1
|
Zhu Y, Su SA, Shen J, Ma H, Le J, Xie Y, Xiang M. Recent advances of the Ephrin and Eph family in cardiovascular development and pathologies. iScience 2024; 27:110556. [PMID: 39188984 PMCID: PMC11345580 DOI: 10.1016/j.isci.2024.110556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
Erythropoietin-producing hepatoma (Eph) receptors, comprising the largest family of receptor tyrosine kinases (RTKs), exert profound influence on diverse biological processes and pathological conditions such as cancer. Interacting with their corresponding ligands, erythropoietin-producing hepatoma receptor interacting proteins (Ephrins), Eph receptors regulate crucial events like embryonic development, tissue boundary formation, and tumor cell survival. In addition to their well-established roles in embryonic development and cancers, emerging evidence highlights the pivotal contribution of the Ephrin/Eph family to cardiovascular physiology and pathology. Studies have elucidated their involvement in cardiovascular development, atherosclerosis, postnatal angiogenesis, and, more recently, cardiac fibrosis and calcification, suggesting a promising avenue for therapeutic interventions in cardiovascular diseases. There remains a need for a comprehensive synthesis of their collective impact in the cardiovascular context. By exploring the intricate interactions between Eph receptors, ephrins, and cardiovascular system, this review aims to provide a holistic understanding of their roles and therapeutic potential in cardiovascular health and diseases.
Collapse
Affiliation(s)
- Yuan Zhu
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Sheng-an Su
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Jian Shen
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Hong Ma
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Jixie Le
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Yao Xie
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Meixiang Xiang
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| |
Collapse
|
2
|
Peng N, Zheng M, Song B, Jiao R, Wang W. Transcription Factor EGR1 Facilitates Neovascularization in Mice with Retinopathy of Prematurity by Regulating the miR-182-5p/EFNA5 Axis. Biochem Genet 2024; 62:1070-1086. [PMID: 37530910 DOI: 10.1007/s10528-023-10433-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/15/2023] [Indexed: 08/03/2023]
Abstract
Neovascularization is the hallmark of retinopathy of prematurity (ROP). Early growth response 1 (EGR1) has been reported as an angiogenic factor. This study was conducted to probe the regulatory mechanism of EGR1 in neovascularization in ROP model mice. The ROP mouse model was established, followed by determination of EGR1 expression and assessment of neovascularization [vascular endothelial growth factor-A (VEGF-A) and pigment epithelium-derived factor (PEDF)]. Retinal vascular endothelial cells were cultured and treated with hypoxia, followed by the tube formation assay. The state of oxygen induction was assessed by real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot assay to determine hypoxia-inducible factor 1-alpha (HIF-1A). The levels of microRNA (miRNA)-182-5p and ephrin-A5 (EFNA5) in tissues and cells were determined by RT-qPCR. Chromatin immunoprecipitation and dual-luciferase assay were used to validate gene interaction. EGR1 and EFNA5 were upregulated in the retina of ROP mice while miR-182-5p was downregulated. EGR1 knockdown decreased VEGF-A and HIF-1A expression and increased PEDF expression in the retina of ROP mice. In vitro, EGR1 knockdown also reduced neovascularization. EGR1 binding to the miR-182-5p promoter inhibited miR-182-5p transcription and further promoted EFNA5 transcription. miR-182-5p downregulation or EFNA5 overexpression averted the inhibition of neovascularization caused by EGR1 downregulation. Overall, EGR1 bound to the miR-182-5p promoter to inhibit miR-182-5p transcription and further promoted EFNA5 transcription, thus promoting retinal neovascularization in ROP mice.
Collapse
Affiliation(s)
- Ningning Peng
- Department of Neonatology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, No. 15 Jiefang Road, Fancheng District, Xiangyang City, 441000, Hubei Province, China
| | - Mei Zheng
- Department of Neonatology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, No. 15 Jiefang Road, Fancheng District, Xiangyang City, 441000, Hubei Province, China
| | - Bei Song
- Department of Neonatology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, No. 15 Jiefang Road, Fancheng District, Xiangyang City, 441000, Hubei Province, China
| | - Rong Jiao
- Department of Neonatology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, No. 15 Jiefang Road, Fancheng District, Xiangyang City, 441000, Hubei Province, China.
| | - Wenxiang Wang
- Department of Neonatology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, No. 15 Jiefang Road, Fancheng District, Xiangyang City, 441000, Hubei Province, China.
| |
Collapse
|
3
|
Chu LY, Huang BL, Huang XC, Peng YH, Xie JJ, Xu YW. EFNA1 in gastrointestinal cancer: Expression, regulation and clinical significance. World J Gastrointest Oncol 2022; 14:973-988. [PMID: 35646281 PMCID: PMC9124989 DOI: 10.4251/wjgo.v14.i5.973] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/17/2021] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
Ephrin-A1 is a protein that in humans is encoded by the EFNA1 gene. The ephrins and EPH-related receptors comprise the largest subfamily of receptor protein-tyrosine kinases which play an indispensable role in normal growth and development or in the pathophysiology of various tumors. The role of EFNA1 in tumorigenesis and development is complex and depends on the cell type and microenvironment which in turn affect the expression of EFNA1. This article reviews the expression, prognostic value, regulation and clinical significance of EFNA1 in gastrointestinal tumors.
Collapse
Affiliation(s)
- Ling-Yu Chu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Bin-Liang Huang
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Xu-Chun Huang
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yu-Hui Peng
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
- Guangdong Esophageal Cancer Research Institute, The Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Jian-Jun Xie
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yi-Wei Xu
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
- Guangdong Esophageal Cancer Research Institute, The Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
4
|
Kaczmarek R, Gajdzis P, Gajdzis M. Eph Receptors and Ephrins in Retinal Diseases. Int J Mol Sci 2021; 22:ijms22126207. [PMID: 34201393 PMCID: PMC8227845 DOI: 10.3390/ijms22126207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
Retinal diseases are the leading cause of irreversible blindness. They affect people of all ages, from newborns in retinopathy of prematurity, through age-independent diabetic retinopathy and complications of retinal detachment, to age-related macular degeneration (AMD), which occurs mainly in the elderly. Generally speaking, the causes of all problems are disturbances in blood supply, hypoxia, the formation of abnormal blood vessels, and fibrosis. Although the detailed mechanisms underlying them are varied, the common point is the involvement of Eph receptors and ephrins in their pathogenesis. In our study, we briefly discussed the pathophysiology of the most common retinal diseases (diabetic retinopathy, retinopathy of prematurity, proliferative vitreoretinopathy, and choroidal neovascularization) and collected available research results on the role of Eph and ephrins. We also discussed the safety aspect of the use of drugs acting on Eph and ephrin for ophthalmic indications.
Collapse
Affiliation(s)
- Radoslaw Kaczmarek
- Department of Ophthalmology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Pawel Gajdzis
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Malgorzata Gajdzis
- Department of Ophthalmology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
- Correspondence: ; Tel.: +00-48-71-736-4300
| |
Collapse
|
5
|
Interactions between Ligand-Bound EGFR and VEGFR2. J Mol Biol 2021; 433:167006. [PMID: 33891904 DOI: 10.1016/j.jmb.2021.167006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/25/2021] [Accepted: 04/15/2021] [Indexed: 11/21/2022]
Abstract
In this work, we put forward the provocative hypothesis that the active, ligand-bound RTK dimers from unrelated subfamilies can associate into heterooligomers with novel signaling properties. This hypothesis is based on a quantitative FRET study that monitors the interactions between EGFR and VEGFR2 in the plasma membrane of live cells in the absence of ligand, in the presence of either EGF or VEGF, and in the presence of both ligands. We show that direct interactions occur between EGFR and VEGFR2 in the absence of ligand and in the presence of the two cognate ligands. However, there are not significant heterointeractions between EGFR and VEGFR2 when only one of the ligands is present. Since RTK dimers and RTK oligomers are believed to signal differently, this finding suggests a novel mechanism for signal diversification.
Collapse
|
6
|
Ephrin-A5 Is Involved in Retinal Neovascularization in a Mouse Model of Oxygen-Induced Retinopathy. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7161027. [PMID: 33102589 PMCID: PMC7569469 DOI: 10.1155/2020/7161027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 01/12/2023]
Abstract
Retinal neovascularization (RNV) is an important pathological feature of vitreoretinopathy that can lead to severe vision loss. The purpose of this study was to identify the role of ephrin-A5 (Efna5) in RNV and to explore its mechanism. The expression pattern and biological significance of Efna5 were investigated in a mouse model of oxygen-induced retinopathy (OIR). The expression of Efna5 and downstream signaling pathway members was determined by RT-PCR, immunofluorescence, immunohistochemistry, and western blot analyses. shRNA was used to knockdown Efna5 in the retina of the OIR mouse model. Retinal flat mounts were performed to evaluate the impact of Efna5 silencing on the RNV process. We found that the Efna5 was greatly upregulated in the retina of OIR mice. Elevated Efna5 mainly colocalized with the retinal vessels and endothelial cells. We then showed that knockdown of Efna5 in OIR mouse retinas using lentivirus-mediated shRNA markedly decreased the expression of Efna5 and reduced the retinal neovascularization and avascular retina area. We further showed hypoxia stimulation dramatically increased both total and phosphorylation levels of ERK1/2 and the phosphorylation levels of Akt in OIR mice. More importantly, knockdown of Efna5 could inhibit the p-Akt and p-ERK signaling pathways. Our results suggested that Efna5 may regulate the RNV. This study suggests that Efna5 was significantly upregulated in the retina of OIR mice and closely involved in the pathological retinal angiogenesis.
