1
|
Lin Y, Shi R, Wang M, Wang Y, Han Y, Ma Y, Li L, Xia X. MCPA-Na exposure in aquatic systems: disruption of pathways and increased susceptibility to infection in fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 284:107405. [PMID: 40354689 DOI: 10.1016/j.aquatox.2025.107405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/27/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
MCPA-Na (2-methyl-4-chlorophenoxyacetic acid) is a selective herbicide widely used in agricultural cultivation. Despite monitoring indicating risks to aquatic life, the specific organ effects and pathogen susceptibility are unclear. Therefore, we constructed a "compound-core target-signaling pathway" network using network toxicology methods, and the results showed that MCPA-Na interacted with multiple organs of loach (including intestine, liver, kidney, heart, gills, skin and blood). STRING and Cytoscape software were used to screen the core targets: PPAR (Peroxisome proliferator-activated receptor), ACE (angiotensin converting enzyme), REN (Renin), and CA9 (carbonic anhydrase). KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis showed that the core targets of each tissue were significantly enriched in the renin-angiotensin system, NF-κB signaling pathway, adherens junctions and cholinergic synapses. The relationship between the toxicology and molecular markers of MCPA-Na was further explored by using animal experiments, and the susceptibility of Misgurnus anguillicaudatus (loach) to opportunistic pathogens after toxic exposure was simulated by using opportunistic pathogen challenge Aeromonas hydrophila (A. hydrophila). It was found that the compound induced oxidative stress and triggered intestinal inflammation and promoted apoptosis. These processes undermine the intestinal barrier and increase the susceptibility of loach to the A. hydrophila, thereby exacerbating the challenge of aquaculture food safety.
Collapse
Affiliation(s)
- Yanxia Lin
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Ran Shi
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Mengzhen Wang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Yali Wang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Yunfan Han
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Yongcui Ma
- College of Agriculture and Life Sciences, Zhaotong University, Zhaotong 657000, PR China
| | - Liyin Li
- Lincang Meteorological Bureau, Yunnan Province, Lincang 677000, PR China
| | - Xiaohua Xia
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, PR China; The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang 453007, Henan, PR China.
| |
Collapse
|
2
|
Gormez E, Odabas E, Golge O, González-Curbelo MÁ, Kabak B. Assessment of pesticide contamination in pomegranates: A multivariate approach and health risk evaluation. Food Chem Toxicol 2025; 200:115363. [PMID: 40032022 DOI: 10.1016/j.fct.2025.115363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/19/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Pesticide residues in pomegranates pose a significant food safety concern, particularly given the rising global consumption of this fruit. This study monitored 316 pesticide residues in 342 pomegranate samples from Turkey's three primary pomegranate production regions using liquid chromatography-tandem mass spectrometry. Pesticide residues were detected in 72.8% of the samples, with 40 different pesticides identified, 15 of which were unauthorized. Spirotetramat, acetamiprid, and fludioxonil were among the most frequently detected, with concentrations exceeding the maximum residue levels set by the European Union in 40.6% of the contaminated samples. Multivariate analysis revealed strong correlations between specific pesticide pairs, suggesting common usage patterns. The chronic hazard index was 0.0132 for adults and 0.0403 for children, indicating no significant chronic health risks. The acute health risks for all pesticides remained below acceptable limits, except for acetamiprid, which exceeded the threshold (1.186) for children. However, the presence of non-approved pesticides, such as omethoate, raises concerns about regulatory compliance. Continued surveillance and risk assessment are essential to minimize potential health risks, particularly for vulnerable populations consuming pomegranates.
Collapse
Affiliation(s)
- Emrah Gormez
- Pia Frucht Food Control Laboratory, Alaşehir, 45600, Türkiye
| | - Eylem Odabas
- Department of Food Engineering, Faculty of Engineering, Hitit University, Corum, 19030, Türkiye
| | - Ozgur Golge
- Department of Gastronomy and Culinary Arts, Faculty of Tourism, Alanya Alaaddin Keykubat University, Alanya, 07425, Türkiye
| | - Miguel Ángel González-Curbelo
- Departamento de Ciencias Básicas, Facultad de Ingeniería, Universidad EAN, Calle 79 no, 11-45, Bogotá D.C., 110221, Colombia.
| | - Bulent Kabak
- Department of Food Engineering, Faculty of Engineering, Hitit University, Corum, 19030, Türkiye; Biotechnology Laboratory, Machinery and Manufacturing Technology Application and Research Center, Hitit University, Corum, 19030, Türkiye.
| |
Collapse
|
3
|
Guo Q, Zhang J, Shao B, Yin J, Yang Y, Yang Y. Rapid Screening for Hazardous Substances with Regulatory Differences in Milk Between Countries Using Ultra-High Performance Liquid Chromatography Ion Mobility Quadrupole Time-of-Flight Mass Spectrometry. Foods 2025; 14:967. [PMID: 40231989 PMCID: PMC11941072 DOI: 10.3390/foods14060967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/24/2025] [Accepted: 03/10/2025] [Indexed: 04/16/2025] Open
Abstract
Regulatory heterogeneity on the maximum residue levels (MRLs) of hazardous substances for food is identified as a challenge of trade between countries. To balance the import and export trade of milk, a high-throughput determination method was established for hazardous substances with regulatory differences. In this paper, we investigated 462 hazardous substances with different MRLs for food based on different countries' regulations, involving pesticides, veterinary drugs, and some toxins. A mass database was established for these compounds including the basic information, retention time, collision cross section, parent ion, and product ions with ultra-high performance liquid chromatography ion mobility quadrupole time-of-flight mass spectrometry (UPLC-IM-QTOFMS). After that, the sample preparation for milk, including extraction solvents and purified sorbents, was optimized by selecting 274 hazardous compounds as the representative compounds. Acetonitrile/methanol (9:1, v/v) containing 1% acetic acid was used for extracting, and 50 mg EMR and 50 mg PSA were used for purifying the target substances in milk. Then, the methodology was evaluated by spiking the compounds in real milk. The experiment was conducted by matrix calibration, and the results displayed that most compounds had good linearity within their linear ranges (R2 > 0.99). The recovery ranged from 61.8% to 119.7% at three spiking levels, with RSDs between 1.1% and 20.2%. The limits of quantitation of target compounds in milk ranged from 1 to 10 μg/kg. This could meet the MRL requirements among different countries. All the results demonstrated this determination technology was a fast, sensitive, and accurate method for screening hazardous substance.
