1
|
Chand N, Krause S, Prajapati SK. The potential of microplastics acting as vector for triclosan in aquatic environments. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 284:107381. [PMID: 40311399 DOI: 10.1016/j.aquatox.2025.107381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/14/2025] [Accepted: 04/22/2025] [Indexed: 05/03/2025]
Abstract
There is increased evidence of the co-occurrence of microplastics (MPs) with other co-pollutants in surface water globally, leading to ecological and environmental concerns. The risks and toxicity of co-occurring pollutants largely depend on the mechanisms controlling the activation of their various sources, their fate and transport in different environmental media. Due to their size-specific surface area, MPs in the environment can have a strong affinity for interactions with hydrophobic compounds and have a high sorption capacity for various emerging contaminants (ECs). ECs like the antibacterial and antifungal agent such as Triclosan (TCS) are persistent in the environment. Moreover, TCS in aquatic environments has a low solubility, and high octanol-water partitioning co-efficient which raises the possibility of TCS to interact with other environmental pollutants such as MPs. The interactions of TCS with MPs in the environment are controlled by a range of mechanism such as hydrogen bonding, hydrophobic interactions, π-π interactions as well as electrostatic interactions. The interacting behaviour of these driving forces needs to be fully understood to determine how the co-occurrence of TCS and MPs may lead to adverse effects on the biological functioning of aquatic ecosystems. Hence, here we conduct a systematic review of the current state-of-the-art and synthesize the available knowledge of how MPs can act as vectors for TCS in aquatic environments. This review reveals MP and TCS interactions in aquatic ecosystems, their individual and collective fate, and toxicological impacts on aquatic organisms, evidencing that MPs can act as potential vectors for transporting TCS across different trophic levels. This review also reveals critical limitations in the research of the combined toxicity and interactions of co-occurring MPs and TCS. Based on the rigorous review of the current knowledge base, we propose that multifactorious investigations along with long-terms monitoring are crucial to fully understand the impacts of co-occurring MPs and TCS in aquatic systems to underline future mitigation policies and management plans.
Collapse
Affiliation(s)
- Naveen Chand
- Environment and Biofuel Research Lab (EBRL), Hydro and Renewable Energy Department, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand - 247667 India.
| | - Stefan Krause
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK; LEHNA- Laboratoire d'ecologie des hydrosystemes naturels et anthropises, University of Lyon, Darwin C & Forel, 3-6 Rue Raphaël Dubois, 69622 Villeurbanne, France; BISCA - Birmingham Institute of Sustainability and Climate Action, Birmingham, UK.
| | - Sanjeev Kumar Prajapati
- Environment and Biofuel Research Lab (EBRL), Hydro and Renewable Energy Department, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand - 247667 India.
| |
Collapse
|
2
|
Liu Y, Ning Y, Jiang Y, Ou Y, Chen X, Zhong C, Wang R, Zhang Z, Wang K, Long D, Zhao W. Effects of combined exposure to polyethylene and oxidized polycyclic aromatic hydrocarbons on growth, development, and neurobehavior in Zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 283:107361. [PMID: 40233682 DOI: 10.1016/j.aquatox.2025.107361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/05/2025] [Accepted: 04/09/2025] [Indexed: 04/17/2025]
Abstract
Oxygenated polycyclic aromatic hydrocarbons (OPAHs) are a class of anthropogenic, persistent, and highly toxic PAH contaminants associated with developmental toxicity, 9-fluorenone (9-FLO) is a typical member of the OPAH family. Due to its ketone group, it has higher polarity, which results in increased solubility in water and greater potential for transport via atmospheric particles or water bodies. Polyethylene (PE), an amorphous polymer, is characterized by high diffusivity, high permeability, and a large internal molecular free volume, which confers a strong absorption capacity for organic pollutants. The effects of individual and combined exposures to these two common environmental pollutants on aquatic life remain unclear. In this study, we evaluated the effects of PE and 9-FLO exposure on growth, development, metabolism, and behavior using zebrafish as a model organism. We employed methods and techniques such as acridine orange staining, enzyme-linked immunosorbent assay (ELISA), video tracking, automated behavior analysis, microscopy imaging, and real-time fluorescence quantification. Zebrafish embryos at 2 h post-fertilization (hpf) were exposed to PE and 9-FLO, both individually and in combination. Our studies showed that exposure to PE or 9-FLO alone increases embryonic mortality and decreases hatchability compared to the control group. The 9-FLO group exhibited delayed hatching and inhibited larval length growth. The exposed groups showed a loose arrangement of telencephalic neurons, partial apoptosis, decreased dopamine (DA) content, increased serotonin (5-HT) content, decreased exercise capacity, reduced rhythmic amplitude, and increased rest time. The combined exposure group showed a slight alleviation of these effects compared to the single exposure groups but still exhibited significant differences from the control group. In summary, early exposure to PE and 9-FLO in zebrafish embryos, whether alone or in combination, affects growth, development, apoptosis, neurotransmitter release, and motor behavior of zebrafish neurons.
Collapse
Affiliation(s)
- Yu Liu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yujun Ning
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yi Jiang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Yiquan Ou
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; Department of nutrition, The First People's Hospital of Chenzhou, Chenzhou No.1 People's Hospital, Chenzhou 423000, China
| | - Xiaobing Chen
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Chiting Zhong
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Ru Wang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Zhibo Zhang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; First Clinical Faculty, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Kongfan Wang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Dingxin Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Weichao Zhao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
3
|
Zeynali M, Yavari V, Morshedi V, Ghasemi A, Kochanian P, Karapetyan A, Mozanzadeh MT. Toxicological effects of polyethylene microplastics on growth, antioxidant capacity, histopathology and stress-related genes transcription in Asian seabass (Lates calcarifer) larvae. CHEMOSPHERE 2025; 379:144419. [PMID: 40267766 DOI: 10.1016/j.chemosphere.2025.144419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/25/2025] [Accepted: 04/10/2025] [Indexed: 04/25/2025]
Abstract
A 10-day study was carried out to examine the effects of polyethylene microplastics (PEMP) on growth, antioxidant capacity, stress-related genes transcription, and gut histology of Asian seabass (Lates calcarifer) (Bloch, 1970) larvae. In this regard, 2 day old post hatch larvae were exposed to four concentrations of PEMP, including 1) control (without PEMP addition), 2) PEMP50 (50 μg PEMP/L), 3) PEMP100 (100 μg PEMP/L) and 4) PEMP500 (500 μg PEMP/L). Two days post hatching larvae (mouth opening time) were distributed into twelve 120-L cylindrical polyethylene tanks, each filled with 100 L seawater (47.0 ± 0.5 g/L, 32 ± 0.8 °C) (2500 larvae in each tank, 25 larvae/L). Different dosages of the PEMP were diluted in ethanol, then added to the larviculture tanks and larvae were exposed to each treatment for 10 days. Each treatment was replicated in three tanks. Rotifers (Brachionus plicatilis small type, 5-10 animals/mL) were offered to larvae from second DPH to 10 DPH in a green water (0.1-0.3 × 106 cell/ml Nannochloropsis. sp) system. The highest and lowest survival rate were in control (28.50 ± 3.38 %) and PEMP500 (3.50 ± 0.12 %) groups, respectively (P < 0.05). The highest body weight was in the control (1.94 ± 0.06 mg) but the lowest body weights were in PEMP100 (1.42 ± 0.03 mg) and PEMP500 (1.35 ± 0.03 mg) groups, respectively. The highest and lowest catalase (CAT) activities were in control and PEMP500 groups, respectively (P < 0.05). Superoxide dismutase (SOD) and glutathione reductase activities decreased with increasing PEMP dosages, meanwhile lipid peroxidation level increased. At day 10, the expression of interleukin-1β, heat shock protein 90, CAT, SOD and glutathione S transferase genes were down-regulated with increasing PEMP in water. The thickness of the gut wall, crypt depth, villus width and height significantly decreased in larvae exposed to PEMP100 and PEMP500 groups compared to the other treatments. Based on the results of the present study, increasing PEMP concentrations in water exert adverse lethal effects during the critical larval development in marine fish species.
Collapse
Affiliation(s)
- Mansour Zeynali
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Vahid Yavari
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran.
| | - Vahid Morshedi
- Department of Fisheries and Biology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran.
| | - Ahmad Ghasemi
- Department of Fisheries and Biology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran
| | - Preeta Kochanian
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Anna Karapetyan
- Department of Human and Animal Physiology, Yerevan State University, Yerevan, Armenia
| | - Mansour Torfi Mozanzadeh
- South Iran Aquaculture Research Institute, Iranian Fisheries Science Institute (IFSRI), Agricultural Research Education and Extension Organization (AREEO), Ahwaz, Iran.
| |
Collapse
|
4
|
Shukla S, Khanna S, Khanna K. Unveiling the toxicity of micro-nanoplastics: A systematic exploration of understanding environmental and health implications. Toxicol Rep 2025; 14:101844. [PMID: 39811819 PMCID: PMC11730953 DOI: 10.1016/j.toxrep.2024.101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025] Open
Abstract
The surge in plastic production has spurred a global crisis as plastic pollution intensifies, with microplastics and nanoplastics emerging as notable environmental threats. Due to their miniature size, these particles are ubiquitous across ecosystems and pose severe hazards as they are ingested and bioaccumulate within organisms. Although global plastic production has reached an alarming 400.3 MTs, recycling efforts remain limited, with only 18.5 MTs being recycled. Currently, out of the total plastic waste, 49.6 % is converted into energy, 27 % is recycled, and 23.5 % is recovered as material, indicating a need for better waste management practices to combat the escalating pollution levels. Research studies on micro-nanoplastics have primarily concentrated on their environmental presence and laboratory-based toxicity studies. This review critically examines the sources and detection methods for micro-nanoplastics, emphasising their toxicological effects and ecological impacts. Organisms like zebrafish and rats serve as key models for studying these particle's bioaccumulative potential, showcasing adverse effects that extend to DNA damage, oxidative stress, and cellular apoptosis. Studies reveal that micro-nanoplastics can permeate biological barriers, including the blood-brain barrier, neurological imbalance, cardiac, respiratory, and dermatological disorders. These health risks, particularly relevant for humans, underscore the urgency for broader, real-world studies beyond controlled laboratory conditions. Additionally, the review discusses innovative energy-harvesting technologies as sustainable alternatives for plastic waste utilisation, particularly valuable for energy-deficient regions. These strategies aim to simultaneously address energy demands and mitigate plastic waste. This approach aligns with global sustainability goals, providing a promising avenue for both pollution reduction and energy generation. The review calls for further research to enhance detection techniques, assess long-term environmental impacts, and explore sustainable solutions that integrate energy recovery with pollution mitigation, especially in regions most affected by both energy shortages and increased plastic waste.
Collapse
Affiliation(s)
- Saurabh Shukla
- School of Forensic Sciences, Centurion University of Technology and Management, Bhubaneswar Campus, Bhubaneswar, Odisha 752050, India
| | - Sakshum Khanna
- School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382007, India
- Relx Pvt Ltd, Gurugram, Haryana 122002, India
| | - Kushagra Khanna
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
5
|
Hermabessiere L, Best C, Zaidi S, McIlwraith HK, Jeffries KM, Rochman CM. Understanding the contribution of plastic additive in microplastic toxicity from consumer products using fathead minnow (Pimephales promelas). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36523-z. [PMID: 40402372 DOI: 10.1007/s11356-025-36523-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 05/07/2025] [Indexed: 05/23/2025]
Abstract
Microplastics are ubiquitous in the environment. Once in the environment, these particles are ingested by organisms. The ingestion of microplastics can lead to various adverse effects. Still, what is driving the toxicity of microplastics is not well understood. Microplastics are a diverse suite of contaminants composed of several shapes, polymers, and chemical additives. The chemical additives in plastics are not always considered in toxicity studies despite their widespread presence in plastic products. We exposed fathead minnows (Pimephales promelas) for 60 days to four treatments: polyethylene microplastics with chemical additives, polyethylene microplastics without chemical additives, chemical additive leachates, and a control (no plastic, no additives). The main objective of this experiment was to understand what is driving the toxicity: the plastic itself (particles), the chemical additives, or both. We took samples at 12, 30, and 60 days to measure the accumulation of plastic and their additives, as well as to look for adverse effects via gene expression and measurements of weight, length, and condition index. Fish exposed to plastic with or without additives had plastic in their gastro-intestinal tract. We did not observe accumulation of Bismuth, a pigment we targeted chemically in the polyethylene. We observed no significant differences in weight, length, or condition between treatments at 12, 30, and 60 days. We also observed no differences in survival. We observed a significant difference in the expression of the following genes among treatments: sod1, sod2, gstp1, and esr2b. Significant differences were generally due to a lower relative expression in fish exposed to the plastics with additives and the chemical additives alone. In conclusion, we observed effects at the molecular level that appeared to be driven by plastic additives. Future studies should continue to try to understand the effects of plastics driven by additives and consider them in risk assessment frameworks.
Collapse
Affiliation(s)
- Ludovic Hermabessiere
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada.
| | - Carol Best
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, MB, R3T 2N2, Canada
| | - Sabrina Zaidi
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Hayley K McIlwraith
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Kenneth M Jeffries
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, MB, R3T 2N2, Canada
| | - Chelsea M Rochman
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
6
|
Pulvirenti E, Conti GO, Falqui L, Banni M, Ferrante M. Innovative prototype for the mitigation of water pollution from microplastics to safeguard the environment and health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 977:179358. [PMID: 40239507 DOI: 10.1016/j.scitotenv.2025.179358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025]
Abstract
Microplastics (MPs) are ubiquitary environmental pollutants facilitated by anthropic activities as wastewaters (WWs) not properly treated or dispersed. Our study focused on the validation of an innovative prototype filter for its future applications in WWs Treatment Plants (WWTPs) to reduce the release of MPs in the environment. The aims of the study were: The WWTPs resulted in catching 85 % and 73 % of MPs >10 and MPs <10 μm, respectively; instead, the WWTPs-prototype treated outputs showed a further reduction of 99 % and 92 % of the uncaught MPs. The mussel haemolymphs analysis showed a decrease of 100 % and 95 %, respectively, for both MPs <10 and >10 μm in filtering treatment against the normal WWTPs outputs. We revealed longer LMS times in mussels exposed to prototype-filtered WWs (29-41 min) compared to the raw output of WWTPs (18-24 min). MF and q-PCR of all studied genes revealed a reduced genotoxicity in mussels exposed to prototype-treated WWs. Hence, the results demonstrated the prototype efficacy, and it will be tested in real WWTPs at a field scale in the next study.
