1
|
Towards a New Biomarker for Diabetic Retinopathy: Exploring RBP3 Structure and Retinoids Binding for Functional Imaging of Eyes In Vivo. Int J Mol Sci 2023; 24:ijms24054408. [PMID: 36901838 PMCID: PMC10002987 DOI: 10.3390/ijms24054408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Diabetic retinopathy (DR) is a severe disease with a growing number of afflicted patients, which places a heavy burden on society, both socially and financially. While there are treatments available, they are not always effective and are usually administered when the disease is already at a developed stage with visible clinical manifestation. However, homeostasis at a molecular level is disrupted before visible signs of the disease are evident. Thus, there has been a constant search for effective biomarkers that could signal the onset of DR. There is evidence that early detection and prompt disease control are effective in preventing or slowing DR progression. Here, we review some of the molecular changes that occur before clinical manifestations are observable. As a possible new biomarker, we focus on retinol binding protein 3 (RBP3). We argue that it displays unique features that make it a very good biomarker for non-invasive, early-stage DR detection. Linking chemistry to biological function and focusing on new developments in eye imaging and two-photon technology, we describe a new potential diagnostic tool that would allow rapid and effective quantification of RBP3 in the retina. Moreover, this tool would also be useful in the future to monitor therapeutic effectiveness if levels of RBP3 are elevated by DR treatments.
Collapse
|
2
|
Tonade D, Kern TS. Photoreceptor cells and RPE contribute to the development of diabetic retinopathy. Prog Retin Eye Res 2021; 83:100919. [PMID: 33188897 PMCID: PMC8113320 DOI: 10.1016/j.preteyeres.2020.100919] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 12/26/2022]
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness. It has long been regarded as vascular disease, but work in the past years has shown abnormalities also in the neural retina. Unfortunately, research on the vascular and neural abnormalities have remained largely separate, instead of being integrated into a comprehensive view of DR that includes both the neural and vascular components. Recent evidence suggests that the most predominant neural cell in the retina (photoreceptors) and the adjacent retinal pigment epithelium (RPE) play an important role in the development of vascular lesions characteristic of DR. This review summarizes evidence that the outer retina is altered in diabetes, and that photoreceptors and RPE contribute to retinal vascular alterations in the early stages of the retinopathy. The possible molecular mechanisms by which cells of the outer retina might contribute to retinal vascular damage in diabetes also are discussed. Diabetes-induced alterations in the outer retina represent a novel therapeutic target to inhibit DR.
Collapse
Affiliation(s)
- Deoye Tonade
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Timothy S Kern
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA; Veterans Administration Medical Center Research Service, Cleveland, OH, USA; Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA; Veterans Administration Medical Center Research Service, Long Beach, CA, USA.
| |
Collapse
|
3
|
Becker S, Carroll LS, Vinberg F. Diabetic photoreceptors: Mechanisms underlying changes in structure and function. Vis Neurosci 2020; 37:E008. [PMID: 33019947 PMCID: PMC8694110 DOI: 10.1017/s0952523820000097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Based on clinical findings, diabetic retinopathy (DR) has traditionally been defined as a retinal microvasculopathy. Retinal neuronal dysfunction is now recognized as an early event in the diabetic retina before development of overt DR. While detrimental effects of diabetes on the survival and function of inner retinal cells, such as retinal ganglion cells and amacrine cells, are widely recognized, evidence that photoreceptors in the outer retina undergo early alterations in diabetes has emerged more recently. We review data from preclinical and clinical studies demonstrating a conserved reduction of electrophysiological function in diabetic retinas, as well as evidence for photoreceptor loss. Complementing in vivo studies, we discuss the ex vivo electroretinography technique as a useful method to investigate photoreceptor function in isolated retinas from diabetic animal models. Finally, we consider the possibility that early photoreceptor pathology contributes to the progression of DR, and discuss possible mechanisms of photoreceptor damage in the diabetic retina, such as enhanced production of reactive oxygen species and other inflammatory factors whose detrimental effects may be augmented by phototransduction.
Collapse
Affiliation(s)
- Silke Becker
- John A. Moran Eye Center, University of Utah, Salt Lake City, Utah
| | - Lara S Carroll
- John A. Moran Eye Center, University of Utah, Salt Lake City, Utah
| | - Frans Vinberg
- John A. Moran Eye Center, University of Utah, Salt Lake City, Utah
| |
Collapse
|
4
|
Abstract
Patients with diabetes continue to suffer from impaired visual performance before the appearance of overt damage to the retinal microvasculature and later sight-threatening complications. This diabetic retinopathy (DR) has long been thought to start with endothelial cell oxidative stress. Yet newer data surprisingly finds that the avascular outer retina is the primary site of oxidative stress before microvascular histopathology in experimental DR. Importantly, correcting this early oxidative stress is sufficient to restore vision and mitigate the histopathology in diabetic models. However, translating these promising results into the clinic has been stymied by an absence of methods that can measure and optimize anti-oxidant treatment efficacy in vivo. Here, we review imaging approaches that address this problem. In particular, diabetes-induced oxidative stress impairs dark-light regulation of subretinal space hydration, which regulates the distribution of interphotoreceptor binding protein (IRBP). IRBP is a vision-critical, anti-oxidant, lipid transporter, and pro-survival factor. We show how optical coherence tomography can measure subretinal space oxidative stress thus setting the stage for personalizing anti-oxidant treatment and prevention of impactful declines and loss of vision in patients with diabetes.