Collapse
Affiliation(s)
- Qiaozhen Guo
- Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing 100013, China
- School of Public Health and Family Medicine, Capital Medical University, Beijing 100089, China
| | - Jing Zhang
- Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing 100013, China
- School of Public Health and Family Medicine, Capital Medical University, Beijing 100089, China
| | - Bing Shao
- Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing 100013, China
- School of Public Health and Family Medicine, Capital Medical University, Beijing 100089, China
| | - Jie Yin
- Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing 100013, China
- School of Public Health and Family Medicine, Capital Medical University, Beijing 100089, China
| | - Yunjia Yang
- Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing 100013, China
| | - Yi Yang
- Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing 100013, China
- School of Public Health and Family Medicine, Capital Medical University, Beijing 100089, China
| |
Collapse
|
4
|
Wang J, Yang HY, Wang XD, Lv YF, Wei N. Application of QuEChERS for Analysis of Contaminants in Dairy Products: A Review. J Food Prot 2025; 88:100453. [PMID: 39805402 DOI: 10.1016/j.jfp.2025.100453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 12/25/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
The safety of dairy products is intrinsically linked to consumer health, and the exceedance of risk indicators, such as pesticide and veterinary drug residues, constitutes one of the primary issues affecting their quality and safety. To assess the safety of dairy products, it is crucial to develop accurate and reliable analytical methods for their detection. Food safety testing involving important indicators such as pesticide residues, veterinary drug residues, mycotoxins, and unapproved additives has become a pivotal requirement in the industry field. The QuEChERS (Quick, Easy, Cheap, Effective, Rugged, Safe) method is widely acknowledged as a food safety analysis method currently. This method can effectively extract a wide range of compound classes from diverse matrices in food safety testing, thereby enhancing the accuracy of detection. Additionally, when combined with chromatographic-mass spectrometry techniques, it can simultaneously analyze hundreds of target analytes, rendering it widely applicable in the quality and safety testing of dairy products. Although QuEChERS has rapidly developed in the field of dairy product quality and safety analysis due to its efficiency and speed advantages, certain shortcomings remain, presenting considerable room for improvement. This paper presents a comprehensive review of the utilization and research advancements of the QuEChERS technique in dairy products, with the aim of providing more precise, expeditious, and reliable methods for the safety assessment of dairy products.
Collapse
Affiliation(s)
- Jun Wang
- Institute of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850032, China; Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473004, China
| | - Hai-Yan Yang
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473004, China
| | - Xin-Dong Wang
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473004, China
| | - Yi-Fan Lv
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473004, China
| | - Na Wei
- Institute of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850032, China.
| |
Collapse
|
5
|
Wang F, Li X, Addo TSN, Zhang Y, Li H, Jiang S, Li D, Gong W, Yao Z. Hexafluoroisopropanol-based supramolecular solvent for liquid phase microextraction of pesticides in milk. Food Chem 2024; 460:140689. [PMID: 39116767 DOI: 10.1016/j.foodchem.2024.140689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
Residues of pesticides in milk may pose a threat to human health. This study aimed to develop a liquid-phase microextraction (LPME) method using hexafluoroisopropanol (HFIP)-based supramolecular solvent (SUPRAS) for the simultaneous extraction and purification of four pesticides (boscalid, novaluron, cypermethrin and bifenthrin) in milk. Pesticides were extracted using SUPRAS prepared with nonanol and HFIP, and the extraction efficiency was analyzed. Results showed satisfactory recoveries ranging from 80.8%-111.0%, with relative standard deviations (RSDs) of <6.4%. Additionally, satisfactory linearities were observed, with correlation coefficients >0.9952. The limits of quantification (LOQs) were in the range of 1.8 μg·L-1-14.0 μg·L-1. The established method demonstrated high extraction efficiency with a short operation time (15 mins) and low solvent consumption (2.7 mL). The HFIP-based SUPRAS LPME method offers a convenient and efficient approach for the extraction of pesticides from milk, presenting a promising alternative to conventional techniques.
Collapse
Affiliation(s)
- Fang Wang
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaoyun Li
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Tay Seyram Nana Addo
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Yuchen Zhang
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Hui Li
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Shanxue Jiang
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Dandan Li
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Wenwen Gong
- Institute of Quality Standard and Testing Technology, BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing 100097, China
| | - Zhiliang Yao
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
6
|
Mitra S, Saran RK, Srivastava S, Rensing C. Pesticides in the environment: Degradation routes, pesticide transformation products and ecotoxicological considerations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173026. [PMID: 38750741 DOI: 10.1016/j.scitotenv.2024.173026] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024]
Abstract
Among rising environmental concerns, emerging contaminants constitute a variety of different chemicals and biological agents. The composition, residence time in environmental media, chemical interactions, and toxicity of emerging contaminants are not fully known, and hence, their regulation becomes problematic. Some of the important groups of emerging contaminants are pesticides and pesticide transformation products (PTPs), which present a considerable obstacle to maintaining and preserving ecosystem health. This review article aims to thoroughly comprehend the occurrence, fate, and ecotoxicological importance of pesticide transformation products (PTPs). The paper provides an overview of pesticides and PTPs as contaminants of emerging concern and discusses the modes of degradation of pesticides, their properties and associated risks. The degradation of pesticides, however, does not lead to complete destruction but can instead lead to the generation of PTPs. The review discusses the properties and toxicity of PTPs and presents the methods available for their detection. Moreover, the present study examines the existing regulatory framework and suggests the need for the development of new technologies for easy, routine detection of PTPs to regulate them effectively in the environment.