Collapse
Affiliation(s)
- Eloise Pulvirenti
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy; Department of Biological, Geological and Environmental Sciences, University of Catania, Italy; CRIAB, Interdepartmental Research Center for the Implementation of Physical, Chemical and Biological Monitoring Processes in Aquaculture and Bioremediation Systems, Catania, Italy.
| | - Gea Oliveri Conti
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy; CRIAB, Interdepartmental Research Center for the Implementation of Physical, Chemical and Biological Monitoring Processes in Aquaculture and Bioremediation Systems, Catania, Italy.
| | - Luciano Falqui
- GREENERTECH Srl, via Nicola Fabrizi, 21, 95128 Catania, CT, Italy
| | - Mohamed Banni
- Laboratory of Biochemistry and Environmental Toxicology, Sousse University, Chott-Mariem 4042, Sousse, Tunisia; Higher Institute of Biotechnology, Monastir University, Tunisia
| | - Margherita Ferrante
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy; CRIAB, Interdepartmental Research Center for the Implementation of Physical, Chemical and Biological Monitoring Processes in Aquaculture and Bioremediation Systems, Catania, Italy
| |
Collapse
|
7
|
Levesque B, Hrapovic S, Berrué F, Vogt A, Ellis LD, Hermabessiere L. Evaluation of phenotypic and behavioral toxicity of micro- and nano-plastic polystyrene particles in larval zebrafish (Danio rerio). Toxicol Sci 2025; 205:154-165. [PMID: 39921884 PMCID: PMC12038248 DOI: 10.1093/toxsci/kfaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2025] Open
Abstract
Plastic particles have been found in all environments and it is necessary to understand the risks these particles pose in, and to, the environment. The objectives of this work were to understand the toxic effects of varying size and concentration of polystyrene (PS) micro- and nano-plastics in zebrafish embryos and their fate within the larvae. In this work, larval zebrafish (Danio rerio) were exposed to six sizes (0.05, 0.25, 0.53, 2.1, 6.02, and 10.2 µm diameter) and concentrations (0.0005 to 0.2 µg/µL) of PS micro/nanoplastics particles. The zebrafish embryo toxicity (ZET) and the general and behavioral toxicity (GBT) assays were used to determine particle toxicity in embryos. Behavioral analysis was performed and micro/nanoplastics uptake and organ distribution were assessed. Phenotypic and behavioral toxicity was observed in all exposures with the exception of 0.25 µm particle-exposed larvae. Significant phenotypic toxicity was seen at the highest tested exposure concentration, with some sizes showing potential recovery as time increased in the assay. Behavioral analysis demonstrated a decrease in baseline activity across all micro- and nano-plastic sizes. Significant increases in light-dark responses were recorded in ZET assays of smaller-sized particles and no significant effects were observed at larger sizes. Significant decreases in this response were reported in the GBT assays of all tested sizes with the exception of the 0.05-µm particles. These assays demonstrate the general, developmental, and neurotoxicity of micro/nanoplastics to a model organism, which can be used to infer individual and population-level effects of exposure.
Collapse
Affiliation(s)
- Bailey Levesque
- National Research Council Canada, Aquatic and Crop Resource Development Research Centre, Halifax, NS B3H 3Z1, Canada
| | - Sabahudin Hrapovic
- National Research Council Canada, Aquatic and Crop Resource Development Research Centre, Montréal, QC H4P 2R2, Canada
| | - Fabrice Berrué
- National Research Council Canada, Aquatic and Crop Resource Development Research Centre, Halifax, NS B3H 3Z1, Canada
| | - Anja Vogt
- National Research Council Canada, Aquatic and Crop Resource Development Research Centre, Charlottetown, PEI C1A 4P3, Canada
| | - Lee D Ellis
- National Research Council Canada, Aquatic and Crop Resource Development Research Centre, Halifax, NS B3H 3Z1, Canada
| | - Ludovic Hermabessiere
- National Research Council Canada, Aquatic and Crop Resource Development Research Centre, Halifax, NS B3H 3Z1, Canada
| |
Collapse
|
8
|
Ge Q, Zheng T, Ding P, Li Z, Lin X, Li X, He M, Hu G. Aged microplastics-induced growth inhibition via DNA damage, GH/IGF-1 and HPT axes disruption in zebrafish larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 975:179215. [PMID: 40179755 DOI: 10.1016/j.scitotenv.2025.179215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 02/02/2025] [Accepted: 03/20/2025] [Indexed: 04/05/2025]
Abstract
The escalating use of microplastics (MPs) has led to the widespread exposure of aquatic organisms. The associated toxicities of MPs may be influenced by photoaging. However, the toxicity of aged MPs at environmentally relevant concentrations to aquatic organisms remains unclear. Therefore, our study focused on assessing the effects of aged polystyrene microplastics (PS-MPs) on the development of zebrafish. Here, using simulated sunlight, we investigated the endocrine and developmental toxicity of embryo-larvae exposed to pristine PS-MPs (1 μm) and aged PS-MPs at environmentally relevant concentrations of 0.1-100 μg/L. The alterations in PS-MPs characteristics using photoaging were investigated through scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The results suggested that photoaging altered physicochemical characteristics of PS-MPs. The assessment of physiological indicators revealed that exposure to aged PS-MPs significantly inhibited the growth of larval zebrafish compared to pristine PS-MPs with endpoints of body length, heartbeat rate and tail coiling frequency. Bioinformatics analyses indicated that aged PS-MPs exposure perturbed the hormones levels (GH, IGF-1, T3 and T4) and gene expression (e.g., gh, igf1, trh and ugt1ab) related to growth hormone/insulin-like growth factor-1 (GH/IGF-1) axis, and the hypothalamic-pituitary-thyroid (HPT) axis. Moreover, 8-OHdG levels were significantly altered in zebrafish larvae exposed to aged PS-MPs, and Pearson correlation results showed significant associations between 8-OHdG levels and GH/IGF-1 and HPT axis-related genes. Overall, these results indicated that the growth inhibition of larval was attributed to DNA damage, HPT and GH/IGF axes disruption, providing new insights into the environmental effects and health risks of MPs.
Collapse
Affiliation(s)
- Qing Ge
- Key Laboratory of Environmental Pollution Health Risk Assessment, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Guangzhou 510655, China; School of Public Health, China Medical University, Liaoning 110122, China
| | - Tong Zheng
- Key Laboratory of Environmental Pollution Health Risk Assessment, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Guangzhou 510655, China
| | - Ping Ding
- Key Laboratory of Environmental Pollution Health Risk Assessment, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Guangzhou 510655, China
| | - Zhenyuan Li
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510030, China
| | - Xihua Lin
- Key Laboratory of Environmental Pollution Health Risk Assessment, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Guangzhou 510655, China
| | - Xintong Li
- Key Laboratory of Environmental Pollution Health Risk Assessment, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Guangzhou 510655, China
| | - Miao He
- School of Public Health, China Medical University, Liaoning 110122, China
| | - Guocheng Hu
- Key Laboratory of Environmental Pollution Health Risk Assessment, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Guangzhou 510655, China.
| |
Collapse
|
9
|
Saha U, Ghosh A, Sinha A, Nandi A, Lenka SS, Gupta A, Kumari S, Yadav A, Suar M, Kaushik NK, Raina V, Verma SK. Intrinsic interaction inferred oxidative stress and apoptosis by Biosurfactant-microplastic hybrid reduces coordinated in vivo biotoxicity in zebrafish ( Danio rerio). Mater Today Bio 2025; 31:101466. [PMID: 40182661 PMCID: PMC11966731 DOI: 10.1016/j.mtbio.2025.101466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/29/2024] [Accepted: 01/06/2025] [Indexed: 04/05/2025] Open
Abstract
The proliferation of microplastics (μP) in aquatic environments poses a significant threat to ecosystem health, with repercussions extending to aquatic organisms and potentially to human health. In this study, we investigated the efficacy of a novel biosurfactant-microplastic (BSμP) hybrid in reducing in vivo green bio-toxicity of microplastics (μP) induced by oxidative stress and apoptosis in zebrafish (Danio rerio). Microplastics, ubiquitous in aquatic environments, were hybridised with Biosurfactant to evaluate their potential mitigating effects. A stable BSμP was formed with zeta potential of -10.3 ± 1.5 mV. Exposure of zebrafish embryos to μP resulted in increased oxidative stress markers, including elevated levels of reactive oxygen species and induced apoptosis, as evidenced by increased expression of apoptotic markers and morphological changes in embryonic zebrafish. However, the BSμP hybrid significantly ameliorated the observed toxic effects with reduced levels of oxidative stress markers and apoptotic activity. This effect was deduced as the intrinsic effects of hybridisation, which likely mitigated the bioavailability and toxicity of μP by reducing their molecular interaction with metabolic proteins like Sod1 and p53 through less accumulation and internalisation. Overall, our findings highlight the potential of BSμP as a promising approach for mitigating the ecological impacts of microplastic pollution.
Collapse
Affiliation(s)
- Utsa Saha
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Aishee Ghosh
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala SE-751 20, Sweden
| | - Adrija Sinha
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Aditya Nandi
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | | | - Abha Gupta
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Shalini Kumari
- Markham College of Commerce, Vinoba Bhave University, Hazaribagh, Jharkhand 825001, India
| | - Anu Yadav
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea
| | - Vishakha Raina
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Suresh K. Verma
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| |
Collapse
|
10
|
Chen X, Zhu Y, Wu F, Li L, Wang Y, Danso B, Yang Z, Peng X, Pozzolini M, Tang Q, Xiao L, Dai X. The FOXO pathway mediates a conserved mechanism of antioxidant defense against microplastic-induced toxicity in Aurelia coerulea polyps and mouse liver. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117988. [PMID: 40024002 DOI: 10.1016/j.ecoenv.2025.117988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Microplastics are emerging as a critical class of pollutants with a pervasive presence in the atmosphere, oceans, and terrestrial environments, raising global concern. However, it is unclear whether there are conserved mechanisms for the response of microplastic damage to different species. Aurelia coerulea polyps and mouse models were exposed to microplastic environments to assess their growth effects and mechanisms. The similarities and differences in the defence mechanisms of the two species after exposure to microplastics were analysed by means of phenotypic observations, transcriptome sequencing, pathological sections, oxidative stress indicators, explosions and molecular docking. Exposure to 200 mg/L of PS-MPs resulted in morphological changes, tissue damage, and oxidative stress in polyps. Exposure to 600 mg/L of PS-MPs led to increased toxicity in the mouse liver, including rupture and apoptosis of mitochondria and nuclei in hepatocytes, as well as oxidative stress. Meanwhile, we found that their antioxidant defense and DNA damage repair pathways were significantly altered. In addition, we found that the same loci existed in the foxo pathway in both species, and the enriched gene sequences were 48.33 % similar. Molecular docking showed conserved regions between polyps NLK and mouse Mapk13, indicating similar kinase activities, but overall structural and functional differences suggest species-specific. This finding provide new insights into understanding the mechanisms of toxicity of MPs to different organisms.
Collapse
Affiliation(s)
- Xiaoxiao Chen
- College of Marine Living Resources Sciences and Management, Shanghai Ocean University, Shanghai 201306, China; Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Yina Zhu
- Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Feng Wu
- College of Marine Living Resources Sciences and Management, Shanghai Ocean University, Shanghai 201306, China
| | - Liangzhi Li
- College of Marine Living Resources Sciences and Management, Shanghai Ocean University, Shanghai 201306, China; Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Yi Wang
- Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Blessing Danso
- Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Zhixiao Yang
- Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, KunMing 650500, China
| | - Xiao Peng
- Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Marina Pozzolini
- Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, Genova I-16132, Italy
| | - Qinglong Tang
- Central Medical District of Chinese, PLA General Hospital, Beijing 100120, China.
| | - Liang Xiao
- Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China.
| | - Xiaojie Dai
- College of Marine Living Resources Sciences and Management, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
11
|
Zhao Q, Zhai L, Song Y, Li M, Yang Y, Zhao J. Polystyrene microplastics impaired the function of leydig cells via GRP78/PERK/CHOP mediated endoplasmic reticulum stress in vivo and in vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117985. [PMID: 40037082 DOI: 10.1016/j.ecoenv.2025.117985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
The toxic effect of Polystyrene Microplastics (PS-MPs) on leydig cells were found in male mice, but the toxic mechanism was not clear. The PS-MPs exposure mice model and cell model were established in this study to explore the leydig cells toxic mechanism. In vivo study, the leydig cells toxicity in male mice was evaluated exposed to PS-MPs for 28 days. And found that the sperm density, mobility and testosterone (T) level decreased, and the sperm malformation rate and malondialdehyde level increased. PS-MPs exposure impaired the function of male reproduction. The results also showed that the levels of testosterone-producing proteins (StAR, P450scc,3β-HSD and CYP17A1) decreased, apoptosis signaling pathways (Bax/Bcl-2, Caspase-8 and Caspase-12) were activated and endoplasmic reticulum stress (GRP78/p-PERK/CHOP) occurred in male mice exposed to PS-MPs. In vitro study, TM3 cells (leydig cells) were treated with 50, 100 and 200 μg/mL of PS-MPs for 24 h. And we found that PS-MPs exposure reduced the cell viability and the level of T, increased reactive oxygen species (ROS) level in TM3 cells. PS-MPs exposure impaired the function of the leydig cells. Further testing revealed that PS-MPs could activate GRP78/p-PERK/CHOP pathway, aggrandized endoplasmic reticulum stress in the leydig cells, then increased apoptosis level, and induced testosterone synthase protein reduction. These could be reversed when exposed to ROS inhibitor or endoplasmic reticulum stress inhibitor. In conclusion, PS-MPs exposure induced the high level of ROS, activated the GRP78/p-PERK/CHOP signaling pathway, enhanced endoplasmic reticulum stress in leydig cells, then apoptosis level increased, which impaired the leydig cell function.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016,China
| | - Lingling Zhai
- Department of Maternal, Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110021, China
| | - Yangyang Song
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016,China
| | - Mujiao Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016,China
| | - You Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016,China
| | - Jian Zhao
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016,China.
