| | - Hongguan Jiao
- School of Information Engineering, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025 People’s Republic of China
| | - Yuanlin Piao
- Virginia University of Integrative Medicine, Vienna, VA
| | - Weiyi Tian
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, People’s Republic of China
| |
Collapse
|
28
|
Ondrušová S, Bůžek D, Kloda M, Rohlíček J, Adamec S, Pospíšil M, Janoš P, Demel J, Hynek J. Linker-Functionalized Phosphinate Metal-Organic Frameworks: Adsorbents for the Removal of Emerging Pollutants. Inorg Chem 2023; 62:15479-15489. [PMID: 37682020 PMCID: PMC10523435 DOI: 10.1021/acs.inorgchem.3c01810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Indexed: 09/09/2023]
Abstract
Metal-organic frameworks (MOFs) are attracting increasing attention as adsorbents of contaminants of emerging concern that are difficult to remove by conventional processes. This paper examines how functional groups covering the pore walls of phosphinate-based MOFs affect the adsorption of specific pharmaceutical pollutants (diclofenac, cephalexin, and sulfamethoxazole) and their hydrolytic stability. New structures, isoreticular to the phosphinate MOF ICR-7, are presented. The phenyl ring facing the pore wall of the presented MOFs is modified with dimethylamino groups (ICR-8) and ethyl carboxylate groups (ICR-14). These functionalized MOFs were obtained from two newly synthesized phosphinate linkers containing the respective functional groups. The presence of additional functional groups resulted in higher affinity toward the tested pollutants compared to ICR-7 or activated carbon. However, this modification also comes with a reduced adsorption capacity. Importantly, the introduction of the functional groups enhanced the hydrolytic stability of the MOFs.
Collapse
Affiliation(s)
- Soňa Ondrušová
- Institute
of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež 1001, Řež 250 68, Czech Republic
- Department
of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 128
40, Czech Republic
| | - Daniel Bůžek
- Institute
of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež 1001, Řež 250 68, Czech Republic
- Department
of Environmental Chemistry and Technology, Faculty of Environment, Jan Evangelista Purkyně University in Ústí
nad Labem, Pasteurova
3632/15, Ústí nad Labem 400 96, Czech Republic
| | - Matouš Kloda
- Institute
of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež 1001, Řež 250 68, Czech Republic
| | - Jan Rohlíček
- Institute
of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, Prague 182 21, Czech Republic
| | - Slavomír Adamec
- Department
of Environmental Chemistry and Technology, Faculty of Environment, Jan Evangelista Purkyně University in Ústí
nad Labem, Pasteurova
3632/15, Ústí nad Labem 400 96, Czech Republic
| | - Miroslav Pospíšil
- Department
of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague 121
16, Czech Republic
| | - Pavel Janoš
- Department
of Environmental Chemistry and Technology, Faculty of Environment, Jan Evangelista Purkyně University in Ústí
nad Labem, Pasteurova
3632/15, Ústí nad Labem 400 96, Czech Republic
| | - Jan Demel
- Institute
of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež 1001, Řež 250 68, Czech Republic
| | - Jan Hynek
- Institute
of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež 1001, Řež 250 68, Czech Republic
| |
Collapse
|
29
|
Wu J, Wei W, Ahmad W, Li S, Ouyang Q, Chen Q. Enhanced detection of endocrine disrupting chemicals in on-chip microfluidic biosensors using aptamer-mediated bridging flocculation and upconversion luminescence. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132025. [PMID: 37453351 DOI: 10.1016/j.jhazmat.2023.132025] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Exposure to endocrine-disrupting chemicals (EDCs) can lead to detrimental impacts on human health, making their detection a critical issue. A novel approach utilizing on-chip microfluidic biosensors was developed for the simultaneous detection of two EDCs, namely, bisphenol A (BPA) and diethylstilbestrol (DES), based on upconversion nanoparticles doped with thulium (Tm) and erbium (Er), respectively. From the perspective of single nanoparticles, the construction of an active core-inert shell structure enhanced the luminescence of nanoparticles by 2.28-fold (Tm) and 1.72-fold (Er). From the perspective of the nanoparticle population, the study exploited an aptamer-mediated bridging flocculation mechanism and effectively enhanced the upconversion luminescence of biosensors by 8.94-fold (Tm) and 7.10-fold (Er). A chip with 138 tangential semicircles or quarter-circles was designed and simulated to facilitate adequate mixing, reaction, magnetic separation, and detection conditions. The on-chip microfluidic biosensor demonstrated exceptional capabilities for the simultaneous detection of BPA and DES with ultrasensitive detection limits of 0.0076 µg L-1, and 0.0131 µg L-1, respectively. The first reported aptamer-mediated upconversion nanoparticle bridging flocculation provided enhanced luminescence and detection sensitivity for biosensors, as well as offering a new perspective to address the instability of nanobiosensors.