Collapse
Affiliation(s)
- Suchitra Mitra
- Indian Institute of Science Education and Research, Kolkata 741245, WB, India
| | - R K Saran
- Department of Microbiology, Maharaja Ganga Singh University, Bikaner, Rajasthan, India
| | - Sudhakar Srivastava
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, UP, India.
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| |
Collapse
|
7
|
Morsi R, Ghoudi K, Meetani MA. Determination and health risk assessment of carbamate pesticide residues in date palm fruits (Phoenix dactylifera) using QuEChERS method and UHPLC-MS/MS. Sci Rep 2024; 14:13064. [PMID: 38844596 PMCID: PMC11156656 DOI: 10.1038/s41598-024-63704-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024] Open
Abstract
This study aimed to investigate carbamate pesticide residues in different varieties of date palm fruits in the UAE, utilizing UHPLC-MS/MS. For sample preparation and clean-up, the efficiency and performance of different QuEChERS dispersive solid-phase extraction kits were compared. Precision and recovery were assessed at 10 μg kg-1 for the three kits, revealing that Kit 2 demonstrated the best performance. The selected QuEChERS method was validated to detect 14 carbamate residues in 55 date samples. The method exhibited strong linearity with R2 > 0.999 and low LOD (0.01-0.005 μg kg-1) and LOQ (0.003-0.04 μg kg-1). Excellent accuracy (recovery: 88-106%) and precision (RSD: 1-11%) were observed, with negligible matrix effect (- 4.98-13.26%). All samples contained at least one carbamate residue. While most detected residues were below their MRLs, carbosulfan was found in 21 samples, propoxur in 2 samples, and carbofuran in 1 sample above their MRLs. The hazard index (HI) was calculated for carbosulfan, phenmedipham, carbaryl, propoxur, carbofuran, and methomyl to assess potential health risks for date consumers. All HI values were below the safety limit of 1.0, indicating that the consumption of dates does not pose a non-carcinogenic health risk for adults and children.
Collapse
Affiliation(s)
- Rana Morsi
- Chemistry department, College of Science, United Arab Emirates University, P. O. Box 15551, Al-Ain, United Arab Emirates
| | - Kilani Ghoudi
- Department of Statistics, College of Business and Economics, United Arab Emirates University, P. O. Box 15551, Al-Ain, United Arab Emirates
| | - Mohammed A Meetani
- Chemistry department, College of Science, United Arab Emirates University, P. O. Box 15551, Al-Ain, United Arab Emirates.
| |
Collapse
|
8
|
Pan Y, Liu J, Wang J, Gao Y, Ma N. Application of Biosensors and Biomimetic Sensors in Dairy Products Testing. J Dairy Sci 2024:S0022-0302(24)00894-4. [PMID: 38851568 DOI: 10.3168/jds.2024-24666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/07/2024] [Indexed: 06/10/2024]
Abstract
This article summarizes the applications of biosensors and biomimetic sensors in the detection of residues in dairy products. Biosensors utilize biological molecules such as enzymes or antibodies to detect residual substances in dairy products, demonstrating high specificity and sensitivity. Biomimetic sensors, inspired by biosensors, use synthetic materials to mimic biological sensing mechanisms, enhancing stability and reproducibility. Both sensor types have achieved significant success in detecting pesticide residues, veterinary drugs, bacteria, and other contaminants in dairy products. The applications of biological and biomimetic sensors not only improve the efficiency of residue detection in dairy products but also have the potential to reduce the time and cost of traditional methods. Their specificity and high sensitivity make them powerful tools in the dairy industry, thus contributing to ensuring the quality and safety of dairy products and meeting the growing consumer demands for health and food safety.
Collapse
Affiliation(s)
- Yinchuan Pan
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding 071001, Hebei, P.R. China.; State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China
| | - Jing Liu
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding 071001, Hebei, P.R. China
| | - Jianping Wang
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding 071001, Hebei, P.R. China
| | - Yanxia Gao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, P.R. China; Key Laboratory of Healthy Breeding in Dairy Cattle (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Baoding 071001, Hebei, P.R. China.
| | - Ning Ma
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding 071001, Hebei, P.R. China.; Key Laboratory of Healthy Breeding in Dairy Cattle (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Baoding 071001, Hebei, P.R. China.
| |
Collapse
|
9
|
Yang X, Wang J, Chang G, Sun C, Wu Q, Wang Z. Post-synthetic modification of covalent organic framework for efficient adsorption of organochlorine pesticides from cattle's milk. Food Chem 2024; 439:138182. [PMID: 38100880 DOI: 10.1016/j.foodchem.2023.138182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/24/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Analysis of organochlorine pesticides (OCPs) residues in milk faces a significant challenge. Herein, a sea urchin structured covalent organic framework bearing boric acid groups named COF-B(OH)2 was synthesized and applied as a coating material for solid-phase microextraction (SPME) of the OCPs in cattle's milk. Its performance was superior to that of three commonly used commercial SPME fibers, which could be due to the coexistence of hydrogen bonding, halogen bonding, π-stacking and electrostatic interactions. Besides, the fiber coating displayed good stability and reusability. After optimization, a COF-B(OH)2 based SPME coupled with gas chromatography-electron capture detection was established for the sensitive detection of the OCPs from milk samples. The limits of detection (S/N = 3) were between 0.04 and 1.00 μg kg-1. Satisfactory accuracy was achieved with the method recoveries in the range of 87.5 % to 112.5 %. These results manifest the feasibility of the COF-B(OH)2 coated fiber for the enrichment of the trace OCPs from milk samples.
