1
|
Yao MC, Huang Q, Xie HX, Zhang X, Sheng GP. Unrecognized role of photosynthetic bacteria in aquaculture water purification: Producing singlet oxygen to degrade residual pharmaceuticals. WATER RESEARCH 2025; 276:123288. [PMID: 39955791 DOI: 10.1016/j.watres.2025.123288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/26/2024] [Accepted: 02/11/2025] [Indexed: 02/18/2025]
Abstract
Photosynthetic bacteria (PSB) are widely used in the purification of aquaculture waters due to their ability to utilize ammonia, nitrite, hydrogen sulfide, etc. However, PSB are usually considered to be ineffective in removing biologically inert pharmaceutical residues in aquaculture waters. Herein, we found that PSB were capable of degrading pharmaceuticals in aquaculture waters, such as cimetidine and sulfamethazine, by generating extracellular singlet oxygen (1O2) under light irradiation. PSB were highly efficient to produce 1O2, and the quantum yield of 1O2 was four orders of magnitude higher than that of hydroxyl radicals. The efficient production of 1O2 by PSB arose from the photosensitization of extracellular metabolites, which produced 1O2 with an order of magnitude higher quantum yield (0.41) compared to the commonly reported dissolved organic matter (< 0.04) and could efficiently produce 1O2 even under visible light irradiation. The photosensitized extracellular metabolites were mainly hydrophobic metabolites with the molecular weight < 1 kDa, and a porphyrin (i.e., COPRO III) was identified as the dominant photosensitizer for 1O2 production. This work provides new insights into the role of PSB inoculants in aquaculture water purification, and offers new ideas for the removal of pharmaceutical residues from aquaculture waters.
Collapse
Affiliation(s)
- Mu-Cen Yao
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Qi Huang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Hong-Xuan Xie
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, 230031, China
| | - Xin Zhang
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| | - Guo-Ping Sheng
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
2
|
Ding Y, Dong S, Ding D, Chen X, Xu F, Niu H, Xu J, Fan Y, Chen R, Xia Y, Qiu X, Feng H. Overlooked risk of dissemination and mobility of antibiotic resistance genes in freshwater aquaculture of the Micropterus salmoides in Zhejiang, China. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138604. [PMID: 40378740 DOI: 10.1016/j.jhazmat.2025.138604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 04/17/2025] [Accepted: 05/12/2025] [Indexed: 05/19/2025]
Abstract
Residual antibiotics in aquaculture ecosystems can exert selective pressures on bacterial communities, driving bacteria to acquire antibiotic resistance genes (ARGs) through gene mutations or horizontal gene transfer (HGT). This study investigated the antibiotic resistance risk in freshwater aquaculture ecosystems of Micropterus salmoides in Zhejiang Province. The results revealed that oxytetracycline, ciprofloxacin and florfenicol were up to 300 ng/L, and the proportion of multidrug-resistant genes varied from 32.20 % to 50.70 % in the surveyed aquaculture water. Additionally, approximately 9.80 % of all annotated ARGs were identified as possessing plasmid-mediated horizontal transfer risks. The ARGs host prediction revealed that Actinobacteria carried the highest abundance of ARGs, up to 159.38 (coverage, ×/Gb). Furthermore, the abundance of Paer_emrE, ksgA, ompR and golS were positively correlated with Chlorophyll a concentration (p < 0.05), suggesting that algal blooms might facilitate the evolution and transfer of ARGs. Correlations between ARG abundances and total phosphorus, total nitrogen, pH, electrical conductivity indicated that modulating water quality parameters may serve as a viable strategy to mitigate the eco-environmental risk of ARGs in aquaculture water. This study identified antibiotic resistance characteristics in freshwater aquaculture ecosystems of Micropterus salmoides in Zhejiang Province, establishing a foundation on managing antibiotic resistance risks in such aquaculture environments.
Collapse
Affiliation(s)
- Yangcheng Ding
- Zhejiang Key Laboratory of Ecological Environmental Damage Control and Value Transformation, College of Environmental and Resources Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, PR China
| | - Shuangjing Dong
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Danna Ding
- Zhejiang Key Laboratory of Ecological Environmental Damage Control and Value Transformation, College of Environmental and Resources Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, PR China
| | - Xiaoming Chen
- Zhejiang Fisheries Technical Extension Center, Hangzhou 310023, PR China
| | - Fangxi Xu
- Zhejiang Taizhou Ecological and Environmental Monitoring Center, Taizhou 318000, PR China
| | - He Niu
- Zhejiang Taizhou Ecological and Environmental Monitoring Center, Taizhou 318000, PR China
| | - Jixiao Xu
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Yuhang Fan
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Ruya Chen
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Yijing Xia
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Xiawen Qiu
- Zhejiang Key Laboratory of Ecological Environmental Damage Control and Value Transformation, College of Environmental and Resources Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, PR China
| | - Huajun Feng
- Zhejiang Key Laboratory of Ecological Environmental Damage Control and Value Transformation, College of Environmental and Resources Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, PR China.
| |
Collapse
|
3
|
Ntakirutimana R, Mujeeb Rahiman KM, Neethu KV. Probiotic Effects of Arthrobacter nicotianae and Bacillus cereus on the Growth, Health, and Microbiota of Red Tilapia ( Oreochromis sp.). AQUACULTURE NUTRITION 2025; 2025:6074225. [PMID: 40343083 PMCID: PMC12061523 DOI: 10.1155/anu/6074225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 04/16/2025] [Indexed: 05/11/2025]
Abstract
This study evaluated the effects of a commercial probiotic containing Arthrobacter nicotianae and Bacillus cereus on the growth performance, intestinal histological structure, body composition, hematology, and microbiota of red tilapia. Fingerlings were fed four different diets: a control diet (Pd0) and three diets (Pd1, Pd2, and Pd3) containing 15, 20, and 40 mL of probiotics/kg, respectively, for 12 weeks. Probiotic supplementation had no significant effect on water quality parameters. Compared with the control diet, all the probiotic diets improved growth performance, with greater final body weight (FBW), net weight gain (NWG), weight gain, average daily weight gain (ADWG), specific growth rate (SGR), and feed conversion efficiency (FCE). The feed conversion ratio (FCR) was lower in all probiotic-treated fish compared to control. The survival rate was also higher in the probiotic groups, though the difference was not significant. There was no significant difference in crude ash or lipid contents. However, protein content was significantly higher in Pd2 and Pd3, while moisture content (MC) was significantly higher in Pd3 than in the control group. Histological examination revealed increased villi length and width, being significantly higher in Pd2 and Pd3, while significantly greater muscular thickness and intestinal diameter were observed in Pd3-treated fish. These values increased with probiotic dose. The intestinal total viable count (TVC) was the highest in Pd2 and the lowest in the control group. The water TVC was the highest in Pd3 and the lowest in Pd0. The number of Bacillus spp. in the intestine and culture water increased with probiotic dose, while intestinal and culture water Vibrio counts decreased. Hematological analysis showed significant increases in red blood cell (RBC) count, hematocrit, mean corpuscular hemoglobin concentration (MCHC), and hemoglobin (Hb) in the treated groups compared with the control. The incorporation of A. nicotianae and B. cereus at 40 mL/kg in red tilapia diets improved growth performance, intestinal health, and general welfare.
Collapse
Affiliation(s)
- Remy Ntakirutimana
- Centre de Recherche en Sciences Naturelles et de l'Environnement (CRSNE), University of Burundi, Bujumbura, Burundi
- School of Industrial Fisheries, Cochin University of Science and Technology, Cochin, Kerala, India
| | - K. M. Mujeeb Rahiman
- School of Industrial Fisheries, Cochin University of Science and Technology, Cochin, Kerala, India
| | - K. V. Neethu
- Department of Marine Biology, Microbiology and Biochemistry, Cochin University of Science and Technology, Cochin, Kerala, India
| |
Collapse
|
4
|
Au-Yeung C, Tsui YL, Choi MH, Chan KW, Wong SN, Ling YK, Lam CM, Lam KL, Mo WY. Antibiotic Abuse in Ornamental Fish: An Overlooked Reservoir for Antibiotic Resistance. Microorganisms 2025; 13:937. [PMID: 40284775 PMCID: PMC12029747 DOI: 10.3390/microorganisms13040937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Ornamental fish represent a significant aquaculture sector with notable economic value, yet their contribution to antibiotic residues and resistance remains underrecognized. This review synthesizes evidence on widespread and often unregulated antibiotic use-including tetracyclines and fluoroquinolones-in ornamental fish production, transportation, and retail, primarily targeting bacterial diseases such as aeromonosis and vibriosis. Pathogenic microorganisms including Edwardsiella, Flavobacterium, and Shewanella spp. cause diseases like hemorrhagic septicemia, fin rot, skin ulcers, and exophthalmia, impairing fish health and marketability. Prophylactic and therapeutic antibiotic applications elevate antibiotic residues in fish tissues and carriage water, thereby selecting for antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). These resistant elements pose significant risks to fish health, human exposure via direct contact and bioaerosols, and environmental health through contamination pathways. We emphasize the urgent need for a holistic One Health approach, involving enhanced surveillance, stringent regulatory oversight, and adoption of alternative antimicrobial strategies, such as probiotics and advanced water treatments. Coordinated global actions are crucial to effectively mitigate antibiotic resistance within the ornamental fish industry, ensuring sustainable production, safeguarding public health, and protecting environmental integrity.
Collapse
Affiliation(s)
- Chun Au-Yeung
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (Y.-L.T.); (M.-H.C.); (K.-W.C.); (S.-N.W.); (Y.-K.L.); (C.-M.L.); (K.-L.L.)
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Yat-Lai Tsui
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (Y.-L.T.); (M.-H.C.); (K.-W.C.); (S.-N.W.); (Y.-K.L.); (C.-M.L.); (K.-L.L.)
| | - Man-Hay Choi
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (Y.-L.T.); (M.-H.C.); (K.-W.C.); (S.-N.W.); (Y.-K.L.); (C.-M.L.); (K.-L.L.)
| | - Ka-Wai Chan
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (Y.-L.T.); (M.-H.C.); (K.-W.C.); (S.-N.W.); (Y.-K.L.); (C.-M.L.); (K.-L.L.)
| | - Sze-Nga Wong
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (Y.-L.T.); (M.-H.C.); (K.-W.C.); (S.-N.W.); (Y.-K.L.); (C.-M.L.); (K.-L.L.)
| | - Yuk-Ki Ling
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (Y.-L.T.); (M.-H.C.); (K.-W.C.); (S.-N.W.); (Y.-K.L.); (C.-M.L.); (K.-L.L.)
| | - Cheuk-Ming Lam
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (Y.-L.T.); (M.-H.C.); (K.-W.C.); (S.-N.W.); (Y.-K.L.); (C.-M.L.); (K.-L.L.)
| | - Kit-Ling Lam
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (Y.-L.T.); (M.-H.C.); (K.-W.C.); (S.-N.W.); (Y.-K.L.); (C.-M.L.); (K.-L.L.)
| | - Wing-Yin Mo
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (Y.-L.T.); (M.-H.C.); (K.-W.C.); (S.-N.W.); (Y.-K.L.); (C.-M.L.); (K.-L.L.)
| |
Collapse
|
5
|
Li S, Huang Y, Zhou W. Simultaneous removal of cadmium and tetracycline from aqueous solutions by oxalic acid and pyrite co-modified biochar: Performance and mechanism. ENVIRONMENTAL RESEARCH 2025; 277:121606. [PMID: 40228692 DOI: 10.1016/j.envres.2025.121606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/25/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
The remediation of combined contamination with heavy metals and antibiotics in soil and aqueous environments represents an ongoing challenge. In this study, a novel highly functionalized biochar-based composite (FeS2@OA-BC) was synthesised by combining oxalic acid (OA) pre-treatment with ball-milling of FeS2 for the simultaneous removal of cadmium (Cd2+) and tetracycline (TC) from aqueous solutions. FeS2@OA-BC demonstrated exceptional performance in simultaneously removing 74.7 % of Cd2+ and 95.8 % of TC from the binary systems, meanwhile the degradation rate of TC reached up to 64.8 %. Moreover, no significant competitive or promoting effects between Cd2+ and TC removal were observed by FeS2@OA-BC in binary systems. The adsorption of Cd2+ was primarily governed by three mechanisms: complexation with functional groups, Cd-π conjugation and cation exchange. Meanwhile, TC degradation relied on reactive oxygen species (ROS), where hydroxyl radicals (•OH) and hydrogen peroxide (H2O2) played dominant roles, with singlet oxygen (1O2) contributing minimally. The co-modification of OA and FeS2 synergistically introduces abundant exogenous defect sulphur vacancies (SVs), enhancing molecular oxygen activation and stimulating more ROS for TC degradation, as well as promoting more functional groups as adsorption sites for Cd2+ complexation. This therefore ultimately led to the reinforcement of the concurrent removal of Cd2+and TC. Overall, FeS2@OA-BC shows great promise for addressing combined pollution involving heavy metals and antibiotics in environmental systems.