Collapse
Affiliation(s)
- Jizhong Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wenya Wei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Waqas Ahmad
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Shuhua Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
30
|
Tawalbeh M, Mohammed S, Al-Othman A, Yusuf M, Mofijur M, Kamyab H. MXenes and MXene-based materials for removal of pharmaceutical compounds from wastewater: Critical review. ENVIRONMENTAL RESEARCH 2023; 228:115919. [PMID: 37072081 DOI: 10.1016/j.envres.2023.115919] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 05/16/2023]
Abstract
The rapid increase in the global population and its ever-rising standards of living are imposing a huge burden on global resources. Apart from the rising energy needs, the demand for freshwater is correspondingly increasing. A population of around 3.8 billion people will face water scarcity by 2030, as per the reports of the World Water Council. This may be due to global climate change and the deficiency in the treatment of wastewater. Conventional wastewater treatment technologies fail to completely remove several emerging contaminants, especially those containing pharmaceutical compounds. Hence, leading to an increase in the concentration of harmful chemicals in the human food chain and the proliferation of several diseases. MXenes are transition metal carbide/nitride ceramics that primarily structure the leading 2D material group. MXenes act as novel nanomaterials for wastewater treatment due to their high surface area, excellent adsorption properties, and unique physicochemical properties, such as high electrical conductivity and hydrophilicity. MXenes are highly hydrophilic and covered with active functional groups (i.e., hydroxyl, oxygen, fluorine, etc.), which makes them efficient adsorbents for a wide range of species and promising candidates for environmental remediation and water treatment. This work concludes that the scaling up process of MXene-based materials for water treatment is currently of high cost. The up-to-date applications are still limited because MXenes are currently produced mainly in the laboratory with limited yield. It is recommended to direct research efforts towards lower synthesis cost procedures coupled with the use of more environmentally friendly materials to avoid secondary contamination.
Collapse
Affiliation(s)
- Muhammad Tawalbeh
- Sustainable and Renewable Energy Engineering Department, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| | - Shima Mohammed
- Sustainable and Renewable Energy Engineering Department, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Amani Al-Othman
- Department of Chemical and Biological Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - Mohammad Yusuf
- Institute of Hydrocarbon Recovery (IHR), Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia.
| | - M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Process Systems Engineering Centre (PROSPECT), Faculty of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| |
Collapse
|
31
|
Kumar R, Sudhaik A, Sonu A, Raizada P, Nguyen VH, Van Le Q, Ahamad T, Thakur S, Hussaind CM, Singh P. Integrating K and P co-doped g-C 3N 4 with ZnFe 2O 4 and graphene oxide for S-scheme-based enhanced absorption coupled photocatalytic real wastewater treatment. CHEMOSPHERE 2023:139267. [PMID: 37343631 DOI: 10.1016/j.chemosphere.2023.139267] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/24/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Recently, there has been a significant increase in the interest of using photocatalysis for environmental clean-up applications. In this research, potassium, and phosphorus co-doped graphitic carbon nitride (KPCN) photocatalyst modified with graphene oxide (GO) and heterostructured with ZnFe2O4 was synthesized via the hydrothermal method (KPCN/GO/ZnFe2O4). The photoactivity of KPCN/GO/ZnFe2O4 photocatalyst was examined for the photocatalytic degradation of target pollutants such as methylene blue (MB) dye, rhodamine B (RhB) dye, and tetracycline (TC) antibiotic. Furthermore, the chemical oxygen demand (COD) removal efficiency for real wastewater was determined to explore the practical application of KPCN/GO/ZnFe2O4 photocatalyst. The degradation efficiencies of bare graphitic carbon nitride, KPCN, KPCN/GO, and KPCN/GO/ZnFe2O4 photocatalysts for tetracycline antibiotics were 30%, 42%, 57%, and 87% within 60 min, respectively. Moreover, KPCN/GO/ZnFe2O4 photocatalyst showed 71% COD removal efficiency within 240 min. The •OH and •O2- were the major reactive species in the photocatalytic process. Results showed that the degradation efficiencies of graphitic carbon nitride were greatly enhanced upon doping and further improved with the addition of GO and ZnFe2O4. Doping improved light harvesting, GO enhanced the adsorption ability and heterojunction with ZnFe2O4 enhanced the charge separation as well as the reusability of synthesized KPCN/GO/ZnFe2O4 photocatalyst.
Collapse
Affiliation(s)
- Rohit Kumar
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Anita Sudhaik
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - A Sonu
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Van-Huy Nguyen
- Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education (CARE), Kelambakkam, Kanchipuram District, 603103, Tamil Nadu, India
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145, Anamro Seongbuk-gu, Seoul, 02841, South Korea
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| | | | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India.
| |
Collapse
|
32
|
Reghioua A, Jawad AH, Selvasembian R, ALOthman ZA, Wilson LD. Box-Behnken design with desirability function for methylene blue dye adsorption by microporous activated carbon from pomegranate peel using microwave assisted K 2CO 3 activation. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1988-2000. [PMID: 37291893 DOI: 10.1080/15226514.2023.2216304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This research aims to convert pomegranate peel (PP) into microporous activated carbon (PPAC) using a microwave assisted K2CO3 activation method. The optimum activation conditions were carried out with a 1:2 PP/K2CO3 impregnation ratio, radiation power 800 W, and 15 min irradiation time. The statistical Box-Behnken design (BBD) was employed as an effective tool for optimizing the factors that influence the adsorption performance and removal of methylene blue (MB) dye. The output data of BBD with a desirability function indicate a 94.8% removal of 100 mg/L MB at the following experimental conditions: PPAC dose of 0.08 g, solution pH of 7.45, process temperature of 32.1 °C, and a time of 30 min. The pseudo-second order (PSO) kinetic model accounted for the contact time for the adsorption of MB. At equilibrium conditions, the Freundlich adsorption isotherm describes the adsorption results, where the maximum adsorption capacity of PPAC for MB dye was 291.5 mg g-1. This study supports the utilization of biomass waste from pomegranate peels and conversion into renewable and sustainable adsorbent materials. As well, this work contributes to the management of waste biomass and water pollutant sequestration.
