1
|
Zhang X, Chen Z, Becker B, Shan T, Chen T, Gong Q. Abnormal developmental of hippocampal subfields and amygdalar subnuclei volumes in young adults with heavy cannabis use: A three-year longitudinal study. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111156. [PMID: 39353549 DOI: 10.1016/j.pnpbp.2024.111156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/14/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Differences in the volumes of the hippocampus and amygdala have consistently been observed between young adults with heavy cannabis use relative to their non-using counterparts. However, it remains unclear whether the subfields of these functionally and structurally heterogenous regions exhibit similar patterns of change in young adults with long-term heavy cannabis use disorder (CUD). OBJECTIVES This study aims to investigate the effects of long-term heavy cannabis use in young adults on the subregional structures of the hippocampus and amygdala, as well as their longitudinal alterations. METHODS The study sample comprised 20 young adults with heavy cannabis use and 22 matched non-cannabis using healthy volunteers. All participants completed the Cannabis Use Disorder Identification Test (CUDIT) and underwent two T1-structural magnetic resonance imaging (MRI) scans, one at baseline and another at follow-up 3 years later. The amygdala, hippocampus, and their subregions were segmented on T1-weighted anatomical MRI scans, using a previously validated procedure. RESULTS At baseline, young adults with heavy CUD exhibited significantly larger volumes in several hippocampal (bilateral presubiculum, subiculum, Cornu Ammonis (CA) regions CA1, CA2-CA3, and right CA4-Dentate Gyrus (DG)) and amygdala (bilateral paralaminar nuclei, right medial nucleus, and right lateral nucleus) subregions compared to healthy controls, but these differences were attenuated at follow-up. Longitudinal analysis revealed an accelerated volumetric decrease in these subregions in young adults with heavy CUD relative to controls. Particularly, compared to healthy controls, significant accelerated volume decreases were observed in the right hippocampal subfields of the parasubiculum, subiculum, and CA4-DG. In the amygdala, similar trends of accelerated volumetric decreases were observed in the left central nucleus, right paralaminar nucleus, right basal nucleus, and right accessory basal nucleus. CONCLUSIONS The current findings suggest that long-term heavy cannabis use impacts maturational process of the amygdala and hippocampus, especially in subregions with high concentrations of cannabinoid type 1 receptors (CB1Rs) and involvement in adult neurogenesis.
Collapse
Affiliation(s)
- Xueyi Zhang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China; College of Medical Technology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zhengju Chen
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Benjamin Becker
- Department of Psychology, State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Tong Shan
- Department of Biomedical Engineering, University of Rochester, NY, USA
| | - Taolin Chen
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China; College of Medical Technology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Xiamen Key Lab of Psychoradiology and Neuromodulation, Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| |
Collapse
|
2
|
Kumar U. Cannabinoids: Role in Neurological Diseases and Psychiatric Disorders. Int J Mol Sci 2024; 26:152. [PMID: 39796008 PMCID: PMC11720483 DOI: 10.3390/ijms26010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
An impact of legalization and decriminalization of marijuana is the gradual increase in the use of cannabis for recreational purposes, which poses a potential threat to society and healthcare systems worldwide. However, the discovery of receptor subtypes, endogenous endocannabinoids, and enzymes involved in synthesis and degradation, as well as pharmacological characterization of receptors, has led to exploration of the use of cannabis in multiple peripheral and central pathological conditions. The role of cannabis in the modulation of crucial events involving perturbed physiological functions and disease progression, including apoptosis, inflammation, oxidative stress, perturbed mitochondrial function, and the impaired immune system, indicates medicinal values. These events are involved in most neurological diseases and prompt the gradual progression of the disease. At present, several synthetic agonists and antagonists, in addition to more than 70 phytocannabinoids, are available with distinct efficacy as a therapeutic alternative in different pathological conditions. The present review aims to describe the use of cannabis in neurological diseases and psychiatric disorders.
Collapse
Affiliation(s)
- Ujendra Kumar
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
3
|
Audi D, Hajeer S, Saab MB, Saab L, Harati H, Desoutter A, Al Ahmar E, Estephan E. Effects of Cannabis Use on Neurocognition: A Scoping Review of MRI Studies. J Psychoactive Drugs 2024:1-17. [PMID: 38944688 DOI: 10.1080/02791072.2024.2372377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/06/2024] [Indexed: 07/01/2024]
Abstract
Cannabis is one of the most commonly utilized recreational drugs. However, increasing evidence from the literature suggests harmful implications on cognition. Thus, the main aim of the current review is to summarize literature findings pertaining to the impact of cannabis on neurocognitive skills, focusing on the imaging biomarkers provided by MRI. Two reviewers navigated the literature independently using four main search engines including PubMed and Cochrane. Articles were first evaluated through their title and abstract, followed by full-text assessment. Study characteristics and findings were extracted, and the studies' quality was appraised. 47 articles were included. The majority of the studies were of a case-control design (66%), and the most studied neurocognitive skill was memory (40.4%). With task-based fMRI being the most commonly utilized MRI technique, findings have shown significantly varying decreased and increased neuronal activity within brain regions associated with the cognitive tasks performed. Results suggest that cannabis users are significantly suffering from cognitive deficits. The major significance of this review is attributed to highlighting the role of MRI. Future research needs to delve more into validating the negative effects of cannabis, to enable stakeholders to take action to limit cannabis usage, to foster public health and wellbeing.
Collapse
Affiliation(s)
- Dima Audi
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Shorouk Hajeer
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Marie-Belle Saab
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
- Faculty of Pedagogy, Lebanese University, Furn-El-Chebbak, Lebanon
| | - Lea Saab
- School of Medicine and Medical Sciences, Holy Spirit University of Kaslik, Kaslik, Lebanon
- Faculty of Arts and Sciences, Holy Spirit University of Kaslik, Kaslik, Lebanon
| | - Hayat Harati
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
- Muscat University, Muscat, Sultanate of Oman
| | | | - Elie Al Ahmar
- Faculty of Arts and Sciences, Holy Spirit University of Kaslik, Kaslik, Lebanon
- School of Engineering, Holy Spirit University of Kaslik, Kaslik, Lebanon
| | - Elias Estephan
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
- Faculty of Arts and Sciences, Holy Spirit University of Kaslik, Kaslik, Lebanon
- LBN, University Montpellier, Montpellier, France
| |
Collapse
|
4
|
Ren W, Fishbein D. Prospective, longitudinal study to isolate the impacts of marijuana use on neurocognitive functioning in adolescents. Front Psychiatry 2023; 14:1048791. [PMID: 37255687 PMCID: PMC10225520 DOI: 10.3389/fpsyt.2023.1048791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/19/2023] [Indexed: 06/01/2023] Open
Abstract
Introduction Policies to legalize possession and use of marijuana have been increasingly supported across the United States. Although there are restrictions on use in minors, many substance abuse scientists anticipate that these policy changes may alter use patterns among adolescents due to its wider availability and a softening of beliefs about its potentially harmful consequences. Despite the possibility that these policies may increase the prevalence of use among adolescents, the effects of marijuana on neurodevelopment remain unclear, clouding arguments in favor of or opposition to these policies. Methods The present prospective, longitudinal study was designed to isolate the neurodevelopmental consequences of marijuana use from its precursors during adolescence-a period of heightened vulnerability for both substance use and disrupted development due to environmental insults. Early adolescents who were substance-naïve at baseline (N = 529, aged 10-12) were recruited and tracked into adolescence when a subgroup initiated marijuana use during one of three subsequent waves of data collection, approximately 18 months apart. Results Results suggest that marijuana use may be specifically related to a decline in verbal learning ability in the short term and in emotion recognition, attention, and inhibition in the longer-term. Discussion These preliminary findings suggest that marijuana use has potential to adversely impact vulnerable neurodevelopmental processes during adolescence. Intensive additional investigation is recommended given that state-level policies regulating marijuana use and possession are rapidly shifting in the absence of good scientific information.
Collapse
Affiliation(s)
- Wen Ren
- Department of Human Development and Family Studies, The Pennsylvania State University, University Park, PA, United States
| | - Diana Fishbein
- Department of Human Development and Family Studies, The Pennsylvania State University, University Park, PA, United States
- Frank Porter Graham Child Development Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
5
|
Springer SD, Spooner RK, Schantell M, Arif Y, Frenzel MR, Eastman JA, Wilson TW. Regular recreational Cannabis users exhibit altered neural oscillatory dynamics during attention reorientation. Psychol Med 2023; 53:1205-1214. [PMID: 34889178 PMCID: PMC9250753 DOI: 10.1017/s0033291721002671] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Cannabis is the most widely used illicit drug in the United States and is often associated with changes in attention function, which may ultimately impact numerous other cognitive faculties (e.g. memory, executive function). Importantly, despite the increasing rates of cannabis use and widespread legalization in the United States, the neural mechanisms underlying attentional dysfunction in chronic users are poorly understood. METHODS We used magnetoencephalography (MEG) and a modified Posner cueing task in 21 regular cannabis users and 32 demographically matched non-user controls. MEG data were imaged in the time-frequency domain using a beamformer and peak voxel time series were extracted to quantify the oscillatory dynamics underlying use-related aberrations in attentional reorienting, as well as the impact on spontaneous neural activity immediately preceding stimulus onset. RESULTS Behavioral performance on the task (e.g. reaction time) was similar between regular cannabis users and non-user controls. However, the neural data indicated robust theta-band synchronizations across a distributed network during attentional reorienting, with activity in the bilateral inferior frontal gyri being markedly stronger in users relative to controls (p's < 0.036). Additionally, we observed significantly reduced spontaneous theta activity across this distributed network during the pre-stimulus baseline in cannabis users relative to controls (p's < 0.020). CONCLUSIONS Despite similar performance on the task, we observed specific alterations in the neural dynamics serving attentional reorienting in regular cannabis users compared to controls. These data suggest that regular cannabis users may employ compensatory processing in the prefrontal cortices to efficiently reorient their attention relative to non-user controls.
Collapse
Affiliation(s)
- Seth D. Springer
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rachel K. Spooner
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michaela R. Frenzel
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jacob A. Eastman
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
6
|
Niloy N, Hediyal TA, Vichitra C, Sonali S, Chidambaram SB, Gorantla VR, Mahalakshmi AM. Effect of Cannabis on Memory Consolidation, Learning and Retrieval and Its Current Legal Status in India: A Review. Biomolecules 2023; 13:biom13010162. [PMID: 36671547 PMCID: PMC9855787 DOI: 10.3390/biom13010162] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
Cannabis is one of the oldest crops grown, traditionally held religious attachments in various cultures for its medicinal use much before its introduction to Western medicine. Multiple preclinical and clinical investigations have explored the beneficial effects of cannabis in various neurocognitive and neurodegenerative diseases affecting the cognitive domains. Tetrahydrocannabinol (THC), the major psychoactive component, is responsible for cognition-related deficits, while cannabidiol (CBD), a non-psychoactive phytocannabinoid, has been shown to elicit neuroprotective activity. In the present integrative review, the authors focus on the effects of cannabis on the different cognitive domains, including learning, consolidation, and retrieval. The present study is the first attempt in which significant focus has been imparted on all three aspects of cognition, thus linking to its usage. Furthermore, the investigators have also depicted the current legal position of cannabis in India and the requirement for reforms.