| |
Collapse
|
12
|
Li C, Zhao L, Fan J, Qi W, Li X, Li Y, Tian P, Wu Y, Gu S. The Alleviative Effects of Weizmannia coagulans CGMCC 9951 on the Reproductive Toxicity of Caenorhabditis elegans Induced by Polystyrene Microplastics. Microorganisms 2025; 13:497. [PMID: 40142390 PMCID: PMC11944320 DOI: 10.3390/microorganisms13030497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/22/2025] [Accepted: 02/03/2025] [Indexed: 03/28/2025] Open
Abstract
The increased emission and accumulation of microplastics pose a severe threat to humans and the environment. As effective biological agents for alleviating the effects of microplastics, the mechanism of action of probiotics remains unclear. In this study, based on the successful establishment of a reproductive virulence model of Caenorhabditis elegans (C. elegans), we explored the effect and mechanism of Weizmannia coagulans CGMCC 9951 (W. coagulans CGMCC 9951) on the reproductive toxicity of C. elegans. Our results showed that the gonad area and the number of offspring increased but the number of germ cells undergoing apoptosis decreased by 14% and 24% in C. elegans, after CGMCC 9951 treatments. Antioxidant test results showed that CGMCC 9951 increased the activity of Superoxide Dismutase (SOD), Catalase (CAT), and the content of Glutathione (GSH) in C. elegans. In addition, it was found by qPCR and mutagenesis experiments verified that CGMCC 9951 alleviated reproductive toxicity through the DNA checkpoint signaling pathway. Our findings suggested that CGMCC 9951 could alleviate the reproductive toxicity of polystyrene microplastics in C. elegans by enhancing antioxidant capacity and inhibiting DNA damage checkpoint signaling pathway. The above results suggest that probiotics can be used as a potential approach to alleviate the reproductive toxicity induced by polystyrene microplastics in humans.
Collapse
Affiliation(s)
- Chengmei Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Lina Zhao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Jiajia Fan
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Wentong Qi
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Xuan Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
- Henan Engineering Research Center of Food Microbiology, Luoyang 471000, China
| | - Yuwan Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Pingping Tian
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
- National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang 471000, China
| | - Ying Wu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
- Henan Engineering Research Center of Food Microbiology, Luoyang 471000, China
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
- Henan Engineering Research Center of Food Microbiology, Luoyang 471000, China
- National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang 471000, China
| |
Collapse
|
13
|
Lei Y, Li X, Mao X. Microplastics aggravate the adverse effects of methylmercury than inorganic mercury on zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125559. [PMID: 39710179 DOI: 10.1016/j.envpol.2024.125559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
The potential health risks of microplastics (MPs) and their combined exposure with heavy metals such as mercury (Hg) in aquatic environment are increasingly concerned recently. In this work, zebrafish embryos were exposed to different levels of polystyrene microplastics (PS-MPs, ∼0.1 μm) coupled with Hg(II) or/and MeHg at 20 μg/L, to investigate the tissue biodistribution and accumulation of PS-MPs and Hg species, and their interaction, as well as embryo toxicity, oxidative stress and metabolic profiles. With zebrafish embryo development, PS-MPs were ingested and then primarily translocated to yolk sac, liver, and intestinal tissues, further acted as a significant vector for improving the bioaccumulation of MeHg vs. Hg(II). Whatever single or combined exposure of PS-MPs and Hg species, embryo disorders, such as delayed hatching, developmental abnormalities, and motor behavioral, and increased oxidative stress indications were obviously found. Herein, PS-MPs + MeHg aggravated oxidative stress compared with MeHg alone, which might been relevant to the high accumulation of Hg level in zebrafish larvae induced by PS-MPs. Non-targeted metabolomics results proved PS-MPs involvement disturbed lipid metabolism, amino acid metabolism, and energy metabolism compared with alone Hg(II) or MeHg exposure, of which excessive energy metabolism by activating the glycolysis process was found in PS-MPs + MeHg treatment. This work reveals the enhancement efficacy of PS-MPs on MeHg induced toxicity and adverse stress, further proving the differentiated effect of elemental chemical forms with microplastics. In the future, elemental species must be considered for the combined toxicity evaluation and ecological risk assessments of microplastics and heavy metals.
Collapse
Affiliation(s)
- Yajie Lei
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, And Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
| | - Xue Li
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, And Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| | - Xuefei Mao
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, And Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
14
|
Kaur M, Sharma A, Sharma K, John P, Bhatnagar P. Teratological, neurochemical and histomorphic changes in the limbic areas of F1 mice progeny due to co-parental polystyrene nanoplastic exposure. Toxicology 2025; 511:154043. [PMID: 39746564 DOI: 10.1016/j.tox.2024.154043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
In the present study, co-parental exposure to polystyrene nanoplastics (PS-NPs) elicits profound teratological impacts, including skeletal and visceral malformations, post-natal effects on neonatal growth and neurobehavioral development in F1 progeny. A comprehensive investigation was conducted on Swiss albino mice fetuses, neonates (PND 1-21) and adult mice offsprings (PND 60) following parental exposure during spermatogenesis and oogenesis period, as well as continued maternal exposure during gestation and weaning. The parental mice were administered PS-NPs via oral gavage at low dose (0.2 mg/kg/day) and high dose (1 mg/kg/day). Both male and female parental mice were exposed to PS-NPs for 60 days and 14 days, respectively before mating. After the mating, the pregnant female mice continued to receive PS-NPs treatment during the gestation, till the subsequent weaning period. Our findings revealed that PS-NPs led to significant reductions in growth, and heightened skeletal and visceral anomalies in developing fetuses. Exposure further impaired reflexes in neonatal mice such as grasping, surface righting and negative geotaxis. Moreover, the adult progeny also exhibited learning impairments. Neurodevelopmental assessment unveiled alterations in neurotransmitter levels, antioxidant enzyme activities, and structural changes in key limbic areas such as the cortex, hippocampus, and hypothalamus of adult mice offspring. These alterations included increased vacuolization, vascular dilation, and reduced pyramidal neurons in the hippocampus. Thus, this transgenerational study underscores the detrimental effects of PS-NPs on both prenatal and postnatal development, emphasizing teratological and enduring neurological consequences in the limbic regions of F1 progeny mice brains.
Collapse
Affiliation(s)
- Manjyot Kaur
- Department of Zoology, IIS (Deemed to be University), Jaipur, Rajasthan, India
| | - Anju Sharma
- Department of Zoology, IIS (Deemed to be University), Jaipur, Rajasthan, India.
| | - Kirti Sharma
- Department of Zoology, IIS (Deemed to be University), Jaipur, Rajasthan, India
| | - Placheril John
- Department of Zoology, IIS (Deemed to be University), Jaipur, Rajasthan, India
| | - Pradeep Bhatnagar
- Department of Zoology, IIS (Deemed to be University), Jaipur, Rajasthan, India
| |
Collapse
|
15
|
Banaee M, Multisanti CR, Impellitteri F, Piccione G, Faggio C. Environmental toxicology of microplastic particles on fish: A review. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110042. [PMID: 39306266 DOI: 10.1016/j.cbpc.2024.110042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/30/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
The increase in plastic debris and its environmental impact has been a major concern for scientists. Physical destruction, chemical reactions, and microbial activity can degrade plastic waste into particles smaller than 5 mm, known as microplastics (MPs). MPs may eventually enter aquatic ecosystems through surface runoff. The accumulation of MPs in aquatic environments poses a potential threat to finfish, shellfish, and the ecological balance. This study investigated the effect of MP exposure on freshwater and marine fish. MPs could cause significant harm to fish, including physical damage, death, inflammation, oxidative stress, disruption of cell signalling and cellular biochemical processes, immune system suppression, genetic damage, and reduction in fish growth and reproduction rates. The activation of the detoxification system of fish exposed to MPs may be associated with the toxicity of MPs and chemical additives to plastic polymers. Furthermore, MPs can enhance the bioavailability of other xenobiotics, allowing these harmful substances to more easily enter and accumulate in fish. Accumulation of MPs and associated chemicals in fish can have adverse effects on the fish and humans who consume them, with these toxic substances magnifying as they move up the food chain. Changes in migration and reproduction patterns and disruptions in predator-prey relationships in fish exposed to MPs can significantly affect ecological dynamics. These interconnected changes can lead to cascading effects throughout aquatic ecosystems. Thus, implementing solutions like reducing plastic production, enhancing recycling efforts, using biodegradable materials, and improving waste management is essential to minimize plastic waste and its environmental impact.
Collapse
Affiliation(s)
- Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | | | - Federica Impellitteri
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, 98168 Messina, Italy.
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, 98168 Messina, Italy.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; Department of Eco-sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
16
|
Mansuri A, Trivedi C, Kumar A. Impact of virgin and weathered microplastics on zebrafish: Bioaccumulation, developmental toxicity and molecular pathway disruptions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177510. [PMID: 39536872 DOI: 10.1016/j.scitotenv.2024.177510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/15/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Microplastics (MPs) are ubiquitous environmental pollutants with significant ecological risks, particularly due to their potential for bioaccumulation and toxicity. This study examines the effects of virgin spherical MPs and environmentally weathered MPs, specifically polystyrene (PS) and polyethylene (PE), on zebrafish larvae to enhance the environmental relevance of the findings. MP concentrations used were 105-106 particles/L for the virgin MP group and 104 particles/L for the weathered MP group, reflecting levels commonly observed in natural environments. Weathered MPs were produced through mechanical grinding followed by one month of exposure to water and sunlight to simulate environmental aging. MP characterization was performed using advanced microscopy techniques, including Scanning Electron Microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR). The results indicated significantly higher mortality in the weathered MP group (80%) compared to the virgin MP group (20%). Zebrafish larvae ingested MPs and exhibited disruptions in key molecular pathways, including those involved in oxidative stress response, apoptosis, and DNA damage repair. Notably, this study is among the first to evaluate the impact of MPs on the complete homologous recombination (HR) and non-homologous end joining (NHEJ) DNA repair pathways. Our findings highlight the enhanced toxicity of weathered MPs and emphasize the importance of considering MP aging in toxicological assessments. These results contribute to a deeper understanding of MP pollution and provide valuable insights for the development of regulatory measures to protect aquatic ecosystems.
Collapse
Affiliation(s)
- Abdulkhalik Mansuri
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Charvi Trivedi
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
17
|
Kim C, Lee SR, Jeon HJ, Kim K, Kim D, Lee H, Park S, Lee SE. Microplastic characterization in small freshwater fishes collected in Gyeongan-cheon, a tributary stream of Han River in South Korea: Ingestion and depuration study of Nylon. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125044. [PMID: 39369872 DOI: 10.1016/j.envpol.2024.125044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
Plastic inventions have had an impact on various industries, and people easily approach to plastic products, degrading into microplastic (MP). In this study, distribution of MP was evaluated in freshwater fishes collected in a tributary stream of the Han River, Gyeongan-cheon. Totally 38 fishes, mostly Zacco platypus, were used to analyze, and they were collected in two different seasons as the normal and rainy seasons. Fishes contained 34-284 particles/individual. The prevalent size of MP in fishes ranged from 45 to 100 μm, followed by 100-300 and 20-45 μm. Shapes of MP in fishes were mostly fragments, and types of MP were polypropylene (PP) > polyethylene (PE) > polytetrafluoroethylene (PTFE). By 4-day ingestion of Nylon at 100 μg/L (equivalent to 55,000 particles/L, about 20-40 μm) in Zacco koreanus, the treated fish showed MP concentration with an average number of 53 Nylons. Mean retention time value was considered as 13.4 days by the uptake-depuration test using Z. platypus at 500 μg/L Nylon. Taken together, MP concentration found in smaller freshwater fish was dependent on living habitat and MP size. These findings underscore the importance of ongoing monitoring of MPs in freshwater ecosystems and the need to understand MP ingestion and excretion patterns in small freshwater fish species.
Collapse
Affiliation(s)
- Chaeeun Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sang-Ryong Lee
- Department of Biological and Environmental Science, Dongguk University, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Hwang-Ju Jeon
- Red River Research Station, Louisiana State University, Bossier City, LA, USA
| | - Kyeongnam Kim
- Institute of Quality and Safety Evaluation of Agricultural Products, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Donghyeon Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hyoyoung Lee
- KOTITI Testing & Research Institute, Gwacheon-si, Gyeonggi-do, 13840, Republic of Korea
| | - Sunku Park
- KOTITI Testing & Research Institute, Gwacheon-si, Gyeonggi-do, 13840, Republic of Korea
| | - Sung-Eun Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
18
|
Wang J, Wu F, Dong S, Wang X, Ai S, Liu Z, Wang X. Meta-analysis of the effects of microplastic on fish: Insights into growth, survival, reproduction, oxidative stress, and gut microbiota diversity. WATER RESEARCH 2024; 267:122493. [PMID: 39321729 DOI: 10.1016/j.watres.2024.122493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Aquatic ecosystems are primary repositories for microplastics (MPs), which pose significant risks to aquatic organisms. This study addresses the gap in understanding the effects of MPs pollution by analyzing 3,757 biological endpoints from 85 laboratory studies. Overall, our results indicate that MPs exposure significantly inhibits fish growth, survival, and reproductive ability, and increases oxidative damage, specifically, MPs exposure leads to elevated levels of malondialdehyde. However, MPs do not have a significant impact on the diversity of fish gut microbiota. Subgroup and correlation analyses indicate that the extent of various toxic effects is influenced by multiple factors, including MPs' type, exposure pathway, size, concentration, as well as the aquatic environment or life stage of the fish. In addition, the regression analysis revealed a relationship between the magnitude of toxic effects and the size, concentration, or duration of MPs exposure. This study provides useful information for understanding the potential impacts of MPs on aquatic organisms and offers new insights for the protection and management of aquatic ecosystems.