Collapse
Affiliation(s)
- Abdallah Reghioua
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
- Faculty of Technology, University of El Oued, El Oued, Algeria
| | - Ali H Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Rangabhashiyam Selvasembian
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Zeid A ALOthman
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
33
|
Lei L, He X, Lin X, Zhao Y, Yang C, Cui L, Wu G. Preparation of carbon self-doped g-C 3N 4 for efficient degradation of bisphenol A under visible light irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:65328-65337. [PMID: 37084055 DOI: 10.1007/s11356-023-26928-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
In this study, visible-light-driven carbon self-doped graphitic carbon nitride photocatalyst was fabricated by a facile method with urea and ammonium citrate, and used for photodegradation of bisphenol A (BPA) in the aqueous environment. The experiments indicated that the prepared photocatalyst (C0.02CN) showed high catalytic activity, and 96.0%, 93.2%, and 95.5% BPA could be photodegraded in 150 min under pH 3, 6, and 11, respectively. The photocatalytic degradation rate (0.018 min-1) and mineralization (27.6%) of C0.02CN for BPA were about 6.7 and 3.5 times higher than those of the g-C3N4 (0.0027 min-1, 7.87%), respectively. C0.02CN had high reusability with a photodegradation efficiency of 84.5% for BPA after 3 cycles. Moreover, C0.02CN introduced additional carbon atoms, which generated C-O-C bonds in the g-C3N4 lattice. In contrast to g-C3N4, carbon doping enhanced the visible light absorption range of C0.02CN, reduced its band gap, and improved the separation efficiency of photogenerated electron-hole pairs. Radical quenching experiment and ESR results revealed that superoxide radicals (•O2-) and photogenerated holes (h+) acted as important parts in the high photodegradation activity under visible light irradiation. This work puts forward a one-pot strategy for the preparation of carbon self-doped g-C3N4, displacing the high-energy consuming and complicated preparation technology with promising industrial applications.
Collapse
Affiliation(s)
- Ling Lei
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Xi He
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Xiaoyu Lin
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Yufeng Zhao
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Chen Yang
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Longzhe Cui
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Guiping Wu
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
34
|
Ameen F, Aygun A, Seyrankaya A, Elhouda Tiri RN, Gulbagca F, Kaynak İ, Majrashi N, Orfali R, Dragoi EN, Sen F. Photocatalytic investigation of textile dyes and E. coli bacteria from wastewater using Fe 3O 4@MnO 2 heterojunction and investigation for hydrogen generation on NaBH 4 hydrolysis. ENVIRONMENTAL RESEARCH 2023; 220:115231. [PMID: 36608760 DOI: 10.1016/j.envres.2023.115231] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Various impurities found nowadays in water can be detrimental to human health. This work focused on utilizing Fe3O4@MnO2 nanocomposite for cleaning organic contaminants from water, including rhodamine B (RhB) and Escherichia coli (E. coli). Analysis methods such as XRD, UV-vis, TEM, and FTIR were used to describe the nanocomposite. The results showed that the developed nanocomposite has good photocatalytic activity against pollutants in wastewater. The E. coli was destroyed after 90 min, and the RhB photodegradation rate was 75%. Moreover, the Fe3O4@MnO2 efficiency as a catalyst for producing hydrogen as an alternative energy source was tested. According to the calculations, the nanomaterial's turnover frequency, activation energy, enthalpy, and entropy are 1061.3 h-1, 28.93 kJ/mol, 26.38 kJ/mol, and -128.41 J/mol.K, respectively. Four reusability tests were completed, and the average reusability was 78%. The obtained data indicated the excellent potential for the developed Fe3O4@MnO2 nanomaterial to act as an adsorbent, thus representing an alternative to the classical depollution methods. This study showed that nanoparticles have a photocatalytic effect against pathogenic bacteria and RhB azo dye in polluted waters and offer an effective catalytic activity to produce hydrogen as an alternative energy source.
Collapse
Affiliation(s)
- Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Aysenur Aygun
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupinar University, Evliya Celebi Campus, 43100 Kutahya, Turkiye
| | - Abdullah Seyrankaya
- Mining Engineering Department, Faculty of Engineering, Dokuz Eylul University, Tınaztepe Campus, 35210 Izmir, Turkiye
| | - Rima Nour Elhouda Tiri
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupinar University, Evliya Celebi Campus, 43100 Kutahya, Turkiye
| | - Fulya Gulbagca
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupinar University, Evliya Celebi Campus, 43100 Kutahya, Turkiye
| | - İdris Kaynak
- Machinery and Metal Technologies, Vocational School of Technical Sciences, Usak University, 1 Eylul Campus, 64200 Usak, Turkiye
| | - Najwa Majrashi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Elena Niculina Dragoi
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, Bld. D Mangeron no 73, 700050, Romania.
| | - Fatih Sen
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupinar University, Evliya Celebi Campus, 43100 Kutahya, Turkiye.