Collapse
Affiliation(s)
- Nandi Niloy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
| | - Tousif Ahmed Hediyal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
| | - Chandrasekaran Vichitra
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
| | - Sharma Sonali
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
| | - Vasavi Rakesh Gorantla
- Department of Anatomical Science, St. George’s University, University Centre, St. Georges FZ818, Grenada
- Correspondence: (V.R.G.); (A.M.M.)
| | - Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, SS Nagar, Mysore 570015, Karnataka, India
- Correspondence: (V.R.G.); (A.M.M.)
| |
Collapse
|
7
|
Arya N, Vaish A, Zhao K, Rao H. Neural Mechanisms Underlying Breast Cancer Related Fatigue: A Systematic Review of Neuroimaging Studies. Front Neurosci 2021; 15:735945. [PMID: 34858127 PMCID: PMC8631399 DOI: 10.3389/fnins.2021.735945] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/19/2021] [Indexed: 12/03/2022] Open
Abstract
Introduction: Fatigue and cognitive dysfunction commonly co-occur in breast cancer patients and survivors. However, the underlying neural mechanism is not clear. We performed a systematic review of studies that used neuroimaging methods to investigate structural and functional changes in the brain associated with fatigue in breast cancer patients and survivors. Methods: We searched PubMed, Scopus, EmBase, and Cochrane CENTRAL from January 2009 to May 2021 for studies that reported brain neuroimaging findings in relationship to fatigue in breast cancer patients or survivors. Neuroimaging methods included magnetic resonance imaging (MRI), positron emission tomography (PET), and electroencephalogram (EEG). We summarized structural and functional neuroimaging changes associated with fatigue. Results: Of the 176 articles retrieved, ten MRI studies reported neuroimaging findings in relationship to fatigue. Together these studies compared 385 breast cancer patients or survivors to 205 controls. Fatigue was associated with reduced white matter integrity and increased glutamate in the insula but changes in gray matter volume were not associated with fatigue score. Nine of the ten studies found significant associations between fatigue and functional changes in the frontoparietal cortex. In response to memory and planning tasks, fatigue was associated with increased activations in several regions of the frontoparietal cortex, however, overall performance on tasks was not reduced. Fatigue was also associated with extensive changes in the connectivity of brain networks that filter endogenous signals (salience network), internal attention (default mode network), and external attention (dorsal attention network). Subcortical regions associated with fatigue included insula (interoception), superior colliculus (sleep regulation), and thalamus (alertness). Functional brain changes before initiation of chemotherapy were a better predictor of post-treatment fatigue than chemotherapy itself. Conclusions: Fatigue in breast cancer is associated with widespread functional changes of brain regions and networks that affect executive function including memory, planning, internal and external attention. Observed changes likely represent a compensatory mechanism through which breast cancer patients and survivors try to maintain adequate executive function. Breast cancer patients scheduled to undergo chemotherapy are at high risk for developing fatigue even before the start of treatment.
Collapse
Affiliation(s)
- Nisha Arya
- Department of Neurology, Center for Functional Neuroimaging, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Anya Vaish
- Department of Neurology, Center for Functional Neuroimaging, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Ke Zhao
- Department of Neurology, Center for Functional Neuroimaging, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Hengyi Rao
- Department of Neurology, Center for Functional Neuroimaging, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
8
|
Aloi J, McCusker MC, Lew BJ, Schantell M, Eastman JA, Frenzel MR, Wilson TW. Altered amygdala-cortical connectivity in individuals with Cannabis use disorder. J Psychopharmacol 2021; 35:1365-1374. [PMID: 34730052 PMCID: PMC9659472 DOI: 10.1177/02698811211054163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cannabis is one of the most commonly used substances in the United States. Prior literature using task-based functional magnetic resonance imaging (fMRI) has identified that individuals with Cannabis use disorder (CUD) show impairments in emotion processing circuitry. However, whether the functional networks involving these regions are also altered in CUD remains poorly understood. AIMS Investigate changes in resting-state functional connectivity (rsFC) in regions related to emotional processing in CUD. METHODS Sixty-two participants completed resting-state fMRI, including 21 with CUD, 20 with histories of illicit substance use but no current CUD diagnosis, and 21 with no history of illicit substance use. Whole-brain seed-based connectivity analyses were performed and one-way analyses of covariance (ANCOVAs) were conducted to detect group differences in the bilateral amygdalae, hippocampi, and the anterior and posterior cingulate cortices. RESULTS The CUD group exhibited significant reductions in rsFC between the amygdala and the cuneus, paracentral lobule, and supplementary motor area, and between the cingulate cortices and the occipital and temporal lobes. There were no significant group differences in hippocampal functional connectivity. In addition, CUD symptom counts based on the Structured Clinical Interview for DSM-5 (SCID) and the Cannabis Use Disorders Identification Test (CUDIT) significantly correlated with multiple connectivity metrics. CONCLUSION These data expand on emerging literature indicating that CUD is associated with dysfunction in the neural circuits underlying emotion processing. Dysfunction in emotion processing circuits may play a role in the behavioral impairments seen in emotion processing tasks in individuals with CUD, and the severity of CUD symptoms appears to be directly related to the degree of dysfunction in these circuits.
Collapse
Affiliation(s)
- Joseph Aloi
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE,College of Medicine, University of Nebraska Medical Center, Omaha, NE,Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN
| | - Marie C. McCusker
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE
| | - Brandon J. Lew
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE,College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE,College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Jacob A. Eastman
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE
| | - Michaela R. Frenzel
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE,College of Medicine, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
9
|
Binkowska AA, Jakubowska N, Gaca M, Galant N, Piotrowska-Cyplik A, Brzezicka A. Not Just a Pot: Visual Episodic Memory in Cannabis Users and Polydrug Cannabis Users: ROC and ERP Preliminary Investigation. Front Hum Neurosci 2021; 15:677793. [PMID: 34177497 PMCID: PMC8226271 DOI: 10.3389/fnhum.2021.677793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022] Open
Abstract
Background While research has consistently identified an association between long-term cannabis use and memory impairments, few studies have examined this relationship in a polydrug context (i.e., when combining cannabis with other substances). Aims: In this preliminary study, we used event-related potentials to examine the recognition process in a visual episodic memory task in cannabis users (CU) and cannabis polydrug users (PU). We hypothesized that CU and PU will have both-behavioral and psychophysiological-indicators of memory processes affected, compared to matched non-using controls with the PU expressing more severe changes. Methods 29 non-using controls (CG), 24 CU and 27 PU were enrolled into the study. All participants completed a visual learning recognition task while brain electrical activity was recorded. Event-related potentials were calculated for familiar (old) and new images from a signal recorded during a subsequent recognition test. We used receiver operating characteristic curves for behavioral data analysis. Results The groups did not differ in memory performance based on receiver operating characteristic method in accuracy and discriminability indicators nor mean reaction times for old/new images. The frontal old/new effect expected from prior research was observed for all participants, while a parietal old/new effect was not observed. While, the significant differences in the late parietal component (LPC) amplitude was observed between CG and PU but not between CG and CU nor CU and PU. Linear regression analysis was used to examine the mean amplitude of the LPC component as a predictor of memory performance accuracy indicator. LPC amplitude predicts recognition accuracy only in the CG. Conclusion The results showed alterations in recognition memory processing in CU and PU groups compared to CG, which were not manifested on the behavioral level, and were the most prominent in cannabis polydrug users. We interpret it as a manifestation of the cumulative effect of multiple drug usage in the PU group.
Collapse
Affiliation(s)
| | - Natalia Jakubowska
- SWPS University of Social Sciences and Humanities, Warsaw, Poland.,Polish-Japanese Academy of Information Technology, Warsaw, Poland
| | - Maciej Gaca
- Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | | | | | - Aneta Brzezicka
- SWPS University of Social Sciences and Humanities, Warsaw, Poland.,Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
10
|
Scheffler F, Du Plessis S, Asmal L, Kilian S, Phahladira L, Luckhoff HK, Emsley R. Cannabis use and hippocampal subfield volumes in males with a first episode of a schizophrenia spectrum disorder and healthy controls. Schizophr Res 2021; 231:13-21. [PMID: 33740561 DOI: 10.1016/j.schres.2021.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 01/25/2021] [Accepted: 02/27/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Both schizophrenia and cannabis use are associated with structural brain changes. The hippocampus is a region of particular interest due to its role in memory and select cognitive functions, impairment of which is a core feature of schizophrenia and has also been observed in substance abuse. This study aimed to explore the effects of recent/current cannabis use on hippocampal subfield volumes in male patients with first-episode schizophrenia spectrum disorders and matched controls. METHODS This cross-sectional, case-control study included 63 patients and 58 controls scanned on 3T MRI scanners, with hippocampal segmentation performed using recently validated Freesurfer v6.0 software. Cannabis use status was determined by self and carer report together with urine toxicology screening, and patients were categorised as recent/current users or non-users. We used multivariate analysis of covariance (MANCOVA) with age, scan sequence, scan quality, and total intracranial volume as covariates, with subsequent analysis of variance (ANOVA) to test the effects of diagnosis and cannabis use status on individual hippocampal subfields. RESULTS We found a group (patient/control) by cannabis use interaction effect in the subiculum, with decreased volumes observed in the cannabis non-using patients compared to the cannabis using patients, and decreased volumes in the cannabis using controls compared to the cannabis non-using controls. CONCLUSION The increased subiculum volume in cannabis using patients compared to cannabis non-using patients raises important questions regarding the pathophysiology of schizophrenia and the role of cannabis use therein.
Collapse
Affiliation(s)
- F Scheffler
- Department of Psychiatry, Stellenbosch University, South Africa.
| | - S Du Plessis
- Department of Psychiatry, Stellenbosch University, South Africa
| | - L Asmal
- Department of Psychiatry, Stellenbosch University, South Africa
| | - S Kilian
- Department of Psychiatry, Stellenbosch University, South Africa
| | - L Phahladira
- Department of Psychiatry, Stellenbosch University, South Africa
| | - H K Luckhoff
- Department of Psychiatry, Stellenbosch University, South Africa
| | - R Emsley
- Department of Psychiatry, Stellenbosch University, South Africa
| |
Collapse
|
11
|
Blest-Hopley G, O'Neill A, Wilson R, Giampietro V, Bhattacharyya S. Disrupted parahippocampal and midbrain function underlie slower verbal learning in adolescent-onset regular cannabis use. Psychopharmacology (Berl) 2021; 238:1315-1331. [PMID: 31814047 PMCID: PMC8062355 DOI: 10.1007/s00213-019-05407-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 11/18/2019] [Indexed: 11/18/2022]
Abstract
RATIONALE Prolonged use of cannabis, the most widely used illicit drug worldwide, has been consistently associated with impairment in memory and verbal learning. Although the neurophysiological underpinnings of these impairments have been investigated previously using functional magnetic resonance imaging (fMRI), while performing memory tasks, the results of these studies have been inconsistent and no clear picture has emerged yet. Furthermore, no previous studies have investigated trial-by-trial learning. OBJECTIVES We aimed to investigate the neural underpinnings of impaired verbal learning in cannabis users as estimated over repeated learning trials. METHODS We studied 21 adolescent-onset regular cannabis users and 21 non-users using fMRI performed at least 12 h after last cannabis use, while they performed a paired associate verbal learning task that allowed us to examine trial-by-trial learning. Brain activation during repeated verbal encoding and recall conditions of the task was indexed using the blood oxygen level-dependent haemodynamic response fMRI signal. RESULTS There was a significant improvement in recall score over repeated trials indicating learning occurring across the two groups of participants. However, learning was significantly slower in cannabis users compared to non-users (p = 0.032, partial eta-squared = 0.108). While learning verbal stimuli over repeated encoding blocks, non-users displayed progressive increase in recruitment of the midbrain, parahippocampal gyrus and thalamus (p = 0.00939, partial eta-squared = 0.180). In contrast, cannabis users displayed a greater but disrupted activation pattern in these regions, which showed a stronger correlation with new word-pairs learnt over the same blocks in cannabis users than in non-users. CONCLUSIONS These results suggest that disrupted medial temporal and midbrain function underlie slower learning in adolescent-onset cannabis users.