Collapse
Affiliation(s)
- Jiaqi Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, An wai da yang fang 8, Chaoyang District, Beijing 100012, PR China
| | - Fan Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, An wai da yang fang 8, Chaoyang District, Beijing 100012, PR China
| | - Shunqi Dong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, An wai da yang fang 8, Chaoyang District, Beijing 100012, PR China
| | - Xusheng Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, An wai da yang fang 8, Chaoyang District, Beijing 100012, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shunhao Ai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, An wai da yang fang 8, Chaoyang District, Beijing 100012, PR China; College of Life Sciences, Nanchang University, Nanchang 330047, PR China
| | - Zhengtao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, An wai da yang fang 8, Chaoyang District, Beijing 100012, PR China
| | - Xiaonan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, An wai da yang fang 8, Chaoyang District, Beijing 100012, PR China.
| |
Collapse
|
19
|
Qualhato G, Cirqueira Dias F, Rocha TL. Hazardous effects of plastic microfibres from facial masks to aquatic animal health: Insights from zebrafish model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175555. [PMID: 39168327 DOI: 10.1016/j.scitotenv.2024.175555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/16/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
Facial masks are a source of plastic microfibres (PMFs) in the aquatic environment, an emerging risk factor for aquatic organisms. However, little is known concerning its impact during the early developmental stages of fish. Thus, the current study aimed to evaluate the potential interaction and developmental toxicity of PMFs derived from leachate of surgical masks (SC-Msk) and N-95 facial masks (N95-Msk) using a multi-biomarker approach in developing zebrafish (Danio rerio). PMFs from both facial masks were obtained and characterized by multiple techniques. Zebrafish embryos were exposed to environmentally relevant concentrations of PMFs from both facial masks (1000, 10,000, and 100,000 particle L-1), and the toxicity was analysed in terms of mortality, hatching rate, neurotoxicity, cardiotoxicity, morphological changes, reactive oxygen species (ROS) levels, cell viability, and behavioural impairments. The results showed that both facial masks can release PMFs, but the N95-Msk produced a higher concentration of PMFs than SC-Msk. Both PMFs can interact with zebrafish chorion and don't cause effects on embryo mortality and hatching; however, zebrafish embryos showed cardiotoxic effects, and larvae showed increased agitation, average speed, and distance travelled, indicating the behavioural impairments induced by PMFs derived from facial masks. Overall, results showed the risk of PMFs to the health of freshwater fish, indicating the need for greater attention to the disposal and ecotoxicological effects of facial masks on aquatic organisms.
Collapse
Affiliation(s)
- Gabriel Qualhato
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil; Department of Morphology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Felipe Cirqueira Dias
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
20
|
Balali H, Morabbi A, Karimian M. Concerning influences of micro/nano plastics on female reproductive health: focusing on cellular and molecular pathways from animal models to human studies. Reprod Biol Endocrinol 2024; 22:141. [PMID: 39529078 PMCID: PMC11552210 DOI: 10.1186/s12958-024-01314-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
The female reproductive system can face serious disorders and show reproductive abnormalities under the influence of environmental pollutants. Microplastics (MPs) and nanoplastics (NPs) as emerging pollutants, by affecting different components of this system, may make female fertility a serious challenge. Animal studies have demonstrated that exposure to these substances weakens the function of ovaries and causes a decrease in ovarian reserve capacity. Also, continuous exposure to micro/nano plastics (MNPs) leads to increased levels of reactive oxygen species, induction of oxidative stress, inflammatory responses, apoptosis of granulosa cells, and reduction of the number of ovarian follicles. Furthermore, by interfering with the hypothalamic-pituitary-ovarian axis, these particles disturb the normal levels of ovarian androgens and endocrine balance and delay the growth of gonads. Exposure to MNPs can accelerate carcinogenesis in the female reproductive system in humans and animal models. Animal studies have determined that these particles can accumulate in the placenta, causing metabolic changes, disrupting the development of the fetus, and endangering the health of future generations. In humans, the presence of micro/nanoplastics in placenta tissue, infant feces, and breast milk has been reported. These particles can directly affect the health of the mother and fetus, increasing the risk of premature birth and other pregnancy complications. This review aims to outline the hazardous effects of micro/nano plastics on female reproductive health and fetal growth and discuss the results of animal experiments and human research focusing on cellular and molecular pathways.
Collapse
Affiliation(s)
- Hasti Balali
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Ali Morabbi
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran.
| |
Collapse
|
21
|
Zangene S, Morovvati H, Anbara H, Hye Khan MA, Goorani S. Polystyrene microplastics cause reproductive toxicity in male mice. Food Chem Toxicol 2024; 194:115083. [PMID: 39521238 DOI: 10.1016/j.fct.2024.115083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/10/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Microplastics are a common environmental pollutant that disrupts the reproductive system of living organisms. We investigated the reproductive toxicity of 2 μm polystyrene microplastics (PS-MPs) in mice and treated them with PS-MPs for 6 weeks. We demonstrated that PS-MPs decreased the gonadosomatic index and the serum concentration of pituitary-testicular axis hormones (Follicle-stimulating hormone, Luteinizing hormone, and testosterone). The PS-MPs treatment also reduced viable epididymal sperm number and sperm motility. Our results also demonstrated a marked decrease in tubular differentiation index, spermatogenesis index, repopulation index, and steroidogenic foci. The PS-MPs treated mice demonstrated marketed tissue damage in the testis. We also found that reproductive abnormality in PS-MPs treated mice accompanied by reduced antioxidant capacity elevated oxidative stress, and, elevated apoptotic signaling. It was observed that Endoplasmic reticulum (ER) stress markers, including GRP78 and Chop, were upregulated. Based on these findings, oxidative stress and endoplasmic reticulum stress may contribute to the decline in the steroidogenic function of Leydig cells with PS-MPs treated.
Collapse
Affiliation(s)
- Somaye Zangene
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hassan Morovvati
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Hojat Anbara
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Md Abdul Hye Khan
- Department of Anesthesiology & Preoperative Medicine, University of Missouri, Columbia, USA.
| | - Samaneh Goorani
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
22
|
Tang S, Zhang Q, Xu H, Zhu M, Nahid Pervez M, Wu B, Zhao Y. Fabric structure and polymer composition as key contributors to micro(nano)plastic contamination in face masks. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135089. [PMID: 38959827 DOI: 10.1016/j.jhazmat.2024.135089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
The surge in face mask use due to COVID-19 has raised concerns about micro(nano)plastics (MNPs) from masks. Herein, focusing on fabric structure and polymer composition, we investigated MNP generation characteristics, mechanisms, and potential risks of surgical polypropylene (PP) and fashionable polyurethane (PU) masks during their wearing and photoaging based on stereomicroscope, μ-Fourier transform infrared spectroscopy (μ-FTIR), and scanning electron microscope (SEM) techniques. Compared with new PP and PU masks (66 ± 16 MPs/PP-mask, 163 ± 83 MPs/PU-mask), single- and multiple-used masks exhibited remarkably increased MP type and abundance (600-1867 MPs/PP-mask, 607-2167 MPs/PU-mask). Disinfection exacerbated endogenous MP generation in masks, with washing (416 MPs/PP-mask, 30,708 MPs/PU-mask) being the most prominent compared to autoclaving (219 MPs/PP-mask, 553 MPs/PU-mask) and alcohol spray (162 MPs/PP-mask, 18,333 MPs/PU-mask). Photoaging led to massive generation of MPs (8.8 × 104-3.7 × 105 MPs/PP-layer, 1.0 × 105 MPs/PU-layer) and NPs (5.2 × 109-3.6 × 1013 NPs/PP-layer, 3.5 × 1012 NPs/PU-layer) from masks, presenting highly fabric structure-dependent aging modes as "fragmentation" for fine fiber-structure PP mask and "erosion" for 3D mesh-structure PU mask. The MNPs derived from PP/PU mask caused significant deformities of Zebrafish (Danio rerio) larvae. These findings underscore the potential adverse effects of masks on humans and aquatic organisms, advocating to enhance proper use and rational disposal for masks.
Collapse
Affiliation(s)
- Shuai Tang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Qun Zhang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; School of Public Health, Shandong Second Medical University, Weifang 261053, China
| | - Haowen Xu
- School of Life Sciences, The Chinese University of Hong Kong, 999077, Hong Kong, China
| | - Mengyuan Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Md Nahid Pervez
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yaping Zhao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
23
|
Deo L, Benjamin LK, Osborne JW. Critical review on unveiling the toxic and recalcitrant effects of microplastics in aquatic ecosystems and their degradation by microbes. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:896. [PMID: 39230754 DOI: 10.1007/s10661-024-13023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
Production of synthetic plastic obtained from fossil fuels are considered as a constantly growing problem and lack in the management of plastic waste has led to severe microplastic pollution in the aquatic ecosystem. Plastic particles less than 5mm are termed as microplastics (MPs), these are pervasive in water and soil, it can also withstand longer period of time with high durability. It can be broken down into smaller particles and can be adsorbed by various life-forms. Most marine organisms tend to consume plastic debris that can be accumulated easily into the vertebrates, invertebrates and planktonic entities. Often these plastic particles surpass the food chain, resulting in the damage of various organs and inhibiting the uptake of food due to the accumulation of microplastics. In this review, the physical and chemical properties of microplastics, as well as their effects on the environment and toxicity of their chemical constituents are discussed. In addition, the paper also sheds light on the potential of microorganisms such as bacteria, fungi, and algae which play a pivotal role in the process of microplastics degradation. The mechanism of microbial degradation, the factors that affect degradation, and the current advancements in genetic and metabolic engineering of microbes to promote degradation are also summarized. The paper also provides information on the bacterial, algal and fungal degradation mechanism including the possible enzymes involved in microplastic degradation. It also investigates the difficulties, limitations, and potential developments that may occur in the field of microbial microplastic degradation.
Collapse
Affiliation(s)
- Loknath Deo
- Department of Plant Pathology and Entomology, VIT-School of Agricultural Innovation and Advanced Learning, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Lincy Kirubhadharsini Benjamin
- Department of Plant Pathology and Entomology, VIT-School of Agricultural Innovation and Advanced Learning, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Jabez William Osborne
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
24
|
Ding P, Xiang C, Yao Q, Li X, Zhang J, Yin R, Zhang L, Li AJ, Hu G. Aged polystyrene microplastics exposure affects apoptosis via inducing mitochondrial dysfunction and oxidative stress in early life of zebrafish. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121995. [PMID: 39083943 DOI: 10.1016/j.jenvman.2024.121995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/07/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
In recent years, the toxic effects of microplastics (MPs) on aquatic organisms have been increasingly recognized. However, the developmental toxicity and underlying mechanisms of photoaged MPs at environmental concentrations remain unclear. Therefore, the photodegradation of pristine polystyrene (P-PS) under UV irradiation was used to investigate, as well as the developmental toxicity and underlying mechanisms of zebrafish (Danio rerio) exposed to P-PS and aged polystyrene (A-PS) at environmentally relevant concentrations (0.1-100 μg/L). Mortality, heart rate, body length, and tail coiling frequency of zebrafish larvae were the developmental toxicity endpoints. A-PS had increased crystallinity, the introduction of new functional groups, and higher oxygen content after UV-photoaging. The toxicity results showed that exposure to A-PS resulted in more adverse developmental toxicity than exposure to P-PS. Exposure to A-PS induced oxidative damage, as evidenced by elevated production of reactive oxygen species (ROS) and DNA damage, and led to decreased mitochondrial membrane potential (MMP) and causes the release of cytochrome c (cyt c) from the mitochondria. The caspase-3/-9 activation signaling pathways may cause developmental toxicity via mitochondrial apoptosis. Significant changes in the expression of genes were further explored linking with oxidative stress, mitochondria dysfunctions and apoptosis pathways following A-PS exposure. These findings underscore the importance of addressing the environmental applications of aged MPs and call for further research to mitigate their potential risks on aquatic ecosystems and human health.
Collapse
Affiliation(s)
- Ping Ding
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510630, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Chongdan Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Department of Public Health Emergency Preparedness and Response, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
| | - Qian Yao
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xintong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jiayi Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Renli Yin
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510630, China
| | - Lijuan Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Adela Jing Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510630, China.
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| |
Collapse
|
25
|
Aloisi M, Grifoni D, Zarivi O, Colafarina S, Morciano P, Poma AMG. Plastic Fly: What Drosophila melanogaster Can Tell Us about the Biological Effects and the Carcinogenic Potential of Nanopolystyrene. Int J Mol Sci 2024; 25:7965. [PMID: 39063206 PMCID: PMC11277132 DOI: 10.3390/ijms25147965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Today, plastic pollution is one of the biggest threats to the environment and public health. In the tissues of exposed species, micro- and nano-fragments accumulate, leading to genotoxicity, altered metabolism, and decreased lifespan. A model to investigate the genotoxic and tumor-promoting potential of nanoplastics (NPs) is Drosophila melanogaster. Here we tested polystyrene, which is commonly used in food packaging, is not well recycled, and makes up at least 30% of landfills. In order to investigate the biological effects and carcinogenic potential of 100 µm polystyrene nanoparticles (PSNPs), we raised Oregon [R] wild-type flies on contaminated food. After prolonged exposure, fluorescent PSNPs accumulated in the gut and fat bodies. Furthermore, PSNP-fed flies showed considerable alterations in weight, developmental time, and lifespan, as well as a compromised ability to recover from starvation. Additionally, we noticed a decrease in motor activity in DNAlig4 mutants fed with PSNPs, which are known to be susceptible to dietary stressors. A qPCR molecular investigation of the larval intestines revealed a markedly elevated expression of the genes drice and p53, suggesting a response to cell damage. Lastly, we used warts-defective mutants to assess the carcinogenic potential of PSNPs and discovered that exposed flies had more aberrant masses than untreated ones. In summary, our findings support the notion that ingested nanopolystyrene triggers metabolic and genetic modifications in the exposed organisms, eventually delaying development and accelerating death and disease.