| |
Collapse
|
35
|
Raza S, Ghasali E, Orooji Y, Lin H, Karaman C, Dragoi EN, Erk N. Two dimensional (2D) materials and biomaterials for water desalination; structure, properties, and recent advances. ENVIRONMENTAL RESEARCH 2023; 219:114998. [PMID: 36481367 DOI: 10.1016/j.envres.2022.114998] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/22/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND An efficient solution to the global freshwater dilemma is desalination. MXene, Molybdenum Disulfide (MoS2), Graphene Oxide, Hexagonal Boron Nitride, and Phosphorene are just a few examples of two-dimensional (2D) materials that have shown considerable promise in the development of 2D materials for water desalination. However, other promising materials for desalinating water are biomaterials. The benefits of bio-materials are their wide distribution, lack of toxicity, and superior capacity for water desalination. METHODS For the rational use of water and the advancement of sustainable development, it is of the utmost importance to research 2D-dimensional materials and biomaterials that are effective for water desalination. The scientific community has concentrated on wastewater remediation using bio-derived materials, such as nanocellulose, chitosan, bio-char, bark, and activated charcoal generated from plant sources, among the various endeavors to enhance access to clean water. Moreover, the 2D-materials and biomaterials may have ushered in a new age in the production of desalination materials and created a promising future. RESULTS The present review article focuses on and reviews the progress of 2D materials and biomaterials for water desalination. Their properties, surface, and structure, combined with water desalination applications, are highlighted. Further, the practicability and potential future directions of 2D materials and biomaterials are proposed. Thus, the current work provides information and discernments for developing novel 2D materials and biomaterials for wastewater desalination. Moreover, it aims to promote the contribution and advancement of materials for water desalination, fabrication, and industrial production.
Collapse
Affiliation(s)
- Saleem Raza
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Ehsan Ghasali
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Yasin Orooji
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China.
| | - Hongjun Lin
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Ceren Karaman
- Departmen of Electricity and Energy, Akdeniz University, Antalya, 07070, Turkey; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Elena Niculina Dragoi
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University, Bld. D. Mangeron No 73, 700050, Iasi, Romania.
| | - Nevin Erk
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey
| |
Collapse
|
36
|
Deng Z, Wu Z, Alizadeh M, Zhang H, Chen Y, Karaman C. Electrochemical monitoring of 4-chlorophenol as a water pollutant via carbon paste electrode amplified with Fe 3O 4 incorporated cellulose nanofibers (CNF). ENVIRONMENTAL RESEARCH 2023; 219:114995. [PMID: 36529324 DOI: 10.1016/j.envres.2022.114995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
A crucial problem that needs to be resolved is the sensitive and selective monitoring of chlorophenol compounds, especifically 4-chlorophenol (4-CP), one of the most frequently used organic industrial chemicals. In light of this, the goal of this study was to synthesize Fe3O4 incorporated cellulose nanofiber composite (Fe3O4/CNF) as an amplifier in the development of a modified carbon paste electrode (CPE) for 4-CP detection. Transmission electron microscopy (TEM) was used to evaluate the morphology of the synthesized nanocatalyst, while differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV) techniques were implemented to illuminate the electrochemical characteristics of the fabricated sensor. The ultimate electrochemical sensor (Fe3O4/CNF/CPE) was used as a potent electrochemical sensor for monitoring 4-CP in the concentration range of 1.0 nM-170 μM with a limit of detection value of 0.5 nM. As a result of optimization studies, 8.0 mg Fe3O4/CNF was found to be the ideal catalyst concentration, whereas pH = 6.0 was chosen as the ideal pH. The 4-CP's oxidation current was found to be over 1.67 times greater at ideal operating conditions than it was at the surface of bare CPE, and its oxidation potential decreased by about 120 mV. By using the standard addition procedure on samples of drinking water and wastewater, the suggested capability of Fe3O4/CNF/CPE to detect 4-CP was further investigated. The recovery range was found to be 98.52-103.66%. This study paves the way for the customization of advanced nanostructure for the application in electrochemical sensors resulting in beneficial environmental impact and enhancing human health.
Collapse
Affiliation(s)
- Zilong Deng
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Zixuan Wu
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Marzieh Alizadeh
- Oral and Dental Disease Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hongcai Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yaobang Chen
- Sibang Environmental Protection Technology Co., Ltd., Yichun, 336000, China
| | - Ceren Karaman
- Department of Electricity and Energy, Vocational School of Technical Sciences, Akdeniz University, Antalya, 07070, Turkey; School of Engineering, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
37
|
Zhang Z, Ahmed AIS, Malik MZ, Ali N, Khan A, Ali F, Hassan MO, Mohamed BA, Zdarta J, Bilal M. Cellulose/inorganic nanoparticles-based nano-biocomposite for abatement of water and wastewater pollutants. CHEMOSPHERE 2023; 313:137483. [PMID: 36513201 DOI: 10.1016/j.chemosphere.2022.137483] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Nanostructured materials offer a significant role in wastewater treatment with diminished capital and operational expense, low dose, and pollutant selectivity. Specifically, the nanocomposites of cellulose with inorganic nanoparticles (NPs) have drawn a prodigious interest because of the extraordinary cellulose properties, high specific surface area, and pollutant selectivity of NPs. Integrating inorganic NPs with cellulose biopolymers for wastewater treatment is a promising advantage for inorganic NPs, such as colloidal stability, agglomeration prevention, and easy isolation of magnetic material after use. This article presents a comprehensive overview of water treatment approaches following wastewater remediation by green and environmentally friendly cellulose/inorganic nanoparticles-based bio-nanocomposites. The functionalization of cellulose, functionalization mechanism, and engineered hybrid materials were thoroughly discussed. Moreover, we also highlighted the purification of wastewater through the composites of cellulose/inorganic nanoparticles via adsorption, photocatalytic and antibacterial approach.