Collapse
|
5
|
Liu H, Tang J, Du Y, Saadane A, Samuels I, Veenstra A, Kiser JZ, Palczewski K, Kern TS. Transducin1, Phototransduction and the Development of Early Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2019; 60:1538-1546. [PMID: 30994864 PMCID: PMC6736377 DOI: 10.1167/iovs.18-26433] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/14/2019] [Indexed: 12/31/2022] Open
Abstract
Purpose Recent evidence suggests that retinal photoreceptor cells have an important role in the pathogenesis of retinal microvascular lesions in diabetes. We investigated the role of rod cell phototransduction on the pathogenesis of early diabetic retinopathy (DR) using Gnat1-/- mice (which causes permanent inhibition of phototransduction in rod cells without degeneration). Methods Retinal thickness, oxidative stress, expression of inflammatory proteins, electroretinograms (ERG) and optokinetic responses, and capillary permeability and degeneration were evaluated at up to 8 months of diabetes. Results The diabetes-induced degeneration of retinal capillaries was significantly inhibited in the Gnat1-/- diabetics. The effect of the Gnat1 deletion on the diabetes-induced increase in permeability showed a nonuniform accumulation of albumin in the neural retina; the defect was inhibited in diabetic Gnat1-/- mice in the inner plexiform layer (IPL), but neither in the outer plexiform (OPL) nor inner nuclear (INL) layers. In Gnat1-deficient animals, the diabetes-induced increase in expression of inflammatory associated proteins (iNOS and ICAM-1, and phosphorylation of IĸB) in the retina, and the leukocyte mediated killing of retinal endothelial cells were inhibited, however the diabetes-mediated induction of oxidative stress was not inhibited. Conclusions In conclusion, deletion of transducin1 (and the resulting inhibition of phototransduction in rod cells) inhibits the development of retinal vascular pathology in early DR.
Collapse
Affiliation(s)
- Haitao Liu
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States
| | - Jie Tang
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States
| | - Yunpeng Du
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States
| | - Aicha Saadane
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States
| | - Ivy Samuels
- Veterans Administration Medical Center Research Service 151, Cleveland, Ohio, United States
- Department of Ophthalmic Research, Cleveland Clinic, Cleveland, Ohio, United States
| | - Alex Veenstra
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States
| | - Jianying Z. Kiser
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States
| | - Krzysztof Palczewski
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, California, United States
| | - Timothy S. Kern
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States
- Veterans Administration Medical Center Research Service 151, Cleveland, Ohio, United States
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, California, United States
| |
Collapse
|
6
|
Steury MD, McCabe LR, Parameswaran N. G Protein-Coupled Receptor Kinases in the Inflammatory Response and Signaling. Adv Immunol 2017; 136:227-277. [PMID: 28950947 DOI: 10.1016/bs.ai.2017.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
G protein-coupled receptor kinases (GRKs) are serine/threonine kinases that regulate a large and diverse class of G protein-coupled receptors (GPCRs). Through GRK phosphorylation and β-arrestin recruitment, GPCRs are desensitized and their signal terminated. Recent work on these kinases has expanded their role from canonical GPCR regulation to include noncanonical regulation of non-GPCR and nonreceptor substrates through phosphorylation as well as via scaffolding functions. Owing to these and other regulatory roles, GRKs have been shown to play a critical role in the outcome of a variety of physiological and pathophysiological processes including chemotaxis, signaling, migration, inflammatory gene expression, etc. This diverse set of functions for these proteins makes them popular targets for therapeutics. Role for these kinases in inflammation and inflammatory disease is an evolving area of research currently pursued in many laboratories. In this review, we describe the current state of knowledge on various GRKs pertaining to their role in inflammation and inflammatory diseases.
Collapse
Affiliation(s)
| | - Laura R McCabe
- Michigan State University, East Lansing, MI, United States
| | | |
Collapse
|
7
|
Russelioside B, a pregnane glycoside ameliorates hyperglycemia in streptozotocin induced diabetic rats by regulating key enzymes of glucose metabolism. Chem Biol Interact 2016; 252:47-53. [PMID: 27038876 DOI: 10.1016/j.cbi.2016.03.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/23/2016] [Accepted: 03/29/2016] [Indexed: 01/24/2023]
Abstract
An alternative strategy to treat diabetes mellitus is the use of various natural agents possessing hypoglycemic effect. Caralluma quadrangula has been used in Saudi traditional medicine in cases of thirst and hunger and for the treatment of diabetes. The present study was designed to evaluate the improving effect of russelioside B, a pregnane glycoside isolated from Caralluma quadrangula on glucose metabolism in the liver of streptozotocin-induced diabetic rats. Diabetes mellitus was induced in rats by a single intraperitoneal injection of streptozotocin (50 mg/kg body weight). Experimental rats were administered russelioside B at a dose of 50 mg/kg body weight once a day for 30 days. The results showed that RB improved the fasting serum glucose level, glycated hemoglobin percent, serum insulin level and lipid profile. A significant improvement was observed upon the administration of russelioside B on the activities of the key enzymes of carbohydrate metabolism (glucokinase, glucose-6-phosphatase, glucose-6-phosphate dehydrogenase, and glycogen phosphorylase) in the liver of diabetic rats. Further, russelioside B administration to diabetic rats reverted gene expression of glucokinase, glucose-6-phosphatase, glycogen synthase and glycogen synthase kinase-3β to near normal levels. In conclusion, russelioside B possess antidiabetic and antihyperlipidemic effect in streptozotocin induced diabetic rats. Hence, administration of russelioside B may represent a potentially useful strategy for the management of diabetes.