Collapse
Affiliation(s)
- Massimo Aloisi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| | - Daniela Grifoni
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| | - Osvaldo Zarivi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| | - Sabrina Colafarina
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| | - Patrizia Morciano
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
- INFN Laboratori Nazionali del Gran Sasso, Assergi, 67100 L’Aquila, Italy
| | - Anna Maria Giuseppina Poma
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| |
Collapse
|
26
|
Huang W, Mo J, Li J, Wu K. Exploring developmental toxicity of microplastics and nanoplastics (MNPS): Insights from investigations using zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173012. [PMID: 38719038 DOI: 10.1016/j.scitotenv.2024.173012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/15/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
Microplastics and nanoplastics (MNPs) have received increasing attention due to their high detection rates in human matrices and adverse health implications. However, the toxicity of MNPs on embryo/fetal development following maternal exposure remains largely unexplored. Zebrafish, sharing genetic similarities with human, boast a shorter life cycle, rapid embryonic development, and the availability of many transgenic strains, is a suitable model for environmental toxicology studies. This review comprehensively explores the existing research on the impacts of MNPs on zebrafish embryo development. MNPs exposure induces a wide array of toxic effects, encompassing neurodevelopmental toxicity, immunotoxicity, gastrointestinal effects, microbiota dysbiosis, cardiac dysfunctions, vascular toxicity, and metabolic imbalances. Moreover, MNPs disrupt the balance between reactive oxygen species (ROS) production and antioxidant capacity, culminating in oxidative damage and apoptosis. This study also offers insight into the current omics- and multi-omics based approaches in MNPs research, which greatly expedite the discovery of biochemical or metabolic pathways, and molecular mechanisms underlying MNPs exposure. Additionally, this review proposes a preliminary adverse outcome pathway framework to predict developmental toxicity caused by MNPs. It provides a comprehensive overview of pathways, facilitating a clearer understanding of the exposure and toxicity of MNPs, from molecular effects to adverse outcomes. The compiled data in this review provide a better understanding for MNPs effects on early life development, with the goal of increasing awareness about the risks posed to pregnant women by MNPs exposure and its potential impact on the health of their future generations.
Collapse
Affiliation(s)
- Wenlong Huang
- Department of Forensic Medicine, Shantou University Medical College, Shantou 515041, Guangdong, People's Republic of China.
| | - Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, People's Republic of China
| | - Jiejie Li
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, People's Republic of China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, People's Republic of China
| |
Collapse
|
27
|
Hua J, Zhang T, Chen X, Zhu B, Zhao M, Fu K, Zhang Y, Tang H, Pang H, Guo Y, Han J, Yang L, Zhou B. Behavioral impairments and disrupted mitochondrial energy metabolism induced by polypropylene microplastics in zebrafish larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174541. [PMID: 38977091 DOI: 10.1016/j.scitotenv.2024.174541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
Polypropylene microplastics (PP-MPs) are emerging pollutant commonly detected in various environmental matrices and organisms, while their adverse effects and mechanisms are not well known. Here, zebrafish embryos were exposed to environmentally relevant concentrations of PP-MPs (0.08-50 mg/L) from 2 h post-fertilization (hpf) until 120 hpf. The results showed that the body weight was increased at 2 mg/L, heart rate was reduced at 0.08 and 10 mg/L, and behaviors were impaired at 0.4, 10 or 50 mg/L. Subsequently, transcriptomic analysis in the 0.4 and 50 mg/L PP-MPs treatment groups indicated potential inhibition on the glycolysis/gluconeogenesis and oxidative phosphorylation pathways. These findings were validated through alterations in multiple biomarkers related to glucose metabolism. Moreover, abnormal mitochondrial ultrastructures were observed in the intestine and liver in 0.4 and 50 mg/L PP-MPs treatment groups, accompanied by significant decreases in the activities of four mitochondrial electron transport chain complexes and ATP contents. Oxidative stress was also induced, as indicated by significantly increased ROS levels and significant reduced activities of CAT and SOD and GSH contents. All the results suggested that environmentally relevant concentrations of PP-MPs could induce disrupted mitochondrial energy metabolism in zebrafish, which may be associated with the observed behavioral impairments. This study will provide novel insights into PP-MPs-induced adverse effects and highlight need for further research.
Collapse
Affiliation(s)
- Jianghuan Hua
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Hubei Shizhen Laboratory, Wuhan 430061, China.
| | - Taotao Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Hubei Shizhen Laboratory, Wuhan 430061, China; School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xianglin Chen
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430061, China; School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Biran Zhu
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Hubei Shizhen Laboratory, Wuhan 430061, China
| | - Min Zhao
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430061, China
| | - Kaiyu Fu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yindan Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Huijia Tang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Hao Pang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yongyong Guo
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian Han
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lihua Yang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Bingsheng Zhou
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
28
|
Hattab S, Cappello T, Boughattas I, Sassi K, Mkhinini M, Zitouni N, Missawi O, Eliso MC, Znaidi A, Banni M. Toxicity assessment of animal manure composts containing environmental microplastics by using earthworms Eisenia andrei. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172975. [PMID: 38705298 DOI: 10.1016/j.scitotenv.2024.172975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Nowadays, animal manure composting constitutes a sustainable alternative for farmers to enhance the level of nutrients within soils and achieve a good productivity. However, pollutants may be present in manures. This study focuses on the detection of environmental microplastics (EMPs) into composts, as well as on the assessment of their potential toxicity on the earthworm Eisenia andrei. To these aims, animals were exposed to two types of compost, namely bovine (cow) and ovine (sheep) manure, besides to their mixture, for 7 and 14 days. The presence and characterization of EMPs was evaluated in all the tested composts, as well as in tissues of the exposed earthworms. The impact of the tested composts was assessed by a multi-biomarker approach including cytotoxic (lysosomal membrane stability, LMS), genotoxic (micronuclei frequency, MNi), biochemical (activity of catalase, CAT, and glutathione-S-transferase, GST; content of malondialdehyde, MDA), and neurotoxic (activity of acetylcholinesterase, AChE) responses in earthworms. Results indicated the presence of high levels of EMPs in all the tested composts, especially in the sheep manure (2273.14 ± 200.89 items/kg) in comparison to the cow manure (1628.82 ± 175.23 items/kg), with the size <1.22 μm as the most abundant EMPs. A time-dependent decrease in LMS and AChE was noted in exposed earthworms, as well as a concomitant increase in DNA damages (MNi) after 7 and 14 days of exposure. Also, a severe oxidative stress was recorded in animals treated with the different types of compost through an increase in CAT and GST activities, and LPO levels, especially after 14 days of exposure. Therefore, it is necessary to carefully consider these findings for agricultural good practices in terms of plastic mitigation in compost usage, in order to prevent any risk for environment health.
Collapse
Affiliation(s)
- Sabrine Hattab
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy of Chott-Meriem, University of Sousse, Sousse, Tunisia; Regional Research Centre in Horticulture and Organic Agriculture of Chott-Meriem, Sousse, Tunisia
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | - Iteb Boughattas
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy of Chott-Meriem, University of Sousse, Sousse, Tunisia; Regional Field Crops Research Center of Beja, IRESA, Tunisia
| | - Khaled Sassi
- Laboratory of Agronomy, National Agronomy Institute of Tunisia (INAT), University of Carthage, Tunis, Tunisia
| | - Marouane Mkhinini
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy of Chott-Meriem, University of Sousse, Sousse, Tunisia; LEESU, Université Paris Est Créteil, Ecole des ponts, Créteil, France
| | - Nesrine Zitouni
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy of Chott-Meriem, University of Sousse, Sousse, Tunisia
| | - Omayma Missawi
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy of Chott-Meriem, University of Sousse, Sousse, Tunisia
| | - Maria Concetta Eliso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Akram Znaidi
- Department of Animal Production, Higher Institute of Agronomy of Chott-Meriem, University of Sousse, Sousse, Tunisia
| | - Mohamed Banni
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy of Chott-Meriem, University of Sousse, Sousse, Tunisia; Higher Institute of Biotechnology, ISBM, University of Monastir, Monastir, Tunisia
| |
Collapse
|
29
|
Cheng C, Tian W, Wu Y, Wei J, Yang L, Wei Y, Jiang J. Microplastics have additive effects on cadmium accumulation and toxicity in Rice flower carp (Procypris merus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172679. [PMID: 38677436 DOI: 10.1016/j.scitotenv.2024.172679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/30/2024] [Accepted: 04/20/2024] [Indexed: 04/29/2024]
Abstract
Procypris merus, a local fish species found in Guangxi, China is often exposed to both microplastics (MPs) and Cd. However, it remains unclear how these two pollutants affect P. merus. Therefore, we investigated the effects of MPs on Cd accumulation in P. merus. To this end, P. merus was separately exposed to Cd and MPs (500 μg/L) or their combination for 14 days. We found that MPs enhanced Cd accumulation in liver and gills of P. merus. Further, both the single-contaminant (MP and Cd) and combined treatments resulted in lesions in these two tissues, with more severe damage associated with the combined treatment. Even though the effect of MP on the antioxidant defense system of P. merus was limited, the Cd-only and combined treatments considerably affected the antioxidant parameters of P. merus, with the combined treatment showing a stronger effect. GO and KEGG analyses revealed that the differentially expressed genes (DEGs; TNF-related apoptosis-inducing ligand receptor, trail-r) in the Cd-only treatment group were enriched for immune-related GO terms and cell growth and death related pathways, indicating that Cd toxicity affected immune defense in P. merus. The MP-only treatment downregulated DEGs (acyl-CoA synthetase long chain family member 1a, acsl1a) related to lipid metabolism, possibly leading to lipid accumulation in the liver. The combined treatment also upregulated DEGs (aspartate aminotransferase 1, ast 1) associated with immune-related GO terms and amino acid metabolism pathways, suggesting that it affected immune function in P. merus, thereby negatively impacting its health. Results indicated that MPs have additive effects on Cd accumulation and toxicity in rice flower carp. Consequently, MPs ingested by P. merus can promote Cd accumulation, more adverse effects on the health may occur after combined exposure, which can eventually reach humans through the food chain and pose potential risks to human health.
Collapse
Affiliation(s)
- Chunxing Cheng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China
| | - Wenfei Tian
- College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541004, China
| | - Yangyang Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China
| | - Jinyou Wei
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China
| | - Liu Yang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China
| | - Yuwei Wei
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China
| | - Jiaoyun Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China; Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Gangxi Normal University, Guilin 541006, China; Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China.
| |
Collapse
|
30
|
Rangaswamy B, An J, Kwak IS. Different recovery patterns of the surviving bivalve Mytilus galloprovincialis based on transcriptome profiling exposed to spherical or fibrous polyethylene microplastics. Heliyon 2024; 10:e30858. [PMID: 38813215 PMCID: PMC11133752 DOI: 10.1016/j.heliyon.2024.e30858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
Microplastics (MPs) are pervasive pollutants exuded from anthropogenic activities and ingested by animals in different ecosystems. This transcriptomic profiling study aimed to explore the impact of polyethylene MPs on Mytilus galloprovincialis, an ecologically significant bivalve species. The toxicity of two MPs types was found to result in increased cellular stress when exposed up to 14 days. Moreover, recovery mechanisms were also observed in progress. Mussels exhibited different gene expression patterns and molecular regulation in response to cellular reactive oxygen species (ROS) stress. The transcriptome analysis demonstrated a notable hindrance in cilia movement as MPs ingested through gills. Subsequent entry resulted in a significant disruption in the cytoskeletal organization, cellular projection, and cilia beat frequency. On day 4 (D4), signal transduction and activation of apoptosis evidenced the signs of toxic consequences. Mussels exposed to spherical MPs shown significant recovery on day 14 (D14), characterized by the upregulation of anti-apoptotic genes and antioxidant genes. The expression of P53 and BCL2 genes was pivotal in controlling the apoptotic process and promoting cell survival. Mussels exposed to fibrous MPs displayed a delayed cell survival effect. However, the elevated physiological stress due to fibrous MPs resulted in energy transfer by compensatory regulation of metabolic processes to expedite cellular recovery. These observations highlighted the intricate and varied reaction of cell survival mechanisms in mussels to recover toxicity. This study provides critical evidence of the ecotoxicological impacts of two different MPs and emphasizes the environmental risks they pose to aquatic ecosystems. Our conclusion highlights the detrimental effects of MPs on M. galloprovincialis and the need for more stringent regulations to protect marine ecosystems.