Collapse
Affiliation(s)
- Sichen Li
- Department of Environmental Science, Zhejiang University, Hangzhou, 311058, Zhejiang, China
| | - Yujiang Huang
- Department of Environmental Science, Zhejiang University, Hangzhou, 311058, Zhejiang, China
| | - Wenjun Zhou
- Department of Environmental Science, Zhejiang University, Hangzhou, 311058, Zhejiang, China; Zhejiang Ecological Civilization Academy, Anji, 313300, China; The Key Laboratory of Organic Pollution Process and Control, Hangzhou, 311058, Zhejiang, China.
| |
Collapse
|
6
|
Zhou H, Xu F, Wei L, Lin J, Zhao C, Mei H, Shan Q, Wang Q, Mu Y, Yin Y. Determination of diazepam and its active metabolites in aquatic products and aquaculture environments using modified QuEChERS-based UPLC-MS/MS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:2806-2816. [PMID: 40104882 DOI: 10.1039/d4ay02144d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
In recent years, the residue of psychotropic drugs such as diazepam in aquatic products has attracted widespread attention and is one of the important hidden dangers to the quality and safety of agricultural products. This study developed a modified QuEChERS method combined with UPLC-MS/MS to determine the residues of diazepam and its active metabolites, nordiazepam, oxazepam, and temazepam, in aquatic products and aquaculture environments. The important variables of the QuEChERS procedure were screened and optimized through single-factor experiments and response surface methodology. The recoveries of analytes in five aquatic products, pond water, and sediment were 87.4-97.8%, 90.4-96.4%, and 85.2-94.7%, respectively, with relative standard deviations of less than 15%. The limits of quantification were 0.1 μg kg-1 for the four analytes in aquatic products and sediments, and 5 ng L-1 in pond water. This method has been successfully applied to the analysis of diazepam and its active metabolite residues in 28 freshwater aquaculture farms in South China. The detected concentrations of the four analytes in aquatic products, sediments and pond water were 0.18-3.03 μg kg-1, 0.21-17.5 μg kg-1 and 5.56-391 ng L-1, respectively. The illegal abuse of diazepam in fishing bait may be an important source of pollution in aquatic products. The risk assessment results showed that the residues of diazepam in aquaculture posed an acceptable risk to human health and a medium risk to the ecosystem. These results confirmed that the established method is suitable for the simultaneous analysis of diazepam and its active metabolites in aquatic products and aquaculture environments.
Collapse
Affiliation(s)
- Hao Zhou
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510000, China.
| | - Feng Xu
- Chongqing Fisheries Technical Extension Center, Chongqing, 400000, China
| | - Linting Wei
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510000, China.
| | - Jiawei Lin
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510000, China.
| | - Cheng Zhao
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510000, China.
| | - Huiqing Mei
- Chongqing Fisheries Technical Extension Center, Chongqing, 400000, China
| | - Qi Shan
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510000, China.
| | - Qing Wang
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510000, China.
| | - Yingchun Mu
- Chinese Academy of Fishery Sciences, Beijing, 100000, China
| | - Yi Yin
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510000, China.
| |
Collapse
|
7
|
Peng T, Song B, Wang Y, Yuan J, Yang Z, Tang L. Trophic transfer of sulfonamide antibiotics in aquatic food chains: A comprehensive review with a focus on environmental health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 369:125823. [PMID: 39923974 DOI: 10.1016/j.envpol.2025.125823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Antibiotics, which have been identified as emerged pollutants, are creating an increase in environmental concerns, with sulfonamide antibiotics (SAs) being among the most commonly discovered antibiotics. Due to their widespread usage and inadequate sewage treatment, SAs are frequently released into the aquatic environment. The introduction of SAs into aquatic environments can kill or inhibit the growth or metabolic activity of microorganisms, thereby affecting biological communities and ecological functions and disrupting the equilibrium of aquatic ecosystems. The transmission of SAs to human beings can occur through trophic transfer of food chains, particularly when humans consume aquatic food. This study examines the trophic transfer of SAs along the aquatic food chain, provides a summarize of the spatial distribution of SAs in aquatic environments, and evaluates the environmental risks associated with it. The prevalence of SAs was predominantly noted in the aqueous phase, with relatively lower concentrations detected in sediments, solidifying their status as one of the most widespread antibiotics among aquatic organisms. SAs, characterized by their high biomagnification capacity and strong bioaccumulative properties in invertebrates, emerge as the antibiotic type with the greatest ecological risks. The ecological risk posed by sulfonamide antibiotics to aquatic organisms is more pronounced than the health risk to humans, suggesting that the adverse effects on aquatic life warrant greater attention. Additionally, this study offers practical recommendations to address the limitations of previous research, emphasizing the importance of regulating exposure and establishing a robust health risk prediction system as effective measures for antibiotic control.
Collapse
Affiliation(s)
- Tianwei Peng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Yuchen Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Jie Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Zhengqing Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| |
Collapse
|
8
|
Men C, Jiang H, Ma Y, Cai H, Fu H, Li Z. A nationwide probabilistic risk assessment and a new insight into source-specific risk apportionment of antibiotics in eight typical river basins in China: Human health risk and ecological risk. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136674. [PMID: 39642732 DOI: 10.1016/j.jhazmat.2024.136674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/05/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
China is the largest producer and consumer of antibiotics, a nationwide study on the contamination of antibiotics in China is urgently needed, and source apportionment towards risks associated with antibiotics is now attracting increasing attention. In this study, based on eight antibiotics at 666 sampling sites, spatial variations and probabilistic risks (human health and ecological risk) of antibiotics in eight river basins in China were analyzed. Source-specific health and ecological risk associated with antibiotics in a typical basin was apportioned quantitatively. Results showed that mean antibiotic concentration in Haihe River Basin (HaiRB) and Yellow River Basin (178.25 and 257.36 ng·L-1, respectively) was higher than other basins. In HaiRB, the contribution of livestock and poultry breeding (31.89 %) was the largest of all sources for health risk, whereas pharmaceutical wastewater (35.97 %) was the most dominant source for ecological risk. To determine the most important source for risks associated with antibiotics, the concept of risks-targeted key source was proposed, and a risks-targeted key source apportionment model was developed. Results showed that pharmaceutical wastewater should be prior controlled among all sources. The concept and apportionment model of risks-targeted key source proposed in this study are applicable and referential for related studies.
Collapse
Affiliation(s)
- Cong Men
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Haoquan Jiang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuting Ma
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Hengjiang Cai
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Han Fu
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Zifu Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
9
|
Ariyani M, Jansen LJM, Balzer-Rutgers P, Hofstra N, van Oel P, van de Schans MGM. Antibiotic residues in the cirata reservoir, Indonesia and their effect on ecology and the selection for antibiotic-resistant bacteria. ENVIRONMENTAL RESEARCH 2024; 262:119992. [PMID: 39276829 DOI: 10.1016/j.envres.2024.119992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Antibiotic residues, their mixture toxicity, and the potential selection for antibiotic-resistant bacteria could pose a problem for water use and the ecosystem of reservoirs. This study aims to provide a comprehensive understanding of the occurrence, concentration, distribution, and ecological risks associated with various antibiotics in the Cirata reservoir, Indonesia. In our water and sediment samples, we detected 24 out of the 65 antibiotic residues analyzed, revealing a diverse range of antibiotic classes present. Notably, sulphonamides, diaminopyrimidine, and lincosamides were frequently found in the water, while the sediment predominantly contained tetracyclines and fluoroquinolones. Most antibiotic classes reached their highest concentrations in the water during the dry season. However, fluoroquinolones and tetracyclines showed their highest concentrations in the water during the wet season. Ecotoxicological risk assessments indicated that the impact of most antibiotic residues on aquatic organisms was negligible, except for fluoroquinolones. Looking at the impact on cyanobacteria, however, varying risks were indicated, ranging from medium to critical, with antibiotics like sulfamethoxazole, ciprofloxacin, norfloxacin, and lincomycin posing substantial threats. Among these, ciprofloxacin emerged as the antibiotic with the strongest risk. Furthermore, fluoroquinolones may have the potential to contribute to the selection of antibiotic-resistant bacteria. The presence of mixtures of antibiotic residues during the wet season significantly impacted species loss, with Potentially Affected Fraction of Species (msPAF) values exceeding 0.75 in almost 90% of locations. However, the impact of mixtures of antibiotic residues in sediment remained consistently low across all locations and seasons. Based on their occurrences and associated risks, 12 priority antibiotic residues were identified for monitoring in the reservoir and its tributaries. Moreover, the study suggests that river inflow serves as the most significant source of antibiotic residues in the reservoir. Further investigations into the relative share attribution of antibiotic sources in the reservoir is recommended to help identify effective interventions.
Collapse
Affiliation(s)
- Miranti Ariyani
- Earth Systems and Global Change Group, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen, 6708, PB, Netherlands; Wageningen Food Safety Research, Wageningen University & Research, Akkermaalsbos 2, Wageningen, 6708, WB, Netherlands; National Research and Innovation Agency of Indonesia, Research Centre for Environment & Clean Technology, KST Samaun Samadikun, Jl. Sangkuriang, Bandung, 40135, Indonesia.
| | - Larissa J M Jansen
- Wageningen Food Safety Research, Wageningen University & Research, Akkermaalsbos 2, Wageningen, 6708, WB, Netherlands
| | - Paula Balzer-Rutgers
- Wageningen Food Safety Research, Wageningen University & Research, Akkermaalsbos 2, Wageningen, 6708, WB, Netherlands
| | - Nynke Hofstra
- Earth Systems and Global Change Group, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen, 6708, PB, Netherlands
| | - Pieter van Oel
- Water Resources Management Group, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen, 6708, PB, Netherlands
| | - Milou G M van de Schans
- Wageningen Food Safety Research, Wageningen University & Research, Akkermaalsbos 2, Wageningen, 6708, WB, Netherlands
| |
Collapse
|
10
|
Hu H, Qi M, He P, Chen X, Li Z, Cheng H. Occurrence and risk assessment of quinolones and sulfonamides in freshwater aquaculture ponds in Northeast Zhejiang, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176066. [PMID: 39250971 DOI: 10.1016/j.scitotenv.2024.176066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/25/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
Antibiotics play an essential role in the aquaculture industry, but their overuse and weak degradability inevitably lead to light to severe residues in natural and aquaculture environments. Most studies were interested in the occurrence, distribution, and ecological risks of a limited number of antibiotics in natural environments (rivers, lakes, and coastal regions) with a minor focus on antibiotic presence in either water, sediments, or organisms in aquaculture environments located in specific regions. In this study, we conducted a comprehensive investigation into the occurrence and distribution of up to 32 antibiotics [including 15 quinolones (QNs) and 17 sulfonamides (SAs)] in organisms and their corresponding environmental matrices from 26 freshwater aquaculture ponds in Northeast Zhejiang, China. A total of 13, 9, 7, and 7 antibiotics were detected in pond water, sediments, feeds, and aquaculture organisms, respectively, with concentration ranges of 0.6-92.2 ng/L, 0.4-1169.3 ng/g dw,
Collapse
Affiliation(s)
- Hongmei Hu
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, PR China
| | - Mengyu Qi
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, PR China
| | - Pengfei He
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, PR China
| | - Xuechang Chen
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, PR China
| | - Zhenhua Li
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, PR China.
| | - Heyong Cheng
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
11
|
Li C, Li A, Hui X, Wang A, Wang L, Chang S. Concentrations, probabilistic human and ecological risks assessment attribute to antibiotics residues in river water in China: Systematic review and meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117022. [PMID: 39277999 DOI: 10.1016/j.ecoenv.2024.117022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Antibiotics residues even low concentrations increases human health risk and ecological risk. The current study was conducted with the aims of meta-analysis concentrations of antibiotics in river water including amoxicillin (AMX), tetracyclines (TCN), sulfamethoxazole (SMX), ciprofloxacin (CIP), trimethoprim (TMP), azithromycin (AZM) and amoxicillin (AMX) and estimates human health and ecological risks. Search was performed in databases including Scopus, PubMed, Web of Science, Embase, Science direct, Cochrane, Science Direct, Google Scholar were used to retrieve scientific papers from January 1, 2004 to June 15, 2024. The concentration of antibiotics residues was meta-analyzed using random effects model in water river water based on type of antibiotics subgroups. Human health risk assessment from ingestion and dermal contact routs was estimated using target hazard quotient (THQ), total target hazard quotient (TTHQ), carcinogenic (CR) and ecological hazard quotient (EHQ) of antibiotics in river water was estimated using monte carlo simulations (MCS) model. Sixty-two papers on antibiotics in river water with 272 data-reports (n = 28,522) were included. The rank order of antibiotics residues in river water based on pooled concentration was SMX (66.086 ng/L) > CIP (26.005 ng/L) > TCN (17.888 ng/L) > TMP (6.591 ng/L) > AZM (2.077 ng/L) > AMX (0.029 ng/L). The overall pooled concentration of antibiotics residues in river water was 24.262 ng/L, 95 %CI (23.110-25.413 ng/L). TTHQ for adults and children due to antibiotics in water was 2.41E-3 and 2.36E-3, respectively. The sort of antibiotics based on their quota in TTHQ for adults and children was AMX > CIP > TMP > AZM > TCN > SMX. Total CR in adults and children was 2.41E-03 and 2.36E-03, respectively. The sort of antibiotics based on percentile 95 % EHQ was SMX (7.70E+03) > TCN (7.63E+01) > TMP (7.03E-03) > CIP (2.86E-03) > AMX (5.71E-04) and TEHQ values due to antibiotics in river water in China was equal to 7.78E+03. Current study suggests that conduct effective monitoring and water quality control plans to reduce concentration of antibiotics especially SMX, TCN, and CIP in river water of China.