Collapse
|
7
|
Paul MD, Grubb HN, Hristova K. Quantifying the strength of heterointeractions among receptor tyrosine kinases from different subfamilies: Implications for cell signaling. J Biol Chem 2020; 295:9917-9933. [PMID: 32467228 PMCID: PMC7380177 DOI: 10.1074/jbc.ra120.013639] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/20/2020] [Indexed: 01/09/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) are single-pass membrane proteins that control vital cell processes such as cell growth, survival, and differentiation. There is a growing body of evidence that RTKs from different subfamilies can interact and that these diverse interactions can have important biological consequences. However, these heterointeractions are often ignored, and their strengths are unknown. In this work, we studied the heterointeractions of nine RTK pairs, epidermal growth factor receptor (EGFR)-EPH receptor A2 (EPHA2), EGFR-vascular endothelial growth factor receptor 2 (VEGFR2), EPHA2-VEGFR2, EPHA2-fibroblast growth factor receptor 1 (FGFR1), EPHA2-FGFR2, EPHA2-FGFR3, VEGFR2-FGFR1, VEGFR2-FGFR2, and VEGFR2-FGFR3, using a FRET-based method. Surprisingly, we found that RTK heterodimerization and homodimerization strengths can be similar, underscoring the significance of RTK heterointeractions in signaling. We discuss how these heterointeractions can contribute to the complexity of RTK signal transduction, and we highlight the utility of quantitative FRET for probing multiple interactions in the plasma membrane.
Collapse
Affiliation(s)
- Michael D Paul
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hana N Grubb
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kalina Hristova
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Baudet S, Bécret J, Nicol X. Approaches to Manipulate Ephrin-A:EphA Forward Signaling Pathway. Pharmaceuticals (Basel) 2020; 13:ph13070140. [PMID: 32629797 PMCID: PMC7407804 DOI: 10.3390/ph13070140] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/19/2020] [Accepted: 06/28/2020] [Indexed: 02/07/2023] Open
Abstract
Erythropoietin-producing hepatocellular carcinoma A (EphA) receptors and their ephrin-A ligands are key players of developmental events shaping the mature organism. Their expression is mostly restricted to stem cell niches in adults but is reactivated in pathological conditions including lesions in the heart, lung, or nervous system. They are also often misregulated in tumors. A wide range of molecular tools enabling the manipulation of the ephrin-A:EphA system are available, ranging from small molecules to peptides and genetically-encoded strategies. Their mechanism is either direct, targeting EphA receptors, or indirect through the modification of intracellular downstream pathways. Approaches enabling manipulation of ephrin-A:EphA forward signaling for the dissection of its signaling cascade, the investigation of its physiological roles or the development of therapeutic strategies are summarized here.
Collapse
|
9
|
Chen G, Jia Z, Wang L, Hu T. Effect of acute exposure of saxitoxin on development of zebrafish embryos (Danio rerio). ENVIRONMENTAL RESEARCH 2020; 185:109432. [PMID: 32247151 DOI: 10.1016/j.envres.2020.109432] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/10/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
As a type of cyanobacterial toxins, saxitoxin (STX) is receiving great interest due to its increasing presence in waterbodies. However, the underlying mechanism of STX-induced adverse effect is poorly understood. Here, we examined the developmental toxicity and molecular mechanism induced by STX using zebrafish embryos as an animal model. The embryonic toxicity induced by STX was demonstrated by inhibition of embryo hatching, increase in mortality rate, abnormal heart rate, abnormalities in embryo morphology as well as defects in angiogenesis and common cardinal vein remodeling. STX induced embryonic DNA damage and cell apoptosis, which would be alleviated by antioxidant N-acetyl-L-cysteine. Additionally, STX significantly increased reactive oxygen species level, catalase activity and malondialdehyde content and decreased the activity of superoxide dismutase and glutathione content. STX also promoted the expression of vascular development-related genes DLL4 and VEGFC, and inhibited VEGFA expression. Furthermore, STX altered the transcriptional regulation of apoptosis-related genes (BAX, BCL-2, P53 and CASPASE 3). Taken together, STX induced adverse effect on development of zebrafish embryos, which might be associated with oxidative stress-induced apoptosis.
Collapse
Affiliation(s)
- Guoliang Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Zimu Jia
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Linping Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
10
|
Shiuan E, Inala A, Wang S, Song W, Youngblood V, Chen J, Brantley-Sieders DM. Host deficiency in ephrin-A1 inhibits breast cancer metastasis. F1000Res 2020; 9:217. [PMID: 32399207 PMCID: PMC7194498 DOI: 10.12688/f1000research.22689.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/11/2020] [Indexed: 12/16/2022] Open
Abstract
Background: The conventional dogma of treating cancer by focusing on the elimination of tumor cells has been recently refined to include consideration of the tumor microenvironment, which includes host stromal cells. Ephrin-A1, a cell surface protein involved in adhesion and migration, has been shown to be tumor suppressive in the context of the cancer cell. However, its role in the host has not been fully investigated. Here, we examine how ephrin-A1 host deficiency affects cancer growth and metastasis in a murine model of breast cancer. Methods: 4T1 cells were orthotopically implanted into the mammary fat pads or injected into the tail veins of ephrin-A1 wild-type ( Efna1+/+), heterozygous ( Efna1+/-), or knockout ( Efna1-/-) mice. Tumor growth, lung metastasis, and tumor recurrence after surgical resection were measured. Flow cytometry and immunohistochemistry (IHC) were used to analyze various cell populations in primary tumors and tumor-bearing lungs. Results: While primary tumor growth did not differ between Efna1+/+, Efna1+/-, and Efna1-/- mice, lung metastasis and primary tumor recurrence were significantly decreased in knockout mice. Efna1-/- mice had reduced lung colonization of 4T1 cells compared to Efna1+/+ littermate controls as early as 24 hours after tail vein injection. Furthermore, established lung lesions in Efna1-/- mice had reduced proliferation compared to those in Efna1+/+ controls. Conclusions: Our studies demonstrate that host deficiency of ephrin-A1 does not impact primary tumor growth but does affect metastasis by providing a less favorable metastatic niche for cancer cell colonization and growth. Elucidating the mechanisms by which host ephrin-A1 impacts cancer relapse and metastasis may shed new light on novel therapeutic strategies.
Collapse
Affiliation(s)
- Eileen Shiuan
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ashwin Inala
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Shan Wang
- Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
- Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Wenqiang Song
- Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
- Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | | | - Jin Chen
- Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
- Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Dana M. Brantley-Sieders
- Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| |
Collapse
|
11
|
Shiuan E, Inala A, Wang S, Song W, Youngblood V, Chen J, Brantley-Sieders DM. Host deficiency in ephrin-A1 inhibits breast cancer metastasis. F1000Res 2020; 9:217. [PMID: 32399207 PMCID: PMC7194498 DOI: 10.12688/f1000research.22689.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/19/2020] [Indexed: 12/26/2022] Open
Abstract
Background: The conventional dogma of treating cancer by focusing on the elimination of tumor cells has been recently refined to include consideration of the tumor microenvironment, which includes host stromal cells. Ephrin-A1, a cell surface protein involved in adhesion and migration, has been shown to be tumor suppressive in the context of the cancer cell. However, its role in the host has not been fully investigated. Here, we examine how ephrin-A1 host deficiency affects cancer growth and metastasis in a murine model of breast cancer. Methods: 4T1 cells were orthotopically implanted into the mammary fat pads or injected into the tail veins of ephrin-A1 wild-type ( Efna1+/+), heterozygous ( Efna1+/-), or knockout ( Efna1-/-) mice. Tumor growth, lung metastasis, and tumor recurrence after surgical resection were measured. Flow cytometry and immunohistochemistry (IHC) were used to analyze various cell populations in primary tumors and tumor-bearing lungs. Results: While primary tumor growth did not differ between Efna1+/+, Efna1+/-, and Efna1-/- mice, lung metastasis and primary tumor recurrence were significantly decreased in knockout mice. Efna1-/- mice had reduced lung colonization of 4T1 cells compared to Efna1+/+ littermate controls as early as 24 hours after tail vein injection. Furthermore, established lung lesions in Efna1-/- mice had reduced proliferation compared to those in Efna1+/+ controls. Conclusions: Our studies demonstrate that host deficiency of ephrin-A1 does not impact primary tumor growth but does affect metastasis by providing a less favorable metastatic niche for cancer cell colonization and growth. Elucidating the mechanisms by which host ephrin-A1 impacts cancer relapse and metastasis may shed new light on novel therapeutic strategies.
Collapse
Affiliation(s)
- Eileen Shiuan
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ashwin Inala
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Shan Wang
- Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
- Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Wenqiang Song
- Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
- Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | | | - Jin Chen
- Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
- Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Dana M. Brantley-Sieders
- Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| |
Collapse
|
12
|
Kundu S, Bansal S, Muthukumarasamy KM, Sachidanandan C, Motiani RK, Bajaj A. Deciphering the role of hydrophobic and hydrophilic bile acids in angiogenesis using in vitro and in vivo model systems. MEDCHEMCOMM 2017; 8:2248-2257. [PMID: 30108740 PMCID: PMC6071941 DOI: 10.1039/c7md00475c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/30/2017] [Indexed: 12/18/2022]
Abstract
Bile acids have emerged as strong signaling molecules capable of influencing various biological processes like inflammation, apoptosis, cancer progression and atherosclerosis depending on their chemistry. In the present study, we investigated the effect of major hydrophobic bile acids lithocholic acid (LCA) and deoxycholic acid (DCA) and hydrophilic bile acids cholic acid (CA) and chenodeoxycholic acid (CDCA) on angiogenesis. We employed human umbilical vein endothelial cells (HUVECs) and zebrafish embryos as model systems for studying the role of bile acids in angiogenesis. Our studies revealed that the hydrophilic CDCA enhanced ectopic vessel formation as observed by the increase in the number of sub-intestinal vessels (SIVs) in the zebrafish embryos. The pro-angiogenic role of CDCA was further corroborated by in vitro vessel formation studies performed with human umbilical vein endothelial cells (HUVECs), whereas the hydrophobic LCA reduced tubulogenesis and was toxic to the zebrafish embryos. We validated that CDCA enhances angiogenesis by increasing the expression of vascular growth factor receptors (VEGFR1 and VEGFR2) and matrix metalloproteinases (MMP9) and by decreasing the expression of adhesion protein vascular endothelial cadherin (VE-cadherin). Our work implicates that the nature of bile acids plays a critical role in dictating their biological functions and in regulating angiogenesis.