Collapse
Affiliation(s)
- Boobal Rangaswamy
- Department of Biotechnology, PSG College of Arts & Science, Coimbatore, Tamil Nadu 641014, India
| | - Jinsung An
- Department of Civil and Environmental Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Ihn-Sil Kwak
- Department of Ocean Integrated Science, Chonnam National University, Yeosu, 59626, Republic of Korea
| |
Collapse
|
31
|
Mottola F, Carannante M, Barretta A, Palmieri I, Rocco L. Reproductive cytotoxic and genotoxic impact of polystyrene microplastic on Paracentrotus lividus spermatozoa. Curr Res Toxicol 2024; 6:100173. [PMID: 38826685 PMCID: PMC11143891 DOI: 10.1016/j.crtox.2024.100173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 06/04/2024] Open
Abstract
In recent decades, industrialization, intensive agriculture, and urban development have severely impacted marine environments, compromising the health of aquatic and terrestrial organisms. Inadequate disposal results in hundreds of tons of plastic products released annually into the environment, which degrade into microplastics (MPs), posing health risks due to their ability to biomagnify and bioaccumulate. Among these, polystyrene MPs (PS-MPs) are significant pollutants in marine ecosystems, widely studied for their reproductive toxicological effects. This research aimed to evaluate the reproductive cytotoxic and genotoxic effects of PS-MPs on sea urchin (Paracentrotus lividus) spermatozoa in vitro. Results showed that PS-MPs significantly reduced sperm viability and motility without altering morphology, and induced sperm DNA fragmentation mediated by reactive oxygen species production. Furthermore, head-to-head agglutination of the spermatozoa was observed exclusively in the sample treated with the plastic agents, indicating the ability of microplastics to adhere to the surface of sperm cells and form aggregates with microplastics on other sperm cells, thereby impeding movement and reducing reproductive potential. These findings suggest that PS-MPs can adversely affect the quality of sea urchin sperm, potentially impacting reproductive events.
Collapse
Affiliation(s)
- Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Maria Carannante
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Angela Barretta
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Ilaria Palmieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| |
Collapse
|
32
|
Ali W, Buriro RS, Gandahi JA, Chen Y, Aabdin ZU, Bhutto S, Sun J, Zhu J, Liu Z, Zou H. A critical review on male-female reproductive and developmental toxicity induced by micro-plastics and nano-plastics through different signaling pathways. Chem Biol Interact 2024; 394:110976. [PMID: 38552764 DOI: 10.1016/j.cbi.2024.110976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024]
Abstract
It is widely accepted that humans are constantly exposed to micro-plastics and nano-plastics through various routes, including inhalation of airborne particles, exposure to dust, and consumption of food and water. It is estimated that humans may consume thousand to millions of micro-plastic particles, equating to several milligrams per day. Prolonged exposure to micro-plastics and nano-plastics has been linked to negative effects on different living organisms, including neurotoxicity, gastrointestinal toxicity, nephrotoxicity, and hepatotoxicity, and developmental toxicities. The main purpose of this review is to explore the effect of micro-plastics and nano-plastics on the male and female reproductive system, as well as their offspring, and the associated mechanism implicated in the reproductive and developmental toxicities. Micro-plastics and nano-plastics have been shown to exert negative effects on the reproductive system of both male and female mammals and aquatic animals, including developmental impacts on gonads, gametes, embryo, and their subsequent generation. In addition, micro-plastics and nano-plastics impact the hypothalamic-pituitary axes, leading to oxidative stress, reproductive toxicity, neurotoxicity, cytotoxicity, developmental abnormalities, poor sperm quality, diminishes ovarian ovulation and immune toxicity. This study discusses the so many different signaling pathways associated in the male and female reproductive and developmental toxicity induced by micro-plastics and nano-plastics.
Collapse
Affiliation(s)
- Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Rehana Shahnawaz Buriro
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Jameel Ahmed Gandahi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Yan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Zain Ul Aabdin
- Department of Preventive Veterinary Medicine and Public Health Faculty of Veterinary and Animal Sciences, Ziauddin University, Pakistan
| | - Sahar Bhutto
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Jian Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China.
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China.
| |
Collapse
|
33
|
Shao X, Xiao D, Yang Z, Jiang L, Li Y, Wang Y, Ding Y. Frontier of toxicology studies in zebrafish model. J Appl Toxicol 2024; 44:488-500. [PMID: 37697940 DOI: 10.1002/jat.4543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Based on the 87 original publications only from quartiles 1 and 2 of Journal Citation Report (JCR) collected by the major academic databases (Science Direct, Web of Science, PubMed, and Wiley) in 2022, the frontier of toxicology studies in zebrafish model is summarized. Herewith, a total of six aspects is covered such as developmental, neurological, cardiovascular, hepatic, reproductive, and immunizing toxicities. The tested samples involve chemicals, drugs, new environmental pollutants, nanomaterials, and its derivatives, along with those related mechanisms. This report may provide a frontier focus benefit to researchers engaging in a zebrafish model for environment, medicine, food, and other fields.
Collapse
Affiliation(s)
- Xinting Shao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Dandan Xiao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Zhaoyi Yang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Lulu Jiang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Yong Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Ye Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Yuling Ding
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
34
|
Mukhopadhyay P, Valsalan SA. Incidence of microplastic translocation in freshwater fish eggs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123529. [PMID: 38341061 DOI: 10.1016/j.envpol.2024.123529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
The issue of microplastic contamination in seafood is progressively recognised as a significant global issue. This study presents novel findings regarding the detection of microplastics within the eggs of commercially available fish intended for consumption by humans. Eggs of Ompok bimaculatus, Heteropneustes fossilis, Mystus vittatus and Anabas testudineus collected from the Periyar River, Kerala, India were subjected to analysis for the potential presence of microplastics. Out of the 91 fishes (containing eggs) examined, microplastics were observed in the eggs of 2 species, i.e., Ompok bimaculatus and Mystus vittatus. The polymers recorded were polyethylene and polypropylene. Fish eggs are commonly consumed by humans and are highly esteemed as a delectable food. Considering the widespread consumption of fish eggs as a delicacy among humans, there exists a potential route for human exposure to microplastics, which raises concerns regarding public health.
Collapse
Affiliation(s)
- Patralika Mukhopadhyay
- School of Industrial Fisheries, Cochin University of Science and Technology, Lakeside Campus, Kochi, Kerala, India.
| | - Shibu Arkkakadavil Valsalan
- School of Industrial Fisheries, Cochin University of Science and Technology, Lakeside Campus, Kochi, Kerala, India
| |
Collapse
|
35
|
Xiao S, Filippini A, Casadei M, Caracciolo G, Digiacomo L, Rossetta A. Fast and portable fluorescence lifetime analysis for early warning detection of micro- and nanoplastics in water. ENVIRONMENTAL RESEARCH 2024; 244:117936. [PMID: 38109963 DOI: 10.1016/j.envres.2023.117936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
The presence of plastic fragments in aquatic environments, particularly at the micro- and nano-scale, has become a significant global concern. However, current detection methods are limited in their ability to reveal the presence of such particles in liquid samples. In this study, we propose the use of a fluorescence lifetime analysis system for the detection of micro- and nanoplastics in water. This approach relies on the inherent endogenous fluorescence of plastic materials and involves the collection of single photons emitted by plastic fragments upon exposure to a pulsed laser beam. Briefly, a pulsed laser beam (repetition frequency = 40 MHz) shines onto a sample solution, and the emitted light is filtered, collected, and used to trace the time distributions of the photons with high temporal resolution. Finally, the fluorescence lifetime was measured using fitting procedures and a phasor analysis. Phasor analysis is a fit-free method that allows the measurement of the fluorescence lifetime of a sample without any assumptions or prior knowledge of the sample decay pattern. The developed instrument was tested using fluorescence references and validated using unlabelled micro- and nano-scale particles. Our system successfully detected polystyrene particles in water, achieving a remarkable sensitivity with a detection limit of 0.01 mg/mL, without the need for sample pre-treatment or visual inspection. Although further studies are necessary to enhance the detection limit of the technique and distinguish between different plastic materials, this proof-of-concept study suggests the potential of the fluorescence lifetime-based approach as a rapid, robust, and cost-effective method for early warning detection and identification of plastic contaminants in aquatic environments.
Collapse
Affiliation(s)
- Siyao Xiao
- NanoDelivery Lab, Department of Molecular Medicine, "Sapienza" University, Viale Regina Elena 291, 00161, Rome, Italy
| | - Antonio Filippini
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Section of Histology and Medical Embryology, "Sapienza" University, Rome, Italy
| | - Marco Casadei
- FLIM LABS S.r.l., Via della Farnesina 3, 00135, Rome, Italy
| | - Giulio Caracciolo
- NanoDelivery Lab, Department of Molecular Medicine, "Sapienza" University, Viale Regina Elena 291, 00161, Rome, Italy
| | - Luca Digiacomo
- NanoDelivery Lab, Department of Molecular Medicine, "Sapienza" University, Viale Regina Elena 291, 00161, Rome, Italy.
| | | |
Collapse
|
36
|
La Pietra A, Fasciolo G, Lucariello D, Motta CM, Venditti P, Ferrandino I. Polystyrene microplastics effects on zebrafish embryological development: Comparison of two different sizes. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104371. [PMID: 38244881 DOI: 10.1016/j.etap.2024.104371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/21/2023] [Accepted: 01/16/2024] [Indexed: 01/22/2024]
Abstract
Microplastics have become a great worldwide problem and it's therefore important to study their possible effects on human and environmental health. In this study, zebrafish embryos were used to compare two different sizes of polystyrene microplastics (PS-MPs), 1 µm and 3 µm respectively, at 0.01, 0.1, 1.0 and 10.0 mgL-1, and were monitored up to 72 h. Toxicity tests demonstrated that neither of the PS-MPs altered the embryos' survival and the normal hatching process. Instead, higher concentrations of both sizes caused an increase of the heart rate and phenotypic changes. The PS-MPs of both sizes entered and accumulated in the larvae at the concentration of 10.0 mgL-1 and the same concentration caused an increase of apoptotic processes correlated to redox homeostasis changes. The reported results give a realistic view of the negative effects of exposure to PS-MPs and provide new information on their toxicity, also considering their sizes.
Collapse
Affiliation(s)
| | - Gianluca Fasciolo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | | | - Paola Venditti
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Ida Ferrandino
- Department of Biology, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
37
|
Sbarberi R, Magni S, Boggero A, Della Torre C, Nigro L, Binelli A. Comparison of plastic pollution between waters and sediments in four Po River tributaries (Northern Italy). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168884. [PMID: 38042177 DOI: 10.1016/j.scitotenv.2023.168884] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 12/04/2023]
Abstract
The monitoring of plastic contamination in freshwaters is still pioneering in comparison with marine environments, and few studies analyzed the distribution of these pollutants in both aqueous and bottom compartments of continental waters. Therefore, the aim of this study was the comparison of plastic pollution in both waters and sediments of four Po River tributaries (Ticino, Adda, Oglio and Mincio Rivers), which outflow from the main Italian sub-alpine Lakes, in order to establish the strengths and weaknesses of both matrices. The main results pointed out a heterogeneous plastic contamination, with the lowest values in Ticino (0.9 ± 0.5 plastics/m3 in waters and 6.8 ± 4.5 plastics/kg dry weight - d.w. - in sediments) and the highest in Mincio (62.9 ± 53.9 plastics/m3 in waters and 26.5 ± 13.3 plastics/kg d.w in sediments), highlighting a plastic amount in sediments four times higher than waters. Plastic pollution, mainly due to microplastics, was associated principally to a domestic input in both waters and sediments of Ticino and Adda Rivers, as well as in sediments of Oglio, while an industrial pollution was found in waters and sediments of Mincio and Oglio waters. Our data clearly highlighted as the monitoring of both matrices provide complementary information for a holistic risk assessment of these emerging contaminants in freshwaters: the aqueous matrix provides an instantaneous picture of contamination, while sediments the history of pollution.
Collapse
Affiliation(s)
- Riccardo Sbarberi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Stefano Magni
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| | - Angela Boggero
- National Research Council - Water Research Institute (CNR-IRSA), Corso Tonolli 50, 28922 Verbania Pallanza, Italy
| | - Camilla Della Torre
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Lara Nigro
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Andrea Binelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
38
|
Hu F, Zhao H, Ding J, Jing C, Zhang W, Chen X. Uptake and toxicity of micro-/nanoplastics derived from naturally weathered disposable face masks in developing zebrafish: Impact of COVID-19 pandemic on aquatic life. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123129. [PMID: 38092337 DOI: 10.1016/j.envpol.2023.123129] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/16/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
The unprecedented proliferation of disposable face masks during the COVID-19 pandemic, coupled with their improper disposal, threatens to exacerbate the already concerning issue of plastic pollution. This study evaluates the role of environmentally weathered masks as potential sources of microplastics (MPs) and nanoplastics (NPs) and assesses their adverse impact on the early life stages of zebrafish. Experimental findings revealed that a single disposable mask could release approximately 1.79 × 109 particles, with nearly 70% measuring less than 1 μm, following 60 days of sunlight exposure and subsequent sand-induced physical abrasion. Remarkably, the MPs/NPs (MNPs) emanating from face masks have the potential to permeate the outer layer (chorion) of zebrafish embryos. Furthermore, due to their minute size, these particles can be consumed by the larvae's digestive system and subsequently circulated to other tissues, including the brain. Exposure to mask-derived MNPs at concentrations of 1 and 10 μg/L led to significant cases of developmental toxicity, incited oxidative stress, and prompted cell apoptosis. A subsequent metabolomics analysis indicated that the accumulation of these plastic particles perturbed metabolic functions in zebrafish larvae, primarily disrupting amino acid and lipid metabolism. The outcomes of this research underscore the accelerating possibility of environmental aging processes and physical abrasion in the release of MNPs from disposable face masks. Most importantly, these results shed light on the possible ecotoxicological risk posed by improperly disposed of face masks.