Collapse
Affiliation(s)
- Chao Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China; State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing, China.
| | - Anhui Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Xiaomei Hui
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China; State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Aihua Wang
- Shanxi Provincial Water Conservancy Development Center, Taiyuan, China
| | - Lu Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China; State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Sheng Chang
- State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing, China
| |
Collapse
|
12
|
Hu H, Da X, Li Z, Li T, Zhang X, Bian T, Jin Y, Xu K, Guo Y. Determination and Ecological Risk Assessment of Quinolone Antibiotics in Drinking and Environmental Waters Using Fully Automated Disk-Based SPE Coupled with UPLC-MS/MS. Molecules 2024; 29:4611. [PMID: 39407541 PMCID: PMC11477713 DOI: 10.3390/molecules29194611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Quinolone antibiotics (QNs) contamination in the aquatic environment is a global public health issue considering their resistance and mobility. In this study, a simple, efficient, and sensitive method was developed for the accurate quantification of fifteen QNs in water using automated disk-based solid-phase extraction (SPE) coupled with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). By utilizing a 3M SDB-XC disk to enrich QNs from a 1000 mL water sample, the detection limits were improved to 0.008-0.055 ng/L due to the satisfactory enrichment factors of 897-1136, but only requiring about 60 min per six samples. The linearity of the method ranged from 0.05 to 100 μg/L for the 15 QNs, with correlation coefficients of 0.9992-0.9999, and the recoveries were in the range of 81-114%, with relative standard deviations of 0.2-13.3% (n = 6). The developed method was applicable for the quantification of trace QNs at low ng/L levels in drinking and environmental waters. The results showed that no QNs were detected in tap water, while three and four QNs were detected in the river water of Zhoushan and the seawater of Daiquyang and Yueqing Bay, East China, respectively, with a total concentration of 1.600-8.511 ng/L and 1.651-16.421 ng/L, respectively. Among the detected QNs, ofloxacin (OFL) was the predominant compound in river water, while enrofloxacin (ENR) was predominant in seawater. The risk quotient (RQ) results revealed that QNs posed a low risk to crustaceans and fish, but a low-to-medium risk to algae, and OFL presented the main ecological risk factor in river water, while ENR and CIP in seawater. Overall, the proposed automated disk-based SPE-UPLC-MS/MS method is highly efficient and sensitive, making it suitable for routine analysis of QNs in drinking and environmental waters.
Collapse
Affiliation(s)
- Hongmei Hu
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China; (H.H.)
| | - Xingyu Da
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China; (H.H.)
| | - Zhenhua Li
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China; (H.H.)
| | - Tiejun Li
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China; (H.H.)
| | - Xiaoning Zhang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Tianbin Bian
- Hangzhou Center for Disease Control and Prevention, Hangzhou 310021, China
| | - Yanjian Jin
- Zhejiang Marine Ecology and Environment Monitoring Center, Zhoushan 316021, China
| | - Kaida Xu
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China; (H.H.)
| | - Yuanming Guo
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China; (H.H.)
| |
Collapse
|
13
|
Dolkar P, Sharma M, Modeel S, Yadav S, Siwach S, Bharti M, Yadav P, Lata P, Negi T, Negi RK. Challenges and effective tracking down strategies of antibiotic contamination in aquatic ecosystem. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55935-55957. [PMID: 39254807 DOI: 10.1007/s11356-024-34806-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024]
Abstract
A growing environmental concern revolves around the widespread use of medicines, particularly antibiotics, which adversely impact water quality and various life forms. The unregulated production and utilization of antibiotics not only affect non-targeted organisms but also exert significant evolutionary pressures, leading to the rapid development of antimicrobial resistance (AMR) in bacterial communities. To address this issue, global studies have been conducted to assess the prevalence and quantities of antibiotics in various environmental components including freshwater, ocean, local sewage, and fish. These studies aim to establish effective analytical methods for identifying and measuring antibiotic residues in environmental matrices that might enable authorities to establish norms for the containment and disposal of antibiotics. This article offers a comprehensive overview of methods used to extract antibiotics from environmental matrices exploring purification techniques such as liquid-liquid extraction, solid-phase extraction, green extraction techniques, and concentration methods like lyophilization and rotary evaporation. It further highlights qualitative and quantitative analysis methods, high-performance liquid chromatography, ultra-high-performance liquid chromatography, and liquid chromatography-tandem along with analytical methods such as UV-Vis and tandem mass spectrometry for detecting and measuring antibiotics. Urgency is underscored for proactive strategies to curb antibiotic contamination, safeguarding the integrity of aquatic ecosystems and public health on a global scale.
Collapse
Affiliation(s)
- Padma Dolkar
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Monika Sharma
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
- Present Address: Gargi College, University of Delhi, Delhi, 110049, India
| | - Sonakshi Modeel
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Sheetal Yadav
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Sneha Siwach
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Meghali Bharti
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Pankaj Yadav
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Pushp Lata
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Tarana Negi
- Government College, Dujana, Jhajjar, Haryana, 124102, India
| | - Ram Krishan Negi
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India.
| |
Collapse
|
14
|
Zhao J, Han Y, Liu J, Li B, Li J, Li W, Shi P, Pan Y, Li A. Occurrence, distribution and potential environmental risks of pollutants in aquaculture ponds during pond cleaning in Taihu Lake Basin, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173610. [PMID: 38815821 DOI: 10.1016/j.scitotenv.2024.173610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
During the process of cleaning aquaculture ponds, the drainage contributes significantly to antibiotic pollution in the surrounding water environment. Therefore, we conducted a study on the distribution of 26 antibiotics in 57 ponds within the Taihu Lake basin. The results revealed that the detection frequency of antibiotics ranged from 1.75 % to 80.7 %, with the overall detection concentrations ranging from 3.27 to 708.72 ng/L. Among them, the detection rate of 8 antibiotics exceeded 50 %. Regarding the spatial distribution, the concentration of antibiotics was relatively high in aquaculture ponds located in the Changzhou area, with the highest concentration reaching 708.72 ng/L. This observation is likely due to the large size and intensive breeding practices in Changzhou. Fish ponds exhibited a significantly higher total antibiotic concentration of 3.27 to 445.57 ng/L compared to crab ponds (13.01 to 206.30 ng/L) and shrimp ponds (23.17 to 107.40 ng/L). Quinolones and sulfonamides were the predominant antibiotic classes found in fish ponds, accounting for 51.49 % of the total antibiotic concentration. Notably, sulfamethoxazole (SMX) and enrofloxacin (ENR) exhibited the highest antibiotic concentrations. Risk assessments demonstrated that SMX, ENR, and ofloxacin (OFX) contributed significantly to ecological risks. Furthermore, the study found that the tertiary constructed wetland treatment process achieved a remarkable removal rate of 92.44 % for antibiotics in aquaculture wastewater, while other treatment processes displayed limited effectiveness in removing antibiotics. This study addresses the knowledge gap concerning antibiotic pollution during the cleaning process of aquaculture ponds within the Taihu Lake basin.
Collapse
Affiliation(s)
- Jie Zhao
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yuze Han
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Junzhao Liu
- Nanjing Huachuang Institute of Environmental Technology Co., Ltd, Nanjing 210023, PR China
| | - Baoju Li
- Nanjing Huachuang Institute of Environmental Technology Co., Ltd, Nanjing 210023, PR China
| | - Jun Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Wentao Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; Nanjing University, Yancheng Academy of Environmental Protection Technology and Engineering, Yancheng 224000, PR China; Quanzhou Institute for Environmental Protection Industry, Nanjing University, Quanzhou 362008, PR China.
| |
Collapse
|
15
|
Zhang L, Wei H, Wang C, Cheng Y, Li Y, Wang Z. Distribution and ecological risk assessment of antibiotics in different freshwater aquaculture ponds in a typical agricultural plain, China. CHEMOSPHERE 2024; 361:142498. [PMID: 38825250 DOI: 10.1016/j.chemosphere.2024.142498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/16/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Freshwater aquaculture serves as a significant focal point for antibiotic contamination, yet understanding antibiotic distribution across different aquaculture models and stages remains limited. This study evaluated antibiotic pollution in three distinct freshwater aquaculture models: rice-crayfish coculture, fish aquaculture, and crab-crayfish aquaculture, during various aquaculture stages. Of the 33 target antibiotics, 16 antibiotics were detected, with the total concentrations ranging from 111.81 ng/L to 15,949.05 ng/L in water and 10.11 ng/g to 8986.30 ng/g in sediment. Among these antibiotics, erythromycin and lomefloxacin are prohibited for use in Chinese aquaculture. Dominant antibiotics in water included lincomycin, enrofloxacin, and enoxacin, whereas in sediment, oxytetracycline and erythromycin were predominant. Notably, lincomycin emerged as a dominant antibiotic in aquaculture for the first time. The concentrations of these dominant antibiotics were high compared to other aquaculture settings and exhibited elevated ecological risk. Critical periods for antibiotic contamination in water and sediment were found to be incongruent, occurring during the rainy season in July for water and the dry season in October for sediment. Notably, the rice-crayfish coculture model exerts a good effect in reducing antibiotic pollution. Overall, these findings offer valuable evidence for the healthful and sustainable advancement of aquaculture.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430077, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huimin Wei
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430077, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cong Wang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430077, China
| | - Yiting Cheng
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yong Li
- China Metallurgical Geology Bureau (CMGB) Bureau-1 (Hebei) Analysis & Technology Co., Ltd, Langfang, 065201, China
| | - Zhi Wang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430077, China.
| |
Collapse
|
16
|
Sonkar V, Venu V, Nishil B, Thatikonda S. Review on antibiotic pollution dynamics: insights to occurrence, environmental behaviour, ecotoxicity, and management strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51164-51196. [PMID: 39155346 DOI: 10.1007/s11356-024-34567-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 07/24/2024] [Indexed: 08/20/2024]
Abstract
Antibiotic contamination poses a significant global concern due to its far-reaching impact on public health and the environment. This comprehensive review delves into the prevalence of various antibiotic classes in environmental pollution and their interactions with natural ecosystems. Fluoroquinolones, macrolides, tetracyclines, and sulphonamides have emerged as prevalent contaminants in environmental matrices worldwide. The concentrations of these antibiotics vary across diverse environments, influenced by production practices, consumer behaviours, and socio-economic factors. Low- and low-middle-income countries face unique challenges in managing antibiotic contamination, with dominant mechanisms like hydrolysis, sorption, and biodegradation leading to the formation of toxic byproducts. Ecotoxicity reports reveal the detrimental effects of these byproducts on aquatic and terrestrial ecosystems, further emphasizing the gravity of the issue. Notably, monitoring the antibiotic parent compound alone may be inadequate for framing effective control and management strategies for antibiotic pollution. This review underscores the imperative of a comprehensive, multi-sectoral approach to address environmental antibiotic contamination and combat antimicrobial resistance. It also advocates for the development and implementation of tailored national action plans that consider specific environmental conditions and factors. Thus, an approach is crucial for safeguarding both public health and the delicate balance of our natural ecosystems.
Collapse
Affiliation(s)
- Vikas Sonkar
- Department of Civil Engineering, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana, 502284, India
| | - Vishnudatha Venu
- Department of Civil Engineering, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana, 502284, India
| | - Benita Nishil
- Department of Civil Engineering, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana, 502284, India
| | - Shashidhar Thatikonda
- Department of Civil Engineering, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana, 502284, India.
| |
Collapse
|
17
|
Pauletto M, De Liguoro M. A Review on Fluoroquinolones' Toxicity to Freshwater Organisms and a Risk Assessment. J Xenobiot 2024; 14:717-752. [PMID: 38921651 PMCID: PMC11205205 DOI: 10.3390/jox14020042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Fluoroquinolones (FQs) have achieved significant success in both human and veterinary medicine. However, regulatory authorities have recommended limiting their use, firstly because they can have disabling side effects; secondly, because of the need to limit the spread of antibiotic resistance. This review addresses another concerning consequence of the excessive use of FQs: the freshwater environments contamination and the impact on non-target organisms. Here, an overview of the highest concentrations found in Europe, Asia, and the USA is provided, the sensitivity of various taxa is presented through a comparison of the lowest EC50s from about a hundred acute toxicity tests, and primary mechanisms of FQ toxicity are described. A risk assessment is conducted based on the estimation of the Predicted No Effect Concentration (PNEC). This is calculated traditionally and, in a more contemporary manner, by constructing a normalized Species Sensitivity Distribution curve. The lowest individual HC5 (6.52 µg L-1) was obtained for levofloxacin, followed by ciprofloxacin (7.51 µg L-1), sarafloxacin and clinafloxacin (12.23 µg L-1), and ofloxacin (17.12 µg L-1). By comparing the calculated PNEC with detected concentrations, it is evident that the risk cannot be denied: the potential impact of FQs on freshwater ecosystems is a further reason to minimize their use.
Collapse
Affiliation(s)
| | - Marco De Liguoro
- Department of Comparative Biomedicine & Food Science (BCA), University of Padova, Viale dell’Università 16, I-35020 Legnaro, Padova, Italy;
| |
Collapse
|
18
|
Li D, Wang P, Sun M, Yin J, Li D, Ma J, Yang S. Effects of sulfamonomethoxine and trimethoprim co-exposures at different environmentally relevant concentrations on microalgal growth and nutrient assimilation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106937. [PMID: 38728928 DOI: 10.1016/j.aquatox.2024.106937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
In aquaculture around the world, sulfamonomethoxine (SMM), a long-acting antibiotic that harms microalgae, is widely employed in combination with trimethoprim (TMP), a synergist. However, their combined toxicity to microalgae under long-term exposures at environmentally relevant concentrations remains poorly understood. Therefore, we studied the effects of SMM single-exposures and co-exposures (SMM:TMP=5:1) at concentrations of 5 μg/L and 500 μg/L on Chlorella pyrenoidosa within one aquacultural drainage cycle (15 days). Photosynthetic activity and N assimilating enzyme activities were employed to evaluate microalgal nutrient assimilation. Oxidative stress and flow cytometry analysis for microalgal proliferation and death jointly revealed mechanisms of inhibition and subsequent self-adaptation. Results showed that exposures at 5 μg/L significantly inhibited microalgal nutrient assimilation and induced oxidative stress on day 7, with a recovery to levels comparable to the control by day 15. This self-adaptation and over 95 % removal of antibiotics jointly contributed to promoting microalgal growth and proliferation while reducing membrane-damaged cells. Under 500 μg/L SMM single-exposure, microalgae self-adapted to interferences on nutrient assimilation, maintaining unaffected growth and proliferation. However, over 60 % of SMM remained, leading to sustained oxidative stress and apoptosis. Remarkably, under 500 μg/L SMM-TMP co-exposure, the synergistic toxicity of SMM and TMP significantly impaired microalgal nutrient assimilation, reducing the degradation efficiency of SMM to about 20 %. Consequently, microalgal growth and proliferation were markedly inhibited, with rates of 9.15 % and 17.7 %, respectively, and a 1.36-fold increase in the proportion of cells with damaged membranes was observed. Sustained and severe oxidative stress was identified as the primary cause of these adverse effects. These findings shed light on the potential impacts of antibiotic mixtures at environmental concentrations on microalgae, facilitating responsible evaluation of the ecological risks of antibiotics in aquaculture ponds.