Collapse
Affiliation(s)
- Grace Blest-Hopley
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Aisling O'Neill
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Robin Wilson
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Vincent Giampietro
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK.
- South London and Maudsley NHS Foundation Trust, Denmark Hill, Camberwell, London, UK.
| |
Collapse
|
12
|
Rangel-Pacheco A, Lew BJ, Schantell MD, Frenzel MR, Eastman JA, Wiesman AI, Wilson TW. Altered fronto-occipital connectivity during visual selective attention in regular cannabis users. Psychopharmacology (Berl) 2021; 238:1351-1361. [PMID: 33241479 PMCID: PMC8068572 DOI: 10.1007/s00213-020-05717-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 11/10/2020] [Indexed: 01/09/2023]
Abstract
RATIONALE AND OBJECTIVES Cognitive processing impairments have been associated with acute cannabis use, but there is mixed evidence regarding the cognitive effects of chronic cannabis use. Several neuroimaging studies have noted selective-attention processing differences in those who chronically use cannabis, but the neural dynamics governing the altered processing is unclear. METHODS Twenty-four adults reporting at least weekly cannabis use in the past 6 months on the Cannabis Use Disorder Identification Test - Revised were compared to 24 demographically matched controls who reported no prior cannabis use. All participants completed a visual selective attention processing task while undergoing magnetoencephalography. Time-frequency windows of interest were identified using a data-driven method, and spectrally specific neural activity was imaged using a beamforming approach. RESULTS All participants performed within normal range on the cognitive task. Regular cannabis users displayed an aberrant cognitive interference effect in the theta (4-8 Hz) frequency range shortly after stimulus onset (i.e., 0-250 ms) in the right occipital cortex. Cannabis users also exhibited altered functional connectivity between the right prefrontal cortex and right occipital cortices in comparison to controls. CONCLUSIONS Individuals with a history of regular cannabis use exhibited abnormal theta interference activity in the occipital cortices, as well as altered prefrontal-occipital functional connectivity in the theta range during a visual selective attention task. Such differences may reflect compensatory processing, as these participants performed within normal range on the task. Understanding the neural dynamics in chronic, regular cannabis users may provide insight on how long-term and/or frequent use may affect neural networks underlying cognitive processes.
Collapse
Affiliation(s)
- Abril Rangel-Pacheco
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA,College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brandon J. Lew
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA,College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mikki D. Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA,College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michaela R. Frenzel
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Jacob A. Eastman
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Alex I. Wiesman
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA,Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA,College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
13
|
Frolli A, Ricci MC, Cavallaro A, Lombardi A, Bosco A, Di Carmine F, Operto FF, Franzese L. Cognitive Development and Cannabis Use in Adolescents. Behav Sci (Basel) 2021; 11:bs11030037. [PMID: 33802852 PMCID: PMC8002758 DOI: 10.3390/bs11030037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022] Open
Abstract
Heavy exposure to cannabis during adolescence can cause significant neurocognitive changes. It can alter emotional responsiveness and social behavior, and cause impairments in sustained attention, learning, working memory (WM), cognitive flexibility, and the speed of information processing. It also has a significant impact on executive functions. In this study we investigated how global cognitive functions can be affected by the frequency of cannabinoid consumption in different categories of consumers (chronic, occasional, and non-users), through the evaluation of executive functions. Statistical analysis showed a significant decrease in performance in working memory tasks and processing speed by subjects using cannabis chronically (group 1) as compared to non-consumers (group 3), and occasional consumers (group 2). Future studies could verify the extent of neurocognitive alterations through re-evaluations with controlled follow-up and the addition of neuro-functional data.
Collapse
Affiliation(s)
- Alessandro Frolli
- Disability Research Centre, University of International Studies of Rome, 00147 Rome, Italy; (M.C.R.); (F.D.C.)
- Correspondence: ; Tel.: +39-347-4910-178
| | - Maria Carla Ricci
- Disability Research Centre, University of International Studies of Rome, 00147 Rome, Italy; (M.C.R.); (F.D.C.)
| | - Antonella Cavallaro
- FINDS—Italian Neuroscience and Developmental Disorders Foundation, 81040 Caserta, Italy; (A.C.); (A.L.); (A.B.)
| | - Agnese Lombardi
- FINDS—Italian Neuroscience and Developmental Disorders Foundation, 81040 Caserta, Italy; (A.C.); (A.L.); (A.B.)
| | - Antonia Bosco
- FINDS—Italian Neuroscience and Developmental Disorders Foundation, 81040 Caserta, Italy; (A.C.); (A.L.); (A.B.)
| | - Francesca Di Carmine
- Disability Research Centre, University of International Studies of Rome, 00147 Rome, Italy; (M.C.R.); (F.D.C.)
| | - Francesca Felicia Operto
- Department of Child Neuropsychiatry, ASL (Local Health Company) of Salerno, 84084 Salerno, Italy;
| | | |
Collapse
|
14
|
Block RI, Jager G, Luijten M, Ramsey NF. Associations of Regular Marijuana Use by Adolescent Boys With Verbal Memory and Perseveration. Psychol Rep 2021; 125:839-861. [PMID: 33517837 DOI: 10.1177/0033294121988992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Many American and Dutch adolescents use marijuana regularly. There is concern that such use may impair cognitive function more in adolescents than adults. We examined effects of regular marijuana use on long-term memory and perseveration among American and Dutch adolescents. We administered Buschke's Selective Reminding Test (BSRT) to assess long-term memory and the Wisconsin Card Sorting Test (WCST) to assess perseveration in male teenagers. Usable test data were obtained for 12 American marijuana users, 13 American controls, 9 Dutch marijuana users, and 12 Dutch controls. In BSRT, users showed lower overall long-term storage than controls (adjusted means ± SE's for numbers of words per trial of 9.4 ± 0.2, 13.4 ± 0.3, 11.7 ± 0.2, and 12.4 ± 0.2 for American users, Dutch users, American controls, and Dutch controls, respectively). Marijuana was associated with memory effects only in American, not Dutch, users. Bivariate Pearson correlations for American and Dutch users combined showed associations of lower total recall with more uses in the previous year and lifetime (r = -0.61 and r = -0.53, respectively); and more perseverative errors with more uses in the previous year (r = 0.55). Some findings were consistent with the possibility that regular adolescent marijuana use causes deficits in cognition, especially memory. However, a causal interpretation cannot be inferred from our findings and is challenging to reconcile with the observation of memory deficits only in American users. Our study was novel in examining the influence of nationality on marijuana's cognitive effects. More studies of this topic should compare effects across nationalities or cultures.
Collapse
Affiliation(s)
- Robert I Block
- Department of Anesthesia, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Gerry Jager
- Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| | - Maartje Luijten
- Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, the Netherlands; Behavioural Science Institute and Orthopedagogics: Family and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Nick F Ramsey
- Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
15
|
Wittemann M, Brielmaier J, Rubly M, Kennel J, Werler F, Schmitgen MM, Kubera KM, Hirjak D, Wolf ND, Reith W, Wolf RC. Cognition and Cortical Thickness in Heavy Cannabis Users. Eur Addict Res 2021; 27:115-122. [PMID: 33080597 DOI: 10.1159/000509987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 07/07/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Acute and long-term adverse effects of heavy cannabis use (HCU) on neurocognitive function have been suggested, as much as regional changes of brain volume. However, little is known about the relationship between impaired cognition and brain structure in individuals with HCU. OBJECTIVE Here, we investigated associations between cognition and cortical thickness (CT) in males with HCU and male controls. METHODS Twenty-six individuals with HCU and 20 controls were examined using a comprehensive neuropsychological test battery and high-resolution structural MRI at 3T. CT was calculated using the Computational Anatomy Toolbox (CAT12). RESULTS Individuals with HCU differed from controls with respect to verbal learning performance and verbal working memory only. Individuals with HCU showed reduced CT in medial temporal, orbitofrontal, and cingulate regions, as well as in areas of the middle temporal and fusiform cortex (peak voxel family-wise error-corrected p < 0.001, followed by empirically determined correction for spatial extent) compared to HC. Verbal learning performance was associated with right entorhinal and left orbitofrontal CT reductions. Entorhinal CT was also significantly associated with amount and frequency of current weekly cannabis use. CONCLUSIONS The data support the notion of domain-specific cognitive impairment in individuals with HCU and provide a neuromechanistic understanding of such deficits, particularly with respect to abnormal CT in brain areas associated with long-term memory processing.
Collapse
Affiliation(s)
- Miriam Wittemann
- Department of Psychiatry and Psychotherapy, Saarland University, Saarbrücken, Germany
| | - Jule Brielmaier
- Department of Psychiatry and Psychotherapy, Saarland University, Saarbrücken, Germany.,Department of Obstetrics and Gynecology, RKH Clinic Ludwigsburg, Ludwigsburg, Germany
| | - Mathias Rubly
- Department of Psychiatry and Psychotherapy, Saarland University, Saarbrücken, Germany
| | - Jennifer Kennel
- Department of Psychiatry and Psychotherapy, SHG-Kliniken Saarbrücken, Saarbrücken, Germany
| | - Florian Werler
- Department of General Psychiatry at the Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Mike M Schmitgen
- Department of General Psychiatry at the Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Katharina M Kubera
- Department of General Psychiatry at the Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nadine D Wolf
- Department of General Psychiatry at the Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Wolfgang Reith
- Department of Neuroradiology, Saarland University, Saarbrücken, Germany
| | - Robert Christian Wolf
- Department of General Psychiatry at the Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany,
| |
Collapse
|
16
|
Gray matter changes in chronic heavy cannabis users: a voxel-level study using multivariate pattern analysis approach. Neuroreport 2020; 31:1236-1241. [PMID: 33044327 DOI: 10.1097/wnr.0000000000001532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent structural MRI studies on gray matter (GM) volumes using group-level mass-univariate statistical analysis suggest that chronic and heavy cannabis exposure may affect brain region-based morphology. In this prospective study, we use a multivariate pattern analysis approach to investigate the voxel-level change of GM densities in chronic heavy cannabis users. Principal component analysis and linear support vector machine are used in this study, resulting in an 88.1% separation between chronic heavy cannabis users (N = 20) and non-cannabis healthy controls (HCs, N = 22) through leave-one-out cross-validation. The model's discriminative pattern showed that GM density decreases in the part of middle frontal gyrus, inferior frontal gyrus, middle temporal gyrus, inferior temporal gyrus and left occipital lobe in heavy cannabis users with respect to HCs and increases in the part of lentiform nucleus, left cerebellum and right parietal lobe. These results suggest that GM densities alteration has taken place on chronic heavy cannabis users compared with HCs at voxel level.
Collapse
|
17
|
Psychiatric neuroimaging: Joining forces with epidemiology. Eur Psychiatry 2020; 23:315-9. [DOI: 10.1016/j.eurpsy.2007.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 09/21/2007] [Accepted: 09/30/2007] [Indexed: 11/27/2022] Open
Abstract
AbstractSevere mental illnesses such as schizophrenia and mood disorders have a major impact on public health. Disease prevalence and phenotypic expression are the products of environment and gene interactions. However, our incomplete understanding of their aetiology and pathophysiology thwarts primary prevention and early diagnosis and limits the effective application of currently available treatments as well as the development of novel therapeutic approaches. Neuroimaging can provide detailed in vivo information about the biological mechanisms underpinning the relationship between genetic variation and clinical phenotypes or response to treatment. However, the biological complexity of severe mental illness results from unknown or unpredictable interactions between multiple genetic and environmental factors, many of which have only been partially identified. We propose that the use of epidemiological principles to neuroimaging research is a necessary next step in psychiatric research. Because of the complexity of mental disorders and the multiple risk factors involved only the use of large epidemiologically defined samples will allow us to study the broader spectrum of psychopathology, including sub-threshold presentation and explore pathophysiological processes and the functional impact of genetic and non-genetic factors on the onset and persistence of psychopathology.