Collapse
Affiliation(s)
- Fengxiao Hu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Haocheng Zhao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jieyu Ding
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chen Jing
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Weini Zhang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinhua Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
39
|
Yu Y, Tian D, Yu Y, Lu L, Shi W, Liu G. Microplastics aggravate the bioaccumulation and corresponding food safety risk of antibiotics in edible bivalves by constraining detoxification-related processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168436. [PMID: 37949129 DOI: 10.1016/j.scitotenv.2023.168436] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/19/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Characterized by a sessile filter-feeding lifestyle, commercial marine bivalves inhabiting pollution-prone coastal areas may accumulate significant amounts of pollutants, such as antibiotic residues, in their soft tissues and thus pose a potential threat to the health of seafood consumers. Microplastics are another type of emerging pollutant that are prevalent in coastal areas and have been reported to interact with common antibiotics such as enrofloxacin (ENR) and trimethoprim (TMP). Nevertheless, little is known about the impacts of MPs on the accumulation and corresponding food safety risk of antibiotics in edible bivalve species. Taking the frequently detected ENR, TMP, and polystyrene (PS)-MPs as representatives, the accumulation of above-mentioned antibiotics in three commercial bivalves with or without the copresence of MPs was assessed. In addition, the corresponding food safety risks of consuming antibiotic-contaminated bivalves were evaluated. Moreover, the impacts of these pollutants on detoxification-related processes were analyzed using the thick-shell mussel as a representative. Our results demonstrated that blood clams (Tegillarca granosa), thick-shell mussels (Mytilus coruscus), and Asiatic hard clams (Meretrix meretrix) accumulated significantly higher amounts of antibiotics in their bodies under antibiotic-MP coexposure scenarios. Although based on the target hazard quotients (THQs) and the margins of exposure (MoEs) obtained, the direct toxic risks of consuming ENR- or TMP-contaminated bivalves were negligible, the TMP residue accumulated in TMP-MP-coexposed mussels did surpass the maximum residue limits (MRLs) of the corresponding National Food Safety Standard of China, suggesting that other forms of potential risks should not be ignored. In addition, it was shown that the detoxification, energy provision, and antioxidant capacities of the thick-shell mussels were significantly hampered by exposure to the pollutants. In general, our data indicate that MPs may aggravate the accumulation and corresponding food safety risk of antibiotics in edible bivalves by disrupting detoxification-related processes, which deserves closer attention.
Collapse
Affiliation(s)
- Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Dandan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Lingzheng Lu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
40
|
Wang H, Xu J, Yuan Y, Wang Z, Zhang W, Li J. The Exploration of Joint Toxicity and Associated Mechanisms of Primary Microplastics and Methamphetamine in Zebrafish Larvae. TOXICS 2024; 12:64. [PMID: 38251019 PMCID: PMC10820113 DOI: 10.3390/toxics12010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
The co-existence of microplastics (MPs) and methamphetamine (METH) in aquatic ecosystems has been widely reported; however, the joint toxicity and associated mechanisms remain unclear. Here, zebrafish larvae were exposed individually or jointly to polystyrene (PS) and polyvinyl chloride (PVC) MPs (20 mg/L) and METH (1 and 5 mg/L) for 10 days. The mortality, behavioral functions, and histopathology of fish from different groups were determined. PS MPs posed a stronger lethal risk to fish than PVC MPs, while the addition of METH at 5 mg/L significantly increased mortality. Obvious deposition of MPs was observed in the larvae's intestinal tract in the exposure groups. Meanwhile, treatment with MPs induced intestinal deposits and intestinal hydrops in the fish, and this effect was enhanced with the addition of METH. Furthermore, MPs significantly suppressed the locomotor activation of zebrafish larvae, showing extended immobility duration and lower velocity. METH stimulated the outcome of PS but had no effect on the fish exposed to PVC. However, combined exposure to MPs and METH significantly increased the turn angle, which declined in individual MP exposure groups. RNA sequencing and gene quantitative analysis demonstrated that exposure to PS MPs and METH activated the MAPK signaling pathway and the C-type lectin signaling pathway of fish, while joint exposure to PVC MPs and METH stimulated steroid hormone synthesis pathways and the C-type lectin signaling pathway in zebrafish, contributing to cellular apoptosis and immune responses. This study contributes to the understanding of the joint toxicity of microplastics and pharmaceuticals to zebrafish, highlighting the significance of mitigating microplastic pollution to preserve the health of aquatic organisms and human beings.
Collapse
Affiliation(s)
- Hao Wang
- College of Oceanography, Hohai University, Nanjing 210098, China; (H.W.); (J.X.); (Y.Y.); (W.Z.)
| | - Jindong Xu
- College of Oceanography, Hohai University, Nanjing 210098, China; (H.W.); (J.X.); (Y.Y.); (W.Z.)
| | - Yang Yuan
- College of Oceanography, Hohai University, Nanjing 210098, China; (H.W.); (J.X.); (Y.Y.); (W.Z.)
| | - Zhenglu Wang
- West China School of Public Health, West China Fourth Hospital Sichuan University, Chengdu 610041, China;
| | - Wenjing Zhang
- College of Oceanography, Hohai University, Nanjing 210098, China; (H.W.); (J.X.); (Y.Y.); (W.Z.)
| | - Jiana Li
- Ningbo Academy of Ecological, Environmental Sciences, Ningbo 315000, China
| |
Collapse
|
41
|
Zhang Z, Chen W, Chan H, Peng J, Zhu P, Li J, Jiang X, Zhang Z, Wang Y, Tan Z, Peng Y, Zhang S, Lin K, Yung KKL. Polystyrene microplastics induce size-dependent multi-organ damage in mice: Insights into gut microbiota and fecal metabolites. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132503. [PMID: 37717443 DOI: 10.1016/j.jhazmat.2023.132503] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
Particle size is one of the most important factors in determining the biological toxicity of microplastics (MPs). In this study, we attempted to examine the systemic toxicity of polystyrene MPs of different sizes (0.5 µm MP1 and 5 µm MP2) in C57BL/6 J mice. After the mice were given oral gavage of MPs for 8 consecutive weeks, histopathology and molecular biology assays, 16 S rRNA sequencing of the gut microbiota, and untargeted metabolomics were performed. The results showed that MPs were distributed in the organs in a size-dependent manner, with smaller particles demonstrating greater biodistribution. Further analysis indicated that exposure to MPs caused multi-organ damage through distinct toxicity pathways. Specifically, exposure to 0.5 µm MP1 led to excessive accumulation and induced more serious inflammation and mechanical damage in the spleen, kidney, heart, lung, and liver. However, 5 µm MP2 led to more severe intestinal barrier dysfunction, as well as gut dysbiosis and metabolic disorder in association with neuroinflammation. These results are helpful in expanding our knowledge of the toxicity of MPs of different sizes in mammalian models.
Collapse
Affiliation(s)
- Zhu Zhang
- Golden Meditech Centre for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong Special Administrative Region; Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Wenqing Chen
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Hiutung Chan
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Junjie Peng
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Peili Zhu
- Golden Meditech Centre for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong Special Administrative Region; Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Junkui Li
- Golden Meditech Centre for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong Special Administrative Region; Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Xiaoli Jiang
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Zhang Zhang
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Ying Wang
- Key Laboratory of Cellular Physiology, Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Zicong Tan
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Yungkang Peng
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Shiqing Zhang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, China.
| | - Kaili Lin
- School of Public Health, Guangzhou Medical University, Guangzhou, China.
| | - Ken Kin-Lam Yung
- Golden Meditech Centre for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong Special Administrative Region; Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
42
|
Xu J, Yang W, Wang D, Wang Z, Liu C, Li J. Methamphetamine Shows Different Joint Toxicity for Different Types of Microplastics on Zebrafish Larvae by Mediating Oxidative Stress. TOXICS 2023; 12:9. [PMID: 38250965 PMCID: PMC10819112 DOI: 10.3390/toxics12010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024]
Abstract
The coexistence of polystyrene (PS) and polypropylene (PVC) microplastics (MPs) and methamphetamine (METH) in aquatic systems is evident. However, the joint toxicity is unclear. Here, zebrafish larvae were exposed to single PS and PVC MPs (20 mg L-1) and combined with METH (250 and 500 μg L-1) for 10 days. The results indicated that acute exposure to PS and PVC MPs induced lethal effects on zebrafish larvae (10-20%). Treatment with MPs markedly suppressed the locomotion of zebrafish, showing as the lengthy immobility (51-74%) and lower velocity (0.09-0.55 cm s-1) compared with the control (1.07 cm s-1). Meanwhile, histopathological analysis revealed pronounced depositions of MPs particles in fish's intestinal tract, triggering inflammatory responses (histological scores: 1.6-2.0). In the coexposure groups, obviously inflammatory responses were found. Furthermore, the up-regulations of the genes involved in the oxidative kinase gene and inflammation related genes implied that oxidative stress triggered by MPs on zebrafish larvae might be responsible for the mortality and locomotion retardant. The antagonistic and stimulatory effects of METH on the expression changes of genes found in PVC and PS groups implied the contrary combined toxicity of PS/PVC MPs and METH. This study for the first time estimated the different toxicity of PS and PVC MPs on fish and the joint effects with METH at high environmental levels. The results suggested PS showed stronger toxicity than PVC for fish larvae. The addition of METH stimulated the effects of PS but antagonized the effects of PVC, promoting control strategy development on MPs and METH in aquatic environments.
Collapse
Affiliation(s)
- Jindong Xu
- College of Oceanography, Hohai University, Nanjing 210098, China; (J.X.); (W.Y.); (D.W.); (C.L.)
| | - Wenqi Yang
- College of Oceanography, Hohai University, Nanjing 210098, China; (J.X.); (W.Y.); (D.W.); (C.L.)
| | - Dongyi Wang
- College of Oceanography, Hohai University, Nanjing 210098, China; (J.X.); (W.Y.); (D.W.); (C.L.)
| | - Zhenglu Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China;
| | - Chuang Liu
- College of Oceanography, Hohai University, Nanjing 210098, China; (J.X.); (W.Y.); (D.W.); (C.L.)
| | - Jiana Li
- Ningbo Academy of Ecological and Environmental Sciences, Ningbo 315000, China
| |
Collapse
|
43
|
Du J, Wang X, Tao T, Zhang X, Jin B, Zhao J, Lv Y, Zhang Q, Hu K, Qv W, Xu Y, Cao X. Polystyrene size-dependent impacts on microbial decomposers and nutrient cycling in streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167032. [PMID: 37709094 DOI: 10.1016/j.scitotenv.2023.167032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/03/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
The particle size of plastic is one of the most important factors influencing its ecotoxicity, but we are unclear about the effect of polystyrene (PS) particle size on microbial decomposers and consequent nutrient cycling in streams. Here, using microcosm experiments, we assessed how three PS sizes (50 nm, 1 μm, and 20 μm) influenced the process and consequences of leaf litter decomposition. Under acute exposure to 1 μm and 20 μm PS, fungal biomass significantly decreased, but microbial biomass significantly increased, indicating compensations may work between fungi and other microbial decomposers. After chronic exposure to 50 nm and 1 μm PS, the leaf decomposition rate decreased by 19.27 % and 15.22 %, respectively, due to the reduced microbial enzyme activity, fungal diversity, and dominance of Anguillospora. As a result, the regeneration of nutrients, especially phosphorus, was significantly depressed, which might influence the primary productivity of streams. Therefore, our results suggest that nanoscale PS has a greater impact on microbial activity, thus affecting their functioning in leaf litter decomposition and consequent nutrient cycling. The findings provide a data support for the risk assessment of plastic pollution in freshwater systems.
Collapse
Affiliation(s)
- Jingjing Du
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Key Laboratory of Pollution Treatment and Resource, China National Light Industry, Zhengzhou, China.
| | - Xilin Wang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Tianying Tao
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Xueting Zhang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Baodan Jin
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Key Laboratory of Pollution Treatment and Resource, China National Light Industry, Zhengzhou, China
| | - Jianguo Zhao
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Key Laboratory of Pollution Treatment and Resource, China National Light Industry, Zhengzhou, China
| | - Yangyang Lv
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Qian Zhang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Keying Hu
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Wenrui Qv
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yuanqian Xu
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Key Laboratory of Pollution Treatment and Resource, China National Light Industry, Zhengzhou, China
| | - Xia Cao
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Key Laboratory of Pollution Treatment and Resource, China National Light Industry, Zhengzhou, China
| |
Collapse
|
44
|
Pourshaban-Shahrestani A, Hassan J, Koohi MK. In Vivo Toxicity of Industrial Biocide Containing 2,2-Dibromo-3-nitrilopropionamide in Adult and Zebrafish Larvae. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 112:2. [PMID: 38017139 DOI: 10.1007/s00128-023-03824-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/11/2023] [Indexed: 11/30/2023]
Abstract
2,2-Dibromo-3-nitrilopropionamide (DBNPA) is a widely used biocide with potential environmental implications due to its toxicity. This study aimed to investigate the in vivo toxicity of DBNPA in zebrafish (Danio rerio), a model organism in environmental toxicology. Both adult and larval zebrafish were exposed to varying concentrations of DBNPA, and significant morphological changes and mortality rates were observed. The study found that even relatively low concentrations of DBNPA can have detrimental effects on zebrafish embryonic development, and high concentrations resulted in rapid mortality in adult zebrafish and larvae. The LC50 values calculated from this study were 9.3 ppm for adults and 9.1 ppm for larvae, indicating the high toxicity of DBNPA to these organisms. These findings underscore the potential environmental impact of DBNPA and highlight the need for further research into its effects on aquatic ecosystems.