Collapse
Affiliation(s)
- Dingxin Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Min Sun
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jinbao Yin
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Dandan Li
- Nanjing Hydraulic Research Institute, Nanjing 210029, PR China
| | - Jingjie Ma
- Institute of Water Science and Technology, Nanjing 210098, PR China
| | - Shengjing Yang
- College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
19
|
Tsegay G, Lartey-Young G, Sibhat M, Gao Y, Guo LC, Meng XZ. An integrated approach to assess human health risk of neonicotinoid insecticides in surface water of the Yangtze River Basin, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133915. [PMID: 38452669 DOI: 10.1016/j.jhazmat.2024.133915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Neonicotinoids are widely used insecticides that have raised considerable concerns for both environmental and human health. However, there lack of comprehensive evaluation of their accumulation in surface water ecosystems and exposure to various human groups. Additionally, there's a distinct lack of scientific evidence describing the carcinogenic and non-carcinogenic impacts of neonicotinoids from surface water. Using an integrated approach employing the Relative Potency Factor (RPF), Hazard Index (HI), and Monte Carlo Simulation (MCS), the study assessed neonicotinoid exposure and risk to four demographic groups via dermal contact and mistaken oral intake pathways in the Yangtze River Basin (YRB), China. Neonicotinoid concentrations range from 0.1 to 408.12 ng/L, indicating potential risk (10-3 to 10-1) across the studied demographic groups. The Incremental Lifetime Cancer Risk (ILCR) for dermal contact was within a moderate range of 2.00 × 10-3 to 1.67 × 10-2, while the mistaken oral intake was also within a moderate range of 3.07 × 10-3 to 7.05 × 10-3. The Hazard Index (HI) for dermal exposure ranged from 1.49 × 10-2 to 0.125, while for mistaken oral intake, it varied between 2.69 × 10-2 and 0.14. The findings highlight the importance of implementing specific interventions to address neonicotinoid exposure, especially among demographic groups that are more susceptible. This research underscores the urgent need for targeted strategies to address neonicotinoid risks to vulnerable populations within the YRB while contributing to insights for effective policies to mitigate neonicotinoid exposure in surface water ecosystems globally.
Collapse
Affiliation(s)
- Gedion Tsegay
- UNEP-TONGJI Institute of Environment for Sustainable Development (IESD), College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing 314051, Zhejiang Province, China
| | - George Lartey-Young
- UNEP-TONGJI Institute of Environment for Sustainable Development (IESD), College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Marta Sibhat
- UNEP-TONGJI Institute of Environment for Sustainable Development (IESD), College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yunze Gao
- Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing 314051, Zhejiang Province, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Ling-Chuan Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiang-Zhou Meng
- Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing 314051, Zhejiang Province, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
20
|
Wang TT, Shao S, Fan SD, Tang WQ, Miao JW, Wang S, Cao XC, Liu C, Ying GG, Chen ZB, Zhou HL, Diao XP, Mo L. Occurrence, distribution, and risk assessment of antibiotics in a typical aquaculture area around the Dongzhai Harbor mangrove forest on Hainan Island. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170558. [PMID: 38325459 DOI: 10.1016/j.scitotenv.2024.170558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/22/2023] [Accepted: 01/27/2024] [Indexed: 02/09/2024]
Abstract
The trees of the Dongzhai Harbor mangrove forest suffer from antibiotic contamination from surrounding aquaculture areas. Despite this being one of the largest mangrove forests in China, few studies have focused on the antibiotic pollution status in these aquaculture areas. In the present study, the occurrence, distribution, and risk assessment of 37 antibiotics in surface water and sediment samples from aquaculture areas around Dongzhai Harbor mangrove forests were analyzed. The concentration of total antibiotics (∑antibiotics) ranged from 78.4 ng/L to 225.6 ng/L in surface water (except S14-A2) and from 19.5 ng/g dry weight (dw) to 229 ng/g dw in sediment. In the sediment, the concentrations of ∑antibiotics were relatively low (19.5-52.3 ng/g dw) at 75 % of the sampling sites, while they were high (95.7-229.0 ng/g dw) at a few sampling sites (S13-A1, S13D, S8D). The correlation analysis results showed that the Kd values of the 9 antibiotics were significantly positively correlated with molecular weight (MW), Kow, and LogKow. Risk assessment revealed that sulfamethoxazole (SMX) in surface water and SMX, enoxacin (ENX), ciprofloxacin (CFX), enrofloxacin (EFX), ofloxacin (OFX), and norfloxacin (NFX) in sediment had medium/high risk quotients (RQs) at 62.5 % and 25-100 %, respectively, of the sampling sites. The antibiotic mixture in surface water (0.06-3.36) and sediment (0.43-309) posed a high risk at 37.5 % and 66.7 %, respectively, of the sampling sites. SMX was selected as an indicator of antibiotic pollution in surface water to assist regulatory authorities in monitoring and managing antibiotic pollution in the aquaculture zone of Dongzhai Harbor. Overall, the results of the present study provide a comprehensive and detailed analysis of the characteristics of antibiotics in the aquaculture environment around the Dongzhai Harbor mangrove system and provide a theoretical basis for the source control of antibiotics in mangrove systems.
Collapse
Affiliation(s)
- Tuan-Tuan Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Shuai Shao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Shi-Di Fan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Wang-Qing Tang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Jiang-Wei Miao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Sai Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
| | - Xiao-Cong Cao
- Hainan Research Academy of Environmental Sciences, Haikou 571126, China
| | - Chuan Liu
- Hainan Research Academy of Environmental Sciences, Haikou 571126, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou 510006, China
| | - Zhong-Bing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, 16500 Praha-Suchdol, Czech Republic
| | - Hai-Long Zhou
- School of Life Sciences, Hainan University, Haikou 570228, China
| | - Xiao-Ping Diao
- School of Life Sciences, Hainan University, Haikou 570228, China
| | - Ling Mo
- Hainan Research Academy of Environmental Sciences, Haikou 571126, China
| |
Collapse
|
21
|
Yang B, Li L, Xiao X, Guo Q. Effect of streptomycin sulphate on the nitrification system in activated sludge: insight into nitrification characteristic, antibiotic resistance gene and microbial community. ENVIRONMENTAL TECHNOLOGY 2024; 45:1908-1918. [PMID: 36484541 DOI: 10.1080/09593330.2022.2157755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Wastewater with residual streptomycin sulphate usually contains high content of ammonia-nitrogen. However, the biological removal process of ammonia-nitrogen under streptomycin sulphate circumstance was unclear. In this study, short-term and long-term effects of streptomycin sulphate on biological nitrification systems, including AOB, NOB, SAOR, SNOR and SNPR, were evaluated comprehensively. The results indicated IC50 for AOB and NOB were 7.5 and 6.6 mg/L. SAOR and SNPR could be decreased to 3.43 ± 0.52 mg N/(g MLSS·h) and 0.24 ± 0.03 mg N/(g MLSS·h) while the addition of streptomycin sulphate was 10 mg/L. When streptomycin sulphate addition was stopped, nitrification ability recovered slightly, SAOR and SNPR increased to 9.37 ± 0.36 mg N/(g MLSS·h) and 1.66 ± 0.49 mg N/(g MLSS·h), respectively. The protein of EPS increased gradually during the acclimatization process, and the maximal protein value was 68.24 mg/g MLSS on the 100th day, however, no significant change of polysaccharose was observed during the acclimatization process. High abundance of ARGs and intI1 was detected in effluent and sludge of the biological treatment system. The maximal relative abundance of aadA1 in the sludge appeared on the 140th day, and increased by 0.99 orders of magnitude. Biological diversity decreased significantly during the acclimatization process, relative abundance of nitrosomonas was changed from 9.07% to 38.68% on the 61st day, while relative abundance of nitrobacter was changed from 1.30% to 0.64%. It should be noted that relative abundances of nitrosomonas and nitrobacter were reduced to 16.17% and 0.25% on the 140th day. This study would be helpful for nitrogen removal in wastewater with antibiotic.
Collapse
Affiliation(s)
- Bairen Yang
- School of Environmental Science and Engineering, Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, People's Republic of China
| | - Lingling Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| | - Xiangqian Xiao
- Linyi Chengtou Sports Industry Group Co., Ltd, Linyi, People's Republic of China
| | - Qingyuan Guo
- School of Environmental Science and Engineering, Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, People's Republic of China
| |
Collapse
|
22
|
Ma N, Zhang H, Yuan L, Li Y, Yang W, Huang Y. Characterization and removal mechanism of fluoroquinolone-bioremediation by fungus Cladosporium cladosporioides 11 isolated from aquacultural sediments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29525-29535. [PMID: 38575819 DOI: 10.1007/s11356-024-33142-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Antibiotics have been widely detected in aquatic environments, and fungal biotransformation receives considerable attention for antibiotic bioremediation. Here, a fungus designated Cladosporium cladosporioides 11 (CC11) with effective capacity to biotransform fluoroquinolones was isolated from aquaculture pond sediments. Enrofloxacin (ENR), ciprofloxacin (CIP) and ofloxacin (OFL) were considerably abated by CC11, and the antibacterial activities of the fluoroquinolones reduced significantly after CC11 treatment. Transcriptome analysis showed the removal of ENR, CIP and OFL by CC11 is a process of enzymatic degradation and biosorption which consists well with ligninolytic enzyme activities and sorption experiments under the same conditions. Additionally, CC11 significantly removed ENR in zebrafish culture water and reduced the residue of ENR in zebrafish. All these results evidenced the potential of CC11 as a novel environmentally friendly process for the removal of fluoroquinolones from aqueous systems and reduce fluoroquinolone residues in aquatic organisms.
Collapse
Affiliation(s)
- Ning Ma
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, No.150 of Qingta, Fengtai District, Beijing, 100141, People's Republic of China
| | - Hongyu Zhang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, No.150 of Qingta, Fengtai District, Beijing, 100141, People's Republic of China
| | - Lilai Yuan
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, No.150 of Qingta, Fengtai District, Beijing, 100141, People's Republic of China
| | - Yingren Li
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, No.150 of Qingta, Fengtai District, Beijing, 100141, People's Republic of China
| | - Wenbo Yang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, No.150 of Qingta, Fengtai District, Beijing, 100141, People's Republic of China
| | - Ying Huang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, No.150 of Qingta, Fengtai District, Beijing, 100141, People's Republic of China.
| |
Collapse
|
23
|
Mu Y, Tang B, Cheng X, Fu Y, Huang W, Wang J, Ming D, Xing L, Zhang J. Source apportionment and predictable driving factors contribute to antibiotics profiles in Changshou Lake of the Three Gorges Reservoir area, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133522. [PMID: 38244452 DOI: 10.1016/j.jhazmat.2024.133522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/01/2024] [Accepted: 01/11/2024] [Indexed: 01/22/2024]
Abstract
Lakes, crucial antibiotic reservoirs, lack thorough exploration of quantitative relationships between antibiotics and influencing factors. Here, we conducted a comprehensive year-long investigation in Changshou Lake within the Three Gorges Reservoir area, China. The concentrations of 21 antibiotics spanned 35.6-200 ng/L, 50.3-348 ng/L and 0.57-57.9 ng/g in surface water, overlying water and sediment, respectively. Compared with abundant water period, surface water and overlying water displayed significantly high antibiotic concentrations in flat and low water periods, while sediment remained unchanged. Moreover, tetracyclines, fluoroquinolones and erythromycin posed notable risks to algae. Six primary sources were identified using positive matrix factorization model, with aquaculture contributing 21.2%, 22.7% and 25.4% in surface water, overlying water and sediment, respectively. The crucial predictors were screened through machine learning, redundancy analysis and Mantel test. Our findings emphasized the pivotal roles of water quality parameters, including water temperature (WT), pH, dissolved oxygen, electrical conductivity, inorganic anions (NO3⁻, Cl⁻ and F⁻) and metal cations (Ca, Mg, Fe, K and Cr), with WT influencing greatest. Total nitrogen (TN), cation exchange capacity, K, Al and Cd significantly impacted sediment antibiotics, with TN having the most pronounced effect. This study can promise valuable insights for environmental planning and policies addressing antibiotic pollution.