Collapse
Affiliation(s)
- Somanath Kundu
- Laboratory of Nanotechnology and Chemical Biology , Regional Centre for Biotechnology , 3rd Milestone Faridabad-Gurgaon Expressway , NCR Biotech Cluster , Faridabad , Haryana-121001 , India . ; Tel: +91 129 2848831
- Manipal University , Manipal-576104 , Karnataka , India
| | - Sandhya Bansal
- Laboratory of Nanotechnology and Chemical Biology , Regional Centre for Biotechnology , 3rd Milestone Faridabad-Gurgaon Expressway , NCR Biotech Cluster , Faridabad , Haryana-121001 , India . ; Tel: +91 129 2848831
| | | | - Chetana Sachidanandan
- CSIR-Institute of Genomics and Integrative Biology , Mathura Road , New Delhi 110025 , India .
| | - Rajender K Motiani
- CSIR-Institute of Genomics and Integrative Biology , Mathura Road , New Delhi 110025 , India .
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology , Regional Centre for Biotechnology , 3rd Milestone Faridabad-Gurgaon Expressway , NCR Biotech Cluster , Faridabad , Haryana-121001 , India . ; Tel: +91 129 2848831
| |
Collapse
|
13
|
A Critical Analysis of the Available In Vitro and Ex Vivo Methods to Study Retinal Angiogenesis. J Ophthalmol 2017; 2017:3034953. [PMID: 28848677 PMCID: PMC5564124 DOI: 10.1155/2017/3034953] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/20/2017] [Accepted: 06/28/2017] [Indexed: 12/15/2022] Open
Abstract
Angiogenesis is a biological process with a central role in retinal diseases. The choice of the ideal method to study angiogenesis, particularly in the retina, remains a problem. Angiogenesis can be assessed through in vitro and in vivo studies. In spite of inherent limitations, in vitro studies are faster, easier to perform and quantify, and typically less expensive and allow the study of isolated angiogenesis steps. We performed a systematic review of PubMed searching for original articles that applied in vitro or ex vivo angiogenic retinal assays until May 2017, presenting the available assays and discussing their applicability, advantages, and disadvantages. Most of the studies evaluated migration, proliferation, and tube formation of endothelial cells in response to inhibitory or stimulatory compounds. Other aspects of angiogenesis were studied by assessing cell permeability, adhesion, or apoptosis, as well as by implementing organotypic models of the retina. Emphasis is placed on how the methods are applied and how they can contribute to retinal angiogenesis comprehension. We also discuss how to choose the best cell culture to implement these methods. When applied together, in vitro and ex vivo studies constitute a powerful tool to improve retinal angiogenesis knowledge. This review provides support for researchers to better select the most suitable protocols in this field.
Collapse
|
14
|
Hatziapostolou M, Polytarchou C. EPH receptor/ephrin system: in the quest for novel anti-angiogenic therapies: Commentary on Hassan-Mohamed et al., Br J Pharmacol 171: 5195-5208. Br J Pharmacol 2015; 172:4597-4599. [PMID: 24724581 DOI: 10.1111/bph.12718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 04/04/2014] [Indexed: 01/18/2023] Open
Abstract
LINKED ARTICLE This article is a Commentary on Hassan-Mohamed I, Giorgio C, Incerti M, Russo S, Pala D, Pasquale EB, Zanotti I, Vicini P, Barocelli E, Rivara S, Mor M, Lodola A and Tognolini M (2014). UniPR129 is a competitive small molecule Eph-ephrin antagonist blocking in vitro angiogenesis at low micromolar concentrations. Br J Pharmacol 171: 5195-5208. doi: 10.1111/bph.12669.
Collapse
Affiliation(s)
- M Hatziapostolou
- Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - C Polytarchou
- Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
15
|
Youngblood V, Wang S, Song W, Walter D, Hwang Y, Chen J, Brantley-Sieders DM. Elevated Slit2 Activity Impairs VEGF-Induced Angiogenesis and Tumor Neovascularization in EphA2-Deficient Endothelium. Mol Cancer Res 2014; 13:524-37. [PMID: 25504371 DOI: 10.1158/1541-7786.mcr-14-0142] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Angiogenic remodeling during embryonic development and in adult tissue homeostasis is orchestrated by cooperative signaling between several distinct molecular pathways, which are often exploited by tumors. Indeed, tumors upregulate proangiogenic molecules while simultaneously suppressing angiostatic pathways to recruit blood vessels for growth, survival, and metastatic spread. Understanding how cancers exploit proangiogenic and antiangiogenic signals is a key step in developing new, molecularly targeted antiangiogenic therapies. While EphA2, a receptor tyrosine kinase (RTK), is required for VEGF-induced angiogenesis, the mechanism through which these pathways intersect remains unclear. Slit2 expression is elevated in EphA2-deficient endothelium, and here it is reported that inhibiting Slit activity rescues VEGF-induced angiogenesis in cell culture and in vivo, as well as VEGF-dependent tumor angiogenesis, in EphA2-deficient endothelial cells and animals. Moreover, blocking Slit activity or Slit2 expression in EphA2-deficient endothelial cells restores VEGF-induced activation of Src and Rac, both of which are required for VEGF-mediated angiogenesis. These data suggest that EphA2 suppression of Slit2 expression and Slit angiostatic activity enables VEGF-induced angiogenesis in vitro and in vivo, providing a plausible mechanism for impaired endothelial responses to VEGF in the absence of EphA2 function. IMPLICATIONS Modulation of angiostatic factor Slit2 by EphA2 receptor regulates endothelial responses to VEGF-mediated angiogenesis and tumor neovascularization.
Collapse
Affiliation(s)
- Victoria Youngblood
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Shan Wang
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Wenqiang Song
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Debra Walter
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Yoonha Hwang
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jin Chen
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee. Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee. Department of Cellular and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee. Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee. Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Dana M Brantley-Sieders
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee. Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee.
| |
Collapse
|
16
|
Zou A, Lambert D, Yeh H, Yasukawa K, Behbod F, Fan F, Cheng N. Elevated CXCL1 expression in breast cancer stroma predicts poor prognosis and is inversely associated with expression of TGF-β signaling proteins. BMC Cancer 2014; 14:781. [PMID: 25344051 PMCID: PMC4221705 DOI: 10.1186/1471-2407-14-781] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 10/14/2014] [Indexed: 12/30/2022] Open
Abstract
Background CXCL1 is a chemotactic cytokine shown to regulate breast cancer progression and chemo-resistance. However, the prognostic significance of CXCL1 expression in breast cancer has not been fully characterized. Fibroblasts are important cellular components of the breast tumor microenvironment, and recent studies indicate that this cell type is a potential source of CXCL1 expression in breast tumors. The goal of this study was to further characterize the expression patterns of CXCL1 in breast cancer stroma, determine the prognostic significance of stromal CXCL1 expression, and identify factors affecting stromal CXCL1 expression. Methods Stromal CXCL1 protein expression was analyzed in 54 normal and 83 breast carcinomas by immunohistochemistry staining. RNA expression of CXCL1 in breast cancer stroma was analyzed through data mining in http://www.Oncomine.org. The relationships between CXCL1 expression and prognostic factors were analyzed by univariate analysis. Co-immunofluorescence staining for CXCL1, α-Smooth Muscle Actin (α-SMA) and Fibroblast Specific Protein 1 (FSP1) expression was performed to analyze expression of CXCL1 in fibroblasts. By candidate profiling, the TGF-β signaling pathway was identified as a regulator of CXCL1 expression in fibroblasts. Expression of TGF-β and SMAD gene products were analyzed by immunohistochemistry and data mining analysis. The relationships between stromal CXCL1 and TGF-β signaling components were analyzed by univariate analysis. Carcinoma associated fibroblasts isolated from MMTV-PyVmT mammary tumors were treated with recombinant TGF-β and analyzed for CXCL1 promoter activity by luciferase assay, and protein secretion by ELISA. Results Elevated CXCL1 expression in breast cancer stroma correlated with tumor grade, disease recurrence and decreased patient survival. By co-immunofluorescence staining, CXCL1 expression overlapped with expression of α-SMA and FSP1 proteins. Expression of stromal CXCL1 protein expression inversely correlated with expression of TGF-β signaling components. Treatment of fibroblasts with TGF-β suppressed CXCL1 secretion and promoter activity. Conclusions Increased CXCL1 expression in breast cancer stroma correlates with poor patient prognosis. Furthermore, CXCL1 expression is localized to α-SMA and FSP1 positive fibroblasts, and is negatively regulated by TGF-β signaling. These studies indicate that decreased TGF-β signaling in carcinoma associated fibroblasts enhances CXCL1 expression in fibroblasts, which could contribute to breast cancer progression. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-781) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nikki Cheng
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
17
|
Gucciardo E, Sugiyama N, Lehti K. Eph- and ephrin-dependent mechanisms in tumor and stem cell dynamics. Cell Mol Life Sci 2014; 71:3685-710. [PMID: 24794629 PMCID: PMC11113620 DOI: 10.1007/s00018-014-1633-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/31/2014] [Accepted: 04/17/2014] [Indexed: 01/17/2023]
Abstract
The erythropoietin-producing hepatocellular (Eph) receptors comprise the largest family of receptor tyrosine kinases (RTKs). Initially regarded as axon-guidance and tissue-patterning molecules, Eph receptors have now been attributed with various functions during development, tissue homeostasis, and disease pathogenesis. Their ligands, ephrins, are synthesized as membrane-associated molecules. At least two properties make this signaling system unique: (1) the signal can be simultaneously transduced in the receptor- and the ligand-expressing cell, (2) the signaling outcome through the same molecules can be opposite depending on cellular context. Moreover, shedding of Eph and ephrin ectodomains as well as ligand-dependent and -independent receptor crosstalk with other RTKs, proteases, and adhesion molecules broadens the repertoire of Eph/ephrin functions. These integrated pathways provide plasticity to cell-microenvironment communication in varying tissue contexts. The complex molecular networks and dynamic cellular outcomes connected to the Eph/ephrin signaling in tumor-host communication and stem cell niche are the main focus of this review.