Collapse
Affiliation(s)
- Xiumin Yang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Junmin Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Guifen Chang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Cuihong Sun
- College of Chemical Engineering, Shijiazhuang University, Shijiazhuang 050035, China
| | - Qiuhua Wu
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhi Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
10
|
Jia Q, Liao GQ, Chen L, Qian YZ, Yan X, Qiu J. Pesticide residues in animal-derived food: Current state and perspectives. Food Chem 2024; 438:137974. [PMID: 37979266 DOI: 10.1016/j.foodchem.2023.137974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
Pesticides are widely used in the cultivation and breeding of agricultural products all over the world. However, their direct use or indirect pollution in animal breeding may lead to residual accumulation, migration, and metabolism in animal-derived foods, posing potential health risks to humans through the food chain. Therefore, it is necessary to detect pesticide residues in animal-derived food using simple, reliable, and sensitive methods. This review summarizes sample extraction and clean-up methods, as well as the instrumental determination technologies such as chromatography and chromatography-mass spectrometry for residual analysis in animal-derived foods, including meat, eggs and milk. Additionally, we perspectives on the future of this field. This information aims to assist relevant researchers in this area, contribute to the development of ideas and novel technical methods for residual detection, metabolic research and risk assessment of pesticides in animal-derived food.
Collapse
Affiliation(s)
- Qi Jia
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| | - Guang-Qin Liao
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| | - Lu Chen
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yong-Zhong Qian
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xue Yan
- New Hope Liuhe Co., Ltd./Key Laboratory of Feed and Livestock and Poultry Products Quality & Safety Control, Ministry of Agriculture, Chengdu, Sichuan 610023, China.
| | - Jing Qiu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| |
Collapse
|
11
|
Morsi R, Ghoudi K, Ayyash MM, Jiang X, Meetani MA. Detection of 11 carbamate pesticide residues in raw and pasteurized camel milk samples using liquid chromatography tandem mass spectrometry: Method development, method validation, and health risk assessment. J Dairy Sci 2024; 107:1916-1927. [PMID: 37923201 DOI: 10.3168/jds.2023-23512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023]
Abstract
This study aimed to use ultra-high-performance liquid chromatography coupled to a triple-quadrupole mass spectrometer to detect 11 carbamate pesticide residues in raw and pasteurized camel milk samples collected from the United Arab Emirates. A method was developed and validated by evaluating limits of detection, limits of quantitation, linearity, extraction recovery, repeatability, intermediate precision, and matrix effect. Due to the high protein and fat content in camel milk, a sample preparation step was necessary to avoid potential interference during analysis. For this purpose, 5 different liquid-liquid extraction techniques were evaluated to determine their efficiency in extracting carbamate pesticides from camel milk. The established method demonstrated high accuracy and precision. The matrix effect for all carbamate pesticides was observed to fall within the soft range, indicating its negligible effect. Remarkably, detection limits for all carbamates were as low as 0.01 μg/kg. Additionally, the coefficients of determination were >0.998, demonstrating excellent linearity. A total of 17 camel milk samples were analyzed, and only one sample was found to be free from any carbamate residues. The remaining 16 samples contained at least one carbamate residue, yet all detected concentrations were below the recommended maximum residue limits set by Codex Alimentarius and the European Union pesticide databases. Nonetheless, it is worth noting that the detected levels of ethiofencarb in 3 samples were close to the borderline of the maximum residue limit. To assess the health risk for consumers of camel milk, the hazard index values of carbofuran, carbaryl, and propoxur were calculated. The hazard index values for these 3 carbamate pesticides were all below 1, indicating that camel milk consumers are not at risk from these residues.
Collapse
Affiliation(s)
- Rana Morsi
- Department of Chemistry, College of Science, United Arab Emirates University, P.O. Box 15551, Al-Ain, Abu Dhabi, United Arab Emirates
| | - Kilani Ghoudi
- Department of Statics, College of Business and Economics, United Arab Emirates University, P.O. Box 15551, Al-Ain, Abu Dhabi, United Arab Emirates
| | - Mutamed M Ayyash
- Department of Food Science, College of Food and Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al-Ain, Abu Dhabi, United Arab Emirates
| | - Xiue Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Mohammed A Meetani
- Department of Chemistry, College of Science, United Arab Emirates University, P.O. Box 15551, Al-Ain, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
12
|
Rohani FG, Mahdavi V, Assari MJ. Pesticide residues in fresh Mazafati date fruit, soil, and water, and assessment of potential health risks to consumers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25227-25237. [PMID: 38468010 DOI: 10.1007/s11356-024-32760-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/29/2024] [Indexed: 03/13/2024]
Abstract
A quantitative method based on quick, easy, cheap, effective, rugged, and safe technique (QuEChERS) sample extraction and ultra-performance liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS) was evolved for the determination of 47 pesticide residues in fresh Mazafati date fruits from Bam City of Kerman Province, Iran. The recoveries for selected pesticides ranged from 88 to 110% with a relative standard deviation (RSD) of less than 20% at concentrations of 0.05 and 0.1 mg kg-1. The proposed method had a linear range from the limit of quantification (LOQ) to 1.00 mg kg-1, and the LOQ of the 47 pesticides was ≤ 0.005 mg kg-1. The coefficients of determination (R2) were more than 0.99. This technique was used on 12 fresh date fruits samples, three water samples, and three soil samples with three replications per sample. Forty-seven pesticide were detected collectively, but only diazinon was detected in the date fruit samples. The mean value of diazinon residues was 0.037 mg kg-1, and the concentration of diazinon in most samples was below the national maximum residue limit (MRL) for date fruit (0.05 mg kg-1). Among the pesticides measured, diazinon residues were also detected in the water samples, but not in the soil samples. The dietary intake assessment showed no health risk to humans from the consumption of fresh date fruit concerning the pesticides investigated.