Collapse
|
18
|
A Systematic Review of Human Neuroimaging Evidence of Memory-Related Functional Alterations Associated with Cannabis Use Complemented with Preclinical and Human Evidence of Memory Performance Alterations. Brain Sci 2020; 10:brainsci10020102. [PMID: 32069958 PMCID: PMC7071506 DOI: 10.3390/brainsci10020102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
Cannabis has been associated with deficits in memory performance. However, the neural correlates that may underpin impairments remain unclear. We carried out a systematic review of functional magnetic resonance imaging (fMRI) studies investigating brain functional alterations in cannabis users (CU) compared to nonusing controls while performing memory tasks, complemented with focused narrative reviews of relevant preclinical and human studies. Twelve studies employing fMRI were identified finding functional brain activation during memory tasks altered in CU. Memory performance studies showed CU performed worse particularly during verbal memory tasks. Longitudinal studies suggest that cannabis use may have a causal role in memory deficits. Preclinical studies have not provided conclusive evidence of memory deficits following cannabinoid exposure, although they have shown evidence of cannabinoid-induced structural and histological alteration. Memory performance deficits may be related to cannabis use, with lower performance possibly underpinned by altered functional activation. Memory impairments may be associated with the level of cannabis exposure and use of cannabis during developmentally sensitive periods, with possible improvement following cessation of cannabis use.
Collapse
|
19
|
Daniju Y, Bossong MG, Brandt K, Allen P. Do the effects of cannabis on the hippocampus and striatum increase risk for psychosis? Neurosci Biobehav Rev 2020; 112:324-335. [PMID: 32057817 DOI: 10.1016/j.neubiorev.2020.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/17/2020] [Accepted: 02/10/2020] [Indexed: 11/19/2022]
Abstract
Cannabis use is associated with increased risk of psychotic symptoms and in a small number of cases it can lead to psychoses. This review examines the neurobiological mechanisms that mediate the link between cannabis use and psychosis risk. We use an established preclinical model of psychosis, the methylazoxymethanol acetate (MAM) rodent model, as a framework to examine if psychosis risk in some cannabis users is mediated by the effects of cannabis on the hippocampus, and this region's role in the regulation of mesolimbic dopamine. We also examine how cannabis affects excitatory neurotransmission known to regulate hippocampal neural activity and output. Whilst there is clear evidence that cannabis/cannabinoids can affect hippocampal and medial temporal lobe function and structure, the evidence that cannabis/cannabinoids increase striatal dopamine function is less robust. There is limited evidence that cannabis use affects cortical and striatal glutamate levels, but there are currently too few studies to draw firm conclusions. Future work is needed to test the MAM model in relation to cannabis using multimodal neuroimaging approaches.
Collapse
Affiliation(s)
- Y Daniju
- Department of Psychology, University of Roehampton, London, UK
| | - M G Bossong
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, the Netherlands
| | - K Brandt
- Department of Psychology, University of Roehampton, London, UK
| | - P Allen
- Department of Psychology, University of Roehampton, London, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; Icahn School of Medicine at Mount Sinai Hospital, New York, USA.
| |
Collapse
|
20
|
Figueiredo PR, Tolomeo S, Steele JD, Baldacchino A. Neurocognitive consequences of chronic cannabis use: a systematic review and meta-analysis. Neurosci Biobehav Rev 2020; 108:358-369. [DOI: 10.1016/j.neubiorev.2019.10.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 01/08/2023]
|
21
|
Manza P, Yuan K, Shokri-Kojori E, Tomasi D, Volkow ND. Brain structural changes in cannabis dependence: association with MAGL. Mol Psychiatry 2020; 25:3256-3266. [PMID: 31695165 PMCID: PMC7200265 DOI: 10.1038/s41380-019-0577-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/20/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022]
Abstract
Cannabis use is rising, yet there is poor understanding of biological processes that might link chronic cannabis use to brain structural abnormalities. To lend insight into this topic, we examined white matter microstructural integrity and gray matter cortical thickness/density differences between 89 individuals with cannabis dependence (CD) and 89 matched controls (64 males, 25 females in each group) from the Human Connectome Project. We tested whether cortical patterns for expression of genes relevant for cannabinoid signaling (from Allen Human Brain Atlas postmortem tissue) were associated with spatial patterns of cortical thickness/density differences in CD. CD had lower fractional anisotropy than controls in white matter bundles innervating posterior cingulate and parietal cortex, basal ganglia, and temporal cortex. The CD group also had significantly less gray matter thickness and density in precuneus, relative to controls. Sibling-pair analysis found support for causal and graded liability effects of cannabis on precuneus structure. Spatial patterns of gray matter differences in CD were significantly associated with regional differences in monoacylglycerol lipase (MAGL) expression in postmortem brain tissue, such that regions with higher MAGL expression (but not fatty-acid amide hydrolase or FAAH) were more vulnerable to cortical thinning. In sum, chronic cannabis use is associated with structural differences in white and gray matter, which was most prominent in precuneus and associated white matter tracts. Regions with high MAGL expression, and therefore with potentially physiologically restricted endogenous cannabinoid signaling, may be more vulnerable to the effects of chronic cannabis use on cortical thickness.
Collapse
Affiliation(s)
- Peter Manza
- National Institute on Alcoholism and Alcohol Abuse, National Institutes of Health, Bethesda, MD, USA.
| | - Kai Yuan
- grid.94365.3d0000 0001 2297 5165National Institute on Alcoholism and Alcohol Abuse, National Institutes of Health, Bethesda, MD USA ,grid.440736.20000 0001 0707 115XSchool of Life Science and Technology, Xidian University, 710071 Xi’an, Shaanxi PR China
| | - Ehsan Shokri-Kojori
- grid.94365.3d0000 0001 2297 5165National Institute on Alcoholism and Alcohol Abuse, National Institutes of Health, Bethesda, MD USA
| | - Dardo Tomasi
- grid.94365.3d0000 0001 2297 5165National Institute on Alcoholism and Alcohol Abuse, National Institutes of Health, Bethesda, MD USA
| | - Nora D. Volkow
- grid.94365.3d0000 0001 2297 5165National Institute on Alcoholism and Alcohol Abuse, National Institutes of Health, Bethesda, MD USA ,grid.94365.3d0000 0001 2297 5165National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
22
|
Levent A, Davelaar EJ. Illegal drug use and prospective memory: A systematic review. Drug Alcohol Depend 2019; 204:107478. [PMID: 31715546 DOI: 10.1016/j.drugalcdep.2019.04.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 03/13/2019] [Accepted: 04/09/2019] [Indexed: 10/26/2022]
Abstract
Illegal drug use is proposed to interfere with neurobiological functioning by damaging the neurotransmitter communication systems that are believed to be responsible for cognitive abilities, including perception, attention, and memory. This review specifically examined effects of illegal drug use on prospective memory (PM) - memory for future actions. Twenty- seven studies spanning 14 years were included in this review which were divided into two broad categories based on testing methods used: self-report and lab-based testing methods. The quality of the included studies was assessed across five categories: sample type, sample size, abstinence period, testing methods and control for confounding factors. The overall quality of evidence was good for six studies and moderate for sixteen studies and low for five studies. The results from the studies employing self-report were inconsistent as illegal drug users exhibited PM deficits in some studies, but not in others. However, the studies with lab-based testing methods demonstrated more consistent findings with illegal drug users scoring worse than non-users on various PM tests. There were also consistent findings on the link between the dosage of drug taken and level of PM deficit. Based on the literature, there is moderate evidence that illegal drug use impairs PM ability. We recommend that further lab-based studies be conducted to assess dose-response effects on drug-specificity.
Collapse
Affiliation(s)
- Adnan Levent
- Department of Psychological Sciences, Birkbeck, University of London, UK.
| | - Eddy J Davelaar
- Department of Psychological Sciences, Birkbeck, University of London, UK
| |
Collapse
|
23
|
Burggren AC, Shirazi A, Ginder N, London ED. Cannabis effects on brain structure, function, and cognition: considerations for medical uses of cannabis and its derivatives. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2019; 45:563-579. [PMID: 31365275 PMCID: PMC7027431 DOI: 10.1080/00952990.2019.1634086] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/16/2022]
Abstract
Background: Cannabis is the most widely used illicit substance worldwide, and legalization for recreational and medical purposes has substantially increased its availability and use in the United States.Objectives: Decades of research have suggested that recreational cannabis use confers risk for cognitive impairment across various domains, and structural and functional differences in the brain have been linked to early and heavy cannabis use.Methods: With substantial evidence for the role of the endocannabinoid system in neural development and understanding that brain development continues into early adulthood, the rising use of cannabis in adolescents and young adults raises major concerns. Yet some formulations of cannabinoid compounds are FDA-approved for medical uses, including applications in children.Results: Potential effects on the trajectory of brain morphology and cognition, therefore, should be considered. The goal of this review is to update and consolidate relevant findings in order to inform attitudes and public policy regarding the recreational and medical use of cannabis and cannabinoid compounds.Conclusions: The findings point to considerations for age limits and guidelines for use.
Collapse
Affiliation(s)
- Alison C Burggren
- Robert and Beverly Lewis Center for Neuroimaging, University of Oregon, Eugene, OR, USA
| | - Anaheed Shirazi
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, USA
| | - Nathaniel Ginder
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, USA
| | - Edythe D. London
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, and the Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
24
|
Cohen K, Weizman A, Weinstein A. Positive and Negative Effects of Cannabis and Cannabinoids on Health. Clin Pharmacol Ther 2019; 105:1139-1147. [DOI: 10.1002/cpt.1381] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/22/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Koby Cohen
- Department of Behavioral ScienceAriel University, Science Park Ariel Israel
| | | | - Aviv Weinstein
- Department of Behavioral ScienceAriel University, Science Park Ariel Israel
| |
Collapse
|
25
|
Orr C, Spechler P, Cao Z, Albaugh M, Chaarani B, Mackey S, D'Souza D, Allgaier N, Banaschewski T, Bokde ALW, Bromberg U, Büchel C, Burke Quinlan E, Conrod P, Desrivières S, Flor H, Frouin V, Gowland P, Heinz A, Ittermann B, Martinot JL, Martinot MLP, Nees F, Papadopoulos Orfanos D, Paus T, Poustka L, Millenet S, Fröhner JH, Radhakrishnan R, Smolka MN, Walter H, Whelan R, Schumann G, Potter A, Garavan H. Grey Matter Volume Differences Associated with Extremely Low Levels of Cannabis Use in Adolescence. J Neurosci 2019; 39:1817-1827. [PMID: 30643026 PMCID: PMC6407302 DOI: 10.1523/jneurosci.3375-17.2018] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/03/2018] [Accepted: 12/11/2018] [Indexed: 01/27/2023] Open
Abstract
Rates of cannabis use among adolescents are high, and are increasing concurrent with changes in the legal status of marijuana and societal attitudes regarding its use. Recreational cannabis use is understudied, especially in the adolescent period when neural maturation may make users particularly vulnerable to the effects of Δ-9-tetrahydrocannabinol (THC) on brain structure. In the current study, we used voxel-based morphometry to compare gray matter volume (GMV) in forty-six 14-year-old human adolescents (males and females) with just one or two instances of cannabis use and carefully matched THC-naive controls. We identified extensive regions in the bilateral medial temporal lobes as well as the bilateral posterior cingulate, lingual gyri, and cerebellum that showed greater GMV in the cannabis users. Analysis of longitudinal data confirmed that GMV differences were unlikely to precede cannabis use. GMV in the temporal regions was associated with contemporaneous performance on the Perceptual Reasoning Index and with future generalized anxiety symptoms in the cannabis users. The distribution of GMV effects mapped onto biomarkers of the endogenous cannabinoid system providing insight into possible mechanisms for these effects.SIGNIFICANCE STATEMENT Almost 35% of American 10th graders have reported using cannabis and existing research suggests that initiation of cannabis use in adolescence is associated with long-term neurocognitive effects. We understand very little about the earliest effects of cannabis use, however, because most research is conducted in adults with a heavy pattern of lifetime use. This study presents evidence suggesting structural brain and cognitive effects of just one or two instances of cannabis use in adolescence. Converging evidence suggests a role for the endocannabinoid system in these effects. This research is particularly timely as the legal status of cannabis is changing in many jurisdictions and the perceived risk by youth associated with smoking cannabis has declined in recent years.