Collapse
Affiliation(s)
- Zhen Zhang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Abdulrazaq Ibrahim Said Ahmed
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, China
| | - Muhammad Zeeshan Malik
- School of Electronics and Information Engineering, Taizhou University, Taizhou, 318000, Zhejiang Province, China.
| | - Nisar Ali
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, China
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Farman Ali
- Department of Chemistry, Hazara University, KPK, Mansehra, 21300, Pakistan
| | - Mohamed Osman Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Badr A Mohamed
- Department of Agricultural Engineering, Cairo University, El-Gamma Street, Giza 12613, Egypt
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland
| |
Collapse
|
38
|
SefidSiahbandi M, Moradi O, Akbari-Adergani B, Aberoomand Azar P, Sabar Tehrani M. The effect of Fe-Zn mole ratio (2:1) bimetallic nanoparticles supported by hydroxyethyl cellulose/graphene oxide for high-efficiency removal of doxycycline. ENVIRONMENTAL RESEARCH 2023; 218:114925. [PMID: 36462691 DOI: 10.1016/j.envres.2022.114925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/28/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
In this research, Hydroxyethyl cellulose - graphene oxide HEC-GO and HEC-GO/Fe-Zn mole ratio (2:1) nanocomposite as adsorbents were fabricated by crosslinking ethylene glycol dimethacrylate (EGDMA) to study the thermodynamic, kinetic and isotherm of doxycycline antibiotic adsorption. The morphology and structure of the adsorbents were analyzed by Fourier transform infrared spectroscopy (FT-IR), Field Emission Scanning Electron Microscopy with Energy Dispersive X-Ray Spectroscopy (FE-SEM- EDX), and Transmission electron microscopy (TEM). The adsorption behavior of doxycycline (DOX) was studied with different parameters including doxycycline concentration, pH, the dose of adsorbent (HEC-GO and HEC-GO/Fe-Zn, mole ratio (2:1)), contact time, and temperature. The optimal conditions for the removal of DOX are pH = 3.0, contact time 100 min, and 20 min for HEC-GO and HEC-GO/Fe-Zn mole ratio (2:1). The removal percentage for HEC-GO and HEC-GO/Fe-Zn mole ratio (2:1) was 97% and 95.5%, respectively. Equilibrium adsorption isotherms such as the Langmuir, Freundlich, and Temkin models were analyzed according to the experimental data. Also, four adsorption kinetics were investigated for removing DOX. The Langmuir isotherm and pseudo-second-order kinetic models provided the best fit for experimental data for HEC-GO and HEC-GO/Fe-Zn mole ratio (2:1). Thermodynamic data showed that negative values of Gibbs free energy (ΔG°) and the negative value of enthalpy (ΔH°) of the adsorption process for adsorbents. It means that DOX removal was a spontaneous and exothermic reaction.
Collapse
Affiliation(s)
- Minoo SefidSiahbandi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Omid Moradi
- Department of Chemistry, Faculty of Science, Shahr -e-Qods Branch, Islamic Azad University, Tehran, Iran.
| | - Behrouz Akbari-Adergani
- Water Safety Research Center, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Parviz Aberoomand Azar
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Sabar Tehrani
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
39
|
Karimi F, Akin M, Bayat R, Bekmezci M, Darabi R, Aghapour E, Sen F. Application of Quasihexagonal Pt@PdS2-MWCNT catalyst with High Electrochemical Performance for Electro-Oxidation of Methanol, 2-Propanol, and Glycerol Alcohols For Fuel Cells. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
40
|
Hajipour M, Zamani HA, Karimi-Maleh H. Powerful and fast nanostructure electrochemical sensor for monitoring of carbidopa catechol-based drug in water and biological fluids. CHEMOSPHERE 2023; 312:137192. [PMID: 36368547 DOI: 10.1016/j.chemosphere.2022.137192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/26/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Herein, to monitor the concentration of carbidopa in an aqueous solution, an analytical approach based on electrode surface modification by Pt/SWCNTs as a sensor has been proposed. Pt/SWCNTs was synthesized by polyol strategy and characterized by the TEM method. Results confirmed spherical Pt nanoparticles with a diameter of about 10 nm decorated at the surface of SWCNTs with good distribution. The carbon paste electrode modified (CPEM) with Pt/SWCNTs was fabricated by mixing 12% of nanocomposite as an optimum condition with graphite powder in the presence of paraffin oil as a binder. Carbidopa's oxidation signal was enhanced by about 2.73 times when using the CPEM/Pt/SWCNTs, and its oxidation potential was decreased by about 110 mV. Additionally, the sensor demonstrated a linear dynamic range of 1.0 nM-120 M with a detection limit of 0.5 nM at pH = 7.0 as the ideal condition for monitoring carbidopa. Therefore, carbidopa in water and dextrose saline can be detected using CPEM/Pt/SWCNTs with an acceptable recovery range.
Collapse
Affiliation(s)
- Masoumeh Hajipour
- Department of Applied Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Hassan Ali Zamani
- Department of Applied Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Hassan Karimi-Maleh
- Department of Applied Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran; School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| |
Collapse
|
41
|
Aziz K, El Achaby M, Mamouni R, Saffaj N, Aziz F. A novel hydrogel beads based copper-doped Cerastoderma edule shells@Alginate biocomposite for highly fungicide sorption from aqueous medium. CHEMOSPHERE 2023; 311:136932. [PMID: 36283436 DOI: 10.1016/j.chemosphere.2022.136932] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 10/08/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
The engineering of a novel biocomposite based on Cerastoderma edule shells doped with copper and alginate (Ce-Cu@Alg) forming hydrogel beads was used for batch and dynamic adsorption thiabendazole (TBZ) pesticide from water. The prepared biosorbent was analyzed by various characterization techniques such as scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), Brunauer-Emmett-Teller analysis (BET), and energy dispersive spectroscopy (EDS), thermogravimetric and differential analysis (TGA-DTA). The results of the TBZ batch biosorption by Ce-Cu@Alg composite showed that the Langmuir model was the most adequate to describe the adsorption process, with a maximum adsorption capacity value of 21.98 mg/g. Moreover, the adsorption kinetics were adjusted by the pseudo-second-order model. The optimal conditions determined by the RSM approach coupled with the CCD design were 100 ppm of initial TBZ concentration, a Ce-Cu@Alg beads dose of 6 g/L and a contact time of 180 min for maximum removal of 83.42%. On the other hand, the TBZ sorption on a fixed bed of Ce-Cu@Alg beads was effective at high column height, low effluent flow and low solution concentration. The Thomas model was best fitted to the kinetic data. This study shows the possibility of using this new hybrid biocomposite in the industrial sector to treat large effluent volumes.