Collapse
Affiliation(s)
- Yue Mu
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Bobin Tang
- Technical Centre, Chongqing Customs, Chongqing 400020, PR China
| | - Xian Cheng
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Yuanhang Fu
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Weibin Huang
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Jing Wang
- Technical Centre, Chongqing Customs, Chongqing 400020, PR China
| | - Dewang Ming
- Technical Centre, Chongqing Customs, Chongqing 400020, PR China
| | - Liangshu Xing
- Eco-Environmental Monitoring Station of Changshou District, Chongqing 401220, PR China
| | - Jinzhong Zhang
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
24
|
Jiang S, Shi B, Zhu D, Cheng X, Zhou Z, Xie J, Chen Z, Sun L, Zhang Y, Xie Y, Jiang L. Cross-contamination and ecological risk assessment of antibiotics between rivers and surrounding open aquaculture ponds. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123404. [PMID: 38244901 DOI: 10.1016/j.envpol.2024.123404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/18/2023] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
Antibiotics are causing widespread concern as one of the emerging contaminants. There is the abuse of antibiotics in high-density open aquaculture, and the tailwater is often discharged into surrounding rivers. At the same time, the water replenishment of open aquaculture ponds from nearby rivers containing antibiotic contamination from different sources may result in cross-contamination. However, it is still unclear which pollution intensity is greater in rivers or in open aquaculture. So in this paper, the levels of 20 antibiotics (i.e., Fluoroquinolones (FQs), Sulfonamides (SAs), Tetracyclines (TCs), Macrolides (MLs) and Lincosamides (LCs)) in rivers and high-density open aquaculture ponds were investigated in the Baini River basin in the suburbs of Guangzhou, China. The results showed that norfloxacin (NFX) was the predominant antibiotic in river and aquaculture water, with concentrations ranging from 6.12 to 156.04 ng/L and from 7.47 to 82.62 ng/L in both aquatic systems, respectively. As for the pollution intensity of antibiotics, the annual pollution contribution (28.64 kg/a) of the river water supply to open aquaculture is higher than that (10.81 kg/a) of open aquaculture to the river, which means river pollution has a greater impact on aquaculture ponds. The risk quotient (RQ) showed that the ecological risk of lincomycin (LIN), erythromycin (ERY), sulfamethoxazole (SMX), norfloxacin (NFX), ciprofloxacin (CFX) and chlortetracycline (CTC) in rivers and aquaculture environments had high ecological risks from 1.21 to 1.81. Water interactions with contaminated rivers will result in a corresponding increase in the ecological risk of antibiotics in the aquaculture environment. Overall, according to the results, the risk of polluted rivers to open aquaculture cannot be ignored, and it is recommended that open aquaculture should use these water sources with caution, and that the water quality evaluation of aquaculture water should be increased with monitoring indicators for emerging contaminants such as antibiotics.
Collapse
Affiliation(s)
- Shenqiong Jiang
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China
| | - Baoshan Shi
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China; State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, 510640, China
| | - Dantong Zhu
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China; State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, 510640, China
| | - Xiangju Cheng
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China; State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, 510640, China.
| | - Zhihong Zhou
- Guangzhou Ecological and Environmental Monitoring Center of Guangdong Province, Guangzhou, 510030, China
| | - Jun Xie
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Zehai Chen
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China
| | - Lubin Sun
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China
| | - Yuda Zhang
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China
| | - Yuzhao Xie
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China
| | - Lexin Jiang
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
25
|
Kim JW, Hong YK, Kwon OK, Kim SC. Difference of Microbial Community in the Stream Adjacent to the Mixed Antibiotic Effluent Source. TOXICS 2024; 12:135. [PMID: 38393230 PMCID: PMC10891948 DOI: 10.3390/toxics12020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/23/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024]
Abstract
Released antibiotics from source to stream can influence bacterial communities and potentially alter the ecosystem. This research provides a comprehensive examination of the sources, distribution, and bacterial community dynamics associated with varied antibiotic release sources adjacent to the stream. The residual of antibiotics from different sources was determined, and the bacterial community structure was examined to reveal the differences in the bacteria community in the stream. The residual of antibiotics was quantified with liquid chromatography-tandem mass spectrometry (LC-MS/MS), and the Illumina MiSeq platform was utilized to sequence bacterial 16S rRNA genes, providing comprehensive insights into the bacterial community structure in the sediment across five different sites. Results indicated that the presence and distribution of antibiotics were significantly influenced by released sources. In the case of the bacterial community, the Proteobacteria and Firmicutes were the most dominant phyla in the sediment, and especially, the Firmicutes showed higher abundance in sites mostly affected by livestock sources. Additionally, livestock gut bacteria such as Clostridium saudiense, Proteiniclasticum ruminis, and Turicibacter sanguinis were prevalent in antibiotic-contaminated sites adjacent to livestock facilities. Overall, this study provides critical insights into the effect of antibiotic contamination by verifying the relationship between the occurrence of antibiotic residuals and the alteration in the bacterial community in the stream.
Collapse
Affiliation(s)
- Jin-Wook Kim
- Department of Bio-Environmental Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Young-Kyu Hong
- Department of Bio-Environmental Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Oh-Kyung Kwon
- Biogas Research Center, Hankyung National University, Anseong 17579, Republic of Korea
| | - Sung-Chul Kim
- Department of Bio-Environmental Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
26
|
Liu C, Pan K, Xu H, Song Y, Qi X, Lu Y, Jiang X, Liu H. The effects of enrofloxacin exposure on responses to oxidative stress, intestinal structure and intestinal microbiome community of largemouth bass (Micropterus salmoides). CHEMOSPHERE 2024; 348:140751. [PMID: 37992902 DOI: 10.1016/j.chemosphere.2023.140751] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Antibiotic residues in the aquaculture environments may lead to antibiotic resistance, and potentially exert adverse effects on health of the non-target organisms and humans. In order to evaluate the effect of enrofloxacin of environmental concentrations on largemouth bass (Micropterus salmoides). Two hundred and seventy largemouth basses (with an average weight of 7.88 ± 0.60 g) were randomly divided into three groups, and separately exposed to 0, 1, 100 μg/L enrofloxacin (Control, ENR1, ENR100) for 30 days to detect the effect of enrofloxacin on the growth performance, oxidative stress, intestinal microbiota structure, inflammatory response and structure of the intestine. The results showed that ENR significantly reduced the final body weight (FBW) and weight gain rate (WGR), and increased feed conversion ratio (FCR) (P < 0.05). The histopathological analysis revealed that the villus width and muscular thickness of anterior intestine were significantly decreased with the increasing of enrofloxacin concentration. The activity of SOD was significantly increased at enrofloxacin stress, while CAT and POD activity were significantly decreased compared to control group (P < 0.05). The activities of lysozyme (LZM), alkaline phosphatase (AKP) and peroxidase (POD) in ENR1 was higher than that of control and ENR100 groups. Enrofloxacin treatment up-regulated the expression IL-1β and TNF-α, and down-regulated IL-10, and decreasing the expression level ZO-1, claudin-1, and occludin. Furthermore, the enrofloxacin treatment significantly decreased the intestinal bacterial diversity (P < 0.05). Exposure to 100 μg/L enrofloxacin obviously increased the relative abundance of Bacteroidota, Myxococcota, and Zixibacteria of fish gut, and reduced Firmicutes; 1 μg/L enrofloxacin considerably increased Bacteroidota, Myxococcota, and Actinobacteria, and reduced Firmicutes. The relative abundance of DTB120 and Elusimicrobiota was positively correlated with the occludin and claudin-1 gene. Taken together, exposure to enrofloxacin inhibited the growth of largemouth bass, influenced intestinal health, and induced dysbiosis of the intestinal microbiota.
Collapse
Affiliation(s)
- Chengrong Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kuiquan Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hongzhou Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanzhen Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoyu Qi
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yitong Lu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xinxin Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Haixia Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
27
|
Zheng T, Wang P, Hu B, Wang X, Ma J, Liu C, Li D. Gross yield driving the mass fluxes of fishery drugs: Evidence of occurrence from full aquaculture cycle in lower Yangtze River Basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166581. [PMID: 37634728 DOI: 10.1016/j.scitotenv.2023.166581] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Expanding aquaculture has generated pollutants like fishery drugs in wastewater, which affects the aquatic environments and hinders sustainable development of aquaculture. To evaluate the occurrence, mass fluxes and production factors of fishery drugs in aquaculture, full-aquaculture-cycle monitoring in finfish and crustacean wastewater was conducted in the lower Yangtze River Basin, and 28 pesticides and 15 antibiotics were detected. The results showed that individual fishery drugs varied from ppt to ppb levels. Among them, sulfonamides were dominant with a mean concentration of 105.95 ± 4.13 ng·L-1 in finfish aquacultural wastewater, and insecticides were prevailing in crustacean aquacultural wastewater with a content of 146.56 ± 0.66 ng·L-1. Since the susceptibility to finfish disease determined the aquaculture practice, there were significant differences between two types of aquacultural wastewater. Finfish aquacultural wastewater contained more drugs and reached peak earlier in rapid-growth period, yet crustacean aquacultural wastewater peaked at the harvest period, to prevent against disease. Meanwhile, higher ecological risk, especially for florfenicol, were found in finfish wastewater. With 6 production factors from Good Aquaculture Practice, the gross yield was the most influential factor of drug mass flux, explaining 98 % variance by stepwise regression. Apart from increasing concentrations of fishery drugs in wastewater, regional high-yield aquaculture also significantly impacted the corresponding mass flux. As estimated by linear regression, 1.63 tons of target drugs would be discharged by 1 Mt. aquatic products, and 7.77 tons were discharged from aquaculture in the lower Yangtze River Basin in 2021. This is the first report to quantify mass fluxes of fishery drugs and to highlight gross yield as the most influential factor, which provides guidance for the supervision and regulation of sustainable aquaculture.
Collapse
Affiliation(s)
- Tianming Zheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Bin Hu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jingjie Ma
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Chongchong Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Dingxin Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
28
|
Shen M, Hu Y, Zhao K, Li C, Liu B, Li M, Lyu C, Sun L, Zhong S. Occurrence, Bioaccumulation, Metabolism and Ecotoxicity of Fluoroquinolones in the Aquatic Environment: A Review. TOXICS 2023; 11:966. [PMID: 38133367 PMCID: PMC10747319 DOI: 10.3390/toxics11120966] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023]
Abstract
In recent years, there has been growing concern about antibiotic contamination in water bodies, particularly the widespread presence of fluoroquinolones (FQs), which pose a serious threat to ecosystems due to their extensive use and the phenomenon of "pseudo-persistence". This article provides a comprehensive review of the literature on FQs in water bodies, summarizing and analyzing contamination levels of FQs in global surface water over the past three years, as well as the bioaccumulation and metabolism patterns of FQs in aquatic organisms, their ecological toxicity, and the influencing factors. The results show that FQs contamination is widespread in surface water across the surveyed 32 countries, with ciprofloxacin and norfloxacin being the most heavy contaminants. Furthermore, contamination levels are generally higher in developing and developed countries. It has been observed that compound types, species, and environmental factors influence the bioaccumulation, metabolism, and toxicity of FQs in aquatic organisms. FQs tend to accumulate more in organisms with higher lipid content, and toxicity experiments have shown that FQs exhibit the highest toxicity to bacteria and the weakest toxicity to mollusk. This article summarizes and analyzes the current research status and shortcomings of FQs, providing guidance and theoretical support for future research directions.
Collapse
Affiliation(s)
- Mengnan Shen
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (Y.H.); (K.Z.); (C.L.); (B.L.); (M.L.); (C.L.)
| | - Yi Hu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (Y.H.); (K.Z.); (C.L.); (B.L.); (M.L.); (C.L.)
| | - Ke Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (Y.H.); (K.Z.); (C.L.); (B.L.); (M.L.); (C.L.)
| | - Chenyang Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (Y.H.); (K.Z.); (C.L.); (B.L.); (M.L.); (C.L.)
| | - Binshuo Liu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (Y.H.); (K.Z.); (C.L.); (B.L.); (M.L.); (C.L.)
| | - Ming Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (Y.H.); (K.Z.); (C.L.); (B.L.); (M.L.); (C.L.)
| | - Chen Lyu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (Y.H.); (K.Z.); (C.L.); (B.L.); (M.L.); (C.L.)
| | - Lei Sun
- Liaoning Provincial Mineral Exploration Institute Co., Ltd., Shenyang 110031, China
| | - Shuang Zhong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
| |
Collapse
|
29
|
Sun Z, Zhang L, Dong D, Zhang W, Guo Z. Coupled multimedia fate and bioaccumulation models for predicting fate of florfenicol and fluoroquinolones in water and fish organs in the seasonal ice-sealed reservoir. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132063. [PMID: 37463559 DOI: 10.1016/j.jhazmat.2023.132063] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/02/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023]
Abstract
Ice formation in reservoirs could promote the accumulation of antibiotics in fish, potentially leading to elevated concentrations in fish muscles, kidneys, and livers. However, for the seasonal ice-sealed reservoirs, antibiotic sampling and detecting conditions in water and fish are normally limited by the ice cover. Additionally, previous studies on the prediction of antibiotics accumulated in seasonal ice-sealed reservoir fish are scarce. This study presents a coupled model incorporating a multimedia fate model and a bioaccumulation model to predict antibiotic fate in water and the muscles, kidneys, and livers of fish in seasonal ice-sealed reservoirs. Prediction concentrations of florfenicol were higher than those of ofloxacin and norfloxacin in both water and fish from the seasonal ice-sealed reservoir. Log bioaccumulation factors of antibiotics in Cyprinus carpio and Hypophthalmichthys nobilis in January 2021 were higher than those in October 2020 by 21.5% and 12.6%, respectively. Antibiotics mean transfer fluxes from water to fish muscles, kidneys, and livers increased owing to the reservoir ice-cover formation date advancing by 13.0%, 77.1%, and 61.0%, respectively. This work provides a modeling tool for investigating the fate and mass transfer flux of antibiotics in biological and environmental phases in seasonal ice-sealed reservoirs.