Collapse
Affiliation(s)
- Fatemeh Ganjeizadeh Rohani
- Plant Protection Research Department, Kerman Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Kerman, Iran.
| | - Vahideh Mahdavi
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Mohammad Javad Assari
- Plant Protection Research Department, Kerman Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Kerman, Iran
| |
Collapse
|
13
|
Duan L, Liu X, Meng X, Qu L. Highly sensitive SERS detection of pesticide residues based on multi-hotspot buckypaper modified with gold nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123665. [PMID: 38029600 DOI: 10.1016/j.saa.2023.123665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/30/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
To effectively extract target analytes from complex sample surfaces is of great significance for the practical application of surface-enhanced Raman scattering (SERS) spectroscopy. A plasmonic substrate with multiple "hotspots" for highly sensitive detection of pesticide residues were prepared successfully by assembling gold nanoparticles on buckypaper (AuNPs-BP). The substrate exhibited high SERS enhancement and excellent detection sensitivity, with a detection limit (LOD) of 2.03 × 10-11 M and 6.88 × 10-12 M for the probe molecule R6G and MB, respectively. Combined with 3D finite-difference time-domain (3D-FDTD) simulation, the excellent SERS performance of the substrate was attributed to the enhancement of the electromagnetic field around the "hotspots". Additionally, the substrates exhibited excellent flexibility, allowing easy contact with irregular surfaces and facilitating the collection of target molecules on the sample surface. Using a portable Raman spectrometer, the substrate achieved in situ analysis of chlorpyrifos residues on peach, with a LOD as low as 6.8 × 10-11 M. The method showed high accuracy, with a recovery value ranging from 94.2 % to 115.5 %. The results indicate that the substrate has great potential for rapid and highly sensitive detection of pollutants, especially on non-planar surfaces.
Collapse
Affiliation(s)
- Lingfeng Duan
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Xinyu Liu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Xin Meng
- School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.
| | - Lulu Qu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| |
Collapse
|
14
|
Doménech E, Martorell S. Review of the Terminology, Approaches, and Formulations Used in the Guidelines on Quantitative Risk Assessment of Chemical Hazards in Food. Foods 2024; 13:714. [PMID: 38472827 PMCID: PMC10931373 DOI: 10.3390/foods13050714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
This paper reviews the published terminology, mathematical models, and the possible approaches used to characterise the risk of foodborne chemical hazards, particularly pesticides, metals, mycotoxins, acrylamide, and polycyclic aromatic hydrocarbons (PAHs). The results confirmed the wide variability of the nomenclature used, e.g., 28 different ways of referencing exposure, 13 of cancer risk, or 9 of slope factor. On the other hand, a total of 16 equations were identified to formulate all the risk characterisation parameters of interest. Therefore, the present study proposes a terminology and formulation for some risk characterisation parameters based on the guidelines of international organisations and the literature review. The mathematical model used for non-genotoxic hazards is a ratio in all cases. However, the authors used the probability of cancer or different ratios, such as the margin of exposure (MOE) for genotoxic hazards. For each effect studied per hazard, the non-genotoxic effect was mostly studied in pesticides (79.73%), the genotoxic effect was mostly studied in PAHs (71.15%), and both effects were mainly studied in metals (59.4%). The authors of the works reviewed generally opted for a deterministic approach, although most of those who assessed the risk for mycotoxins or the ratio and risk for acrylamide used the probabilistic approach.
Collapse
Affiliation(s)
- Eva Doménech
- Instituto Universitario de Ingeniería de Alimentos Food-UPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Sebastián Martorell
- MEDASEGI Research Group, Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| |
Collapse
|
15
|
Schopf MF, Pierezan MD, Rocha R, Pimentel TC, Esmerino EA, Marsico ET, De Dea Lindner J, Cruz AGD, Verruck S. Pesticide residues in milk and dairy products: An overview of processing degradation and trends in mitigating approaches. Crit Rev Food Sci Nutr 2023; 63:12610-12624. [PMID: 35876099 DOI: 10.1080/10408398.2022.2103642] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Milk and dairy products present considerable socioeconomic importance but are also a regular pesticide residue contamination source, which is considered a worldwide public health concern and a major international trade issue. Thus, a literature review was conducted to assess pesticide residue levels in milk and dairy products, as well as the residue degradation capacity during its processing. Organochlorine, organophosphate, synthetic pyrethroid and/or triazine were found in fluid milk, powder products, yogurts, cheese, butter, and sour cream. Thermal processing reduced most residue levels, although some treatments increased total hexachlorocyclohexane and its isomers (α-, γ-, δ-, and β-). Emerging non-thermal treatments presented promising results, but some by-products had higher toxicity than their precursors. Biodegradation by lactic acid bacteria were effective during yogurt and cheese fermentation. However, β-hexachlorocyclohexane level seems to increase in yogurts containing Lactobacillus acidophilus and Bifidobacterium animalis subsp. lactis, while increase or maintenance of pesticide residue concentration was observed during coagulation and cheese maturation. Deep research is needed to understand the isomerization and degradation mechanisms after thermal, non-thermal, and fermentation processing. Emerging heat technology can be an excellent topic to be investigated for pesticide residues degradation in the future. These mitigation approaches can be a feasible future alternative to milk and dairy production.