Collapse
Affiliation(s)
- Khalid Aziz
- Laboratory of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Mounir El Achaby
- Materials Science and Nano-engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, 43150 Benguerir, Morocco
| | - Rachid Mamouni
- Laboratory of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Nabil Saffaj
- Laboratory of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Faissal Aziz
- Laboratory of Water, Biodiversity & Climate Changes, Faculty of Science Semlalia, Cadi Ayyad University, BP 2390, 40000, Marrakech, Morocco; National Centre for Research and Study on Water and Energy (CNEREE), University Cadi Ayyad, Marrakech, Morocco.
| |
Collapse
|
42
|
Karimi F, Altuner EE, Gulbagca F, Tiri RNE, Sen F, Javadi A, Dragoi EN. Facile bio-fabrication of ZnO@AC nanoparticles from chitosan: Characterization, hydrogen generation, and photocatalytic properties. ENVIRONMENTAL RESEARCH 2023; 216:114668. [PMID: 36397611 DOI: 10.1016/j.envres.2022.114668] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/10/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
In this work, activated carbon-supported zinc oxide nanoparticles (ZnO@AC NPs) were studied using the thermal synthesis method. The activated carbon-supported zinc oxide catalyst was characterized by UV-Vis spectrometry techniques, Fourier Transform Infrared Spectrophotometer (FTIR), Transmissive electron microscopy (TEM), and X-ray diffraction (XRD) methods. XRD characterization measurements showed that the average size of the crystal NPs was 6.89 nm. According to the TEM analysis results, the nanoparticles' average size was 11.411 nm, and the particles had a spherical structure. The catalytic properties of the synthesized material were determined using the sodium borohydride methanolysis reaction. A kinetic study was performed regarding the effects of temperature, catalyst, and substrate concentration on the methanolysis reaction. Reusability experiments showed that the catalyst had excellent catalytic activity (85%), stability, and selectivity. As a result of the kinetic study, activation energy, enthalpy (ΔH), entropy (ΔS), and hydrogen production rate activation parameters were found to be 42.52 kJ/mol, 39.98 kJ/mol, -181.42 J/mol.K, 1257.69 mL/min. g, respectively. Also, the photocatalytic activity of ZnO@AC NPs was analyzed against Rhodamine B (RhB) dye, and the maximum degradation percentage was observed to be 76% at 120 min. This study aimed to develop the ZnO@AC NPs into an efficient photocatalyst to prevent industrial wastewater pollution and as a catalyst for hydrogen synthesis as an alternative energy source.
Collapse
Affiliation(s)
- Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Elif Esra Altuner
- Sen Research Group, Department of Biochemistry, University of Dumlupinar, 43000, Kutahya, Turkey
| | - Fulya Gulbagca
- Sen Research Group, Department of Biochemistry, University of Dumlupinar, 43000, Kutahya, Turkey
| | - Rima Nour Elhouda Tiri
- Sen Research Group, Department of Biochemistry, University of Dumlupinar, 43000, Kutahya, Turkey
| | - Fatih Sen
- Sen Research Group, Department of Biochemistry, University of Dumlupinar, 43000, Kutahya, Turkey
| | - Alireza Javadi
- Department of Mining Engineering, Faculty of Engineering, University of Kashan, Kashan, Iran
| | - Elena Niculina Dragoi
- Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University, Iasi, 700050, Romania.
| |
Collapse
|
43
|
Bezerra de Araujo CM, Wernke G, Ghislandi MG, Diório A, Vieira MF, Bergamasco R, Alves da Motta Sobrinho M, Rodrigues AE. Continuous removal of pharmaceutical drug chloroquine and Safranin-O dye from water using agar-graphene oxide hydrogel: Selective adsorption in batch and fixed-bed experiments. ENVIRONMENTAL RESEARCH 2023; 216:114425. [PMID: 36181896 DOI: 10.1016/j.envres.2022.114425] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/07/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
In this work, Chloroquine diphosphate, and the cationic dye Safranin-O were selectively removed from water using the agar-graphene oxide (A-GO) hydrogel, produced via simple one-step jellification process. The morphology of the A-GO biocomposite was characterized and batch experiments were performed, with adsorption isotherms satisfactorily fitting (R2 > 0.98) Sips (Safranin-O) and Freundlich (Chloroquine) isotherms. Driving force models and Fick's diffusion equation were applied to the modeling of kinetic data, and a satisfactory fit was obtained. Selective adsorption carried out in batch indicated that competitive adsorption occurs when both components are mixed in water solution - the adsorptive capacities dropped ∼10 mg g-1 for each component, remaining 41 mg g-1 for safranin-O and 31 mg g-1 for chloroquine. Fixed-bed breakthrough curves obtained in an adsorption column showed adsorption capacities over 63 mg g-1 and 100 mg g-1 for chloroquine and safranin-O, respectively, also exhibiting outstanding regenerative potentials. Overall, the biocomposite produced using graphene oxide proved to be a viable and eco-friendly alternative to continuously remove both contaminants from water.