Collapse
Affiliation(s)
- Ali Pourshaban-Shahrestani
- Division of Toxicology, Department of Comparative Bioscience, Faculty of Veterinary Medicine, University of Tehran, Qareeb St, Azadi Av., P.O.Box: 14155-6453, Tehran, Iran.
| | - Jalal Hassan
- Division of Toxicology, Department of Comparative Bioscience, Faculty of Veterinary Medicine, University of Tehran, Qareeb St, Azadi Av., P.O.Box: 14155-6453, Tehran, Iran
| | - Mohammad Kazem Koohi
- Division of Toxicology, Department of Comparative Bioscience, Faculty of Veterinary Medicine, University of Tehran, Qareeb St, Azadi Av., P.O.Box: 14155-6453, Tehran, Iran
| |
Collapse
|
45
|
Zhang Y, Chen C, Chen K. Combined exposure to microplastics and amitriptyline induced abnormal behavioral responses and oxidative stress in the eyes of zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109717. [PMID: 37586580 DOI: 10.1016/j.cbpc.2023.109717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/30/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Many studies have demonstrated that microplastics (MPs) can combine with various coexisting chemical pollutants, increasing their bioavailability and changing the combined toxicity to organisms. However, information on the combined effects of MPs and amitriptyline (AMI, a widely used tricyclic antidepressant) on aquatic species is still limited. In this study, we exposed zebrafish to MPs (2-μm polystyrene beads, 0.44 mg/L), AMI (2.5 μg/L), and their mixture for 7 days and investigated the alternation in their behaviors and ocular oxidative stress. As a result, combined exposure to MPs and AMI could significantly elevate locomotor activity, increase the frequency and duration of shoaling behavior in zebrafish, and alter their post-stimulation behaviors. Although combined exposure to MPs and AMI exhibited stronger behavioral toxicity than individual exposure, no significant interactive effects on the behavioral traits were detected, suggesting that the combined behavioral toxicity appeared to be an additive effect. However, their combined exposure to MPs or AMI significantly decreased the ocular levels of SOD, CAT, and GSH in zebrafish, with significant interaction effects on the CAT activity and GSH content. Significant correlations between some post-stimulation behavioral traits and ocular levels of SOD, CAT, and GSH in zebrafish were detected, suggesting that ocular oxidative stress induced by combined exposure to MPs and AMI may play an important role in their behavioral toxicity.
Collapse
Affiliation(s)
- Yi Zhang
- College of Ecology and Environment, Xinjiang University, Urumqi 830046, China
| | - Chen Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Kun Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
46
|
De Marco G, Eliso MC, Oliveri Conti G, Galati M, Billè B, Maisano M, Ferrante M, Cappello T. Short-term exposure to polystyrene microplastics hampers the cellular function of gills in the Mediterranean mussel Mytilus galloprovincialis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106736. [PMID: 37913686 DOI: 10.1016/j.aquatox.2023.106736] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Plastic is undoubtedly the most useful and versatile polymeric material that man has developed in the last two centuries Despite the societal benefits, plastic is now a serious global issue because it is persistent and may bioaccumulate into aquatic biota as microplastics (MPs). This study was designed to evaluate the daily uptake and cellular effects due to a short-term (up to 72 h) exposure to 3 μm red polystyrene MPs (50 beads/mL) in the gills of the Mediterranean mussel Mytilus galloprovincialis, chosen as model species for its ecological and commercial relevance. After measuring the daily uptake of MPs and detecting their presence within the branchial epithelium at all the exposure time-points (T24, T48, T72), some cleaning mechanisms were observed by neutral and acid mucous secretions at mussel gills. The protonic Nuclear Magnetic Resonance (1H NMR)-based metabolomics, combined with chemometrics, allowed to comprehensively explore the time-dependent metabolic disorders triggered by MPs in mussel gills over the short-term trial. Specifically, the clear clustering between MP-treated mussel gills and those from control, together with the grouping for experimental time-points as depicted by the Principal Component Analysis (PCA), were due to changes in the amino acids and energy metabolism, disturbances in the osmoregulatory processes, as well as in the cholinergic neurotransmission. Moreover, as evidenced by enzymatic assays, even the oxidative defense systems and lipid metabolism were hampered by MP exposure. Overall, these findings provides the first insights into the early time-dependent mechanisms of toxicity of polystyrene MPs in marine mussels, and underline the potential environment and human health risk posed by MPs contamination.
Collapse
Affiliation(s)
- Giuseppe De Marco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Maria Concetta Eliso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Gea Oliveri Conti
- Interdepartmental Research Center for the Implementation of Physical, Chemical and Biological Monitoring Processes in Aquaculture and Bioremediation Systems, Department of Medical, Surgical and Advanced Technologies, Hygiene and Public Health "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania 95123, Italy; Research Center in Nanomedicine and Pharmaceutical Nanotechnology (NANOMED), Department of Pharmaceutical and Health Sciences, University of Catania, Via Santa Sofia 87, Catania 95123, Italy
| | - Mariachiara Galati
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Barbara Billè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Maria Maisano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy; University Centre for the Protection and Management of Natural Environments and Agro-Ecosystems (CUTGANA), Via Santa Sofia 98, Catania 95123, Italy
| | - Margherita Ferrante
- Interdepartmental Research Center for the Implementation of Physical, Chemical and Biological Monitoring Processes in Aquaculture and Bioremediation Systems, Department of Medical, Surgical and Advanced Technologies, Hygiene and Public Health "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania 95123, Italy; Research Center in Nanomedicine and Pharmaceutical Nanotechnology (NANOMED), Department of Pharmaceutical and Health Sciences, University of Catania, Via Santa Sofia 87, Catania 95123, Italy
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy.
| |
Collapse
|
47
|
Chen Q, Cao Y, Li H, Liu H, Liu Y, Bi L, Zhao H, Jin L, Peng R. Sodium nitroprusside alleviates nanoplastics-induced developmental toxicity by suppressing apoptosis, ferroptosis and inflammation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118702. [PMID: 37536135 DOI: 10.1016/j.jenvman.2023.118702] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/12/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
The health damage caused by nanoplastics (NPs) pollution has become one of the global scientific problems to be solved urgently. However, the toxicological mechanism of NPs is complex, and the research progress of anti-toxicity is limited. Thus, it has potential application value to explore or develop drugs that can effectively alleviate or remove NPs with biological toxicity. In this research, 8 μM sodium nitroprusside (SNP) solution was used to treat zebrafish larvae with 20 mg/L NPs for up to 12 days, and the results showed that SNP treatments were effective in alleviating NPs-caused developmental toxicity in zebrafish larvae. Further examination of its signaling pathway revealed that NPs-induced oxidative stress was mitigated by activating the NO-sGC-cGMP signaling pathway and reduced most of the reactive oxygen species (ROS). Subsequently, we detected the key substances and the key enzymes involved in apoptosis and ferroptosis, and found that oxidative stress-induced mitochondria-dependent apoptosis and lipid peroxidation-caused ferroptosis were alleviated. Finally, observed the accumulation of NPs and ROS in the liver of zebrafish larvae, which is the target organ of immunotoxicity, and we found that SNP could alleviate NPs-caused inflammation by analyzing the fluorescence intensity of neutrophils and macrophages in transgenic zebrafish and detecting the expression of key immune genes. In conclusion, this research has shown for the first time that SNP treatment can significantly inhibit NPs-induced developmental toxicity, resulting from oxidative stress-induced apoptosis, ferroptosis and inflammation in zebrafish larvae.
Collapse
Affiliation(s)
- Qianqian Chen
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yu Cao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Huiqi Li
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Huanpeng Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yinai Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Liuliu Bi
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Haiyang Zhao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Libo Jin
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
48
|
Zhou W, Tong D, Tian D, Yu Y, Huang L, Zhang W, Yu Y, Lu L, Zhang X, Pan W, Shen J, Shi W, Liu G. Exposure to Polystyrene Nanoplastics Led to Learning and Memory Deficits in Zebrafish by Inducing Oxidative Damage and Aggravating Brain Aging. Adv Healthc Mater 2023; 12:e2301799. [PMID: 37611966 DOI: 10.1002/adhm.202301799] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/16/2023] [Indexed: 08/25/2023]
Abstract
Nanoplastics (NPs) may pass through the blood-brain barrier, giving rise to serious concerns about their potential toxicity to the brain. In this study, the effects of NPs exposure on learning and memory, the primary cognitive functions of the brain, are assessed in zebrafish with classic T-maze exploration tasks. Additionally, to reveal potential affecting mechanisms, the impacts of NPs exposure on brain aging, oxidative damage, energy provision, and the cell cycle are evaluated. The results demonstrate that NP-exposed zebrafish takes significantly longer for their first entry and spends markedly less time in the reward zone in the T-maze task, indicating the occurrence of learning and memory deficits. Moreover, higher levels of aging markers (β-galactosidase and lipofuscin) are detected in the brains of NP-exposed fish. Along with the accumulation of reactive free radicals, NP-exposed zebrafish suffer significant levels of brain oxidative damage. Furthermore, lower levels of Adenosine triphosphate (ATP) and cyclin-dependent kinase 2 and higher levels of p53 are observed in the brains of NP-exposed zebrafish, suggesting that NPs exposure also results in a shortage of energy supply and an arrestment of the cell cycle. These findings suggest that NPs exposure may pose a severe threat to brain health, which deserves closer attention.
Collapse
Affiliation(s)
- Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Difei Tong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Dandan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Lin Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Lingzheng Lu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xunyi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Wangqi Pan
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jiawei Shen
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
49
|
Mohan M, Gaonkar AA, Pandyanda Nanjappa D, K K, Vittal R, Chakraborty A, Chakraborty G. Screening for microplastics in drinking water and its toxicity profiling in zebrafish. CHEMOSPHERE 2023; 341:139882. [PMID: 37640218 DOI: 10.1016/j.chemosphere.2023.139882] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
Microplastics (MPs) have emerged as a major environmental problem in freshwater and marine environments. The effects of these polymers on aquatic life are well studied; however, there is limited knowledge of MP-associated health hazards in humans. We estimated the presence of MPs in different brands of bottled water available in India using the Nile red (NR) staining method. The FTIR examination revealed the presence of polystyrene (PS), polyethylene (PE), and polyamide (PA) in the bottled water samples with PE being the most prevalent one. Zebrafish embryos exposed to different concentrations of fluorescent-tagged polyethylene microplastics (PE-MPs) (10-150 μm) showed accumulation patterns at different time points in various organs. The exposure to PE MPs induced a concentration-dependent ROS activity. The expression of first-line antioxidative defense marker genes were significantly downregulated in embryos exposed to varying concentrations of PE-MPs, suggesting concentration and time-dependent effects on zebrafish. The results of this study suggest that the potential negative consequences on human health could be due to the oxidative stress and time-dependent toxicity of MPs.
Collapse
Affiliation(s)
- Masmarika Mohan
- Department of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research, Deralakatte, Mangalore, 575018, India.
| | - Anjali Arun Gaonkar
- Department of Food Safety & Nutrition, Nitte Centre for Science Education and Research, Nitte (Deemed to Be University), Mangalore, 575018, India.
| | - Dechamma Pandyanda Nanjappa
- Department of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research, Deralakatte, Mangalore, 575018, India.
| | - Krithika K
- Department of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research, Deralakatte, Mangalore, 575018, India.
| | - Rajeshwari Vittal
- Department of Food Safety & Nutrition, Nitte Centre for Science Education and Research, Nitte (Deemed to Be University), Mangalore, 575018, India.
| | - Anirban Chakraborty
- Department of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research, Deralakatte, Mangalore, 575018, India.
| | - Gunimala Chakraborty
- Department of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research, Deralakatte, Mangalore, 575018, India.
| |
Collapse
|
50
|
Krikech I, Oliveri Conti G, Pulvirenti E, Rapisarda P, Castrogiovanni M, Maisano M, Le Pennec G, Leermakers M, Ferrante M, Cappello T, Ezziyyani M. Microplastics (≤ 10 μm) bioaccumulation in marine sponges along the Moroccan Mediterranean coast: Insights into species-specific distribution and potential bioindication. ENVIRONMENTAL RESEARCH 2023; 235:116608. [PMID: 37429403 DOI: 10.1016/j.envres.2023.116608] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/12/2023]
Abstract
Microplastics (MPs) are pervasive in marine environments and widely recognized as emerging environmental pollutants due to the multifaceted risks they exert on living organisms and ecosystems. Sponges (Phylum Porifera) are essential suspension-feeding organisms that may be highly susceptible to MPs uptake due to their global distribution, unique feeding behavior, and sedentary lifestyle. However, the role of sponges in MP research remains largely underexplored. In the present study, we investigate the presence and abundance of MPs (≤10 μm size) in four sponge species, namely Chondrosia reniformis, Ircinia variabilis, Petrosia ficiformis, and Sarcotragus spinosulus collected from four sites along the Mediterranean coast of Morocco, as well as their spatial distribution. MPs analysis was conducted using an innovative Italian patented extraction methodology coupled with SEM-EDX detection. Our findings reveal the presence of MPs in all collected sponge specimens, indicating a pollution rate of 100%. The abundance of MPs in the four sponge species ranged from 3.95×105 to 1.05×106 particles per gram dry weight of sponge tissue, with significant differences observed among sampling sites but no species-specific differences. These results imply that the uptake of MPs by sponges is likely influenced by aquatic environmental pollution rather than the sponge species themselves. The smallest and largest MPs were identified in C. reniformis and P. ficiformis, with median diameters of 1.84 μm and 2.57 μm, respectively. Overall, this study provides the first evidence and an important baseline for the ingestion of small MP particles in Mediterranean sponges, introducing the hypothesis that they may serve as valuable bioindicators of MP pollution in the near future.
Collapse
Affiliation(s)
- Imad Krikech
- Department of Life Sciences, Polydisciplinary Faculty of Larache, Abdelmalek Essaadi University, 745 BP, 92004 Larache, Morocco; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Gea Oliveri Conti
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| | - Eloise Pulvirenti
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| | - Paola Rapisarda
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| | - Maria Castrogiovanni
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| | - Maria Maisano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Gaël Le Pennec
- Laboratoire de Biotechnologie et de Chimie Marines, EMR CNRS 6076, Université de Bretagne Sud, EA 3884-IUEM, BP 92116, 56321 Lorient, Brittany, France
| | - Martine Leermakers
- Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Margherita Ferrante
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, 95123 Catania, Italy.
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, 98166 Messina, Italy.
| | - Mohammed Ezziyyani
- Department of Life Sciences, Polydisciplinary Faculty of Larache, Abdelmalek Essaadi University, 745 BP, 92004 Larache, Morocco.
| |
Collapse
|