Collapse
Affiliation(s)
- Catherine Orr
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, Vermont 05405,
- Department of Psychological Sciences, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Philip Spechler
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, Vermont 05405
| | - Zhipeng Cao
- Department of Psychology, University College Dublin, Dublin 4, Ireland
- Department of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Matthew Albaugh
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, Vermont 05405
| | - Bader Chaarani
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, Vermont 05405
| | - Scott Mackey
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, Vermont 05405
| | - Deepak D'Souza
- Department of Psychiatry, Yale University School of Medicine, West Haven, Connecticut 06516
| | - Nicholas Allgaier
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, Vermont 05405
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Uli Bromberg
- University Medical Centre Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Christian Büchel
- University Medical Centre Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Erin Burke Quinlan
- Centre for Population Neuroscience and Stratified Medicine (PONS) and MRC-SGDP Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, WC2R 2LS United Kingdom
| | - Patricia Conrod
- Centre de recherche du CHU Ste-Justine and
- Department of Psychiatry, Université de Montréal, 3175 Chemin de la Côte Sainte-Catherine, Montreal, Québec H3T 1C5, Canada
- National Addiction Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, Addiction Sciences Building, London SE5 8BB, United Kingdom
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Stratified Medicine (PONS) and MRC-SGDP Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, WC2R 2LS United Kingdom
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, 68131 Mannheim, Germany
| | - Vincent Frouin
- NeuroSpin, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD United Kingdom
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité, Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany, Berlin, 10587 Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging and Psychiatry", University Paris Sud-University Paris Saclay, DIGITEO Labs, 91190 Gif sur Yvette, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging and Psychiatry", and AP-HP, Department of Adolescent Psychopathology and Medicine, Maison de Solenn, Cochin Hospital, 75014 Paris, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | | | - Tomáš Paus
- Rotman Research Institute, Baycrest, and Departments of Psychology and Psychiatry, University of Toronto, Toronto, Ontario M6A 2E1, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, 37075, Göttingen, Germany
- Clinic for Child and Adolescent Psychiatry, Medical University of Vienna, 1090, Vienna, Austria, and
| | - Sabina Millenet
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Juliane H Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, 01069 Germany
| | - Rajiv Radhakrishnan
- Department of Psychiatry, Yale University School of Medicine, West Haven, Connecticut 06516
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, 01069 Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité, Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Robert Whelan
- Department of Psychology, University College Dublin, Dublin 4, Ireland
- Department of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS) and MRC-SGDP Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, WC2R 2LS United Kingdom
| | - Alexandra Potter
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, Vermont 05405
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, Vermont 05405
| |
Collapse
|
26
|
Ravindran O, Nandini G, Shanmugasundaram N, Kapil VV. Cognitive functions in alcohol use and cannabis use disorder: A cross-sectional study. JOURNAL OF MENTAL HEALTH AND HUMAN BEHAVIOUR 2019. [DOI: 10.4103/jmhhb.jmhhb_66_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
27
|
Sagar KA, Gruber SA. Interactions between recreational cannabis use and cognitive function: lessons from functional magnetic resonance imaging. Ann N Y Acad Sci 2018; 1451:42-70. [PMID: 30426517 DOI: 10.1111/nyas.13990] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 10/13/2018] [Accepted: 10/19/2018] [Indexed: 12/28/2022]
Abstract
Cannabis use is becoming increasingly popular as a growing number of states pass legislation to legalize cannabis and cannabis-derived products for recreational and/or medical purposes. Given the widespread use of cannabis, it is critical to understand the neural consequences related to cannabis use. In this review, we focus on evidence from functional magnetic resonance imaging studies that document acute and residual alterations in brain function during tasks spanning a variety of cognitive domains: executive function, attention and working memory, memory, motor skills, error monitoring, and reward and affective processing. Although it is clear that cannabis affects brain function, the findings are somewhat inconsistent; variables that potentially affect study outcomes are outlined, including a discussion of the impact of chronological age and age of cannabis onset as well as length of abstinence at the time of assessment, which are important considerations when measuring cannabis use patterns. Inherent differences between recreational/adult cannabis use versus use for medical purposes are also discussed, given their importance to public policy decisions.
Collapse
Affiliation(s)
- Kelly A Sagar
- Cognitive and Clinical Neuroimaging Core, McLean Hospital, Belmont, Massachusetts.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.,Boston University School of Medicine, Boston, Massachusetts
| | - Staci A Gruber
- Cognitive and Clinical Neuroimaging Core, McLean Hospital, Belmont, Massachusetts.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
28
|
Bloomfield MAP, Hindocha C, Green SF, Wall MB, Lees R, Petrilli K, Costello H, Ogunbiyi MO, Bossong MG, Freeman TP. The neuropsychopharmacology of cannabis: A review of human imaging studies. Pharmacol Ther 2018; 195:132-161. [PMID: 30347211 PMCID: PMC6416743 DOI: 10.1016/j.pharmthera.2018.10.006] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The laws governing cannabis are evolving worldwide and associated with changing patterns of use. The main psychoactive drug in cannabis is Δ9-tetrahydrocannabinol (THC), a partial agonist at the endocannabinoid CB1 receptor. Acutely, cannabis and THC produce a range of effects on several neurocognitive and pharmacological systems. These include effects on executive, emotional, reward and memory processing via direct interactions with the endocannabinoid system and indirect effects on the glutamatergic, GABAergic and dopaminergic systems. Cannabidiol, a non-intoxicating cannabinoid found in some forms of cannabis, may offset some of these acute effects. Heavy repeated cannabis use, particularly during adolescence, has been associated with adverse effects on these systems, which increase the risk of mental illnesses including addiction and psychosis. Here, we provide a comprehensive state of the art review on the acute and chronic neuropsychopharmacology of cannabis by synthesizing the available neuroimaging research in humans. We describe the effects of drug exposure during development, implications for understanding psychosis and cannabis use disorder, and methodological considerations. Greater understanding of the precise mechanisms underlying the effects of cannabis may also give rise to new treatment targets.
Collapse
Affiliation(s)
- Michael A P Bloomfield
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom; Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, United Kingdom; NIHR University College London Hospitals Biomedical Research Centre, University College Hospital, London, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, United Kingdom.
| | - Chandni Hindocha
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom; Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; NIHR University College London Hospitals Biomedical Research Centre, University College Hospital, London, United Kingdom
| | - Sebastian F Green
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom
| | - Matthew B Wall
- Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; Centre for Neuropsychopharmacology, Division of Brain Sciences, Faculty of Medicine, Imperial College London, United Kingdom; Invicro UK, Hammersmith Hospital, London, United Kingdom
| | - Rachel Lees
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom; Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; Institute of Cognitive Neuroscience, Faculty of Brain Sciences, University College London, United Kingdom
| | - Katherine Petrilli
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom; Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; Institute of Cognitive Neuroscience, Faculty of Brain Sciences, University College London, United Kingdom
| | - Harry Costello
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom
| | - M Olabisi Ogunbiyi
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom
| | - Matthijs G Bossong
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands
| | - Tom P Freeman
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom; Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; Department of Psychology, University of Bath, United Kingdom; National Addiction Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| |
Collapse
|
29
|
Mercuri K, Terrett G, Henry JD, Curran HV, Elliott M, Rendell PG. Episodic foresight deficits in regular, but not recreational, cannabis users. J Psychopharmacol 2018; 32:876-882. [PMID: 29897004 DOI: 10.1177/0269881118776672] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cannabis use is associated with a range of neurocognitive deficits, including impaired episodic memory. However, no study to date has assessed whether these difficulties extend to episodic foresight, a core component of which is the ability to mentally travel into one's personal future. This is a particularly surprising omission given that episodic memory is considered to be critical to engage episodic foresight. AIMS In the present study, we provide the first test of how episodic foresight is affected in the context of differing levels of cannabis use, and the degree to which performance on a measure of this construct is related to episodic memory. RESULTS Fifty-seven regular cannabis users (23 recreational, 34 regular) and 57 controls were assessed using an adapted version of the Autobiographical Interview. The results showed that regular-users exhibited greater impairment of episodic foresight and episodic memory than both recreational-users and cannabis-naïve controls. CONCLUSIONS These data therefore show for the first time that cannabis-related disruption of cognitive functioning extends to the capacity for episodic foresight, and they are discussed in relation to their potential implications for functional outcomes in this group.
Collapse
Affiliation(s)
- Kimberly Mercuri
- 1 Cognition and Emotion Research Centre, School of Psychology, Australian Catholic University, Melbourne, VIC, Australia
| | - Gill Terrett
- 1 Cognition and Emotion Research Centre, School of Psychology, Australian Catholic University, Melbourne, VIC, Australia
| | - Julie D Henry
- 2 School of Psychology, University of Queensland, Brisbane, QLD, Australia
| | - H Valerie Curran
- 3 Clinical Psychopharmacology Unit, University College London, UK
| | - Morgan Elliott
- 1 Cognition and Emotion Research Centre, School of Psychology, Australian Catholic University, Melbourne, VIC, Australia
| | - Peter G Rendell
- 1 Cognition and Emotion Research Centre, School of Psychology, Australian Catholic University, Melbourne, VIC, Australia
| |
Collapse
|
30
|
Abush H, Ghose S, Van Enkevort EA, Clementz BA, Pearlson GD, Sweeney JA, Keshavan MS, Tamminga CA, Ivleva EI. Associations between adolescent cannabis use and brain structure in psychosis. Psychiatry Res Neuroimaging 2018; 276:53-64. [PMID: 29628270 PMCID: PMC5959798 DOI: 10.1016/j.pscychresns.2018.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 01/28/2023]
Abstract
Associations between cannabis use and psychotic disorders suggest that cannabis may be a contributory risk factor in the neurobiology of psychosis. In this study, we examined brain structure characteristics, total and regional gray matter density (GMD), using Voxel Based Morphometry, in psychotic individuals, stratified by history of cannabis use (total n = 109). We also contrasted GMD estimates in individual diagnostic groups (schizophrenia/bipolar I disorder) with and without history of adolescent cannabis use (ACU). Individuals with psychosis as a whole, both with and without history of ACU, had lower total and regional GMD, compared to healthy controls. ACU was associated with attenuated GMD reductions, compared to non-users, especially in the schizophrenia cases, who showed robust GMD reductions in fronto-temporal and parietal cortex, as well as subcortical regions. Notably, total and regional GMD estimates in individuals with psychosis and ACU were not different from controls with no ACU. These data indicate that the history of ACU in psychotic individuals is associated with attenuated GMD abnormalities. Future investigations targeting potential unique etiological and risk factors associated with psychosis in individuals with ACU may help in understanding of the neurobiology of psychotic disorders and novel treatment options for these individuals.