Collapse
Affiliation(s)
- Erika Gucciardo
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, P.O.B. 63, 00014 Helsinki, Finland
| | - Nami Sugiyama
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, P.O.B. 63, 00014 Helsinki, Finland
- Department of Biosystems Science and Bioengineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Kaisa Lehti
- Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, P.O.B. 63, 00014 Helsinki, Finland
| |
Collapse
|
18
|
Son AI, Sheleg M, Cooper MA, Sun Y, Kleiman NJ, Zhou R. Formation of persistent hyperplastic primary vitreous in ephrin-A5-/- mice. Invest Ophthalmol Vis Sci 2014; 55:1594-606. [PMID: 24550361 DOI: 10.1167/iovs.13-12706] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Primary vitreous regression is a critical event in mammalian eye development required for proper ocular maturity and unhindered vision. Failure of this event results in the eye disease persistent hyperplastic primary vitreous (PHPV), also identified as persistent fetal vasculature (PFV), a condition characterized by the presence of a fibrovascular mass adjacent to the lens and retina, and associated with visual disability and blindness. Here, we identify ephrin-A5 to be a critical regulator for primary vitreous regression. METHODS Wild-type and ephrin-A5(-/-) eyes were examined at various developmental stages to determine the progression of PHPV. Eye tissue was sectioned and examined by H&E staining. Protein expression and localization was determined through immunohistochemistry. Relative levels of Eph receptors were determined by RT-PCR. RESULTS Ephrin-A5(-/-) animals develop ocular phenotypes representative of PHPV, most notably the presence of a large hyperplastic mass posterior to the lens that remains throughout the lifetime of the animal. The aberrant tissue in these mutant mice consists of residual hyaloid vessels surrounded by pigmented cells of neural crest origin. Labeling with bromodeoxyuridine (BrdU) and detection of proliferating cell nuclear antigen (PCNA) expression shows that the mass in ephrin-A5(-/-) animals is mitotically active in embryonic and postnatal stages. CONCLUSIONS Ephrin-A5 is a critical factor that regulates primary vitreous regression.
Collapse
Affiliation(s)
- Alexander I Son
- Department of Chemical Biology, Susan Lehman-Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | | | | | | | | | | |
Collapse
|
19
|
Miao Z, Dong Y, Fang W, Shang D, Liu D, Zhang K, Li B, Chen YH. VEGF Increases Paracellular Permeability in Brain Endothelial Cells via Upregulation of EphA2. Anat Rec (Hoboken) 2014; 297:964-72. [DOI: 10.1002/ar.22878] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/13/2013] [Accepted: 12/13/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Ziwei Miao
- Department of Developmental Cell Biology; Key Laboratory of Cell Biology; Ministry of Public Health; and Key Laboratory of Medical Cell Biology; Ministry of Education, China Medical University; Heping District Shenyang China
| | - Yanbin Dong
- Department of Developmental Cell Biology; Key Laboratory of Cell Biology; Ministry of Public Health; and Key Laboratory of Medical Cell Biology; Ministry of Education, China Medical University; Heping District Shenyang China
| | - Wengang Fang
- Department of Developmental Cell Biology; Key Laboratory of Cell Biology; Ministry of Public Health; and Key Laboratory of Medical Cell Biology; Ministry of Education, China Medical University; Heping District Shenyang China
| | - Deshu Shang
- Department of Developmental Cell Biology; Key Laboratory of Cell Biology; Ministry of Public Health; and Key Laboratory of Medical Cell Biology; Ministry of Education, China Medical University; Heping District Shenyang China
| | - Dongxin Liu
- Department of Developmental Cell Biology; Key Laboratory of Cell Biology; Ministry of Public Health; and Key Laboratory of Medical Cell Biology; Ministry of Education, China Medical University; Heping District Shenyang China
| | - Ke Zhang
- Department of Developmental Cell Biology; Key Laboratory of Cell Biology; Ministry of Public Health; and Key Laboratory of Medical Cell Biology; Ministry of Education, China Medical University; Heping District Shenyang China
| | - Bo Li
- Department of Developmental Cell Biology; Key Laboratory of Cell Biology; Ministry of Public Health; and Key Laboratory of Medical Cell Biology; Ministry of Education, China Medical University; Heping District Shenyang China
| | - Yu-Hua Chen
- Department of Developmental Cell Biology; Key Laboratory of Cell Biology; Ministry of Public Health; and Key Laboratory of Medical Cell Biology; Ministry of Education, China Medical University; Heping District Shenyang China
| |
Collapse
|
20
|
Kyosseva SV, Chen L, Seal S, McGinnis JF. Nanoceria inhibit expression of genes associated with inflammation and angiogenesis in the retina of Vldlr null mice. Exp Eye Res 2013; 116:63-74. [PMID: 23978600 DOI: 10.1016/j.exer.2013.08.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/02/2013] [Accepted: 08/06/2013] [Indexed: 12/26/2022]
Abstract
Oxidative stress and inflammation are important pathological mechanisms in many neurodegenerative diseases, including age-related macular degeneration (AMD). The very low-density lipoprotein receptor knockout mouse (Vldlr-/-) has been identified as a model for AMD and in particular for retinal angiomatous proliferation (RAP). In this study we examined the effect of cerium oxide nanoparticles (nanoceria) that have been shown to have catalytic antioxidant activity, on expression of 88 major cytokines in the retinas of Vldlr-/- mice using a PCR array. A single intravitreal injection of nanoceria at P28 caused inhibition of pro-inflammatory cytokines and pro-angiogenic growth factors including Tslp, Lif, Il3, Il7, Vegfa, Fgf1, Fgf2, Fgf7, Egf, Efna3, Lep, and up-regulation of several cytokines and anti-angiogenic genes in the Vldlr-/- retina within one week. We used the Ingenuity Pathway Analysis software to search for biological functions, pathways, and interrelationships between gene networks. Many of the genes whose activities were affected are involved in cell signaling, cellular development, growth and proliferation, and tissue development. Western blot analysis revealed that nanoceria inhibit the activation of ERK 1/2, JNK, p38 MAP kinase, and Akt. These data suggest that nanoceria may represent a novel therapeutic strategy to treat AMD, RAP, and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Svetlana V Kyosseva
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | | | | | | |
Collapse
|
21
|
Park JE, Son AI, Zhou R. Roles of EphA2 in Development and Disease. Genes (Basel) 2013; 4:334-57. [PMID: 24705208 PMCID: PMC3924825 DOI: 10.3390/genes4030334] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/22/2013] [Accepted: 05/23/2013] [Indexed: 01/12/2023] Open
Abstract
The Eph family of receptor tyrosine kinases (RTKs) has been implicated in the regulation of many aspects of mammalian development. Recent analyses have revealed that the EphA2 receptor is a key modulator for a wide variety of cellular functions. This review focuses on the roles of EphA2 in both development and disease.
Collapse
Affiliation(s)
- Jeong Eun Park
- Susan Lehman-Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA.
| | - Alexander I Son
- Susan Lehman-Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA.
| | - Renping Zhou
- Susan Lehman-Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
22
|
Wang X, Fan J, Zhang M, Sun Z, Xu G. Gene expression changes under cyclic mechanical stretching in rat retinal glial (Müller) cells. PLoS One 2013; 8:e63467. [PMID: 23723984 PMCID: PMC3664568 DOI: 10.1371/journal.pone.0063467] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/03/2013] [Indexed: 11/19/2022] Open
Abstract
Objective The retina is subjected to tractional forces in various conditions. As the predominant glial element in the retina, Müller cells are active players in all forms of retinal injury and disease. In this study, we aim to identify patterns of gene expression changes induced by cyclic mechanical stretching in Müller cells. Methods Rat Müller cells were seeded onto flexible bottom culture plates and subjected to a cyclic stretching regimen of 15% equibiaxial stretching for 1 and 24 h. RNA was extracted and amplified, labeled, and hybridized to rat genome microarrays. The expression profiles were analyzed using GeneSpring software, and gene ontology analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to select, annotate, and visualize genes by function and pathway. The selected genes of interest were further validated by Quantitative Real-time PCR (qPCR). Results Microarray data analysis showed that at 1 and 24 h, the expression of 532 and 991 genes in the Müller cells significantly (t-test, p<0.05) differed between the mechanically stretched and unstretched groups. Of these genes, 56 genes at 1 h and 62 genes at 24 h showed more than a twofold change in expression. Several genes related to response to stimulus (e.g., Egr2, IL6), cell proliferation (e.g., Areg, Atf3), tissue remodeling (e.g., PVR, Loxl2), and vasculogenesis (e.g., Epha2, Nrn1) were selected and validated by qPCR. KEGG pathway analysis showed significant changes in MAPK signaling at both time points. Conclusions Cyclic mechanical strain induces extensive changes in the gene expression in Müller cells through multiple molecular pathways. These results indicate the complex mechanoresponsive nature of Müller cells, and they provide novel insights into possible molecular mechanisms that would account for many retinal diseases in which the retina is often subjected to mechanical forces, such as pathological myopia and proliferative vitreoretinopathy.
Collapse
Affiliation(s)
- Xin Wang
- Department of Ophthalmology and Vision Sciences, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Jiawen Fan
- Department of Ophthalmology and Vision Sciences, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Meng Zhang
- Department of Ophthalmology and Vision Sciences, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Zhongcui Sun
- Department of Ophthalmology and Vision Sciences, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Gezhi Xu
- Department of Ophthalmology and Vision Sciences, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
23
|
Su D, Li X, Gao D. Inhibition of choroidal neovascularization by anti-EphB4 monoclonal antibody. Exp Ther Med 2013; 5:1226-1230. [PMID: 23596494 PMCID: PMC3628074 DOI: 10.3892/etm.2013.962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 01/16/2013] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to determine the effect of the EphB4 monoclonal antibody on experimental choroidal neovascularization (CNV) progression. Experimental CNV was established by argon laser photocoagulation. In the experimental group, the EphB4 monoclonal antibody was injected into the vitreous space in the eye specimens on days 0, 3, 6 and 9 after CNV model establishment. In the control group, an equal amount of balanced salt solution was injected at the same time points. On day 10 after CNV model establishment, fluorescein isothiocyanate-dextran endocardial perfusion and choroidal stretched preparation were conducted, respectively, for the two groups. The CNV area in each light spot and the mean values were determined. Histopathological examination was conducted and the ratio of the maximum thickness of the CNV in each light spot to the surrounding normal choroidal thickness, as well as the mean ratio, were calculated. Choroidal stretched preparation confirmed that the CNV of the experimental group was smaller, whereas the CNV of the control group was wider and larger. Quantitative analysis revealed that CNV in the experimental group was significantly inhibited (t=11.84, P<0.01) and that CNV progression in the experimental group was significantly suppressed (t=7.45, P<0.01). Histopathological examination revealed that CNV in the experimental group was thinner and smaller. Vitreous injection of the EphB4 monoclonal antibody inhibits experimental CNV progression. However, its specific mechanism remains unclear. Endogenous EphrinB2/EphB4 regulates ocular neovascularization and may become a new target in treating CNV diseases.