Collapse
|
8
|
Kim SJ, Yoo WS, Choi M, Chung I, Yoo JM, Choi WS. Increased O-GlcNAcylation of NF-κB Enhances Retinal Ganglion Cell Death in Streptozotocin-induced Diabetic Retinopathy. Curr Eye Res 2015; 41:249-57. [PMID: 25835259 DOI: 10.3109/02713683.2015.1006372] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE Hyperglycemia results in increased flux through the hexoxamine biosynthetic pathway. We examined whether hyperglycemia increases O-GlcNAcylation in the diabetic retina and whether elevated O-GlcNAcylation of nuclear factor (NF)-κB increases apoptosis of retinal ganglion cells (RGCs) in diabetic retinopathy (DR). MATERIALS AND METHODS Diabetes was induced in C57BL/6 mice by five consecutive intraperitoneal injections of 55 mg/kg streptozotocin. All mice were killed 2 months after injections and expression levels of O-GlcNAcylated proteins, O-linked N-acetylglucosamine transferase (OGT), β-d-N-acetylglucosaminidase and NF-κB, and the extent of RGC death were examined. Immunoprecipitations were performed to investigate whether O-GlcNAcylation of NF-κB led to its activation and RGC death in DR. RESULTS The expression levels of O-GlcNAcylated proteins and OGT were markedly higher in diabetic retinas than in control retinas. OGT colocalized with NeuN, a RGC-specific marker, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive cells in the ganglion cell layer of diabetic retinas. The p65 subunit of NF-κB was O-GlcNAcylated and the level of O-GlcNAcylated p65 was higher in diabetic retinas than in control retinas. CONCLUSION The present data suggest that hyperglycemia increases O-GlcNAcylation in DR and that O-GlcNAcylation of the p65 subunit of NF-κB is involved in hyperglycemia-induced NF-κB activation and RGC death in DR.
Collapse
Affiliation(s)
- Seong-Jae Kim
- a Department of Ophthalmology , School of Medicine, Gyeongsang National University , Jinju , Korea .,b Institute of Health Science, Gyeongsang National University , Jinju , South Korea and
| | - Woong-Sun Yoo
- a Department of Ophthalmology , School of Medicine, Gyeongsang National University , Jinju , Korea
| | - Meeyoung Choi
- b Institute of Health Science, Gyeongsang National University , Jinju , South Korea and.,c Department of Anatomy and Neurobiology , School of Medicine, Gyeongsang National University , Jinju , Korea
| | - Inyoung Chung
- a Department of Ophthalmology , School of Medicine, Gyeongsang National University , Jinju , Korea .,b Institute of Health Science, Gyeongsang National University , Jinju , South Korea and
| | - Ji-Myong Yoo
- a Department of Ophthalmology , School of Medicine, Gyeongsang National University , Jinju , Korea .,b Institute of Health Science, Gyeongsang National University , Jinju , South Korea and
| | - Wan-Sung Choi
- b Institute of Health Science, Gyeongsang National University , Jinju , South Korea and.,c Department of Anatomy and Neurobiology , School of Medicine, Gyeongsang National University , Jinju , Korea
| |
Collapse
|
9
|
Abstract
Although photoreceptors account for most of the mass and metabolic activity of the retina, their role in the pathogenesis of diabetic retinopathy has been largely overlooked. Recent studies suggest that photoreceptors might play a critical role in the diabetes-induced degeneration of retinal capillaries, and thus can no longer be ignored. The present review summarizes diabetes-induced alterations in photoreceptor structure and function, and provides a rationale for further study of a role of photoreceptors in the pathogenesis of the retinopathy.