Collapse
Affiliation(s)
- Caroline Maria Bezerra de Araujo
- Department of Chemical Engineering - Federal University of Pernambuco (UFPE), Prof. Arthur de Sá St., s/n, Cidade Universitária. 50740-521, Recife, PE, Brazil.
| | - Gessica Wernke
- Department of Chemical Engineering - State University of Maringá (UEM), Colombo Av., 5790, Building D-90, 87020-900, Maringá, PR, Brazil
| | - Marcos Gomes Ghislandi
- Engineering Campus (UACSA) - Federal Rural University of Pernambuco (UFRPE), R. Cento e sessenta e Três, 300, 54518-430, Cabo de Santo Agostinho, PE, Brazil
| | - Alexandre Diório
- Department of Chemical Engineering - State University of Maringá (UEM), Colombo Av., 5790, Building D-90, 87020-900, Maringá, PR, Brazil
| | - Marcelo Fernandes Vieira
- Department of Chemical Engineering - State University of Maringá (UEM), Colombo Av., 5790, Building D-90, 87020-900, Maringá, PR, Brazil
| | - Rosângela Bergamasco
- Department of Chemical Engineering - State University of Maringá (UEM), Colombo Av., 5790, Building D-90, 87020-900, Maringá, PR, Brazil
| | - Maurício Alves da Motta Sobrinho
- Department of Chemical Engineering - Federal University of Pernambuco (UFPE), Prof. Arthur de Sá St., s/n, Cidade Universitária. 50740-521, Recife, PE, Brazil
| | - Alírio Egídio Rodrigues
- LSRE-LCM, Department of Chemical Engineering - Faculty of Engineering of the University of Porto (FEUP), R. Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal
| |
Collapse
|
44
|
Dourandish Z, Sheikhshoaie I, Maghsoudi S. Synthesis of NiRu-metal organic framework nanosheets: as active catalyst for the fabrication of rapid and simple electrochemical sensor for the determination of sudan I in presence of bisphenol A. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01614-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
45
|
Meghana MC, Nandhini C, Benny L, George L, Varghese A. A road map on synthetic strategies and applications of biodegradable polymers. Polym Bull (Berl) 2022; 80:1-50. [PMID: 36530484 PMCID: PMC9735231 DOI: 10.1007/s00289-022-04565-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 12/14/2022]
Abstract
Biodegradable polymers have emerged as fascinating materials due to their non-toxicity, environmentally benign nature and good mechanical strength. The toxic effects of non-biodegradable plastics paved way for the development of sustainable and biodegradable polymers. The engineering of biodegradable polymers employing various strategies like radical ring opening polymerization, enzymatic ring opening polymerization, anionic ring opening polymerization, photo-initiated radical polymerization, chemoenzymatic method, enzymatic polymerization, ring opening polymerization and coordinative ring opening polymerization have been discussed in this review. The application of biodegradable polymeric nanoparticles in the biomedical field and cosmetic industry is considered to be an emerging field of interest. However, this review mainly highlights the applications of selected biodegradable polymers like polylactic acid, poly(ε-caprolactone), polyethylene glycol, polyhydroxyalkanoates, poly(lactide-co-glycolide) and polytrimethyl carbonate in various fields like agriculture, biomedical, biosensing, food packaging, automobiles, wastewater treatment, textile and hygiene, cosmetics and electronic devices.
Collapse
Affiliation(s)
- M. C. Meghana
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029 India
| | - C. Nandhini
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029 India
| | - Libina Benny
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029 India
| | - Louis George
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029 India
| | - Anitha Varghese
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029 India
| |
Collapse
|
46
|
Qalyoubi L, Al-Othman A, Al-Asheh S. Removal of ciprofloxacin antibiotic pollutants from wastewater using nano-composite adsorptive membranes. ENVIRONMENTAL RESEARCH 2022; 215:114182. [PMID: 36044960 DOI: 10.1016/j.envres.2022.114182] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/27/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
The emergence of antibiotics in water has been globally recognized as a critical pollution issue. Antibiotics (such as Ciprofloxacin (CPFX) pose a serious threat to humans and to the ecosystem due to its accumulation in water sources which can lead to chronic health problems and endanger aquatic life. It is therefore crucial to properly remove them from water. In this work, a nano-composite adsorptive membrane based on Zirconium Phosphate (ZrP) adsorbent supported on Polyethersulfone (PES) was synthesized and evaluated for the removal of CPFX from synthetic aqueous solutions. The membranes described here showed a very high antibiotic removal rate. The effect of various parameters such as the initial concentration of the antibiotic, the adsorbent dosage, contact time, pH, and temperature was studied. The equilibrium data were found to reasonably best fit with the Temkin isotherm model. The membranes showed a high ciprofloxacin removal (99.7%) as opposed to (68%) when PES membrane alone was used. Moreover, a significant improvement in the membrane's water flux (100.84 L/m2.h) and permeability (97.62 L/m2.hr.bar) were noticed as opposed to pure PES membrane's flux and permeability. The adsorptive membranes were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET). The results confirmed the successful formation of ZrP nanoparticles adsorbent within the membrane matrix, and with enhanced hydrophilic properties. The membrane was successfully regenerated and reused up to 5 times. The results of this work showed the potential of such membranes for the removal of ciprofloxacin and at a high efficiency.