Collapse
Affiliation(s)
- Dongfeng Su
- Department of Ophthalmology, 463rd Hospital of Chinese People's Liberation Army, Shenyang 110042; ; Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang 110004
| | | | | |
Collapse
|
24
|
Funk SD, Orr AW. Ephs and ephrins resurface in inflammation, immunity, and atherosclerosis. Pharmacol Res 2013; 67:42-52. [DOI: 10.1016/j.phrs.2012.10.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 10/04/2012] [Accepted: 10/10/2012] [Indexed: 01/13/2023]
|
25
|
Zozulya SA, Udovichenko IP. [Eph family receptors as therapeutic targets]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2012; 38:267-79. [PMID: 22997698 DOI: 10.1134/s106816201203017x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Anti-angiogenic therapy is currently a commonly accepted and rapidly developing approach in oncology and other pathologies linked to aberrant neovascularization. Discovery and validation of additional molecular targets in angiogenesis is needed due to the limitations of the existing clinical therapeutics inhibiting activity of vascular endothelial growth factor (VEGF) and its receptors. A brief review of normal and pathological biological functions of the Eph family of receptor tyrosine kinases and their ephrin ligands is presented, and the approaches to developing therapeutics with anti- and pro-angiogenic and anti-tumor activity based on selective molecular modulation of Eph-ephrin signaling pairs are discussed. Functional roles of Eph-kinases and ephrins in such mechanisms of cancerogenesis as cell proliferation and invasion are also addressed.
Collapse
|
26
|
Coulthard MG, Morgan M, Woodruff TM, Arumugam TV, Taylor SM, Carpenter TC, Lackmann M, Boyd AW. Eph/Ephrin signaling in injury and inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1493-503. [PMID: 23021982 DOI: 10.1016/j.ajpath.2012.06.043] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 06/28/2012] [Indexed: 12/20/2022]
Abstract
The Eph/ephrin receptor-ligand system plays an important role in embryogenesis and adult life, principally by influencing cell behavior through signaling pathways, resulting in modification of the cell cytoskeleton and cell adhesion. There are 10 EphA receptors, and six EphB receptors, distinguished on sequence difference and binding preferences, that interact with the six glycosylphosphatidylinositol-linked ephrin-A ligands and the three transmembrane ephrin-B ligands, respectively. The Eph/ephrin proteins, originally described as developmental regulators that are expressed at low levels postembryonically, are re-expressed after injury to the optic nerve, spinal cord, and brain in fish, amphibians, rodents, and humans. In rodent spinal cord injury, the up-regulation of EphA4 prevents recovery by inhibiting axons from crossing the injury site. Eph/ephrin proteins may be partly responsible for the phenotypic changes to the vascular endothelium in inflammation, which allows fluid and inflammatory cells to pass from the vascular space into the interstitial tissues. Specifically, EphA2/ephrin-A1 signaling in the lung may be responsible for pulmonary inflammation in acute lung injury. A role in T-cell maturation and chronic inflammation (heart failure, inflammatory bowel disease, and rheumatoid arthritis) is also reported. Although there remains much to learn about Eph/ephrin signaling in human disease, and specifically in injury and inflammation, this area of research raises the exciting prospect that novel therapies will be developed that precisely target these pathways.
Collapse
Affiliation(s)
- Mark G Coulthard
- Academic Discipline of Paediatrics and Child Health, University of Queensland, Royal Children's Hospital, Herston, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Chen J. Regulation of tumor initiation and metastatic progression by Eph receptor tyrosine kinases. Adv Cancer Res 2012; 114:1-20. [PMID: 22588054 DOI: 10.1016/b978-0-12-386503-8.00001-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In recent years, a growing body of evidence has indicated that signaling molecules previously implicated in axon guidance are important regulators of multistep tumorigenesis and progression. Eph receptors and ephrins belong to this special class of molecules that play important roles in both axon guidance and cancer. Tremendous progress has been made in the past few years in both understanding the role of Eph receptors and ephrins in cancer and designing therapeutic strategies for cancer therapy. This review will focus on new advances in elucidating the contribution of Eph/ephrin molecules to key processes in tumor initiation and metastatic progression, including cancer cell proliferation, invasion and metastasis, and tumor angiogenesis.
Collapse
Affiliation(s)
- Jin Chen
- VA Medical Center, Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
28
|
Inhibition of Eph receptor-ephrin ligand interaction by tea polyphenols. Pharmacol Res 2012; 66:363-73. [PMID: 22750215 DOI: 10.1016/j.phrs.2012.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 05/29/2012] [Accepted: 05/29/2012] [Indexed: 11/21/2022]
Abstract
Tea contains a variety of bioactive chemicals, such as catechins and other polyphenols. These compounds are thought to be responsible for the health benefits of tea consumption by affecting the function of many cellular targets, not all of which have been identified. In a high-throughput screen for small molecule antagonists of the EphA4 receptor tyrosine kinase, we identified five tea polyphenols that substantially inhibit EphA4 binding to a synthetic peptide ligand. Further characterization of theaflavin monogallates from black tea and epigallocatechin-3,5-digallate from green tea revealed that these compounds at low micromolar concentrations also inhibit binding of the natural ephrin ligands to EphA4 and several other Eph receptors in in vitro assays. The compounds behave as competitive EphA4 antagonists, and their inhibitory activity is affected by amino acid mutations within the ephrin binding pocket of EphA4. In contrast, the major green tea catechin, epigallocatechin-3-gallate (EGCG), does not appear to be an effective Eph receptor antagonist. In cell culture assays, theaflavin monogallates and epigallocatechin-3,5-digallate inhibit ephrin-induced tyrosine phosphorylation (activation) of Eph receptors and endothelial capillary-like tube formation. However, the wider spectrum of Eph receptors affected by the tea derivatives in cells suggests additional mechanisms of inhibition besides interfering with ephrin binding. These results show that tea polyphenols derived from both black and green tea can suppress the biological activities of Eph receptors. Thus, the Eph receptor tyrosine kinase family represents an important class of targets for tea-derived phytochemicals.
Collapse
|
29
|
Ephs and ephrins in cancer: ephrin-A1 signalling. Semin Cell Dev Biol 2011; 23:109-15. [PMID: 22040911 DOI: 10.1016/j.semcdb.2011.10.019] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 10/17/2011] [Indexed: 11/21/2022]
Abstract
Ephrin-A1 and its primary receptor, EphA2, are involved in numerous physiological processes and have been intensely studied for their roles in malignancy. Ephrin-Eph signalling is complex on its own and is also cell-type dependent, making elucidation of the exact role of ephrin-A1 in neoplasia challenging. Multiple oncogenic signalling pathways, such as MAP/ERK and PI3K are affected by ephrin-A1, and in some cases evidence suggests the promotion of a specific pathway in one cell or cancer type and inhibition of the same pathway in another type of cell or cancer. Ephrin-A1 also plays an integral role in angiogenesis and tumor neovascularization. Until recently, studies investigating ephrins focused on the ligands as GPI-anchored proteins that required membrane anchoring or artificial clustering for Eph receptor activation. However, recent studies have demonstrated a functional role for soluble, monomeric ephrin-A1. This review will focus on various forms of ephrin-A1-specific signalling in human malignancy.
Collapse
|
30
|
Noberini R, De SK, Zhang Z, Wu B, Raveendra-Panickar D, Chen V, Vazquez J, Qin H, Song J, Cosford NDP, Pellecchia M, Pasquale EB. A disalicylic acid-furanyl derivative inhibits ephrin binding to a subset of Eph receptors. Chem Biol Drug Des 2011; 78:667-78. [PMID: 21791013 DOI: 10.1111/j.1747-0285.2011.01199.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Eph receptor tyrosine kinases and ephrin ligands control many physiological and pathological processes, and molecules interfering with their interaction are useful probes to elucidate their complex biological functions. Moreover, targeting Eph receptors might enable new strategies to inhibit cancer progression and pathological angiogenesis as well as promote nerve regeneration. Because our previous work suggested the importance of the salicylic acid group in antagonistic small molecules targeting Eph receptors, we screened a series of salicylic acid derivatives to identify novel Eph receptor antagonists. This identified a disalicylic acid-furanyl derivative that inhibits ephrin-A5 binding to EphA4 with an IC(50) of 3 μm in ELISAs. This compound, which appears to bind to the ephrin-binding pocket of EphA4, also targets several other Eph receptors. Furthermore, it inhibits EphA2 and EphA4 tyrosine phosphorylation in cells stimulated with ephrin while not affecting phosphorylation of EphB2, which is not a target receptor. In endothelial cells, the disalicylic acid-furanyl derivative inhibits EphA2 phosphorylation in response to TNFα and capillary-like tube formation on Matrigel, two effects that depend on EphA2 interaction with endogenous ephrin-A1. These findings suggest that salicylic acid derivatives could be used as starting points to design new small molecule antagonists of Eph receptors.