Collapse
Affiliation(s)
- Hila Abush
- Department of Psychiatry, UT Southwestern Medical Center, Dallas TX, USA
| | - Subroto Ghose
- Department of Psychiatry, UT Southwestern Medical Center, Dallas TX, USA
| | | | - Brett A Clementz
- Departments of Psychology and Neuroscience, BioImaging Research Center, University of Georgia, Athens GA, USA
| | - Godfrey D Pearlson
- Department of Psychiatry, Yale University School of Medicine, New Haven CT, USA; Institute of Living, Hartford Hospital, Hartford CT, USA
| | - John A Sweeney
- Department of Psychiatry, UT Southwestern Medical Center, Dallas TX, USA
| | | | - Carol A Tamminga
- Department of Psychiatry, UT Southwestern Medical Center, Dallas TX, USA
| | - Elena I Ivleva
- Department of Psychiatry, UT Southwestern Medical Center, Dallas TX, USA.
| |
Collapse
|
31
|
Sagar KA, Gruber SA. Marijuana matters: reviewing the impact of marijuana on cognition, brain structure and function, & exploring policy implications and barriers to research. Int Rev Psychiatry 2018; 30:251-267. [PMID: 29966459 PMCID: PMC6455965 DOI: 10.1080/09540261.2018.1460334] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The neurobiologic effects of cannabis, commonly referred to as 'marijuana' (MJ), have been studied for decades. The impact of recreational MJ use on cognition and measures of brain function and structure is outlined, and variables influencing study results are discussed, including age of the consumer, patterns of MJ use, variations in MJ potency, and the presence of additional cannabinoids. Although evidence suggests that chronic, heavy recreational MJ use is related to cognitive decrements and neural changes, particularly when use begins in adolescence, findings from studies of recreational MJ users may not be applicable to medical marijuana (MMJ) patients given differences in demographic variables, product selection, and reasons for use. Although additional research is needed to fully understand the impact of MJ and individual cannabinoids on the brain, current findings are beginning to inform public policy, including considerations for age limits, potential limits for some cannabinoids, and guidelines for use. However, barriers continue to impede researchers' ability to conduct studies that will guide policy change and provide vital information to consumers and patients regarding best practices and safest methods for use. The need for information is critical, as legalization of MJ for medical and recreational use is increasingly widespread.
Collapse
Affiliation(s)
- Kelly A. Sagar
- McLean Hospital, Cognitive and Clinical Neuroimaging Core, McLean Imaging Center, 115 Mill St, Belmont, MA, 02478,Department of Psychiatry, Harvard Medical School, 401 Park Drive, Boston, MA, 02115,Boston University School of Medicine, 72 E Concord St Boston, MA, 02118
| | - Staci A. Gruber
- McLean Hospital, Cognitive and Clinical Neuroimaging Core, McLean Imaging Center, 115 Mill St, Belmont, MA, 02478,Department of Psychiatry, Harvard Medical School, 401 Park Drive, Boston, MA, 02115,Corresponding Author Information Address: McLean Hospital, 115 Mill Street, Belmont, MA 02478, Telephone: 617-855-2762, Fax: 617-855-3713,
| |
Collapse
|
32
|
Memory Impairment in HIV-Infected Individuals with Early and Late Initiation of Regular Marijuana Use. AIDS Behav 2018; 22:1596-1605. [PMID: 28884250 DOI: 10.1007/s10461-017-1898-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Marijuana use is disproportionately prevalent among HIV-infected individuals. The strongest neurocognitive effect of marijuana use is impairment in the domain of memory. Memory impairment is also high among HIV-infected persons. The present study examined 69 HIV-infected individuals who were stratified by age of regular marijuana initiation to investigate how marijuana use impacts neurocognitive functioning. A comprehensive battery assessed substance use and neurocognitive functioning. Findings indicated early onset marijuana users (regular use prior to age 18), compared to non-marijuana users and late onset marijuana users (regular use at age 18 or later), were over 8 times more likely to have learning impairment and nearly 4 times more likely to have memory impairment. A similar pattern of early onset marijuana users performing worse in learning emerged when examining domain deficit scores. The potential for early onset of regular marijuana use to exacerbate already high levels of memory impairment among HIV-infected persons has important clinical implications, including increased potential for medication non-adherence and difficulty with independent living.
Collapse
|
33
|
Blest-Hopley G, Giampietro V, Bhattacharyya S. Residual effects of cannabis use in adolescent and adult brains - A meta-analysis of fMRI studies. Neurosci Biobehav Rev 2018. [PMID: 29535069 DOI: 10.1016/j.neubiorev.2018.03.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
While numerous studies have investigated the residual effects of cannabis use on human brain function, results of these studies have been inconsistent. Using meta-analytic approaches we summarize the effects of prolonged cannabis exposure on human brain function as measured using task-based functional MRI (fMRI) across studies employing a range of cognitive activation tasks comparing regular cannabis users with non-users. Separate meta-analyses were carried out for studies investigating adult and adolescent cannabis users. Systematic literature search identified 20 manuscripts (13 adult and 7 adolescent studies) meeting study inclusion criteria. Adult analyses compared 530 cannabis users to 580 healthy controls while adolescent analyses compared 219 cannabis users to 224 healthy controls. In adult cannabis users brain activation was increased in the superior and posterior transverse temporal and inferior frontal gyri and decreased in the striate area, insula and middle temporal gyrus. In adolescent cannabis users, activation was increased in the inferior parietal gyrus and putamen compared to healthy controls. Functional alteration in these areas may reflect compensatory neuroadaptive changes in cannabis users.
Collapse
Affiliation(s)
- Grace Blest-Hopley
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Vincent Giampietro
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, PO Box 089, UK
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; South London and Maudsley NHS Foundation Trust, Denmark Hill, Camberwell, London, UK.
| |
Collapse
|
34
|
Yanes JA, Riedel MC, Ray KL, Kirkland AE, Bird RT, Boeving ER, Reid MA, Gonzalez R, Robinson JL, Laird AR, Sutherland MT. Neuroimaging meta-analysis of cannabis use studies reveals convergent functional alterations in brain regions supporting cognitive control and reward processing. J Psychopharmacol 2018; 32:283-295. [PMID: 29338547 PMCID: PMC5858977 DOI: 10.1177/0269881117744995] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lagging behind rapid changes to state laws, societal views, and medical practice is the scientific investigation of cannabis's impact on the human brain. While several brain imaging studies have contributed important insight into neurobiological alterations linked with cannabis use, our understanding remains limited. Here, we sought to delineate those brain regions that consistently demonstrate functional alterations among cannabis users versus non-users across neuroimaging studies using the activation likelihood estimation meta-analysis framework. In ancillary analyses, we characterized task-related brain networks that co-activate with cannabis-affected regions using data archived in a large neuroimaging repository, and then determined which psychological processes may be disrupted via functional decoding techniques. When considering convergent alterations among users, decreased activation was observed in the anterior cingulate cortex, which co-activated with frontal, parietal, and limbic areas and was linked with cognitive control processes. Similarly, decreased activation was observed in the dorsolateral prefrontal cortex, which co-activated with frontal and occipital areas and linked with attention-related processes. Conversely, increased activation among users was observed in the striatum, which co-activated with frontal, parietal, and other limbic areas and linked with reward processing. These meta-analytic outcomes indicate that cannabis use is linked with differential, region-specific effects across the brain.
Collapse
Affiliation(s)
- Julio A Yanes
- Department of Psychology, Auburn University, Auburn, AL, USA,Auburn University Magnetic Resonance Imaging Research Center, Auburn University, Auburn, AL, USA,Advanced Alabama Imaging Consortium, Alabama, USA
| | - Michael C Riedel
- Center for Imaging Science, Florida International University, Miami, FL, USA
| | - Kimberly L Ray
- Imaging Research Center, University of California Davis, Sacramento, CA, USA
| | - Anna E Kirkland
- Department of Psychology, Auburn University, Auburn, AL, USA,Auburn University Magnetic Resonance Imaging Research Center, Auburn University, Auburn, AL, USA,Advanced Alabama Imaging Consortium, Alabama, USA
| | - Ryan T Bird
- Department of Psychology, Auburn University, Auburn, AL, USA,Auburn University Magnetic Resonance Imaging Research Center, Auburn University, Auburn, AL, USA,Advanced Alabama Imaging Consortium, Alabama, USA
| | - Emily R Boeving
- Center for Imaging Science, Florida International University, Miami, FL, USA,Department of Psychology, Florida International University, Miami, FL, USA
| | - Meredith A Reid
- Auburn University Magnetic Resonance Imaging Research Center, Auburn University, Auburn, AL, USA,Advanced Alabama Imaging Consortium, Alabama, USA
| | - Raul Gonzalez
- Department of Psychology, Florida International University, Miami, FL, USA
| | - Jennifer L Robinson
- Department of Psychology, Auburn University, Auburn, AL, USA,Auburn University Magnetic Resonance Imaging Research Center, Auburn University, Auburn, AL, USA,Advanced Alabama Imaging Consortium, Alabama, USA
| | - Angela R Laird
- Center for Imaging Science, Florida International University, Miami, FL, USA,Department of Physics, Florida International University, Miami, FL, USA
| | - Matthew T Sutherland
- Center for Imaging Science, Florida International University, Miami, FL, USA,Department of Psychology, Florida International University, Miami, FL, USA
| |
Collapse
|
35
|
Cohen K, Weinstein A. The Effects of Cannabinoids on Executive Functions: Evidence from Cannabis and Synthetic Cannabinoids-A Systematic Review. Brain Sci 2018; 8:brainsci8030040. [PMID: 29495540 PMCID: PMC5870358 DOI: 10.3390/brainsci8030040] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/08/2018] [Accepted: 02/24/2018] [Indexed: 12/21/2022] Open
Abstract
Background—Cannabis is the most popular illicit drug in the Western world. Repeated cannabis use has been associated with short and long-term range of adverse effects. Recently, new types of designer-drugs containing synthetic cannabinoids have been widespread. These synthetic cannabinoid drugs are associated with undesired adverse effects similar to those seen with cannabis use, yet, in more severe and long-lasting forms. Method—A literature search was conducted using electronic bibliographic databases up to 31 December 2017. Specific search strategies were employed using multiple keywords (e.g., “synthetic cannabinoids AND cognition,” “cannabis AND cognition” and “cannabinoids AND cognition”). Results—The search has yielded 160 eligible studies including 37 preclinical studies (5 attention, 25 short-term memory, 7 cognitive flexibility) and 44 human studies (16 attention, 15 working memory, 13 cognitive flexibility). Both pre-clinical and clinical studies demonstrated an association between synthetic cannabinoids and executive-function impairment either after acute or repeated consumptions. These deficits differ in severity depending on several factors including the type of drug, dose of use, quantity, age of onset and duration of use. Conclusions—Understanding the nature of the impaired executive function following consumption of synthetic cannabinoids is crucial in view of the increasing use of these drugs.