Collapse
Affiliation(s)
- Zujian Sun
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Liwen Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Deming Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Wenming Zhang
- Dept. of Civil and Environmental Engineering, University of Alberta, Edmonton AB T6G 1H9, Canada
| | - Zhiyong Guo
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China.
| |
Collapse
|
30
|
Huo WB, Jia PP, Li WG, Xie XY, Yang G, Pei DS. Sulfonamides (SAs) exposure causes neurobehavioral toxicity at environmentally relevant concentrations (ERCs) in early development of zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106614. [PMID: 37390778 DOI: 10.1016/j.aquatox.2023.106614] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 07/02/2023]
Abstract
Antibiotics, due to their stability and persistence in the environment, can have chronic impacts on various ecosystems and organisms. However, the molecular mechanisms underlying antibiotic toxicity at environmental concentrations, particularly the neurotoxic effects of sulfonamides (SAs), remain poorly understood. In this study, we assessed the neurotoxicity of six SAs including the sulfadiazine (SD), sulfathiazole (ST), sulfamethoxazole (SMX), sulfisoxazole (SIZ), sulfapyridine (SPD), and sulfadimethoxine (SDM) by exposing zebrafish to environmentally relevant concentrations (ERCs). The SAs exhibited concentration-dependent effects on zebrafish behavior, including spontaneous movement, heartbeat, survival rate, and body metrics, ultimately leading to depressive-like symptoms and sublethal toxicity during early life stages. Notably, even the lowest SA concentration (0.05 μg/L) induced neurotoxicity and behavioral impairment in zebrafish. We observed a dose-dependent increase in melancholy behavior as indicated by increased resting time and decreased motor activity in zebrafish larvae. Following exposure to SAs from 4 to 120 h post-fertilization (hpf), key genes involved in folate synthesis [sepiapterin reductase a (spra), phenylalanine hydroxylase (pah), tyrosine hydroxylase (th), and tryptophan hydroxylase 1 (tryptophan 5-monooxygenase) a tryptophan hydroxylase (tph1a)] and carbonic anhydrase (CA) metabolism [carbonic anhydrase II (ca2), carbonic anhydrase IV a (ca4a), carbonic anhydrase VII (ca7), and carbonic anhydrase XIV (ca14)] were significantly downregulated or inhibited at different concentrations. Our findings demonstrate that acute exposure to six SAs at environmentally relevant concentrations induces developmental and neurotoxic effects in zebrafish, impacting folate synthesis pathways and CA metabolism. These results provide valuable insights into the potential role of antibiotics in depressive disorders and neuroregulatory pathways.
Collapse
Affiliation(s)
- Wen-Bo Huo
- College of Life Science, Henan Normal University, Xinxiang 453007, China; School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Wei-Guo Li
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Xiao-Yu Xie
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Guan Yang
- Environmental Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
31
|
Zhang W, Teng M, Zhao L, Chen L. Study effect and mechanism of ofloxacin and levofloxacin on development of Rana nigromaculata tadpoles based on the hypothalamus-pituitary-thyroid axis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:114985. [PMID: 37178612 DOI: 10.1016/j.ecoenv.2023.114985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
Excessive antibiotics transferred into the aquatic environment may affect the development of amphibians. Previous studies on the aquatic ecological risk of ofloxacin generally ignored its enantiomers. The purpose of this study was to compare the effects and mechanisms of ofloxacin (OFL) and levofloxacin (LEV) on the early development of Rana nigromaculata. After 28-day exposure at environmental levels, we found that LEV exerted more severe inhibitory effects on the development of tadpoles than OFL. According to the enrichment results of differentially expressed genes in the LEV and OFL treatments, LEV and OFL had different effects on the thyroid development of tadpoles. dio2 and trh were affected by the regulation of dexofloxacin instead of LEV. At the protein level, LEV was the main component that affected thyroid development-related protein, while dexofloxacin in OFL had little effect on thyroid development. Furthermore, molecular docking results further confirmed that LEV was a major component affecting thyroid development-related proteins, including DIO and TSH. In summary, OFL and LEV regulated the thyroid axis by differential binding to DIO and TSH proteins, thereby exerting differential effects on the thyroid development of tadpoles. Our research is of great significance for comprehensive assessment of chiral antibiotics aquatic ecological risk.
Collapse
Affiliation(s)
- Wenjun Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lihui Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Li Chen
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
32
|
Wu X, Yuan Z, Wang S. Prioritization, sources, and ecological risk of typical antibiotics in the Huai River, a Chinese major river: a warning about aquaculture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64254-64264. [PMID: 37069373 DOI: 10.1007/s11356-023-27059-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/12/2023] [Indexed: 05/11/2023]
Abstract
This is the first comprehensive report on antibiotics in the Huai River, a major Chinese river. To illuminate the concentrations, prioritization, spatial distributions, sources, and ecological risks of antibiotics, surface water samples were collected and three types of most widely used antibiotics (16 sulfonamides, 8 tetracyclines, and 14 quinolones) were analyzed. The results indicated that concentrations of ∑quinolones (86 ± 31 ng/L) > ∑tetracyclines (20 ± 13 ng/L) > ∑sulfonamides (11 ± 3.7 ng/L). Oxolinic acid (OXA), cinoxacin(CINX), norfloxacin (NFX), and methacycline (MTC) were the priority antibiotics with mean concentrations > or close to 10 ng/L, however, they were rarely included as target compounds in most previous Chinese investigations. Different spatial distributions of antibiotics were discovered across three reaches separated by two sluices, demonstrating that the sluices may impact antibiotic dissemination. According to the results of the source analysis, the aquaculture industry was the major source of observed antibiotics (49%), followed by livestock & poultry farming (26%) and mixed sources (25%). Because commercial fishing in the Huai River has been prohibited, the aquaculture industry will expand in the next years, and antibiotic contamination caused by the aquaculture industry deserves more attention. The risk quotients were calculated by comparing observed antibiotics to predicted no-effect concentrations, and the results showed that observed antibiotics posed negligible or low integrated risks for Green algae, and medium or low integrated risks for Daphnia magna.
Collapse
Affiliation(s)
- Xiaoguo Wu
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241002, People's Republic of China.
- Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui, 241002, People's Republic of China.
| | - Zijiao Yuan
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241002, People's Republic of China
- Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui, 241002, People's Republic of China
| | - Shanshan Wang
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241002, People's Republic of China
- Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui, 241002, People's Republic of China
| |
Collapse
|
33
|
Yuan X, Lv Z, Zhang Z, Han Y, Liu Z, Zhang H. A Review of Antibiotics, Antibiotic Resistant Bacteria, and Resistance Genes in Aquaculture: Occurrence, Contamination, and Transmission. TOXICS 2023; 11:toxics11050420. [PMID: 37235235 DOI: 10.3390/toxics11050420] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
Antibiotics are commonly used to prevent and control diseases in aquaculture. However, long-term/overuse of antibiotics not only leaves residues but results in the development of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Antibiotics, ARB, and ARGs are widespread in aquaculture ecosystems. However, their impacts and interaction mechanisms in biotic and abiotic media remain to be clarified. In this paper, we summarized the detection methods, present status, and transfer mechanisms of antibiotics, ARB, and ARGs in water, sediment, and aquaculture organisms. Currently, the dominant methods of detecting antibiotics, ARB, and ARGs are UPLC-MS/MS, 16S rRNA sequencing, and metagenomics, respectively. Tetracyclines, macrolides, fluoroquinolones, and sulfonamides are most frequently detected in aquaculture. Generally, antibiotic concentrations and ARG abundance in sediment are much higher than those in water. Yet, no obvious patterns in the category of antibiotics or ARB are present in organisms or the environment. The key mechanisms of resistance to antibiotics in bacteria include reducing the cell membrane permeability, enhancing antibiotic efflux, and structural changes in antibiotic target proteins. Moreover, horizontal transfer is a major pathway for ARGs transfer, including conjugation, transformation, transduction, and vesiculation. Identifying, quantifying, and summarizing the interactions and transmission mechanisms of antibiotics, ARGs, and ARB would provide useful information for future disease diagnosis and scientific management in aquaculture.
Collapse
Affiliation(s)
- Xia Yuan
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou 311121, China
| | - Ziqing Lv
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou 311121, China
| | - Zeyu Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou 311121, China
| | - Yu Han
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou 311121, China
| | - Zhiquan Liu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou 311121, China
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China
| | - Hangjun Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou 311121, China
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China
| |
Collapse
|
34
|
Zhang C, Chen Y, Chen S, Guan X, Zhong Y, Yang Q. Occurrence, risk assessment, and in vitro and in vivo toxicity of antibiotics in surface water in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114817. [PMID: 36963185 DOI: 10.1016/j.ecoenv.2023.114817] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/09/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
Antibiotics have been widely detected in the water environment and thus pose a potential threat to human health. Although antibiotics have health-promoting properties, whether and how they affect health at environmental concentrations remains uncharacterised. We detected antibiotics in surface water and groundwater in China. Sulfonamides (851 ng/L) and tetracyclines (1322 ng/L) showed the highest concentrations in surface water, while the highest concentration of sulfonamides detected in groundwater was 250 ng/L. We analysed the distribution of four classes of antibiotics (sulfonamides, tetracyclines, macrolides, and quinolones) and evaluated the associated health risks in the surface water of seven cities. We found that antibiotic pollution caused health risks to the 0-3-months age group, but not to other age groups. We further demonstrated that simulated long-term exposure to environmental concentrations of antibiotics had concentration-dependent toxic effects on L-02 hepatocytes, affected cell proliferation, and induced oxidative damage and DNA damage. Chronic exposure to mixed sulfonamides affected growth, caused liver damage, and reduced the abundance of intestinal flora in mice. Under exposure to antibiotics, the abundance of Helicobacter pylori in the gut flora significantly increased and posed a health risk to humans. These results indicated that exposure to antibiotics at environmental concentrations can cause oxidative damage and inflammation both in vitro and in vivo. These findings add to the body of basic data on the distribution of antibiotics in the water environment, and provide a scientific basis for the evaluation of antibiotic toxicity.
Collapse
Affiliation(s)
- Cheng Zhang
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Yuyang Chen
- School of Anesthesiology, Southern Medical University, Guangzhou 510515, China
| | - Sili Chen
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Xinchao Guan
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Yi Zhong
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; Institute of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Qiaoyuan Yang
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China; Institute of Public Health, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
35
|
Mohd Ali NS, Saad MZ, Azmai MNA, Salleh A, Zulperi ZM, Manchanayake T, Zahaludin MAD, Basri L, Mohamad A, Md Yasin IS. Immunogenicity and Efficacy of a Feed-Based Bivalent Vaccine against Streptococcosis and Motile Aeromonad Septicemia in Red Hybrid Tilapia ( Oreochromis sp.). Animals (Basel) 2023; 13:ani13081346. [PMID: 37106909 PMCID: PMC10135192 DOI: 10.3390/ani13081346] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 04/29/2023] Open
Abstract
Streptococcosis and motile Aeromonad septicemia (MAS) are the main bacterial diseases in tilapia culture worldwide, causing significant economic losses. Vaccination is an effective method of preventing diseases and contributes to economic sustainability. This study investigated the immuno-protective efficacy of a newly developed feed-based bivalent vaccine against streptococcosis and MAS in red hybrid tilapia. The feed-based bivalent vaccine pellet was developed by incorporating the formalin-killed S. agalactiae and A. hydrophila antigens into a commercial feed pellet with palm oil as the adjuvant. The bivalent vaccine was subjected to feed quality analyses. For immunological analyses, 900 fish (12.94 ± 0.46 g) were divided into two treatment groups in triplicate. Fish in Group 1 were unvaccinated (control), while those in Group 2 were vaccinated with the bivalent vaccine. The bivalent vaccine was delivered orally at 5% of the fish's body weight for three consecutive days on week 0, followed by boosters on weeks 2 and 6. Lysozyme and enzyme-linked immunosorbent assays (ELISAs) on serum, gut lavage, and skin mucus were performed every week for 16 weeks. Lysozyme activity in vaccinated fish was significantly (p ≤ 0.05) higher than in unvaccinated fish following vaccination. Similarly, the IgM antibody levels of vaccinated fish were significantly (p ≤ 0.05) higher after vaccination. The bivalent vaccine provided high protective efficacy against S. agalactiae (80.00 ± 10.00%) and A. hydrophila (90.00 ± 10.00%) and partial cross-protective efficacy against S. iniae (63.33 ± 5.77%) and A. veronii (60.00 ± 10.00%). During the challenge test, fewer clinical and gross lesions were observed in vaccinated fish compared with unvaccinated fish. Histopathological assessment showed less severe pathological changes in selected organs than the unvaccinated fish. This study showed that vaccination with a feed-based bivalent vaccine improves immunological responses in red hybrid tilapia, and thus protects against streptococcosis and MAS.