Collapse
Affiliation(s)
- Roberta Noberini
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
OLFERT IMARK, BIROT OLIVIER. Importance of Anti-angiogenic Factors in the Regulation of Skeletal Muscle Angiogenesis. Microcirculation 2011; 18:316-30. [DOI: 10.1111/j.1549-8719.2011.00092.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Ehlken C, Martin G, Lange C, Gogaki EG, Fiedler U, Schaffner F, Hansen LL, Augustin HG, Agostini HT. Therapeutic interference with EphrinB2 signalling inhibits oxygen-induced angioproliferative retinopathy. Acta Ophthalmol 2011; 89:82-90. [PMID: 19764912 DOI: 10.1111/j.1755-3768.2009.01609.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE To investigate whether EphrinB2 (EfnB2) or EphB4 influence retinal angiogenesis under physiological or pathological conditions. METHODS Using the mouse model of oxygen-induced proliferative retinopathy (OIR), the expression of EfnB2, EphB4, vascular endothelial growth factor (VEGF), VEGFR1 and VEGFR2 was quantified by quantitative polymerase chain reaction (qPCR) and localized in EfnB2- and EphB4-lacZ mice. Angioproliferative retinopathy was manipulated by intravitreal injection of dimeric EfnB2 and monomeric or dimeric EphB4. RESULTS Dimeric EphB4 (EphB4-Fc) and EfnB2 (EfnB2-Fc) enhanced hypoxia-induced angioproliferative retinopathy but not physiological angiogenesis. Monomeric EphB4 (sEphB4) reduced angiogenesis. The messenger RNA (mRNA) level of EfnB2 increased significantly in the hyperoxic phase (P7-P12), while EphB4, VEGF, VEGFR1 and VEGFR2 showed a significant - up to fivefold - increased expression at P14, the start of morphologically visible vasoproliferation caused by relative hypoxia. CONCLUSION The ephrin/Eph system is involved in angioproliferative retinopathy. Stimulation of EphB4 and EfnB2 signalling using EfnB2-Fc and EphB4-Fc, respectively, enhanced hypoxia-induced angiogenesis. In contrast, sEphB4 inhibited hypoxia-induced angiogenesis. Therefore, angiogenesis is enhanced by signalling through both EphB4 (forward) and EfnB2 (reverse). The distinction in the expression kinetics of EphB4 and EfnB2 indicates that they govern two different signalling pathways and are regulated in diverse ways. sEphB4 might be a useful drug for antiangiogenic therapy.
Collapse
|
33
|
Sugimura H, Wang JD, Mori H, Tsuboi M, Nagura K, Igarashi H, Tao H, Nakamura R, Natsume H, Kahyo T, Shinmura K, Konno H, Hamaya Y, Kanaoka S, Kataoka H, Zhou XJ. EPH-EPHRIN in human gastrointestinal cancers. World J Gastrointest Oncol 2010; 2:421-428. [PMID: 21191536 PMCID: PMC3011096 DOI: 10.4251/wjgo.v2.i12.421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/06/2010] [Accepted: 12/13/2010] [Indexed: 02/05/2023] Open
Abstract
Ever since its discovery two decades ago, the erythropoietin-producing hepatoma (EPH)-EPHRIN system has been shown to play multifaceted roles in human gastroenterological cancer as well as neurodevelopment. Over-expression, amplification and point mutations have been found in many human cancers and many investigators have shown correlations between these up-regulations and tumor angiogenesis. Thus, the genes in this family are considered to be potential targets of cancer therapy. On the other hand, the down-regulation of some members as a result of epigenetic changes has also been reported in some cancers. Furthermore, the correlation between altered expressions and clinical prognosis seems to be inconclusive. A huge amount of protein-protein interaction studies on the EPH-EPHRIN system have provided a basic scheme for signal transductions, especially bi-directional signaling involving EPH-ERPHRIN molecules at the cell membrane. This information also provides a manipulative strategy for harnessing the actions of these molecules. In this review, we summarize the known alterations of EPH-EPHRIN genes in human tumors of the esophagus, stomach, colorectum, liver and pancreas and present the perspective that the EPH-EPHRIN system could be a potential target of cancer therapy.
Collapse
Affiliation(s)
- Haruhiko Sugimura
- Haruhiko Sugimura, Hiroki Mori, Masaru Tsuboi, Kiyoko Nagura, Hisaki Igarashi, Hong Tao, Ritsuko Nakamura, Hiroko Natsume, Tomoaki Kahyo, Kazuya Shinmura, Department of Pathology I, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Cooperative signaling between Slit2 and Ephrin-A1 regulates a balance between angiogenesis and angiostasis. Mol Cell Biol 2010; 31:404-16. [PMID: 21135133 DOI: 10.1128/mcb.00667-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Slit proteins induce cytoskeletal remodeling through interaction with roundabout (Robo) receptors, regulating migration of neurons and nonneuronal cells, including leukocytes, tumor cells, and endothelium. The role of Slit2 in vascular remodeling, however, remains controversial, with reports of both pro- and antiangiogenic activity. We report here that cooperation between Slit2 and ephrin-A1 regulates a balance between the pro- and antiangiogenic functions of Slit2. While Slit2 promotes angiogenesis in culture and in vivo as a single agent, Slit2 potently inhibits angiogenic remodeling in the presence of ephrin-A1. Slit2 stimulates angiogenesis through mTORC2-dependent activation of Akt and Rac GTPase, the activities of which are inhibited in the presence of ephrin-A1. Activated Rac or Akt partially rescues vascular assembly and motility in costimulated endothelium. Taken together, these data suggest that Slit2 differentially regulates angiogenesis in the context of ephrin-A1, providing a plausible mechanism for the pro- versus antiangiogenic functions of Slit2. Our results suggest that the complex roles of Slit-Robo signaling in angiogenesis involve context-dependent mechanisms.
Collapse
|
35
|
Davies MH, Stempel AJ, Hubert KE, Powers MR. Altered vascular expression of EphrinB2 and EphB4 in a model of oxygen-induced retinopathy. Dev Dyn 2010; 239:1695-707. [PMID: 20503366 DOI: 10.1002/dvdy.22306] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
EphrinB2 ligands and EphB4 receptors are expressed on endothelial cells (EC) of arteries and veins, respectively, and are essential for vascular development. To understand how these molecules regulate retinal neovascularization (NV), we evaluated their expression in a model of oxygen-induced retinopathy (OIR). EphrinB2 and EphB4 were expressed on arterial and venous trunks, respectively, and on a subset of deep capillary vessels. EphB4 expression was reduced following hyperoxia, while ephrinB2 expression remained unaltered. In addition, a subset of EphB4-positive veins regressed in a caspase-3-dependent manner during hyperoxia. Arteriovenous malformations were also observed with loss of arterial-venous boundaries. Finally, both ephrinB2 and EphB4 were expressed on a subset of neovascular tufts following hyperoxia. These data confirm the contribution of ECs from both venous and arterial origins to the development of retinal NV.
Collapse
Affiliation(s)
- Michael H Davies
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, USA
| | | | | | | |
Collapse
|
36
|
The small molecule specific EphB4 kinase inhibitor NVP-BHG712 inhibits VEGF driven angiogenesis. Angiogenesis 2010; 13:259-67. [PMID: 20803239 PMCID: PMC2941628 DOI: 10.1007/s10456-010-9183-z] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 08/05/2010] [Indexed: 01/02/2023]
Abstract
EphB4 and its cognitive ligand ephrinB2 play an important role in embryonic vessel development and vascular remodeling. In addition, several reports suggest that this receptor ligand pair is also involved in pathologic vessel formation in adults including tumor angiogenesis. Eph/ephrin signaling is a complex phenomena characterized by receptor forward signaling through the tyrosine kinase of the receptor and ephrin reverse signaling through various protein–protein interaction domains and phosphorylation motifs of the ephrin ligands. Therefore, interfering with EphR/ephrin signaling by the means of targeted gene ablation, soluble receptors, dominant negative mutants or antisense molecules often does not allow to discriminate between inhibition of Eph/ephrin forward and reverse signaling. We developed a specific small molecular weight kinase inhibitor of the EphB4 kinase, NVP-BHG712, which inhibits EphB4 kinase activity in the low nanomolar range in cellular assays showed high selectivity for targeting the EphB4 kinase when profiled against other kinases in biochemical as well as in cell based assays. Furthermore, NVP-BHG712 shows excellent pharmacokinetic properties and potently inhibits EphB4 autophosphorylation in tissues after oral administration. In vivo, NVP-BHG712 inhibits VEGF driven vessel formation, while it has only little effects on VEGF receptor (VEGFR) activity in vitro or in cellular assays. The data shown here suggest a close cross talk between the VEGFR and EphR signaling during vessel formation. In addition to its established function in vascular remodeling and endothelial arterio-venous differentiation, EphB4 forward signaling appears to be an important mediator of VEGF induced angiogenesis since inhibition of EphB4 forward signaling is sufficient to inhibit VEGF induced angiogenesis.
Collapse
|
37
|
Abstract
Angiogenesis is the formation of new blood vessels from pre-existing vasculature. Pathologic angiogenesis in the eye can lead to severe visual impairment. In our review, we discuss the roles of both pro-angiogenic and anti-angiogenic molecular players in corneal angiogenesis, proliferative diabetic retinopathy, exudative macular degeneration and retinopathy of prematurity, highlighting novel targets that have emerged over the past decade.
Collapse
Affiliation(s)
- Yureeda Qazi
- Department of Ophthalmology, John Moran Eye Center, University of Utah, Salt Lake City, UT-84132, USA
| | | | | |
Collapse
|
38
|
Recchia FM, Xu L, Penn JS, Boone B, Dexheimer PJ. Identification of genes and pathways involved in retinal neovascularization by microarray analysis of two animal models of retinal angiogenesis. Invest Ophthalmol Vis Sci 2009; 51:1098-105. [PMID: 19834031 DOI: 10.1167/iovs.09-4006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Comparative retinal gene expression analysis in two rodent models of oxygen-induced retinopathy (OIR) was performed to identify the genes and pathways involved in retinal neovascularization. METHODS Three independent experimental runs were conducted for each species, according to standard protocols for induction of OIR. Total retinal RNA was isolated at two time points, corresponding to the early response to relative hypoxia (P13 in mouse, P15 in rat) and to the later phase of maximum retinal neovascularization (P18 in mouse, P20 in rat) and was used to prepare labeled probes for hybridization. Gene expression was compared between normal and experimental conditions for each species at each time point. Probesets with a false-discovery rate of <or=0.05 were considered significantly different and were classified as cellular functions or biological pathways. Changes in expression of selected genes were confirmed by quantitative rtPCR. RESULTS At the early time point, there were changes in 43 genes in each species, with two in common. Increased expression of members of the VEGF and ephrin receptor signaling pathways were identified in both models. At the later time point, there were changes in 26 genes in the rat and in 1622 in the mouse, with 13 in common. Four pathways were identified in both models. CONCLUSIONS Genes and pathways known to be involved in angiogenesis, as well as other biologically plausible genes and pathways, were identified. This work serves as a comprehensive resource for the study of retinal neovascularization and identification of potential rational targets for antiangiogenic therapy.