Collapse
Affiliation(s)
- Koby Cohen
- Department of Behavioral Science, Ariel University, Ariel 40700, Israel.
| | - Aviv Weinstein
- Department of Behavioral Science, Ariel University, Ariel 40700, Israel.
| |
Collapse
|
36
|
Colizzi M, Bhattacharyya S. Neurocognitive effects of cannabis: Lessons learned from human experimental studies. PROGRESS IN BRAIN RESEARCH 2018; 242:179-216. [DOI: 10.1016/bs.pbr.2018.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
37
|
Abstract
Purpose of the Review Cannabis is the most commonly used illicit substance worldwide. In recent decades, highly concentrated products have flooded the market, and prevalence rates have increased. Gender differences exist in cannabis use, as men have higher prevalence of both cannabis use and cannabis use disorder (CUD), while women progress more rapidly from first use to CUD. This paper reviews findings from preclinical and human studies examining the sex-specific neurobiological underpinnings of cannabis use and CUD, and associations with psychiatric symptoms. Recent Findings Sex differences exist in the endocannabinoid system, in cannabis exposure effects on brain structure and function, and in the co-occurrence of cannabis use with symptoms of anxiety, depression and schizophrenia. In female cannabis users, anxiety symptoms correlate with larger amygdala volume and social anxiety disorder symptoms correlate with CUD symptoms. Female cannabis users are reported to be especially vulnerable to earlier onset of schizophrenia, and mixed trends emerge in the correlation of depressive symptoms with cannabis exposure in females and males. Summary As prevalence of cannabis use may continue to increase given the shifting policy landscape regarding marijuana laws, understanding the neurobiological mechanisms of cannabis exposure in females and males is key. Examining these mechanisms may help inform future research on sex-specific pharmacological and behavioral interventions for women and men with high-risk cannabis use, comorbid psychiatric disease, and CUD.
Collapse
|
38
|
Nader DA, Sanchez ZM. Effects of regular cannabis use on neurocognition, brain structure, and function: a systematic review of findings in adults. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2017; 44:4-18. [DOI: 10.1080/00952990.2017.1306746] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Danilo A. Nader
- Departmento de Medicina Preventiva, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Zila M. Sanchez
- Departmento de Medicina Preventiva, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
39
|
Does Cannabis Composition Matter? Differential Effects of Delta-9-tetrahydrocannabinol and Cannabidiol on Human Cognition. CURRENT ADDICTION REPORTS 2017; 4:62-74. [PMID: 28580227 PMCID: PMC5435777 DOI: 10.1007/s40429-017-0142-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Purpose of Review The lack of clarity about the effect of cannabis use on cognition may be attributable to the considerable heterogeneity among studies in terms of cannabis composition. This article selectively reviews studies examining the distinctive effects of cannabinoids on human cognition, particularly those of delta-9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD). Recent Findings Research indicates that ∆9-THC administration acutely impairs cognition, particularly memory and emotional processing. Limited evidence suggests that CBD administration might improve cognition in cannabis users but not in individuals with neuropsychiatric disorders. Moreover, studies indicate that some acute Δ9-THC-induced cognitive impairments may be prevented if Δ9-THC is administered in combination or following CBD treatment. Δ9-THC and CBD have also shown opposite effects on cognition-related brain activation, possibly reflecting their antagonistic behavioral effects. Summary Research suggests greater cognitive impairments in individuals when exposed to high ∆9-THC or low CBD cannabis. It is unclear whether at specific concentrations CBD might outweigh any harmful effects of Δ9-THC on cognition.
Collapse
|
40
|
The effects of synthetic cannabinoids on executive function. Psychopharmacology (Berl) 2017; 234:1121-1134. [PMID: 28160034 DOI: 10.1007/s00213-017-4546-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 01/23/2017] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND AIMS There is a growing use of novel psychoactive substances (NPSs) including synthetic cannabinoids. Synthetic cannabinoid products have effects similar to those of natural cannabis but the new synthetic cannabinoids are more potent and dangerous and their use has resulted in various adverse effects. The purpose of the study was to assess whether persistent use of synthetic cannabinoids is associating with impairments of executive function in chronic users. METHODS A total of 38 synthetic cannabinoids users, 43 recreational cannabis users, and 41 non-user subjects were studied in two centers in Hungary and Israel. Computerized cognitive function tests, the classical Stroop word-color task, n-back task, and a free-recall memory task were used. RESULTS Synthetic cannabinoid users performed significantly worse than both recreational and non-cannabis users on the n-back task (less accuracy), the Stroop task (overall slow responses and less accuracy), and the long-term memory task (less word recall). Additionally, they have also shown higher ratings of depression and anxiety compared with both recreational and non-users groups. DISCUSSION This study showed impairment of executive function in synthetic cannabinoid users compared with recreational users of cannabis and non-users. This may have major implications for our understanding of the long-term consequences of synthetic cannabinoid based drugs.
Collapse
|
41
|
Menning S, de Ruiter MB, Veltman DJ, Boogerd W, Oldenburg HSA, Reneman L, Schagen SB. Changes in brain activation in breast cancer patients depend on cognitive domain and treatment type. PLoS One 2017; 12:e0171724. [PMID: 28267750 PMCID: PMC5340346 DOI: 10.1371/journal.pone.0171724] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 01/23/2017] [Indexed: 11/18/2022] Open
Abstract
Background Cognitive problems in breast cancer patients are common after systemic treatment, particularly chemotherapy. An increasing number of fMRI studies show altered brain activation in breast cancer patients after treatment, suggestive of neurotoxicity. Previous prospective fMRI studies administered a single cognitive task. The current study employed two task paradigms to evaluate whether treatment-induced changes depend on the probed cognitive domain. Methods Participants were breast cancer patients scheduled to receive systemic treatment (anthracycline-based chemotherapy +/- endocrine treatment, n = 28), or no systemic treatment (n = 24) and no-cancer controls (n = 31). Assessment took place before adjuvant treatment and six months after chemotherapy, or at similar intervals. Blood oxygen level dependent (BOLD) activation and performance were measured during an executive functioning task and an episodic memory task. Group-by-time interactions were analyzed using a flexible factorial design. Results Task performance did not differ between patient groups and did not change over time. Breast cancer patients who received systemic treatment, however, showed increased parietal activation compared to baseline with increasing executive functioning task load compared to breast cancer patients who did not receive systemic treatment. This hyperactivation was accompanied by worse physical functioning, higher levels of fatigue and more cognitive complaints. In contrast, in breast cancer patients who did not receive systemic treatment, parietal activation normalized over time compared to the other two groups. Conclusions Parietal hyperactivation after systemic treatment in the context of stable levels of executive task performance is compatible with a compensatory processing account of hyperactivation or maintain adequate performance levels. This over-recruitment of brain regions depends on the probed cognitive domain and may represent a response to decreased neural integrity after systemic treatment. Overall these results suggest different neurobehavioral trajectories in breast cancer patients depending on treatment type.
Collapse
Affiliation(s)
- Sanne Menning
- Division of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Radiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Michiel B. de Ruiter
- Division of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Radiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Dick J. Veltman
- Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands
| | - Willem Boogerd
- Department of Neuro-Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Hester S. A. Oldenburg
- Department of Surgical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Liesbeth Reneman
- Department of Radiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sanne B. Schagen
- Division of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
42
|
Hill SY, Sharma V, Jones BL. Lifetime use of cannabis from longitudinal assessments, cannabinoid receptor (CNR1) variation, and reduced volume of the right anterior cingulate. Psychiatry Res 2016; 255:24-34. [PMID: 27500453 PMCID: PMC5025865 DOI: 10.1016/j.pscychresns.2016.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 04/07/2016] [Accepted: 05/25/2016] [Indexed: 01/25/2023]
Abstract
Lifetime measures of cannabis use and co-occurring exposures were obtained from a longitudinal cohort followed an average of 13 years at the time they received a structural MRI scan. MRI scans were analyzed for 88 participants (mean age=25.9 years), 34 of whom were regular users of cannabis. Whole brain voxel based morphometry analyses (SPM8) were conducted using 50 voxel clusters at p=0.005. Controlling for age, familial risk, and gender, we found reduced volume in Regular Users compared to Non-Users, in the lingual gyrus, anterior cingulum (right and left), and the rolandic operculum (right). The right anterior cingulum reached family-wise error statistical significance at p=0.001, controlling for personal lifetime use of alcohol and cigarettes and any prenatal exposures. CNR1 haplotypes were formed from four CNR1 SNPs (rs806368, rs1049353, rs2023239, and rs6454674) and tested with level of cannabis exposure to assess their interactive effects on the lingual gyrus, cingulum (right and left) and rolandic operculum, regions showing cannabis exposure effects in the SPM8 analyses. These analyses used mixed model analyses (SPSS) to control for multiple potentially confounding variables. Level of cannabis exposure was associated with decreased volume of the right anterior cingulum and showed interaction effects with haplotype variation.
Collapse
Affiliation(s)
- Shirley Y Hill
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Vinod Sharma
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bobby L Jones
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
43
|
Koenders L, Cousijn J, Vingerhoets WAM, van den Brink W, Wiers RW, Meijer CJ, Machielsen MWJ, Veltman DJ, Goudriaan AE, de Haan L. Grey Matter Changes Associated with Heavy Cannabis Use: A Longitudinal sMRI Study. PLoS One 2016; 11:e0152482. [PMID: 27224247 PMCID: PMC4880314 DOI: 10.1371/journal.pone.0152482] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 03/15/2016] [Indexed: 11/30/2022] Open
Abstract
Cannabis is the most frequently used illicit drug worldwide. Cross-sectional neuroimaging studies suggest that chronic cannabis exposure and the development of cannabis use disorders may affect brain morphology. However, cross-sectional studies cannot make a conclusive distinction between cause and consequence and longitudinal neuroimaging studies are lacking. In this prospective study we investigate whether continued cannabis use and higher levels of cannabis exposure in young adults are associated with grey matter reductions. Heavy cannabis users (N = 20, age baseline M = 20.5, SD = 2.1) and non-cannabis using healthy controls (N = 22, age baseline M = 21.6, SD = 2.45) underwent a comprehensive psychological assessment and a T1- structural MRI scan at baseline and 3 years follow-up. Grey matter volumes (orbitofrontal cortex, anterior cingulate cortex, insula, striatum, thalamus, amygdala, hippocampus and cerebellum) were estimated using the software package SPM (VBM-8 module). Continued cannabis use did not have an effect on GM volume change at follow-up. Cross-sectional analyses at baseline and follow-up revealed consistent negative correlations between cannabis related problems and cannabis use (in grams) and regional GM volume of the left hippocampus, amygdala and superior temporal gyrus. These results suggests that small GM volumes in the medial temporal lobe are a risk factor for heavy cannabis use or that the effect of cannabis on GM reductions is limited to adolescence with no further damage of continued use after early adulthood. Long-term prospective studies starting in early adolescence are needed to reach final conclusions.