Collapse
Affiliation(s)
- Timothy S Kern
- Case Western Reserve University, Department of Medicine and Center for Diabetes Research Cleveland, Ohio, USA ; Veterans Administration Medical Center Research Service 151 Cleveland, Ohio, USA
| | - Bruce A Berkowitz
- Wayne State University School of Medicine, Departments of Anatomy and Cell Biology and Ophthalmology Detroit, Michigan, USA
| |
Collapse
|
10
|
Kim SJ, Kim H, Park J, Chung I, Kwon HM, Choi WS, Yoo JM. Tonicity response element binding protein associated with neuronal cell death in the experimental diabetic retinopathy. Int J Ophthalmol 2014; 7:935-40. [PMID: 25540742 DOI: 10.3980/j.issn.2222-3959.2014.06.04] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 08/15/2014] [Indexed: 12/19/2022] Open
Abstract
AIM To study the contribution of tonicity response element binding protein (TonEBP) in retinal ganglion cell (RGC) death of diabetic retinopathy (DR). METHODS Diabetes was induced in C57BL/6 mice by five consecutive intraperitoneal injections of 55 mg/kg streptozotocin (STZ). Control mice received vehicle (phosphate-buffered saline). All mice were killed 2mo after injections, and the extent of cell death and the protein expression levels of TonEBP and aldose reductase (AR) were examined. RESULTS The TonEBP and AR protein levels and the death of RGC were significantly increased in the retinas of diabetic mice compared with controls 2mo after the induction of diabetes. Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL)-positive signals co-localized with TonEBP immunoreactive RGC. These changes were increased in the diabetic retinas compared with controls. CONCLUSION The present data show that AR and TonEBP are upregulated in the DR and TonEBP may contribute to apoptosis of RGC in the DR.
Collapse
Affiliation(s)
- Seong-Jae Kim
- Department of Ophthalmology, School of Medicine, Gyeongsang National University, Jinju 660-751, Korea ; Institute of Health Science, Gyeongsang National University, Jinju 660-751, Korea
| | - Hwajin Kim
- Department of Anatomy and Neurobiology, BK21 Biomedical Center, School of Medicine, Gyeongsang National University, Jinju 660-751, Korea ; Institute of Health Science, Gyeongsang National University, Jinju 660-751, Korea
| | - Jeongsook Park
- Department of Anatomy and Neurobiology, BK21 Biomedical Center, School of Medicine, Gyeongsang National University, Jinju 660-751, Korea ; Institute of Health Science, Gyeongsang National University, Jinju 660-751, Korea
| | - Inyoung Chung
- Department of Ophthalmology, School of Medicine, Gyeongsang National University, Jinju 660-751, Korea ; Institute of Health Science, Gyeongsang National University, Jinju 660-751, Korea
| | - Hyug-Moo Kwon
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute and Science and Technology, Ulsan 689-798, Korea
| | - Wan-Sung Choi
- Department of Anatomy and Neurobiology, BK21 Biomedical Center, School of Medicine, Gyeongsang National University, Jinju 660-751, Korea ; Institute of Health Science, Gyeongsang National University, Jinju 660-751, Korea
| | - Ji-Myong Yoo
- Department of Ophthalmology, School of Medicine, Gyeongsang National University, Jinju 660-751, Korea ; Institute of Health Science, Gyeongsang National University, Jinju 660-751, Korea
| |
Collapse
|
11
|
Szabadfi K, Pinter E, Reglodi D, Gabriel R. Neuropeptides, trophic factors, and other substances providing morphofunctional and metabolic protection in experimental models of diabetic retinopathy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 311:1-121. [PMID: 24952915 DOI: 10.1016/b978-0-12-800179-0.00001-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vision is the most important sensory modality for many species, including humans. Damage to the retina results in vision loss or even blindness. One of the most serious complications of diabetes, a disease that has seen a worldwide increase in prevalence, is diabetic retinopathy. This condition stems from consequences of pathological metabolism and develops in 75% of patients with type 1 and 50% with type 2 diabetes. The development of novel protective drugs is essential. In this review we provide a description of the disease and conclude that type 1 diabetes and type 2 diabetes lead to the same retinopathy. We evaluate existing experimental models and recent developments in finding effective compounds against this disorder. In our opinion, the best models are the long-term streptozotocin-induced diabetes and Otsuka Long-Evans Tokushima Fatty and spontaneously diabetic Torii rats, while the most promising substances are topically administered somatostatin and pigment epithelium-derived factor analogs, antivasculogenic substances, and systemic antioxidants. Future drug development should focus on these.
Collapse
Affiliation(s)
- Krisztina Szabadfi
- Department of Experimental Zoology and Neurobiology, University of Pecs, Pecs, Hungary; Janos Szentagothai Research Center, University of Pecs, Pecs, Hungary.