Collapse
Affiliation(s)
- Liyan Qalyoubi
- Department of Chemical Engineering, American University of Sharjah, PO. Box, 26666, Sharjah, United Arab Emirates
| | - Amani Al-Othman
- Department of Chemical Engineering, American University of Sharjah, PO. Box, 26666, Sharjah, United Arab Emirates.
| | - Sameer Al-Asheh
- Department of Chemical Engineering, American University of Sharjah, PO. Box, 26666, Sharjah, United Arab Emirates
| |
Collapse
|
47
|
The use of biowaste for the production of biodegradable superabsorbent materials. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Arjmandi J, Shahidi SA, Ghorbani-HasanSaraei A, Limooei MB, Naghizadeh Raeisi S. Sudan I monitoring as a hazardous azo dye using an electroanalytical tool amplified with NiO/SWCNTs-ionic liquid catalysts. CHEMOSPHERE 2022; 309:136673. [PMID: 36195124 DOI: 10.1016/j.chemosphere.2022.136673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Sudan I is an azo dye that causes cancer and is not allowed to be used in food products. The current study focused on the design and manufacture of an electrochemical sensor modified with NiO/SWCNTs, as a nano-catalyst, and 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (1H3MIbTMI), as an ionic liquid binder, to monitor Sudan I as azo additive dyes in various food samples. The modified carbon paste electrode (CPE/NiO/SWCNTs/1H3MIbTMI) offered superior electrochemical performance metrics as an analytical sensor to detect trace levels of Sudan I within the concentration range of 1.0 nM-250 μM. The limit of detection was determined as 0.3 nM by the differential pulse voltammetric (DPV) technique. The proposed CPE/NiO/SWCNTs/1H3MIbTMI can be put forward to be employed as an analytical instrument for sensing Sudan I in various culinary sauces, including chili, tomato, and strawberry sauces. The obtained recovery range was determined as 97.6%-104.35%. These findings demonstrated the effectiveness of the newly created material and its potential for usage as a novel analytical instrument.
Collapse
Affiliation(s)
- Javid Arjmandi
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Seyed-Ahmad Shahidi
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran.
| | | | - Mohammad Bagher Limooei
- Department of Materials Science and Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Shahram Naghizadeh Raeisi
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| |
Collapse
|
49
|
Moradi O, Panahandeh S. Fabrication of different adsorbents based on zirconium oxide, graphene oxide, and dextrin for removal of green malachite dye from aqueous solutions. ENVIRONMENTAL RESEARCH 2022; 214:114042. [PMID: 36037922 DOI: 10.1016/j.envres.2022.114042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/15/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
In this study, graphene oxide and amine graphene were studied by binding to dextrin and zirconium oxide nanoparticles as adsorbent nanocomposites to the removal of dye. Identification and characterization of the synthesized materials were examined using FTIR, XRD, SEM, and BET analyses. Adsorption tests between adsorbents and green malachite (MG) dye solution for the synthesized nanocomposites were performed by considering parameters such as contact time, solution pH, and adsorbent dosage. The data indicated that dye removal increased with increasing the amount of adsorbent dosage. Increased dye removal by increasing the adsorbent dosage can be attributed to the increase of availability of the number of active sites. The active adsorption sites are saturated during the adsorption process, by the molecules of the adsorbate and filled over time. The results showed that the synthesized bio-composite had malachite green removal ability from aqueous media.
Collapse
Affiliation(s)
- Omid Moradi
- Department of Chemistry, Faculty of Science, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
| | - Shahabeddin Panahandeh
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
50
|
Moradi O, Daneshmand Sharabaf I. Separation of organic contaminant (dye) using the modified porous metal-organic framework (MIL). ENVIRONMENTAL RESEARCH 2022; 214:114006. [PMID: 35973465 DOI: 10.1016/j.envres.2022.114006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Herein, the porous metal-organic framework (MIL-88B: Materials Institute Lavoisier) was synthesized and identified by FT-IR (Fourier transform infrared), SEM (Scanning Electron Microscopy), EDS (Energy Dispersive X-Ray Spectroscopy), and XRD (X-ray powder diffraction) analyses. Then MIL-88B was modified using 3-aminopropyl trimethoxy silane and presented as NH2-MIL-88B. The synthesized materials were used to separate direct red dye 23 (DR23) as an organic contaminant from water. The effect of various important factors such as the amount of adsorbent, initial concentration of contaminants, and pH was investigated. The results showed that the modified adsorbent (NH2-MIL-88B) had a higher adsorption capacity than the row adsorbent (MIL-88B). The amount of dye adsorption is high at lower pH values. The percentage of DR23 dye removal was complete under optimal conditions. Increasing the amount of adsorbent (0.001-0.003 g) and decreasing the pH (2.1-8.1) increases the percentage of dye removal and increasing the concentration of contaminant (50-125 mg/L) reduces the dye removal in the process. Isotherm data showed that the adsorption process followed the Langmuir model. Also, pseudo-first-order, pseudo-second-order, and intraparticle diffusion kinetic models were used to investigate the adsorption kinetics. Dye adsorption followed pseudo-second-order kinetics with correlation coefficient (0.99 <). The results showed that the modified adsorbent could be used as a suitable adsorbent with a high adsorption capacity for dye removal from water.
Collapse
Affiliation(s)
- Omid Moradi
- Department of Chemistry, Faculty of Science, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
| | - Iman Daneshmand Sharabaf
- Department of Chemistry, Faculty of Science, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|