Collapse
Affiliation(s)
- Miguel Fiorin Schopf
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Milena Dutra Pierezan
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Ramon Rocha
- Faculty of Veterinary, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | | | - Erick Almeida Esmerino
- Faculty of Veterinary, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | | | - Juliano De Dea Lindner
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Adriano Gomes da Cruz
- Food Department, Federal Institute of Education, Science and Technology from Rio de Janeiro (IFRJ), Niterói, Rio de Janeiro, Brazil
| | - Silvani Verruck
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
16
|
Ohoro CR, Wepener V. Review of scientific literature on available methods of assessing organochlorine pesticides in the environment. Heliyon 2023; 9:e22142. [PMID: 38045185 PMCID: PMC10692828 DOI: 10.1016/j.heliyon.2023.e22142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/21/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023] Open
Abstract
Organochlorine pesticides (OCPs) are persistent organic pollutants (POPs) widely used in agriculture and industry, causing serious health and ecological consequences upon exposure. This review offers a thorough overview of OCPs analysis emphasizing the necessity of ongoing work to enhance the identification and monitoring of these POPs in environmental and human samples. The benefits and drawbacks of the various OCPs analysis techniques including gas chromatography-mass spectrometry (GC-MS), gas chromatography-electron capture detector (GC-ECD), and liquid chromatography-mass spectrometry (LC-MS) are discussed. Challenges associated with validation and optimization criteria, including accuracy, precision, limit of detection (LOD), and limit of quantitation (LOQ), must be met for a method to be regarded as accurate and reliable. Suitable quality control measures, such as method blanks and procedural blanks, are emphasized. The LOD and LOQ are critical quality control measure for efficient quantification of these compounds, and researchers have explored various techniques for their calculation. Matrix interference, solubility, volatility, and partition coefficient influence OCPs occurrences and are discussed in this review. Validation experiments, as stated by European Commission in document SANTE/11813/2017, showed that the acceptance criteria for method validation of OCP analytes include ≤20 % for high precision, and 70-120 % for recovery. This may ultimately be vital for determining the human health risk effects of exposure to OCP and for formulating sensible environmental and public health regulations.
Collapse
Affiliation(s)
- Chinemerem Ruth Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Victor Wepener
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
17
|
Sun C, Ye L, Wang L, Hu Z, Ding J. Surface-enhanced Raman scattering of a gold core-silver shell-sponge substrate for detection of thiram and diquat. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4645-4655. [PMID: 37665316 DOI: 10.1039/d3ay00922j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Aiming at the difficulty of traditional pesticide sampling, a low-cost and convenient flexible surface enhanced Raman scattering (SERS) gold core-silver shell-sponge (Au-Ag-sponge) substrate was synthesized by chemical reduction. The SERS substrate consisted of Au-AgNPs and a melamine sponge. The sponge had a rich open pore structure, which could well "capture" Au-AgNPs, generating a large number of "hot spots". The SERS enhancement activity of the flexible substrate was characterized with rhodamine 6G (R6G) Raman probe molecules. The substrate showed good activity to 10-12 M rhodamine 6G with an enhancement factor (EF) of 7.72 × 106. Applying this substrate to the qualitative and quantitative detection of pesticide residues, the results showed that the Raman intensity was well related to the concentration of pesticide solution with the range of 0.1-10 mg L-1 of thiram and 1-10 mg L-1 of diquat. Furthermore, the substrate was analyzed by finite difference time domain (FDTD) simulation and the results were in good agreement with the experimental results. The reason for the difference in Raman signals of pesticide molecules on the same substrate was the different binding modes of Au-AgNPs on the sponge. Finally, we pointed out the advantages of flexible substrates in the field of pesticide residues, as well as future opportunities and challenges.
Collapse
Affiliation(s)
- Chao Sun
- College of Intelligent Manufacturing, Jianghan University, Hubei, Wuhan, China.
| | - Li Ye
- College of Intelligent Manufacturing, Jianghan University, Hubei, Wuhan, China.
| | - Lizheng Wang
- College of Intelligent Manufacturing, Jianghan University, Hubei, Wuhan, China.
| | - Zhiming Hu
- College of Intelligent Manufacturing, Jianghan University, Hubei, Wuhan, China.
| | - Jianjun Ding
- College of Intelligent Manufacturing, Jianghan University, Hubei, Wuhan, China.
| |
Collapse
|
18
|
Wang Z, Zheng S, Zhang C, Wang W, Wang Q, Li Z, Wang S, Zhang L, Liu Y. Introduction of multilayered quantum dot nanobeads into competitive lateral flow assays for ultrasensitive and quantitative monitoring of pesticides in complex samples. Mikrochim Acta 2023; 190:361. [PMID: 37606829 DOI: 10.1007/s00604-023-05913-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/11/2023] [Indexed: 08/23/2023]
Abstract
A competitive fluorescent lateral flow assay (CFLFA) is proposed for direct, ultrasensitive, quantitative detection of common pesticides imidacloprid (IMI) and carbendazim (CBZ) in complex food samples by using silica-core multilayered quantum dot nanobeads (SiO2-MQB) as liquid fluorescent tags. The SiO2-MQB nanostructure comprises a 200-nm SiO2 core and a shell of hundreds of carboxylated QDs (excitation/emission maxima ~365/631 nm), and can generate better stability, superior dispersibility, and higher luminescence than traditional fluorescent beads, greatly improving the sensitivity of current LFA methods for pesticides. Moreover, using liquid SiO2-MQB directly instead of via the conjugate pad both simplifies the structure of LFA system and improves the efficiency of immunobinding reactions between nanotags and the targets. Applying these methods, the established CFLFA realized the stable and accurate detection of IMI and CBZ in 12 min, with detection limits down to 1.94 and 14.79 pg/mL, respectively. The SiO2-MQB-CFLFA is practicable for application to real food samples (corn, apple, cucumber, and cabbage), and undoubtedly a promising and low-cost tool for on-site monitoring of trace pesticide residues.