Collapse
Affiliation(s)
- Nur Shidaa Mohd Ali
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Zamri Saad
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohammad Noor Amal Azmai
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Annas Salleh
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Veterinary, Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Zarirah Mohamed Zulperi
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Tilusha Manchanayake
- Department of Veterinary, Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Muhammad Amir Danial Zahaludin
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Lukman Basri
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Aslah Mohamad
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Ina Salwany Md Yasin
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
36
|
Mai Z, Xiong X, Hu H, Jia J, Wu C, Wang G. Occurrence, distribution, and ecological risks of antibiotics in Honghu Lake and surrounding aquaculture ponds, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50732-50742. [PMID: 36808535 DOI: 10.1007/s11356-023-25931-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/09/2023] [Indexed: 04/16/2023]
Abstract
Antibiotics are largely applied in aquaculture to increase production and control diseases, while how the antibiotics used in pond farming influence the distribution of antibiotics in receiving water seasonally is still not well understood. In this study, the variations of 15 frequently used antibiotics in Honghu Lake and surrounding ponds were investigated seasonally to figure out the impact of pond farming on antibiotics distributions in Honghu Lake. Results showed that the antibiotic concentrations in fish ponds ranged from 11.76 to 389.8 ng/L, while in crab and crayfish ponds were lower than 30.49 ng/L. The predominant antibiotic in fish ponds was florfenicol, followed by sulfonamides and quinolones, with generally low concentrations. Sulfonamides and florfenicol were the main antibiotics in Honghu Lake, affected by the surrounding aquaculture water partially. The antibiotics residue in aquaculture ponds showed obvious seasonal characteristics, with the lowest in spring. From summer, the concentrations of antibiotics in aquaculture ponds gradually increased and reached a peak in autumn, and the seasonal variation of antibiotics in the receiving lake was also related to the antibiotics in the aquaculture ponds. Risk assessment analysis showed that antibiotics such as enrofloxacin and florfenicol in fish ponds posed a medium and low risk to algae, and Honghu Lake acted as a natural reservoir of antibiotics and poses increased risks to algae. In general, our study demonstrated that aquaculture represented by pond farming brought significant risks of antibiotic pollution to natural water bodies. Therefore, reasonable control of the fish antibiotics usage in autumn and winter, as well as the rational use of antibiotics in aquaculture and the use of antibiotics before pond cleaning, is required to reduce the migration of antibiotics from aquaculture surface water to the receiving lake.
Collapse
Affiliation(s)
- Zhan Mai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xiong Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan, 430072, China
| | - Hongjuan Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan, 430072, China
| | - Jia Jia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan, 430072, China.
| | - Chenxi Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan, 430072, China
| | - Guitang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan, 430072, China
| |
Collapse
|
37
|
Zhang Y, Lv Z, Li X, Zhao K, Huang S, Chen Y, Fu Y, Peng C, Cao T, Ke Y, Xia X. Occurrence and risk assessment of antibiotics in feces of elderly individuals in Shenzhen. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:44943-44951. [PMID: 36697981 DOI: 10.1007/s11356-023-25522-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
The occurrence of antibiotics in the feces of elderly individuals in Shenzhen, China, was investigated by monitoring 78 compounds to understand the adverse effects and its association with antibiotic residues in animal products collected from local markets. In total, 18 compounds belonging to 5 classes of antibiotics were identified in 74 of 140 fecal samples. Furthermore, 17.9% of the fecal samples contained at least two antibiotics, and 14.3% of the samples showed antibiotic concentrations higher than 100 μg/kg. Cephalothin exhibited the highest detection frequency (22.1%), followed by azithromycin (15.7%) and tilmicosin (12.9%). Oxytetracycline, norfloxacin, and azithromycin showed extremely high concentrations (> 1000 μg/kg). Eight antibiotics were detected in the animal products, with detection frequencies ranging from 4.8 to 40.0%. Five antibiotics exhibited similar detection frequencies and strong correlations between the human fecal and animal product samples. Health risk assessment based on hazard quotients showed that ciprofloxacin in animal products and human feces posed a medium and high risk, respectively. The hazard quotients of oxytetracycline, norfloxacin, and azithromycin in the feces were greater than 1, indicating a high health risk. These findings suggest that the elderly individuals were frequently exposed to antibiotics via the food chain and faced health risks posed by these antibiotics.
Collapse
Affiliation(s)
- Yuan Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Ziquan Lv
- Central laboratory of Shenzhen Center for Disease Control and Prevention, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Xiaowei Li
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China
| | - Kunxia Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Suli Huang
- Central laboratory of Shenzhen Center for Disease Control and Prevention, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
- Department of Environmental Health, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yuhua Chen
- Central laboratory of Shenzhen Center for Disease Control and Prevention, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
- Chemical Analysis & Physical Testing Institute, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yulin Fu
- Central laboratory of Shenzhen Center for Disease Control and Prevention, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Changfeng Peng
- Central laboratory of Shenzhen Center for Disease Control and Prevention, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Tingting Cao
- Central laboratory of Shenzhen Center for Disease Control and Prevention, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yuebin Ke
- Central laboratory of Shenzhen Center for Disease Control and Prevention, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Xi Xia
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
38
|
Chen C, Luo J, Bu C, Zhang W, Ma L. Identifying unusual human exposures to pesticides: Qilu Lake Basin as an overlooked source. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159864. [PMID: 36461573 DOI: 10.1016/j.scitotenv.2022.159864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Although common exposure pathways of pesticides (e.g., crop consumption) have been intensively studied, we noticed that some unusual occupational exposures to pesticides were overlooked and could lead to unacceptable health risks. In this study, we presented information on the occurrence of 5 triazine pesticides (TRIs) and 3 neonicotine pesticides (NEOs) detected in water samples of Qilu Lake Basin in China. We identified the unusual occupational exposure scenarios as (i) adult females washing the harvested vegetables, and (ii) adult males catching fish in Qilu Lake; next, the health risk assessment was conducted using collected data. The results showed that the mean Σ5 TRI concentrations ranged from 505.87 ng/L in spring to 864.04 ng/L in summer, and the river water samples around Qilu Lake had the highest concentrations. The mean concentrations of Σ3 NEOs ranged from 885.86 ng/L in winter to 2593.04 ng/L in summer. Occupational exposed populations were bearing one to two orders of magnitude higher exposure doses than local adults. Although the carcinogenic risks caused by atrazine in water were at acceptable levels for local residents, all the occupational exposed males were at moderate risks, and 15.78 %-43.50 % of occupational exposed females in different seasons were even at high risks. The non-carcinogenic risks caused by pesticides in water were all at negligible levels, but the occupational exposed population were facing up to two orders of magnitude higher risks than local residents. This study established a sound basis for further decision-making to take necessary action on protection of sensitive population groups.
Collapse
Affiliation(s)
- Chong Chen
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jiahong Luo
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Chengcheng Bu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Weiwei Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Limin Ma
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
39
|
Kitamura RSA, Vicentini M, Bitencourt V, Vicari T, Motta W, Brito JCM, Cestari MM, Prodocimo MM, de Assis HCS, Gomes MP. Salvinia molesta phytoremediation capacity as a nature-based solution to prevent harmful effects and accumulation of ciprofloxacin in Neotropical catfish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:41848-41863. [PMID: 36639588 DOI: 10.1007/s11356-023-25226-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Phytoremediation has been a potential solution for the removal of pharmaceuticals from water. Here, we evaluated the toxicological safety of ciprofloxacin-contaminated water treated by 96 h with Salvinia molesta. The Neotropical catfish Rhamdia quelen was used as a model, and the potential of the phytoremediation technique for mitigating the drug accumulation in the fishes was also studied. Fish exposed to Cipro (1 and 10 µg·L-1) in untreated water showed toxic responses (alteration of hematological, genotoxicity, biochemical, and histopathological biomarkers) and accumulated Cipro in their muscles at concentrations high for human consumption (target hazardous quotient > 1). Fish exposed to water treated with S. molesta showed no toxic effect and no accumulation of Cipro in their tissues. This must be related to the fact that S. molesta removed up to 97% of Cipro from the water. The decrease in Cipro concentrations after water treatment with S. molesta not only prevented the toxic effects of Cipro on R. quelen fish but also prevented the antimicrobial accumulation in fish flesh, favouring safe consumption by humans. For the very first time, we showed the potential of phytoremediation as an efficiently nature-based solution to prevent environmental toxicological effects of antimicrobials to nontarget organisms such as fish and humans. The use of S. molesta for Cipro-removal from water is a green technology to be considered in the combat against antimicrobial resistance.
Collapse
Affiliation(s)
- Rafael Shinji Akiyama Kitamura
- Ecology and Conservation Post-Graduation Program, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil.
- Department of Pharmacology, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil.
- Department of Botany, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil.
| | - Maiara Vicentini
- Ecology and Conservation Post-Graduation Program, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil
- Department of Pharmacology, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil
| | - Vitória Bitencourt
- Department of Pharmacology, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil
| | - Taynah Vicari
- Department of Genetics, Federal University of Paraná, PO Box 19071, Curitiba, PR, 81530-980, Brazil
| | - Welton Motta
- Department of Genetics, Federal University of Paraná, PO Box 19071, Curitiba, PR, 81530-980, Brazil
| | | | - Marta Margarete Cestari
- Department of Genetics, Federal University of Paraná, PO Box 19071, Curitiba, PR, 81530-980, Brazil
| | - Maritana Mela Prodocimo
- Department of Cell Biology, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81537-980, Brazil
| | - Helena Cristina Silva de Assis
- Ecology and Conservation Post-Graduation Program, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil
- Department of Pharmacology, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil
| | - Marcelo Pedrosa Gomes
- Ecology and Conservation Post-Graduation Program, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil
- Department of Botany, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil
| |
Collapse
|
40
|
Shi BS, Cheng XJ, Chen HZ, Xie J, Zhou ZH, Jiang SQ, Peng XM, Zhang YD, Zhu DT, Lu ZY. Occurrence, source tracking and removal of antibiotics in recirculating aquaculture systems (RAS) in southern China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116311. [PMID: 36162319 DOI: 10.1016/j.jenvman.2022.116311] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/03/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The recirculating aquaculture system (RAS) has attracted much attention in China as a way to rapidly transform and upgrade aquaculture ponds to realize zero-emissions of pollutants in aquaculture tail water. Tail water purification ponds (TWPPs) play an important role in the treatment of aquaculture wastewater. However, until now, there have been few reports on the occurrence of antibiotics in RAS and the removal of antibiotics from the TWPPs of RAS. Therefore, this study focused on the occurrence of antibiotics in a typical ecological RAS. For comparison, the same measurements were simultaneously carried out in nearby open aquaculture ponds and rivers. The pollution level and spatial distribution of antibiotics in the RAS and the removal of antibiotics in the TWPPs were explored. The results showed that (1) eleven and twelve antibiotics were detected in water and sediment samples in the RAS, respectively, but no antibiotics were found in fish muscles and feed. Erythromycin (ERY), lincomycin (LIN), and ciprofloxacin (CFX) were the three main types of antibiotics found in water and sediment samples. (2) The TWPPs of the RAS can effectively remove antibiotics in aquaculture water. The antibiotic concentration in recirculating aquaculture ponds of the RAS was as high as 180 ng/L. After treatments in the TWPPs, the antibiotic concentration of aquaculture water decreased to 81.6 ng/L (3) The antibiotic concentrations in recirculating aquaculture ponds (25.2-180 ng/L) were lower than those in the nearby open aquaculture ponds (126-267.3 ng/L), and the concentration of antibiotics in the sediments of recirculating aquaculture ponds was up to 22.9 ng/g, while that in TWPPs was as high as 56.1 ng/g. In conclusion, the antibiotic residues in the RAS were low after antibiotics were banned in feed in China, and the removal of antibiotics in the TWPPs was more pronounced. Furthermore, cross-contamination was found between the RAS, surrounding open aquaculture ponds and the river, and the water supply of the RAS was likely to be the main contributor of antibiotics in the aquaculture environments. This study can help the government formulate discharge standards for antibiotics in aquaculture and also provide a reference for the transformation and upgrading of aquaculture ponds to achieve a zero-emission aquaculture mode.
Collapse
Affiliation(s)
- Bao-Shan Shi
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China; State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou, 510640, China
| | - Xiang-Ju Cheng
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China; State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou, 510640, China.
| | - Hong-Zhan Chen
- Guangzhou Ecological and Environmental Monitoring Center of Guangdong Province, Guangzhou, 510030, China
| | - Jun Xie
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Zhi-Hong Zhou
- Guangzhou Ecological and Environmental Monitoring Center of Guangdong Province, Guangzhou, 510030, China
| | - Shen-Qiong Jiang
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China
| | - Xiao-Ming Peng
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China
| | - Yu-da Zhang
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China
| | - Dan-Tong Zhu
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China; State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou, 510640, China
| | - Zhuo-Yin Lu
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
41
|
Wu S, Hua P, Gui D, Zhang J, Ying G, Krebs P. Occurrences, transport drivers, and risk assessments of antibiotics in typical oasis surface and groundwater. WATER RESEARCH 2022; 225:119138. [PMID: 36191526 DOI: 10.1016/j.watres.2022.119138] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/01/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Intensive use of antibiotics affects biogeochemical cycles and stimulates the evolution of antibiotic resistance, thus threatening global health and social development. The spatiotemporal distributions of antibiotics in single aqueous matrices have been widely documented; however, their occurrence in surface-groundwater systems has received less attention, especially in arid regions that usually have fragile ecosystems. Therefore, we investigated the occurrence of thirty-one antibiotics in the surface water and adjacent groundwater in the Xinjiang Uygur Autonomous Region, China. The results showed that the total concentrations of detected antibiotics varied from 17.37 to 84.09 ng L-1 and from 16.38 to 277.41 ng L-1 in surface and groundwater, respectively. The median concentration of antibiotics showed the pattern of norfloxacin (4.86 ng L-1) > ciprofloxacin (3.93 ng L-1) > pefloxacin (3.39 ng L-1) in surface water; whereas in groundwater, this was in the order of pefloxacin (6.30 ng L-1) > norfloxacin (4.33 ng L-1) > ciprofloxacin (2.68 ng L-1). Heatmap analysis indicated that vertical infiltration had limited effects on antibiotic exchange in surface-ground water systems because of the high potential evaporation and low water storage. Redundancy analysis suggested that the oxidation-reduction potential (p < 0.01) and dissolved oxygen (p < 0.05) jointly affected the distribution of antibiotics in surface water. Ecological risk assessment showed that antibiotics in 98.9% of surface water and 99.1% of groundwater did not pose significant risks to aquatic species. The findings of this study will help develop effective mitigation strategies for antibiotics in aquatic environments.