Collapse
Affiliation(s)
- Franco M Recchia
- Retina Division, Vanderbilt Eye Institute, Nashville, Tennessee 37232, USA.
| | | | | | | | | |
Collapse
|
39
|
Segura I, De Smet F, Hohensinner PJ, Ruiz de Almodovar C, Carmeliet P. The neurovascular link in health and disease: an update. Trends Mol Med 2009; 15:439-51. [PMID: 19801203 DOI: 10.1016/j.molmed.2009.08.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 08/07/2009] [Accepted: 08/07/2009] [Indexed: 02/02/2023]
Abstract
Although the nervous and vascular systems are functionally different, they show a high degree of anatomic parallelism and cross-talk. They also share similar mechanisms and molecular cues that regulate their development and maintenance. Malfunctioning of this cross-talk can cause or influence several vascular and neuronal disorders. In this review, we first provide a brief overview of the molecular and cellular mechanisms that govern the neurovascular link. Second, we focus on two neurodegenerative diseases, Alzheimer's disease and amyotrophic lateral sclerosis, to illustrate how a defective neurovascular link might contribute to their pathogenesis. Finally, we briefly discuss some therapeutic implications of the neurovascular link for designing strategies to treat these diseases.
Collapse
|
40
|
Brantley-Sieders DM, Zhuang G, Vaught D, Freeman T, Hwang Y, Hicks D, Chen J. Host deficiency in Vav2/3 guanine nucleotide exchange factors impairs tumor growth, survival, and angiogenesis in vivo. Mol Cancer Res 2009; 7:615-23. [PMID: 19435813 PMCID: PMC2739740 DOI: 10.1158/1541-7786.mcr-08-0401] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vav guanine nucleotide exchange factors modulate changes in cytoskeletal organization through activation of Rho, Rac, and Cdc42 small GTPases. Although Vav1 expression is restricted to the immune system, Vav2 and Vav3 are expressed in several tissues, including highly vascularized organs. Here, we provide the first evidence that Vav2 and Vav3 function within the tumor microenvironment to promote tumor growth, survival, and neovascularization. Host Vav2/3 deficiency reduced microvascular density, as well as tumor growth and/or survival, in transplanted B16 melanoma and Lewis lung carcinoma models in vivo. These defects were due in part to Vav2/3 deficiency in endothelial cells. Vav2/3-deficient endothelial cells displayed reduced migration in response to tumor cells in coculture migration assays, and failed to incorporate into tumor vessels and enhance tumor volume in tumor-endothelial cotransplantation experiments. These data suggest that Vav2/3 guanine nucleotide exchange factors play a critical role in host-mediated tumor progression and angiogenesis, particularly in tumor endothelium.
Collapse
MESH Headings
- Animals
- Carcinoma, Lewis Lung/blood supply
- Carcinoma, Lewis Lung/pathology
- Carcinoma, Lewis Lung/physiopathology
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Cell Survival
- Coculture Techniques
- Endothelial Cells/cytology
- Endothelial Cells/physiology
- Melanoma, Experimental/blood supply
- Melanoma, Experimental/pathology
- Melanoma, Experimental/physiopathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Nude
- Neoplasms, Experimental/blood supply
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/physiopathology
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Proto-Oncogene Proteins c-vav/deficiency
- Proto-Oncogene Proteins c-vav/genetics
- Proto-Oncogene Proteins c-vav/physiology
- Transplantation, Homologous
- Tumor Burden
- von Willebrand Factor/metabolism
Collapse
Affiliation(s)
- Dana M. Brantley-Sieders
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
| | - Guanglei Zhuang
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
| | - David Vaught
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
| | - Tanner Freeman
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
| | - Yoonha Hwang
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
| | - Donna Hicks
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
| | - Jin Chen
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
| |
Collapse
|
41
|
Margaryan NV, Strizzi L, Abbott DE, Seftor EA, Rao MS, Hendrix MJC, Hess AR. EphA2 as a promoter of melanoma tumorigenicity. Cancer Biol Ther 2009; 8:279-88. [PMID: 19223760 DOI: 10.4161/cbt.8.3.7485] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The greatest health threat from malignant melanoma is death due to metastatic disease. Consequently, the identification of markers predictive of metastatic disease is essential for identifying new therapeutic targets. EphA2, a protein tyrosine kinase receptor commonly expressed in epithelial cells, has been found to be overexpressed and constitutively active in melanoma tumor cells having a metastatic phenotype as characterized by increased invasion, proliferation and vasculogenic mimicry (VM). Based on this observation, we hypothesized that increased expression of EphA2 by melanoma tumor cells could promote these characteristics of a metastatic phenotype in addition to promoting tumorigenicity as a whole. We analyzed a panel of human melanoma tumor cell lines derived from patient tissues classified as primary (either radial growth phase or vertical growth phase) and/or metastatic for the expression of EphA2 and found a correlation between increased EphA2 expression and metastatic potential. Experiments using the most metastatic of the human melanoma cell lines demonstrated that downregulation of EphA2 results in a significant decrease in invasion, proliferation, clonogenicity and VM in vitro, in addition to suppressed tumorigenicity in an orthotopic mouse model. Lastly, utilization of a human phospho-kinase array revealed increased phosphorylation of several different protein kinases involved in mediating various aspects of cellular proliferation. To the best of our knowledge these results provide the first direct in vivo evidence demonstrating a role for EphA2 in promoting melanoma tumorigenicity and suggest EphA2 as a significant molecular target for the therapeutic intervention of malignant melanoma.
Collapse
|
42
|
Davies MH, Zamora DO, Smith JR, Powers MR. Soluble ephrin-B2 mediates apoptosis in retinal neovascularization and in endothelial cells. Microvasc Res 2009; 77:382-6. [PMID: 19232363 DOI: 10.1016/j.mvr.2009.01.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 01/22/2009] [Accepted: 01/30/2009] [Indexed: 02/03/2023]
Abstract
PURPOSE EphB4 receptors and their ephrinB2 ligands are essential for vascular development, but also play a role in pathological neovascularization (NV). We previously reported that soluble (s) forms of EphB4 and ephrinB2 significantly reduced retinal NV in a model of oxygen-induced retinopathy. This study investigates if these molecules suppress retinal NV by stimulation of endothelial cell (EC) apoptosis. METHODS C57BL/6 mice at postnatal day 7 (P7) were exposed to 75% oxygen for 5 days (P12) and allowed to recover in room air to induce retinal NV. One eye was injected intravitreally with 150 ng in 1.5 microL of sEphB4 or sEphrinB2 on P12 and P14, while contralateral eyes were injected with IgG antibody as control. Eyes were enucleated for histological analysis. At P16 TUNEL analysis and caspase-3 immunohistochemistry was performed on retinal sections to compare the apoptotic response between sEphB4 or sEphrinB2 injected eyes and controls. In vitro studies were performed with human retinal microvascular EC (HREC). RESULTS Quantification of TUNEL positive vascular cells, located in areas of retinal NV, revealed approximately 2.5-fold increase in apoptosis in sEphrinB2 injected eyes compared to control eyes. Immunohistochemistry studies revealed co-localization of both TUNEL positive cells and caspase-3 positive cells with the endothelial marker, von Willebrand factor. Cultured HREC demonstrated significantly higher caspase-3 activity after a 3 h stimulation with sEphrinB2+/-VEGF compared to IgG control+/-VEGF (P<0.005). sEphB4 stimulation had no significant effect on caspase-3 activity in HREC cultures. CONCLUSIONS These data suggest that modulation of the endogenous ephrin signaling mechanism by sEphrinB2 may induce suppression of retinal NV via induction of apoptosis. Results of the in vitro studies suggest that sEphrinB2 may directly induce apoptosis of EC during pathological neovascularization.
Collapse
Affiliation(s)
- Michael H Davies
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, USA
| | | | | | | |
Collapse
|
43
|
Wykosky J, Debinski W. The EphA2 receptor and ephrinA1 ligand in solid tumors: function and therapeutic targeting. Mol Cancer Res 2009; 6:1795-806. [PMID: 19074825 DOI: 10.1158/1541-7786.mcr-08-0244] [Citation(s) in RCA: 243] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Eph receptor tyrosine kinases and ephrin ligands have been studied extensively for their roles in developmental processes. In recent years, Eph receptors and ephrins have been found to be integral players in cancer formation and progression. Among these are EphA2 and ephrinA1, which are involved in the development and maintenance of many different types of solid tumors. The function of EphA2 and ephrinA1 in tumorigenesis and tumor progression is complex and seems to be dependent on cell type and microenvironment. These variables affect the expression of the EphA2 and ephrinA1 proteins, the pathways through which they induce signaling, and the functional consequences of that signaling on the behavior of tumor cells and tumor-associated cells. This review will specifically focus on the roles that EphA2 and ephrinA1 play in the different cell types that contribute to the malignancy of solid tumors, with emphasis on the opportunities for therapeutic targeting.
Collapse
Affiliation(s)
- Jill Wykosky
- Department of Neurosurgery, Brain Tumor Center of Excellence, Comprehensive Cancer Center of Wake Forest University, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | |
Collapse
|
44
|
Expression of EphA2 and VEGF in squamous cell carcinoma of the tongue: Correlation with the angiogenesis and clinical outcome. Oral Oncol 2008; 44:1110-7. [DOI: 10.1016/j.oraloncology.2008.01.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 01/09/2008] [Accepted: 01/10/2008] [Indexed: 01/09/2023]
|
45
|
Noberini R, Koolpe M, Peddibhotla S, Dahl R, Su Y, Cosford NDP, Roth GP, Pasquale EB. Small molecules can selectively inhibit ephrin binding to the EphA4 and EphA2 receptors. J Biol Chem 2008; 283:29461-72. [PMID: 18728010 DOI: 10.1074/jbc.m804103200] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The erythropoietin-producing hepatocellular (Eph) family of receptor tyrosine kinases regulates a multitude of physiological and pathological processes. Despite the numerous possible research and therapeutic applications of agents capable of modulating Eph receptor function, no small molecule inhibitors targeting the extracellular domain of these receptors have been identified. We have performed a high throughput screen to search for small molecules that inhibit ligand binding to the extracellular domain of the EphA4 receptor. This yielded a 2,5-dimethylpyrrolyl benzoic acid derivative able to inhibit the interaction of EphA4 with a peptide ligand as well as the natural ephrin ligands. Evaluation of a series of analogs identified an isomer with similar inhibitory properties and other less potent compounds. The two isomeric compounds act as competitive inhibitors, suggesting that they target the high affinity ligand-binding pocket of EphA4 and inhibit ephrin-A5 binding to EphA4 with K(i) values of 7 and 9 mum in enzyme-linked immunosorbent assays. Interestingly, despite the ability of each ephrin ligand to promiscuously bind many Eph receptors, the two compounds selectively target EphA4 and the closely related EphA2 receptor. The compounds also inhibit ephrin-induced phosphorylation of EphA4 and EphA2 in cells, without affecting cell viability or the phosphorylation of other receptor tyrosine kinases. Furthermore, the compounds inhibit EphA4-mediated growth cone collapse in retinal explants and EphA2-dependent retraction of the cell periphery in prostate cancer cells. These data demonstrate that the Eph receptor-ephrin interface can be targeted by inhibitory small molecules and suggest that the two compounds identified will be useful to discriminate the activities of EphA4 and EphA2 from those of other co-expressed Eph receptors that are activated by the same ephrin ligands. Furthermore, the newly identified inhibitors represent possible leads for the development of therapies to treat pathologies in which EphA4 and EphA2 are involved, including nerve injuries and cancer.