Collapse
Affiliation(s)
- Zhenmei Wang
- School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241000, People's Republic of China
| | - Shuai Zheng
- Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230036, People's Republic of China
| | - Chijian Zhang
- School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241000, People's Republic of China
| | - Wenqi Wang
- Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230036, People's Republic of China
| | - Qian Wang
- Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230036, People's Republic of China
| | - Zhigang Li
- Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230036, People's Republic of China
| | - Shu Wang
- Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230036, People's Republic of China.
| | - Long Zhang
- Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230036, People's Republic of China.
| | - Yong Liu
- Wan Jiang new industry technology development center, Tongling, 244000, People's Republic of China.
| |
Collapse
|
19
|
Wang H, Chen Z, Zhu C, Du H, Mao J, Qin H, She Y, Yan M. An interference-free SERS-based aptasensor for chlorpyrifos detection. Anal Chim Acta 2023; 1268:341398. [PMID: 37268344 DOI: 10.1016/j.aca.2023.341398] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/04/2023]
Abstract
In this study, we propose an interference-free SERS-based aptasensor for trace detection of chlorpyrifos (CPF) in real samples. In the aptasensor, gold nanoparticles coated with Prussian blue (Au@PB NPs) were employed as SERS tags to provide a sole and intense Raman emission at 2160 cm-1, which could avoid overlapping with the Raman spectrum of the real samples in 600-1800 cm-1 to improve the anti-matrix effect ability of the aptasensor. Under the optimum conditions, this aptasensor displayed a linear response for CPF detection in the range of 0.1-316 ng mL-1 with a low detection limit of 0.066 ng mL-1. In addition, the prepared aptasensor shows excellent application to determine CPF in cucumber, pear and river water samples. The recovery rates were highly correlated with high-performance liquid chromatography‒mass spectrometry (HPLC‒MS/MS). This aptasensor shows interference-free, specific and sensitive detection for CPF and offers an effective strategy for other pesticide residue detection.
Collapse
Affiliation(s)
- Hao Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China
| | - Zilei Chen
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China
| | - Chao Zhu
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China
| | - Hongxia Du
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China
| | - Jiangsheng Mao
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China
| | - Hongwei Qin
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China
| | - Yongxin She
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Mengmeng Yan
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China.
| |
Collapse
|
20
|
Kiyani R, Dehdashti B, Heidari Z, Sharafi SM, Mahmoodzadeh M, Amin MM. Biomonitoring of organochlorine pesticides and cancer survival: a population-based study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37357-37369. [PMID: 36572771 DOI: 10.1007/s11356-022-24855-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/15/2022] [Indexed: 06/18/2023]
Abstract
Organochlorine pesticides (OCPs) are endocrine-disrupting chemicals (EDCs) that even at very low levels can cause cancer by increasing the activity of tumor cells and suppressing the immune system. There is also little information on OCPs and survival after diagnosis. The aim of this study was to monitor the concentration of OCPs in the blood serum of cancer patients and its relationship with their socio-demographic characteristics and ultimately that impact on survival time and hazard ratio (HR). This cross-sectional study included 89 diagnosed patients with cancer in Isfahan, Iran. 12 types of OCPs were measured in serum by gas chromatography (7GC) with an electron capture detector and equipped with mass spectrometer (MS). Also, participants' questionnaire was completed to collect information. T-test, ANOVA, and Chi-square tests were used to evaluate the association between serum levels of OCPs and quantitative and qualitative information of patients. Survival analysis was also examined based on Kaplan-Meier method, log-rank test, and Cox model. The mean of total OCPs in patients' serum was calculated to be 1.82 ± 1.36 μg/L. Concentration of 2,4' DDE had a significant relationship with body mass index (BMI) (kg/m2) (P < 0.05). In addition, gender revealed a significant correlation in estimating survival time (P < 0.05). Non-exposure to OCPs showed a positive effect on increasing the life expectancy of patients. Lindane and endosulfan increased the risk of death by 16% and 37%, respectively, with insignificant P value (P > 0.05). The findings of the present study showed adverse effects of OCPs on patients' survival time and increased mortality of HR. Moreover, as the first research conducted in the study area, it is suggested management of environmental, individual and social factors that could be influenced the biological accumulation of OCPs in humans and cause health promotion.
Collapse
Affiliation(s)
- Raziyeh Kiyani
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahare Dehdashti
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Heidari
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyedeh Maryam Sharafi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Mahmoodzadeh
- Department of Adult Oncology Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Mehdi Amin
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
21
|
Accurate Determination of Pesticide Residues in Milk by Sonication-QuEChERS Extraction and LC-LTQ/Orbitrap Mass Spectrometry. SEPARATIONS 2023. [DOI: 10.3390/separations10030146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
A modified, quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction procedure combined with sonication and Ultra-High Performance Liquid Chromatography–Orbitrap-Mass Spectrometry (UHPLC–Orbitrap-MS) was developed as a sensitive and reliable methodology for the determination of multiclass pesticides in full-fat milk. Different amounts of EMR-lipid sorbent were assayed for the cleanup step in order to achieve both acceptably high recoveries and low co-extractives in the final extracts. Accurate mass measurements of the analyte’s pseudo-molecular ions and tandem MS fragmentation were used to quantify and identify the target pesticides. Analytical performance characteristics of the method, such as linearity, recovery, precision, the limit of detection (LOD) and quantification (LOQ), matrix effects (ME), and expanded uncertainty, have been determined for method validation fulfilling all criteria for its use as a validated routine method. The method was successfully applied to real samples (by local farms and commercial), revealing the presence of carbendazim in one milk sample at a concentration level below the maximum residue limits.