| | - Erika Pinter
- Janos Szentagothai Research Center, University of Pecs, Pecs, Hungary; Department of Pharmacology and Pharmacotherapy, University of Pecs, Pecs, Hungary
| | - Dora Reglodi
- Department of Anatomy, PTE MTA Lendulet-PACAP Research Team, University of Pecs, Pecs, Hungary
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pecs, Pecs, Hungary; Janos Szentagothai Research Center, University of Pecs, Pecs, Hungary
| |
Collapse
|
12
|
Ogata G, Stradleigh TW, Partida GJ, Ishida AT. Dopamine and full-field illumination activate D1 and D2-D5-type receptors in adult rat retinal ganglion cells. J Comp Neurol 2013; 520:4032-49. [PMID: 22678972 DOI: 10.1002/cne.23159] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Dopamine can regulate signal generation and transmission by activating multiple receptors and signaling cascades, especially in striatum, hippocampus, and cerebral cortex. Dopamine modulates an even larger variety of cellular properties in retina, yet has been reported to do so by only D1 receptor-driven cyclic adenosine monophosphate (cAMP) increases or D2 receptor-driven cAMP decreases. Here, we test the possibility that dopamine operates differently on retinal ganglion cells, because the ganglion cell layer binds D1 and D2 receptor ligands, and displays changes in signaling components other than cAMP under illumination that should release dopamine. In adult rat retinal ganglion cells, based on patch-clamp recordings, Ca(2+) imaging, and immunohistochemistry, we find that 1) spike firing is inhibited by dopamine and SKF 83959 (an agonist that does not activate homomeric D1 receptors or alter cAMP levels in other systems); 2) D1 and D2 receptor antagonists (SCH 23390, eticlopride, raclopride) counteract these effects; 3) these antagonists also block light-induced rises in cAMP, light-induced activation of Ca(2+) /calmodulin-dependent protein kinase II, and dopamine-induced Ca(2+) influx; and 4) the Ca(2+) rise is markedly reduced by removing extracellular Ca(2+) and by an IP3 receptor antagonist (2-APB). These results provide the first evidence that dopamine activates a receptor in adult mammalian retinal neurons that is distinct from classical D1 and D2 receptors, and that dopamine can activate mechanisms in addition to cAMP and cAMP-dependent protein kinase to modulate retinal ganglion cell excitability.
Collapse
Affiliation(s)
- Genki Ogata
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
13
|
Kim YH, Kim YS, Roh GS, Choi WS, Cho GJ. Resveratrol blocks diabetes-induced early vascular lesions and vascular endothelial growth factor induction in mouse retinas. Acta Ophthalmol 2012; 90:e31-7. [PMID: 21914146 DOI: 10.1111/j.1755-3768.2011.02243.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
PURPOSE Vessel leakage and loss of pericytes are early signs of diabetic retinopathy (DR), which leads to vision loss. Upregulation of the vascular endothelial growth factor (VEGF) during diabetes plays a key role in mediating these vascular lesions. The aim of this study is to investigate the effects of resveratrol, a natural plant-derived phytoalexin, on vascular damage and VEGF induction in mouse retinas of early diabetes. METHODS Diabetes was induced in C57BL/6 mice by five consecutive-intraperitoneal injections of 55 mg/kg of streptozotocin (STZ). Animals injected with buffer only were used as controls. Beginning 1 month after the fifth injection of STZ or buffer, 20 mg/kg of resveratrol was administered by oral gavage daily for 4 weeks to diabetic and control mice, and all mice were killed 2 months after the injections. We assessed vessel leakage, pericyte loss and VEGF protein expression in mouse retinas of 2-month diabetes compared with controls with or without resveratrol treatment. RESULTS Diabetes led to increase vessel leakage, pericyte loss and VEGF protein level in the mouse retinas compared with controls; however, these changes were effectively blocked by resveratrol treatment. CONCLUSION Our data suggest that resveratrol is effective to decrease vascular lesions and VEGF induction in mouse retinas of early diabetes.
Collapse
Affiliation(s)
- Young Hee Kim
- Department of Anatomy and Neurobiology, School of Medicine, BK21 Biomedical Center, Gyeongsang National University, Jinju, Korea
| | | | | | | | | |
Collapse
|
14
|
Chung IY, Kim YH, Park JM, Seo SW, Choi WS, Cho GJ, Yoo JM. Protective effects of triamcinolone acetonide upon the upregulation and phosphorylation of GAP 43 in an animal model of retinopathy of prematurity. Acta Ophthalmol 2010; 88:e217-21. [PMID: 20560891 DOI: 10.1111/j.1755-3768.2010.01951.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE The aim of the current study was to investigate the effects of triamcinolone acetonide (TA) upon the expression and phosphorylation of growth-associated protein 43 (GAP 43) in the retinas of oxygen-induced retinopathy (OIR) rats. METHODS Oxygen-induced retinopathy was induced by exposing Sprague-Dawley rats to hyperoxia (80% oxygen) from postnatal (P) days 2-14 and then returning the rats to normoxic conditions. Triamcinolone acetonide or a conditioned saline (control) was injected intravitreally into the right or left eye, respectively, of OIR rats at P15. We then assessed the molecular and histological changes in the expression of GAP 43 and phospho-GAP 43 in OIR and control rat retinas, and also after treatment with TA by RT-PCR, Western blotting and immunohistochemistry. RESULTS Growth-associated protein 43 mRNA levels were found to be increased by 1.6-fold (p=0.001, n=5) in the retinas of P18 OIR rats compared with the control rats. The protein levels of GAP 43 and phospho-GAP43 were found to be elevated in the retina of P18 OIR rats (2.40- and 2.39-fold greater than each control, p<0.001, n=5, respectively). Immunoreactivities of GAP 43 and phospho-GAP 43 were stronger in the inner plexiform layer in OIR rat retinas compared with the control. However, treatment with TA attenuated GAP 43 and phospho-GAP 43 upregulation in the OIR retinas. CONCLUSION Our results indicate that GAP 43 and phospho-GAP 43 participate in retinal (potentially pathologic) changes following oxygen-induced damage. Triamcinolone acetonide protects the retinal damage in relatively hypoxic retinas of OIR rats. Therefore, TA treatment does not induce the expression and phosphorylation of GAP 43 in OIR rat retinas.