Collapse
Affiliation(s)
- Roberta Noberini
- Burnham Institute for Medical Research, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Receptor tyrosine kinases of the Eph family bind to cell surface-associated ephrin ligands on neighboring cells. The ensuing bidirectional signals have emerged as a major form of contact-dependent communication between cells. New findings reveal that Eph receptors and ephrins coordinate not only developmental processes but also the normal physiology and homeostasis of many adult organs. Imbalance of Eph/ephrin function may therefore contribute to a variety of diseases. The challenge now is to better understand the complex and seemingly paradoxical signaling mechanisms of Eph receptors and ephrins, which will enable effective strategies to target these proteins in the treatment of diseases such as diabetes and cancer.
Collapse
Affiliation(s)
- Elena B Pasquale
- Burnham Institute for Medical Research, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
47
|
Hess AR, Margaryan NV, Seftor EA, Hendrix MJC. Deciphering the signaling events that promote melanoma tumor cell vasculogenic mimicry and their link to embryonic vasculogenesis: role of the Eph receptors. Dev Dyn 2008; 236:3283-96. [PMID: 17557303 DOI: 10.1002/dvdy.21190] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
During embryogenesis, the primordial microcirculation is formed through a process known as vasculogenesis. The term "vasculogenic mimicry" has been used to describe the manner in which highly aggressive, but not poorly aggressive melanoma tumor cells express endothelial and epithelial markers and form vasculogenic-like networks similar to embryonic vasculogenesis. Vasculogenic mimicry is one example of the remarkable plasticity demonstrated by aggressive melanoma cells and suggests that these cells have acquired an embryonic-like phenotype. Since the initial discovery of tumor cell vasculogenic mimicry by our laboratory, we have been focusing on understanding the molecular mechanisms that regulate this process. This review will highlight recent findings identifying key signal transduction events that regulate melanoma vasculogenic mimicry and their similarity to the signal transduction events responsible for promoting embryonic vasculogenesis and angiogenesis. Specifically, this review will focus on the role of the Eph receptors and ligands in embryonic vasculogenesis, angiogenesis, and vasculogenic mimicry.
Collapse
Affiliation(s)
- Angela R Hess
- Children's Memorial Research Center, Program in Cancer Biology and Epigenomics, Northwestern University Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer, Chicago, Illinois 60614-3394, USA.
| | | | | | | |
Collapse
|
48
|
Shen J, Xie B, Hatara CM, Hackett SF, Campochiaro PA. Vegf or EphA2 antisense polyamide-nucleic acids; vascular localization and suppression of retinal neovascularization. Mol Ther 2007; 15:1924-30. [PMID: 17680030 DOI: 10.1038/sj.mt.6300276] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Localized gene knockdown is a valuable tool for investigating the function of gene products in tissues. It may also be a good therapeutic strategy for selective targeting of a gene product implicated in disease pathogenesis. While small interfering RNAs (siRNAs) are useful for localized gene knockdown and have achieved well-deserved attention, other strategies may also have applications. Polyamide nucleic acids (PNAs) are DNA-protein chimeric molecules that can be designed with modifications so as to allow good cell entry and high affinity binding to complementary RNA. After intraocular injection of fluorescein isothiocyanate (FITC)-labeled antisense PNAs directed against Vegf or EphA2 (genes that are highly expressed in retinal vessels), labeling was observed to persist in retinal blood vessels even after staining elsewhere in the retina had faded. This did not occur after injection of FITC-labeled antisense human cAMP responsive element binding protein 1 (hCreb) PNA. Subretinal injection of antisense EphA2 PNA was seen to label choroidal blood vessels. Intraocular injection of antisense Vegf PNA or antisense EphA2 PNA significantly reduced their respective target messenger RNAs (mRNAs) in ischemic retinas and suppressed retinal neovascularization (NV). These data suggest that signaling through EphA2 contributes to retinal NV, and that antisense PNAs may be an advantageous way to target EphA2 and other endothelial cell receptors that contribute to ocular NV.
Collapse
Affiliation(s)
- Jikui Shen
- The Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-9277, USA
| | | | | | | | | |
Collapse
|
49
|
Cai W, Ebrahimnejad A, Chen K, Cao Q, Li ZB, Tice DA, Chen X. Quantitative radioimmunoPET imaging of EphA2 in tumor-bearing mice. Eur J Nucl Med Mol Imaging 2007; 34:2024-36. [PMID: 17673999 DOI: 10.1007/s00259-007-0503-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 05/29/2007] [Indexed: 12/22/2022]
Abstract
PURPOSE EphA2 receptor tyrosine kinase is significantly overexpressed in a wide variety of cancer types. High EphA2 expression has been correlated with increased metastatic potential and poor patient survival. Although many recent reports have focused on blocking the EphA2 signaling pathway in cancer, the in vivo imaging of EphA2 has not yet been investigated. METHODS We labeled 1C1, a humanized monoclonal antibody against both human and murine EphA2, with (64)Cu through the chelating agent 1,4,7,10-tetraazacyclododecane N,N',N'',N'''-tetraacetic acid (DOTA) and carried out positron emission tomography (PET) imaging of eight tumor models with different EphA2 expression levels. Western blotting of tumor tissue lysate was performed to correlate the EphA2 expression level with (64)Cu-DOTA-1C1 uptake in the tumors. Immunofluorescence staining and biodistribution studies were also carried out to validate the in vivo results. RESULTS The radiolabeling yield was 88.9 +/- 9.5% (n = 7) and the specific activity of (64)Cu-DOTA-1C1 was 1.32 +/- 0.14 GBq/mg of 1C1 mAb. The antibody retained antigen-binding affinity/specificity after DOTA conjugation as measured by FACS analysis. The uptake of (64)Cu-DOTA-1C1 in CT-26 tumors was as high as 25.1 +/- 2.5 %ID/g (n = 3) at 18 h post injection. (64)Cu-DOTA-IgG, an isotype-matched control, exhibited minimal non-specific uptake in all eight tumor models. In vivo EphA2 specificity of (64)Cu-DOTA-1C1 was confirmed by successful blocking of CT-26 tumor uptake by unlabeled 1C1. Most importantly, the tumor uptake value obtained from PET imaging had excellent linear correlation with the relative tumor tissue EphA2 expression level measured by Western blot, where r (2) equals 0.90 and 0.92 at 18 h and 42 h post injection, respectively. CONCLUSION The tumor uptake of (64)Cu-DOTA-1C1 measured by microPET imaging reflects tumor EphA2 expression level in vivo. This is, to our knowledge, the first report of quantitative radioimmunoPET imaging of EphA2 in living subjects. Future clinical investigation of (64)Cu-DOTA-1C1 is warranted.
Collapse
Affiliation(s)
- Weibo Cai
- Department of Radiology and Bio-X Program, The Molecular Imaging Program at Stanford, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305-5484, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Brantley-Sieders DM, Fang WB, Hwang Y, Hicks D, Chen J. Ephrin-A1 facilitates mammary tumor metastasis through an angiogenesis-dependent mechanism mediated by EphA receptor and vascular endothelial growth factor in mice. Cancer Res 2006; 66:10315-24. [PMID: 17079451 DOI: 10.1158/0008-5472.can-06-1560] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ephrin-A1, the prototypic ligand for EphA receptor tyrosine kinases, is overexpressed in vascularized tumors relative to normal tissue. Moreover, ephrin-A1-Fc fusion proteins induce endothelial cell sprouting, migration, and assembly in vitro, and s.c. vascular remodeling in vivo. Based on these data, we hypothesized that native, membrane-bound ephrin-A1 regulates tumor angiogenesis and progression. We tested this hypothesis using a transplantable mouse mammary tumor model. Small interfering RNA-mediated ephrin-A1 knockdown in metastatic mammary tumor cells significantly diminishes lung metastasis without affecting tumor volume, invasion, intravasation, or lung colonization upon i.v. injection in vivo. Ephrin-A1 knockdown reduced tumor-induced endothelial cell migration in vitro and microvascular density in vivo. Conversely, overexpression of ephrin-A1 in nonmetastatic mammary tumor cells elevated microvascular density and vascular recruitment. Overexpression of ephrin-A1 elevated wild-type but not EphA2-deficient endothelial cell migration toward tumor cells, suggesting that activation of EphA2 on endothelial cells is one mechanism by which ephrin-A1 regulates angiogenesis. Furthermore, ephrin-A1 knockdown diminished, whereas overexpression of ephrin-A1 elevated, vascular endothelial growth factor (VEGF) levels in tumor cell-conditioned medium, suggesting that ephrin-A1-mediated modulation of the VEGF pathway is another mechanism by which membrane-tethered ephrin-A1 regulates angiogenic responses from initially distant host endothelium. These data suggest that ephrin-A1 is a proangiogenic signal, regulating VEGF expression and facilitating angiogenesis-dependent metastatic spread.
Collapse
Affiliation(s)
- Dana M Brantley-Sieders
- Division of Rheumatology and Immunology, Department of Medicin, Vanderbilt University School of Medicine, Nashville, TN 37232-2363, USA
| | | | | | | | | |
Collapse
|