Collapse
|
22
|
Li H, Tang J, Chen Z, Xiang L. Electrochemical Determination of Butachlor by Differential Pulse Voltammetry (DPV) by an Electropolymerized Polypyrrole Molecular Imprinted Polymer (MIP) Modified Glassy Carbon Electrode (GCE). ANAL LETT 2023. [DOI: 10.1080/00032719.2023.2181968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Hao Li
- Department of Environmental and Energy Engineering, Anhui Jianzhu University, Hefei, China
| | - Jianshe Tang
- Department of Environmental and Energy Engineering, Anhui Jianzhu University, Hefei, China
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei, China
| | - Zhubin Chen
- Department of Environmental and Energy Engineering, Anhui Jianzhu University, Hefei, China
| | - Li Xiang
- Department of Environmental and Energy Engineering, Anhui Jianzhu University, Hefei, China
| |
Collapse
|
23
|
Zhang X, Tian L, Sun Z, Wu Q, Shan X, Yang S, Li H, Li C, Chen R, Lu J. Ultrasensitive electrochemiluminescence biosensor for determination of malathion based on a multiple signal amplification strategy. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
24
|
El-Sheikh ESA, Ramadan MM, El-Sobki AE, Shalaby AA, McCoy MR, Hamed IA, Ashour MB, Hammock BD. Pesticide Residues in Vegetables and Fruits from Farmer Markets and Associated Dietary Risks. Molecules 2022; 27:8072. [PMID: 36432173 PMCID: PMC9695969 DOI: 10.3390/molecules27228072] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 11/22/2022] Open
Abstract
The use of pesticides leads to an increase in agricultural production but also causes harmful effects on human health when excessively used. For safe consumption, pesticide residues should be below the maximum residual limits (MRLs). In this study, the residual levels of pesticides in vegetables and fruits collected from farmers' markets in Sharkia Governorate, Egypt were investigated using LC-MS/MS and GC-MS/MS. A total number of 40 pesticides were detected in the tested vegetable and fruit samples. Insecticides were the highest group in detection frequency with 85% and 69% appearance in vegetables and fruits, respectively. Cucumber and apple samples were found to have the highest number of pesticide residues. The mean residue levels ranged from 7 to 951 µg kg-1 (in vegetable samples) and from 8 to 775 µg kg-1 (in fruit samples). It was found that 35 (40.7%) out of 86 pesticide residues detected in vegetables and 35 (38.9%) out of 90 pesticide residues detected in fruits exceeded MRLs. Results for lambda-cyhalothrin, fipronil, dimothoate, and omethoate in spinach, zucchini, kaki, and strawberry, respectively, can cause acute or chronic risks when consumed at 0.1 and 0.2 kg day-1. Therefore, it is necessary for food safety and security to continuously monitor pesticide residues in fruits and vegetables in markets.
Collapse
Affiliation(s)
- El-Sayed A. El-Sheikh
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mahmoud M. Ramadan
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed E. El-Sobki
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ali A. Shalaby
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mark R. McCoy
- Department of Entomology and Nematology, UC Davis Cancer Center, University of California, Davis, CA 95616, USA
| | - Ibrahim A. Hamed
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed-Bassem Ashour
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Bruce D. Hammock
- Department of Entomology and Nematology, UC Davis Cancer Center, University of California, Davis, CA 95616, USA
| |
Collapse
|
25
|
|
26
|
Dong Y, Yin S, Zhang J, Guo F, Aamir M, Liu S, Liu K, Liu W. Exposure patterns, chemical structural signatures, and health risks of pesticides in breast milk: A multicenter study in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154617. [PMID: 35307419 DOI: 10.1016/j.scitotenv.2022.154617] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/12/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
China is the world's largest pesticide user. These chemicals are bioaccumulative in the human body, and eventually could be transferred from the mother to the fetus/infant via placental and breastfeeding transport, which might pose developmental deficiency risks. In this study, human biomonitoring of legacy pesticides was conducted in three Chinese cities using 60 breast milk samples. The patterns, chemical structural signatures, and the estimated daily intake of pesticides were assessed. The median concentration of HCB (57.8 ng g-1 lw, Interquartile range: 28.5-76.9 ng g-1 lw) was the highest among all pesticides, whereas the HCHs, DDXs, TCVP, and heptachlor were also detected. A significantly different pattern of pesticides was found among three sampling cities: the Mianyang cases were mostly DDXs oriented while the Wuhan and Hangzhou cases were under HCB, HCHs, TCVP, and heptachlor influences. Maternal age and pre-pregnancy BMI were found to be the influencing factors for the pesticides in the breast milk, and dietary preferences were an important factor in the exposure scenario. Chemical structural signatures indicated that for HCHs and DDXs the exposure was mostly historical, while the lindane and dicofol exposure may exist among the volunteering mothers. The EF for chiral pesticides did not deviate significantly from the racemic value. The risk from breastfeeding was negligible according to the Chinese and UN standard, while some cases from Hangzhou and Wuhan exceeded the Canadian restrictions. Thus, the adverse health effects of chemical exposure by dietary intake for infants need to be closely monitored in future studies.
Collapse
Affiliation(s)
- Yihan Dong
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Shanshan Yin
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China.
| | - Jianyun Zhang
- Department of Nutrition and Toxicology, School of Public Health, Faculty of Medicine, Hangzhou Normal University, Hangzhou 311121, China
| | - Fangjie Guo
- Quality and Safety Engineering Institute of Food and Drug, School of Management Engineering and Electronic Commerce, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Muhammad Aamir
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Shuren Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institution of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kecheng Liu
- School of Public Health, Hangzhou Medical College, Hangzhou 310007, China
| | - Weiping Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institution of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| |
Collapse
|
27
|
Development of a High-Throughput Screening Analysis for 195 Pesticides in Raw Milk by Modified QuEChERS Sample Preparation and Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry. SEPARATIONS 2022. [DOI: 10.3390/separations9040098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study aimed to develop a simple, high-throughput method based on modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) followed by liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF/MS) for the rapid determination of multi-class pesticide residues in raw milk. With acidified acetonitrile as the extraction solvent, the raw milk samples were pretreated with the modified QuEChERS method, including extraction, salting-out, freezing, and clean-up processes. The target pesticides were acquired in a positive ion electrospray ionization mode and an All ions MS/MS mode. The developed method was validated, and good performing characteristics were achieved. The screening detection limits (SDL) and limits of quantitation (LOQ) for all the pesticides ranged within 0.1–20 and 0.1–50 μg/kg, respectively. The recoveries of all analytes ranged from 70.0% to 120.0% at three spiked levels (1 × LOQ, 2 × LOQ, and 10 × LOQ), with relative standard deviations less than 20.0%. The coefficient of determination was greater than 0.99 within the calibration linearity range for the detected 195 pesticides. The method proved the simple, rapid, high throughput screening and quantitative analysis of pesticide residues in raw milk.
Collapse
|