Collapse
Affiliation(s)
- In Y Chung
- Department of Ophthalmology, School of Medicine, Institute of Health Science, Gyeongsang National University, Gyeongnam, South Korea
| | | | | | | | | | | | | |
Collapse
|
15
|
Kim YH, Kim YS, Kang SS, Cho GJ, Choi WS. Resveratrol inhibits neuronal apoptosis and elevated Ca2+/calmodulin-dependent protein kinase II activity in diabetic mouse retina. Diabetes 2010; 59:1825-35. [PMID: 20424226 PMCID: PMC2889785 DOI: 10.2337/db09-1431] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE This study investigated the effects of resveratrol, a natural polyphenol with neuroprotective properties, on retinal neuronal cell death mediated by diabetes-induced activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). RESEARCH DESIGN AND METHODS Diabetes was induced in C57BL/6 mice by five consecutive intraperitoneal injections of 55 mg/kg streptozotocin (STZ). Control mice received buffer. All mice were killed 2 months after the injections, and the extent of neuronal cell death, CaMKII, and phospho-CaMKII protein expression levels and CaMKII kinase activity were examined in the retinas. To assess the role of CaMKII in the death of retinal neurons, a small-interfering RNA (siRNA) or specific inhibitor of CaMKII was injected into the right vitreous humor, and vehicle only was injected into the left vitreous humor, 2 days before death. Resveratrol (20 mg/kg) was administered by oral gavage daily for 4 weeks, beginning 1 month after the fifth injection of either STZ or buffer. RESULTS The death of retinal ganglion cells (RGCs), CaMKII, phospho-CaMKII protein levels, and CaMKII activity were all greatly increased in the retinas of diabetic mice compared with controls, 2 months after induction of diabetes. Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL)-positive signals co-localized with CaMKII- and phospho-CaMKII immunoreactive RGCs. However, in addition to CaMKII knockdown and inhibition by siRNA or a specific inhibitor, respectively, resveratrol provided complete protection from diabetes-induced retinal cell death. CONCLUSIONS In the present study, resveratrol prevented diabetes-induced RGC death via CaMKII downregulation, implying that resveratrol may have potential therapeutic applications for prevention of diabetes-induced visual dysfunction.
Collapse
Affiliation(s)
- Young-Hee Kim
- From the Department of Anatomy and Neurobiology, Gyeongsang National University, Jinju, Gyeongnam, Korea
| | - Yoon-Sook Kim
- From the Department of Anatomy and Neurobiology, Gyeongsang National University, Jinju, Gyeongnam, Korea
| | - Sang-Soo Kang
- From the Department of Anatomy and Neurobiology, Gyeongsang National University, Jinju, Gyeongnam, Korea
| | - Gyeong-Jae Cho
- From the Department of Anatomy and Neurobiology, Gyeongsang National University, Jinju, Gyeongnam, Korea
| | - Wan-Sung Choi
- From the Department of Anatomy and Neurobiology, Gyeongsang National University, Jinju, Gyeongnam, Korea
- Corresponding author: Wan Sung Choi,
| |
Collapse
|
16
|
Kim YH, Kim YS, Park CH, Chung IY, Yoo JM, Kim JG, Lee BJ, Kang SS, Cho GJ, Choi WS. Protein kinase C-delta mediates neuronal apoptosis in the retinas of diabetic rats via the Akt signaling pathway. Diabetes 2008; 57:2181-90. [PMID: 18443201 PMCID: PMC2494683 DOI: 10.2337/db07-1431] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Protein kinase C (PKC)-delta, an upstream regulator of the Akt survival pathway, contributes to cellular dysfunction in the pathogenesis of diabetes. Herein, we examined the role of PKC-delta in neuronal apoptosis through Akt in the retinas of diabetic rats. RESEARCH DESIGN AND METHODS We used retinas from 24- and 35-week-old male Otsuka Long-Evans Tokushima fatty (OLETF) diabetic and Long-Evans Tokushima Otsuka (LETO) nondiabetic rats. To assess whether PKC-delta affects Akt signaling and cell death in OLETF rat retinas, we examined 1) PKC-delta activity and apoptosis; 2) protein levels of phosphatidylinositol 3-kinase (PI 3-kinase) p85, heat shock protein 90 (HSP90), and protein phosphatase 2A (PP2A); 3) Akt phosphorylation; and 4) Akt binding to HSP90 or PP2A in LETO and OLETF retinas in the presence or absence of rottlerin, a highly specific PKC-delta inhibitor, or small interfering RNAs (siRNAs) for PKC-delta and HSP90. RESULTS In OLETF retinas from 35-week-old rats, ganglion cell death, PKC-delta and PP2A activity, and Akt-PP2A binding were significantly increased and Akt phosphorylation and Akt-HSP90 binding were decreased compared with retinas from 24-week-old OLETF and LETO rats. Rottlerin and PKC-delta siRNA abrogated these effects in OLETF retinas from 35-week-old rats. HSP90 siRNA significantly increased ganglion cell death and Akt-PP2A complexes and markedly decreased HSP90-Akt binding and Akt phosphorylation in LETO retinas from 35-week-old rats compared with those from nontreated LETO rats. CONCLUSIONS PKC-delta activation contributes to neuro-retinal apoptosis in diabetic rats by inhibiting Akt-mediated signaling pathways.