Collapse
Affiliation(s)
- Laura Koenders
- Department of Psychiatry, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Janna Cousijn
- Department of Psychiatry, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
- Addiction Development and Psychopathology (ADAPT)-lab, Department of Developmental Psychology, University of Amsterdam, Amsterdam, The Netherlands
- Department of Developmental Psychology and Psychonomics, Utrecht University, Utrecht, The Netherlands
| | - Wilhelmina A. M. Vingerhoets
- Department of Nuclear Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
- Department of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Wim van den Brink
- Department of Psychiatry, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Reinout W. Wiers
- Addiction Development and Psychopathology (ADAPT)-lab, Department of Developmental Psychology, University of Amsterdam, Amsterdam, The Netherlands
- Cognitive Science Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Carin J. Meijer
- Department of Psychiatry, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Marise W. J. Machielsen
- Department of Psychiatry, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Dick J. Veltman
- University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Anneke E. Goudriaan
- Department of Psychiatry, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
- Arkin Mental Health Care, Amsterdam, The Netherlands
| | - Lieuwe de Haan
- Department of Psychiatry, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
44
|
Ganzer F, Bröning S, Kraft S, Sack PM, Thomasius R. Weighing the Evidence: A Systematic Review on Long-Term Neurocognitive Effects of Cannabis Use in Abstinent Adolescents and Adults. Neuropsychol Rev 2016; 26:186-222. [DOI: 10.1007/s11065-016-9316-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 04/14/2016] [Indexed: 11/29/2022]
|
45
|
|
46
|
Auer R, Vittinghoff E, Yaffe K, Künzi A, Kertesz SG, Levine DA, Albanese E, Whitmer RA, Jacobs DR, Sidney S, Glymour MM, Pletcher MJ. Association Between Lifetime Marijuana Use and Cognitive Function in Middle Age: The Coronary Artery Risk Development in Young Adults (CARDIA) Study. JAMA Intern Med 2016; 176:352-61. [PMID: 26831916 PMCID: PMC5109019 DOI: 10.1001/jamainternmed.2015.7841] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
IMPORTANCE Marijuana use is increasingly common in the United States. It is unclear whether it has long-term effects on memory and other domains of cognitive function. OBJECTIVE To study the association between cumulative lifetime exposure to marijuana use and cognitive performance in middle age. DESIGN, SETTING, AND PARTICIPANTS We used data from the Coronary Artery Risk Development in Young Adults (CARDIA) study, a cohort of 5115 black and white men and women aged 18 to 30 years at baseline from March 25, 1985, to June 7, 1986 (year 0), and followed up over 25 years from June 7, 1986, to August 31, 2011, to estimate cumulative years of exposure to marijuana (1 year = 365 days of marijuana use) using repeated measures and to assess associations with cognitive function at year 25. Linear regression was used to adjust for demographic factors, cardiovascular risk factors, tobacco smoking, use of alcohol and illicit drugs, physical activity, depression, and results of the mirror star tracing test (a measure of cognitive function) at year 2. Data analysis was conducted from June 7, 1986, to August 31, 2011. MAIN OUTCOMES AND MEASURES Three domains of cognitive function were assessed at year 25 using the Rey Auditory Verbal Learning Test (verbal memory), the Digit Symbol Substitution Test (processing speed), and the Stroop Interference Test (executive function). RESULTS Among 3385 participants with cognitive function measurements at the year 25 visit, 2852 (84.3%) reported past marijuana use, but only 392 (11.6%) continued to use marijuana into middle age. Current use of marijuana was associated with worse verbal memory and processing speed; cumulative lifetime exposure was associated with worse performance in all 3 domains of cognitive function. After excluding current users and adjusting for potential confounders, cumulative lifetime exposure to marijuana remained significantly associated with worse verbal memory. For each 5 years of past exposure, verbal memory was 0.13 standardized units lower (95% CI, -0.24 to -0.02; P = .02), corresponding to a mean of 1 of 2 participants remembering 1 word fewer from a list of 15 words for every 5 years of use. After adjustment, we found no associations with lower executive function (-0.03 [95% CI, -0.12 to 0.07]; P = .56) or processing speed (-0.04 [95% CI, -0.16 to 0.08]; P = .51). CONCLUSIONS AND RELEVANCE Past exposure to marijuana is associated with worse verbal memory but does not appear to affect other domains of cognitive function.
Collapse
Affiliation(s)
- Reto Auer
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA
- Department of Ambulatory Care and Community Medicine, University Hospital, Lausanne, Switzerland
| | - Eric Vittinghoff
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA
| | - Kristine Yaffe
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA
| | - Arnaud Künzi
- Department of Ambulatory Care and Community Medicine, University Hospital, Lausanne, Switzerland
| | - Stefan G. Kertesz
- Birmingham VA Medical Center and University of Alabama at Birmingham School of Medicine., Birmingham, AL
| | - Deborah A. Levine
- University of Michigan and Veterans Affairs Center for Clinical Management Research, Ann Arbor, MI
| | - Emiliano Albanese
- Department of Mental Health and Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | | | - David R. Jacobs
- University of Minnesota, School of Public Health, Division of Epidemiology and Community Health
| | | | - M. Maria Glymour
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA
| | - Mark J. Pletcher
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA
| |
Collapse
|
47
|
Brown GG, Jacobus J, McKenna B. Structural imaging for addiction medicine: From neurostructure to neuroplasticity. PROGRESS IN BRAIN RESEARCH 2016; 224:105-27. [PMID: 26822356 PMCID: PMC4856004 DOI: 10.1016/bs.pbr.2015.07.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Quantitative morphometry and diffusion tensor imaging have provided new insights into structural brain changes associated with drugs of abuse. In this chapter, we review recent studies using these methods to investigate structural brain abnormalities associated with excessive use of marijuana, stimulants, and opiates. Although many brain regions have been associated with structural abnormalities following abuse of these drugs, brain systems underlying inhibition, mood regulation, and reward are particularly involved. Candidate pathological mechanisms underlying these structural abnormalities include the direct toxic effects of the drugs, neuroinflammation, ischemia, hemorrhage, and abnormal brain development. Returning damaged brain areas to neural health would involve enhancing neuroplasticity. Behavioral, environmental, pharmacological, and cell-based therapies have been correlated with enhanced neuroplasticity following brain injury, providing a basis for new treatments of brain changes associated with excessive drug use. When testing new treatments, structural imaging may prove useful in selecting patients, monitoring recovery, and perhaps, tailoring interventions.
Collapse
|
48
|
Skalski LM, Towe SL, Sikkema KJ, Meade CS. The Impact of Marijuana Use on Memory in HIV-Infected Patients: A Comprehensive Review of the HIV and Marijuana Literatures. CURRENT DRUG ABUSE REVIEWS 2016; 9:126-141. [PMID: 27138170 PMCID: PMC5093083 DOI: 10.2174/1874473709666160502124503] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 03/11/2016] [Accepted: 04/29/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND The most robust neurocognitive effect of marijuana use is memory impairment. Memory deficits are also high among persons living with HIV/AIDS, and marijuana is the most commonly used drug in this population. Yet research examining neurocognitive outcomes resulting from co-occurring marijuana and HIV is limited. OBJECTIVE The primary objectives of this comprehensive review are to: (1) examine the literature on memory functioning in HIV-infected individuals; (2) examine the literature on memory functioning in marijuana users; (3) synthesize findings and propose a theoretical framework to guide future research. METHOD PubMed was searched for English publications 2000-2013. Twenty-two studies met inclusion criteria in the HIV literature, and 23 studies in the marijuana literature. RESULTS Among HIV-infected individuals, memory deficits with medium to large effect sizes were observed. Marijuana users also demonstrated memory problems, but results were less consistent due to the diversity of samples. CONCLUSION A compensatory hypothesis, based on the cognitive aging literature, is proposed to provide a framework to explore the interaction between marijuana and HIV. There is some evidence that individuals infected with HIV recruit additional brain regions during memory tasks to compensate for HIV-related declines in neurocognitive functioning. Marijuana is associated with disturbance in similar brain systems, and thus it is hypothesized that the added neural strain of marijuana can exhaust neural resources, resulting in pronounced memory impairment. It will be important to test this hypothesis empirically, and future research priorities are discussed.
Collapse
Affiliation(s)
- Linda M. Skalski
- Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - Sheri L. Towe
- Department of Psychiatry & Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA
- Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Kathleen J. Sikkema
- Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
- Department of Psychiatry & Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA
- Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Christina S. Meade
- Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
- Department of Psychiatry & Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA
- Duke Global Health Institute, Duke University, Durham, NC, USA
| |
Collapse
|
49
|
Becker MP, Collins PF, Lim KO, Muetzel RL, Luciana M. Longitudinal changes in white matter microstructure after heavy cannabis use. Dev Cogn Neurosci 2015; 16:23-35. [PMID: 26602958 PMCID: PMC4691379 DOI: 10.1016/j.dcn.2015.10.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 10/03/2015] [Accepted: 10/06/2015] [Indexed: 11/28/2022] Open
Abstract
Diffusion tensor imaging (DTI) studies of cannabis users report alterations in brain white matter microstructure, primarily based on cross-sectional research, and etiology of the alterations remains unclear. We report findings from longitudinal voxelwise analyses of DTI data collected at baseline and at a 2-year follow-up on 23 young adult (18-20 years old at baseline) regular cannabis users and 23 age-, sex-, and IQ-matched non-using controls with limited substance use histories. Onset of cannabis use was prior to age 17. Cannabis users displayed reduced longitudinal growth in fractional anisotropy in the central and parietal regions of the right and left superior longitudinal fasciculus, in white matter adjacent to the left superior frontal gyrus, in the left corticospinal tract, and in the right anterior thalamic radiation lateral to the genu of the corpus callosum, along with less longitudinal reduction of radial diffusion in the right central/posterior superior longitudinal fasciculus, corticospinal tract, and posterior cingulum. Greater amounts of cannabis use were correlated with reduced longitudinal growth in FA as was relatively impaired performance on a measure of verbal learning. These findings suggest that continued heavy cannabis use during adolescence and young adulthood alters ongoing development of white matter microstructure, contributing to functional impairment.
Collapse
Affiliation(s)
- Mary P Becker
- Department of Psychology, University of Minnesota, 75 East River Road, Minneapolis, MN 55455, United States; Center for Neurobehavioral Development, University of Minnesota, 717 Delaware Street SE, Ste. 333, Minneapolis, MN 55414, United States.
| | - Paul F Collins
- Department of Psychology, University of Minnesota, 75 East River Road, Minneapolis, MN 55455, United States; Center for Neurobehavioral Development, University of Minnesota, 717 Delaware Street SE, Ste. 333, Minneapolis, MN 55414, United States
| | - Kelvin O Lim
- Department of Psychiatry, University of Minnesota, 2450 Riverside Avenue South, Minneapolis, MN 55454, United States
| | - R L Muetzel
- Department of Psychology, University of Minnesota, 75 East River Road, Minneapolis, MN 55455, United States
| | - M Luciana
- Department of Psychology, University of Minnesota, 75 East River Road, Minneapolis, MN 55455, United States; Center for Neurobehavioral Development, University of Minnesota, 717 Delaware Street SE, Ste. 333, Minneapolis, MN 55414, United States
| |
Collapse
|
50
|
Cortical thinness and volume differences associated with marijuana abuse in emerging adults. Drug Alcohol Depend 2015; 155:275-83. [PMID: 26249265 PMCID: PMC4581973 DOI: 10.1016/j.drugalcdep.2015.06.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/14/2015] [Accepted: 06/09/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND The prevalence of marijuana (MJ) use among youth and its legalization for medical or recreational use has intensified public health endeavors of understanding MJ effects on brain structure and function. Studies indicate that MJ use is related to impaired cognitive performance, and altered functional brain activation and chemistry in adolescents and adults, but MJ effects on brain morphology in emerging adults are less understood. METHODS Fifteen MJ users (age 21.8±3.6, 2 females) and 15 non-user (NU) participants (age 22.3±3.5, 2 females) were included, demographically matched on age, education and alcohol use. High-resolution structural MR images were acquired at 3Tesla. Cortical thickness (CT) and volumetric analyses were performed using Freesurfer. A priori regions of interest (ROI) included orbitofrontal and cingulate cortices, amygdala, hippocampus and thalamus. RESULTS Whole brain CT analysis did not result in significant group differences in a priori ROIs but revealed MJ users had significantly less CT (i.e., thinness) in right fusiform gyrus (rFG) compared to NU (p<0.05). Thalamic volume was significantly smaller in MJ users compared to NU (right, p=0.05; left, p=0.01) and associated with greater non-planning (p<0.01) and overall impulsivity (p=0.04). There were no other group differences. CONCLUSIONS RFG cortical thinness and smaller thalamic volume in emerging adults is associated with MJ abuse. Furthermore, smaller thalamic volume associated with greater impulsivity contributes to growing evidence that the thalamus is neurobiologically perturbed by MJ use. Collectively, altered thalamic and rFG structural integrity may interfere with their known roles in regulating visuoperceptual and object information processing.
Collapse
|