Collapse
Affiliation(s)
- Shixue Wu
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, 01062 Dresden, Germany
| | - Pei Hua
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, 510006 Guangzhou, China; School of Environment, South China Normal University, University Town, 510006 Guangzhou, China.
| | - Dongwei Gui
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011 Urumqi, China
| | - Jin Zhang
- Yangtze Institute for Conservation and Development, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, 210098 Nanjing, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011 Urumqi, China
| | - Guangguo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, 510006 Guangzhou, China; School of Environment, South China Normal University, University Town, 510006 Guangzhou, China
| | - Peter Krebs
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
42
|
Oregano Oil Combined with Macleaya Cordata Oral Solution Improves the Growth Performance and Immune Response of Broilers. Animals (Basel) 2022; 12:ani12182480. [PMID: 36139338 PMCID: PMC9495209 DOI: 10.3390/ani12182480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Developing safe and effective antibiotic growth promoters (AGPs) substitutes is particularly important to improve animal health and production performance. As an essential plant oil, the oregano oil's main bioactive substance is carvacrol, which has been proven to have antioxidant, anti-inflammatory, antibacterial, and antiviral properties. The sanguinarine from macleaya cordata is the primary bioactive substance. Sanguinarine has anti-tumor, immune-enhancing, antibacterial, and anti-inflammatory effects. However, it has not been reported whether the compatibility of oregano oil and macleaya cordata extract could produce better results. This study is the first to report the effect of oregano oil combined with macleaya cordata oral solution on the growth of broilers. The oregano oil combined with macleaya cordata oral solution significantly improved the growth performance of broilers. At the same time, serum biochemical indices, serum antioxidant indices, serum immune indices, serum cytokines, and intestinal morphology were significantly improved. In summary, our results demonstrated that the mixed solution of oregano oil and macleaya cordata has substantial potential to be an alternative to AGPs for broilers to reduce costs and improve benefits. This study provides basic data and technical support for further research. Abstract The abuse of AGPs in animal husbandry has led to severe problems such as drug resistance and ecological, and environmental destruction, which seriously threaten human health and public health security. In recent years, extracts of oregano oil and macleaya cordata have become a hot spot in the research and application of AGP substitutes for their safety and high efficiency. This study is the first to report the effect of oregano oil combined with macleaya cordata oral solution on broiler growth performance. A total of 960 one-day-old broiler chickens were randomly divided into four treatment groups (240 chickens per group). Each treatment group was divided into six replicate groups (40 birds per replicate group). There were four groups in this study: the solvent control group, the oregano essential oil combined with macleaya cordata extract oral solution group (OS group), the oregano essential oil oral solution group (OEO group), and the macleaya cordata extract oral solution group (MCE group). Two chickens from each replicate group were collected and mixed into a composite sample. Six composite samples were obtained for each treatment group. The results showed that the oregano oil combined with macleaya cordata oral solution significantly improved the growth performance of broiler chickens. At the same time, serum biochemical indices, serum antioxidant indices, serum immune indices, serum cytokines, and intestinal morphology were significantly improved by the OS group. This study shows that oregano oil combined with macleaya cordata oral solution has substantial potential to be an alternative to AGPs for broilers.
Collapse
|
43
|
Chen C, Luo J, Shu X, Dai W, Guan M, Ma L. Spatio-temporal variations and ecological risks of organochlorine pesticides in surface waters of a plateau lake in China. CHEMOSPHERE 2022; 303:135029. [PMID: 35605728 DOI: 10.1016/j.chemosphere.2022.135029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/13/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Qilu Lake is one of the 9 plateau lakes in Yunnan, China, with a lake surface altitude of 1796.62 m above sea level. In spite of the importance and agriculturally-intensive phenomenon in Qilu Lake Basin, few studies have provided a modern evaluation of pesticide residues and potential effects to local aquatic organisms. The primary goal of this study was to determine the spatio-temporal variations of organochlorine pesticides (OCPs) in this area, and to further assess the related ecological risks. Of the 25 OCPs analyzed, 14 were detected, and the concentrations of ∑25OCPs were highest in the upstream of rivers, followed by regions close to the lake shore, and the lowest concentrations were found in Qilu Lake in every season except winter. The concentrations of ∑25OCPs were the highest in summer, and the lowest in winter. OCP concentrations in spring and in autumn were similar. 4,4'-DDD, γ-HCH, HCB, trans-chlordane, and cis-chlordane were 5 OCPs with relatively high risk in Qilu Lake Basin. Interestingly, higher OCP concentrations do not necessarily correspond to higher ecological risk levels. Low predicted no-effect concentration (PNEC) values and relatively high toxicity of these OCPs led to their high risk quotient (RQ) values. This work further illustrated that although OCPs have been banned for many years, they were still frequently detected in surface waters, and caused risks to aquatic animals.
Collapse
Affiliation(s)
- Chong Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Jiahong Luo
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Xingquan Shu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Yunnan Construction and Investment Holding Group Co., Ltd., Kunming, 650501, PR China
| | - Wenshao Dai
- Yunnan Construction and Investment Holding Group Co., Ltd., Kunming, 650501, PR China
| | - Mengsha Guan
- Yunnan Construction and Investment Holding Group Co., Ltd., Kunming, 650501, PR China
| | - Limin Ma
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China.
| |
Collapse
|
44
|
Raza S, Choi S, Lee M, Shin J, Son H, Wang J, Kim YM. Spatial and temporal effects of fish feed on antibiotic resistance in coastal aquaculture farms. ENVIRONMENTAL RESEARCH 2022; 212:113177. [PMID: 35346654 DOI: 10.1016/j.envres.2022.113177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
For the first time, both spatial and temporal effects of fish feed on changes in abundance of antibiotic resistance genes (ARGs) were investigated in South Korea via quantifying ARGs and analyzing physicochemical parameters in the influent (IN) and effluent before (BF) and 30 min after (AF) the fish feeding time of sixteen flow-through fish farms. The absolute abundance of ARGs in AF samples was 5 times higher than in BF and 12 times higher than in IN samples. Values of physicochemical parameters such as ammonia, total nitrogen, suspended solids and turbidity in the effluent significantly increased by 21.6, 4.2, 2.6 and 1.65 times, respectively, after fish feeding. Spatially, the fish farms on Jeju Island exhibited higher relative abundance (3.02 × 10-4 - 6.1 × 10-2) of ARGs compared to the farms in nearby Jeollanam-do (3.4 × 10-5 - 8.3 × 10-3). Seasonally, samples in summer and autumn showed a higher abundance of ARGs than in winter and spring. To assess risk to the food chain as well as public health, further studies are warranted to explore the pathogenic potential of these ARGs.
Collapse
Affiliation(s)
- Shahbaz Raza
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Sangki Choi
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Minjeong Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Jingyeong Shin
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Heejong Son
- Busan Water Quality Institute, Busan, 50804, Republic of Korea
| | - Jinhua Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, China.
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
45
|
Shen W, Chen Y, Wang N, Wan P, Peng Z, Zhao H, Wang W, Xiong L, Zhang S, Liu R. Seasonal variability of the correlation network of antibiotics, antibiotic resistance determinants, and bacteria in a wastewater treatment plant and receiving water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115362. [PMID: 35642820 DOI: 10.1016/j.jenvman.2022.115362] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Sewage treatment plants are an essential source of antibiotics, antibiotic resistance determinants, and bacteria in environmental waters. However, it is still unclear whether they can maintain a relatively stable relationship in wastewater and environmental waters. This study analyzed the removal capacity of the above three pollutants in the sewage treatment plant in summer and their impact on environmental waters, and then examines the relationship between the three contaminants in the wastewater and environmental waters in summer and winter based on our previous study. The results found that the removal capacity of bacteria in summer was poor, the concentration of fluoroquinolone in the effluent was higher than that in influent, and the abundance of intI1, tetW, qnrB, and ermB increased after wastewater treatment. Proteobacteria and Bacteroides were the main bacteria that constitute the correlation network between bacteria, and they existed stably in summer and winter. However, fluoroquinolones occupied a significant position in the determinant network of antibiotics and antibiotic resistance in summer and winter. There are fewer correlation between antibiotics and antibiotics resistance determinants in winter. Interestingly, the relationship between bacteria, antibiotics, and antibiotic resistance determinants was a mainly positive correlation in summer and negative correlation in winter. This study analyzed the relationship between bacteria, antibiotics, and antibiotic resistance determinants that were stable in the wastewater and environmental waters and pointed out the direction for subsequent targeted seasonal control of novel pollutants in wastewater and environmental waters.
Collapse
Affiliation(s)
- Weitao Shen
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China; Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Yu Chen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Ning Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Ping Wan
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Zhenyan Peng
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Huajin Zhao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Wei Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Lilin Xiong
- Department of Environmental Hygiene, Nanjing Center for Disease Control and Prevention, Nanjing, 210042, China
| | - Shenghu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Ran Liu
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
46
|
On-Farm Practices Associated with Multi-Drug-Resistant Escherichia coli and Vibrio parahaemolyticus Derived from Cultured Fish. Microorganisms 2022; 10:microorganisms10081520. [PMID: 36013938 PMCID: PMC9414622 DOI: 10.3390/microorganisms10081520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023] Open
Abstract
Aquaculture activities have been implicated as responsible for the emergence of antimicrobial resistance (AMR), leading to broad dissemination and transference of antibiotic resistance to pathogens that affect humans and animals. The current study investigates the on-farm practices and environmental risk factors that can potentially drive the development and emergence of multi-drug-resistant (MDR) Escherichia coli and Vibrio parahaemolyticus in the aquaculture system. A cross-sectional study was conducted on 19 red hybrid tilapia (Oreochromis spp.) and 13 Asian seabass (Lates calcarifer, Bloch 1970) farms on the west coast of peninsular Malaysia. Data were collected using a structured questionnaire pertaining to farm demography, on-farm management practices and environmental characteristics. Multi-drug-resistant E. coli (n = 249) and V. parahaemolyticus (n = 162) isolates were analyzed using multi-level binary logistic regression to identify important drivers for the occurrence and proliferation of the MDR bacteria. On-farm practices such as manuring the pond (OR = 4.5; 95% CI = 1.21–16.57) were significantly associated with the occurrence of MDR E. coli, while earthen ponds (OR = 8.2; 95% CI = 1.47–45.2) and human activity adjacent to the farm (OR = 4.6; 95% CI = 0.75–27.98) were associated with an increased likelihood of MDR V. parahaemolyticus. Considering the paucity of information on the drivers of AMR in the aquaculture production in this region, these findings indicate the targeted interventions implementable at aquaculture farms to efficiently abate the risk of MDR amongst bacteria that affect fish that are of public health importance.
Collapse
|
47
|
Kong M, Xing L, Yan R, Li J, Zhang Y, Li A, Zhang T. Spatiotemporal variations and ecological risks of typical antibiotics in rivers inflowing into Taihu Lake, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 309:114699. [PMID: 35151140 DOI: 10.1016/j.jenvman.2022.114699] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/26/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Antibiotics have become a global public concern due to the widespread presence of antibiotic-resistant bacteria and genes. This study investigated the spatial and seasonal variation of conventional water quality parameters and 10 selected antibiotics in rivers inflowing into Taihu Lake. The results showed that total nitrogen, as a pollution driver factor, varied with the seasons, and higher concentrations of pollutants were generally found in the dry season compared with the wet season. For antibiotics, seven of them were detected in surface waters (n = 66) with detection frequencies (DFs) of 1.52-100% and eight antibiotics with DFs of 2.56-100% in sediments (n = 39). Sulfamethoxazole (SMZ, median: 1.47 ng/L), trimethoprim (TMP, median: 0.35 ng/L), and roxithromycin (ROX, median: 0.47 ng/L) with 100% DFs followed by erythromycin (ERY, median: 0.56 ng/L) with a DF of 90.91% accounted for a median percentage of 44.54%, 9.08%, 20.42%, and 13.16% of the ΣABs concentrations in surface waters. In contrast, enrofloxacin (ENR, median: 0.54 ng/g) and ROX (median: 0.29 ng/g) with 100% DFs accounted for a median percentage of 58.21% and 31.71% of the ΣABs concentrations in sediments. Antibiotics in surface waters were mainly related to T, DO, TN and NH3-N, but were mainly related to T, pH and TN for antibiotics in sediments. Furthermore, most of the detected antibiotics showed higher concentrations and more species of antibiotics in winter than in summer or autumn. Similarly, the ecological risk values of antibiotics showed higher in winter than in the other two seasons, whereas the overall risk levels were considered acceptable.
Collapse
Affiliation(s)
- Ming Kong
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, No.8 Jiangwangmiao Street, Nanjing, 210042, China
| | - Liqun Xing
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Nanjing University & Yancheng Academy of Environmental Protection Technology and Engineering, Yancheng, 224000, China
| | - Ruomeng Yan
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, No.8 Jiangwangmiao Street, Nanjing, 210042, China; Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Jun Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yimin Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, No.8 Jiangwangmiao Street, Nanjing, 210042, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Tao Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, No.8 Jiangwangmiao Street, Nanjing, 210042, China.
| |
Collapse
|