Collapse
Affiliation(s)
- Young-Hee Kim
- Department of Anatomy and Neurobiology, School of Medicine, Institute of Health Science, Gyeongsang National University, Jinju, Gyeongnam, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Quin GJ, Len ACL, Billson FA, Gillies MC. Proteome map of normal rat retina and comparison with the proteome of diabetic rat retina: new insight in the pathogenesis of diabetic retinopathy. Proteomics 2007; 7:2636-50. [PMID: 17647246 DOI: 10.1002/pmic.200600486] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have employed proteomics to establish a proteome map of the normal rat retina. This baseline map was then used for comparison with the early diabetic rat retinal proteome. Diabetic rat retinae were obtained from Dark Agouti rats after 10 wk of streptozotocin-induced hyperglycaemia. Extracted proteins from normal and diabetic rat retinae were separated and compared using 2-DE. A total of 145 protein spots were identified in the normal rat retina using MALDI-MS and database matching. LC-coupled ESI-MS increased the repertoire of identified proteins by 23 from 145 to 168. Comparison with early diabetic rat retinae revealed 24 proteins unique to the diabetic gels, and 37 proteins absent from diabetic gels. Uniquely expressed proteins identified included the HSPs 70.1A and 8, and platelet activating factor. There were eight spots with increased expression and 27 with decreased expression on diabetic gels. Beta catenin, phosducin and aldehyde reductase were increased in expression in diabetes whilst succinyl coA ligase and dihydropyrimidase-related protein were decreased. Identification of such changes in protein expression has given new insights and a more comprehensive understanding of the pathogenesis of diabetic retinopathy, widening the scope of potential avenues for new therapies for this common cause of blindness.
Collapse
MESH Headings
- Animals
- Blood Glucose/analysis
- Databases, Protein
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/metabolism
- Diabetic Retinopathy/etiology
- Diabetic Retinopathy/pathology
- Electrophoresis, Gel, Two-Dimensional
- Male
- Peptide Mapping/methods
- Proteome/analysis
- Proteomics/methods
- Rats
- Rats, Inbred Strains
- Retina/chemistry
- Spectrometry, Mass, Electrospray Ionization
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- Godfrey J Quin
- Save Sight Institute, Department of Clinical Ophthalmology, University of Sydney, Sydney Eye Hospital, Sydney NSW, Australia.
| | | | | | | |
Collapse
|
18
|
Kim YH, Choi MY, Kim YS, Park CH, Lee JH, Chung IY, Yoo JM, Choi WS, Cho GJ, Kang SS. Triamcinolone acetonide protects the rat retina from STZ-induced acute inflammation and early vascular leakage. Life Sci 2007; 81:1167-73. [PMID: 17881007 DOI: 10.1016/j.lfs.2007.08.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 08/08/2007] [Accepted: 08/17/2007] [Indexed: 10/22/2022]
Abstract
Streptozotocin (STZ) has been commonly used to induce in vivo and in vitro hyperglycemic diabetes and its toxicity leads to inflammation and vascular injury. Triamcinolone acetonide (TA), as an anti-angiogenic/anti-inflammatory drug, is clinically used to improve the visual acuity in neovascular and edematous ocular diseases. The aim of this study was to investigate the effect of TA on early inflammation and vascular leakage in the retina of STZ-induced hyperglycemic rats. Hyperglycemia was induced in 8-week-old male Sprague-Dawley (SD) rats by a single intraperitoneal injection of STZ (65 mg/kg); only rats with blood glucose levels >13.9 mmol/l 1 day after STZ injection were included in STZ-hyperglycemic group. Sex- and age-matched SD rats injected with buffer were used as the control group. One day before STZ and buffer injection, 2 microl TA (4 mg/ml in saline) and 2 microl saline were intravitreal-injected into the right and the left eyes of rats, respectively. Retinal vascular leakage was measured using the Evans-blue method. Changes in pro-inflammatory target genes, such as tumor necrotic factor (TNF)-alpha, intracellular adhesion molecule (ICAM)-1, and vascular endothelial growth factor (VEGF) were assessed by immunoblottings, immunostaining, and ELISA analyses. Vascular hyperleakage and up-regulation of most pro-inflammatory genes peaked within a few days after STZ injection and had recovered. However, these changes were blocked by TA pretreatment. Our data suggest that TA controls STZ-induced early vascular leakage and temporary pro-inflammatory signals in the rat retina.
Collapse
Affiliation(s)
- Y H Kim
- Department of Anatomy and Neurobiology, Institute of Health Science, School of Medicine, Gyeongsang National University, Jinju, Gyeongnam 660-751, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kim YH, Choi MY, Kim YS, Han JM, Lee JH, Park CH, Kang SS, Choi WS, Cho GJ. Protein kinase C delta regulates anti-apoptotic alphaB-crystallin in the retina of type 2 diabetes. Neurobiol Dis 2007; 28:293-303. [PMID: 17904375 DOI: 10.1016/j.nbd.2007.07.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Revised: 07/06/2007] [Accepted: 07/17/2007] [Indexed: 12/22/2022] Open
Abstract
We investigated the relationship between phosphorylation of alphaB-crystallin (alphaBC) and retinal apoptosis in type 2 diabetes. The retinas of male Otsuka Long-Evans Tokushima fatty (OLETF) rats at 24 and 35 weeks were used as an animal model for type 2 diabetes and sex- and age-matched Long-Evans Tokushima Otsuka (LETO) rats were used as controls. In the retinas of 35-week OLETF rats, the interaction between alphaBC and protein kinase C delta (PKC delta) among the PKC isozymes, alphaBC phosphorylation at Ser45 (S45p-alphaBC), TUNEL-positive apoptotic ganglion cells, several apoptotic signs, and co-localization of S45p-alphaBC and TUNEL significantly increased as compared with other groups while the alphaBC-Bax interaction greatly decreased. These changes were abolished by rottlerin treatment, a highly specific PKC delta inhibitor. These results suggest that PKC delta is involved in regulation of anti-apoptotic function of alphaBC in the retina of type 2 diabetes.
Collapse
Affiliation(s)
- Y H Kim
- Department of Anatomy and Neurobiology, School of Medicine, Institute of Health Science, Gyeongsang National University, Jinju, Chilam-dong 92, Jinju, Gyeongnam 660-751, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kim YH, Chung IY, Choi MY, Kim YS, Lee JH, Park CH, Kang SS, Roh GS, Choi WS, Yoo JM, Cho GJ. Triamcinolone suppresses retinal vascular pathology via a potent interruption of proinflammatory signal-regulated activation of VEGF during a relative hypoxia. Neurobiol Dis 2007; 26:569-76. [PMID: 17434742 DOI: 10.1016/j.nbd.2007.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2006] [Revised: 01/31/2007] [Accepted: 02/04/2007] [Indexed: 10/23/2022] Open
Abstract
We examined the effect of triamcinolone acetonide (TA), a corticosteroid, on the relationship between vascular pathophysiology and vascular endothelial growth factor (VEGF) activation in the retina of a rat model of oxygen-induced retinopathy (OIR). OIR was induced by exposure of hyperoxia (80% oxygen) to Sprague-Dawley (SD) rats from P2 to P14 and then returned to normoxic conditions. TA was intravitreal-injected once into the right eye of OIR rats at P15. Effects of TA on vascular pathophysiology or changes of various genes in response to hypoxia and/or proinflammation under hypoxic retina were assessed by the Evans-blue method, fluorescein isothiocyanate-dextran (FITC-D) infusion, immunoblotting, and ELIZA. TA not only reduced retinal neovascularization and vascular leakage in the OIR-rat retina, but also blocked the induction of hypoxia-response proinflammatory genes before it negatively controlled VEGF activation. These findings suggest a potential that TA suppresses retinal neovascular pathophysiology via proinflammation-mediated activation of VEGF during hypoxia.
Collapse
Affiliation(s)
- Y H Kim
- Department of Anatomy and Neurobiology, College of Medicine, Gyeongsang National University, Chilam-dong 92, Jinju, Gyungnam 660-751, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kim YH, Kim YS, Kang SS, Noh HS, Kim HJ, Cho GJ, Choi WS. Expression of 14-3-3 zeta and interaction with protein kinase C in the rat retina in early diabetes. Diabetologia 2005; 48:1411-5. [PMID: 15909155 DOI: 10.1007/s00125-005-1774-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Accepted: 02/23/2005] [Indexed: 10/25/2022]
Abstract
AIMS/HYPOTHESIS The present study aimed to investigate the expression levels of and the relationship between 14-3-3 zeta and protein kinase C (PKC) in the retina of early diabetes. METHODS Changes in the expression levels of, and interaction between, 14-3-3 zeta and PKC were investigated by Northern and Western blot analyses, immunoprecipitation and double immunostaining in the retina of diabetic rats after 6 weeks of diabetes. PKC activity was examined using a PKC assay. RESULTS In the diabetic retina, the molecular levels of 14-3-3 zeta were reduced, while those of PKC beta and zeta were increased. Direct interaction between 14-3-3 zeta and PKC was markedly decreased in the retina after 6 weeks of diabetes, while PKC activity was increased. CONCLUSIONS/INTERPRETATION These findings show that a reduction in 14-3-3 zeta can induce PKC activation, suggesting that this is a main cause of visual dysfunction in the retina during diabetes.
Collapse
Affiliation(s)
- Y H Kim
- Department of Anatomy and Neurobiology, College of Medicine, Institute of Health Science, Gyeongsang National University, Jinju, South Korea
| | | | | | | | | | | | | |
Collapse
|