1
|
McMahon S, Spector T, Ramana KV. Significance of Macrophage-Mediated Inflammatory Response in Ocular Inflammatory Complications. FRONT BIOSCI-LANDMRK 2025; 30:26698. [PMID: 40152374 DOI: 10.31083/fbl26698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 03/29/2025]
Abstract
Immune cells such as macrophages play a significant role in ocular inflammation by activating or inhibiting several cellular pathways. Systemic infections and autoimmune diseases could activate macrophages by releasing various pro-inflammatory cytokines, chemokines, and growth factors, which reach the eyes through the blood-retina barrier and cause immune and inflammatory responses. In addition, environmental pollutants, allergens, and eye injuries could also activate macrophages and cause an inflammatory response. Further, the inflammatory response generated by the macrophages could recruit additional immune cells and enhance the inflammatory response. The inflammatory response leads to ocular tissue damage and dysfunction and affects vision. Macrophages are generally implicated in the clearance of pathogens and debris, generate reactive oxygen species, and initiate immune response. However, uncontrolled immune and inflammatory responses could damage the ocular tissues, leading to various ocular inflammatory complications such as uveitis, scleritis, diabetic retinopathy, and retinitis. Recent studies describe the role of individual cytokines in the mediation of specific ocular inflammatory diseases. In this article, we discussed the potential impact of macrophages and their mediated inflammatory response on the development of various ocular inflammatory diseases and possible treatment strategies.
Collapse
Affiliation(s)
- Sara McMahon
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84045, USA
| | - Tori Spector
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84045, USA
| | - Kota V Ramana
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84045, USA
| |
Collapse
|
2
|
OKADA D, KANAI K, OTAKA Y, MATSUMOTO T, IZUMOTO A, UCHIYAMA Y, NAGAI N, YAMASHITA Y, ICHIKAWA Y, SUGIUCHI M, TAJIMA K. Anti-inflammatory effects of water-dispersible hesperetin on endotoxin-induced uveitis in rats involving the nuclear factor κB and Wnt/β-catenin signaling pathways. J Vet Med Sci 2025; 87:223-231. [PMID: 39814392 PMCID: PMC11830440 DOI: 10.1292/jvms.24-0453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/25/2024] [Indexed: 01/18/2025] Open
Abstract
This study investigated the anti-inflammatory effects of water-dispersible hesperetin (WD-Hpt) in an endotoxin-induced uveitis (EIU) rat model. The rats were orally administered 10, 25, or 50 mg/kg WD-Hpt immediately after lipopolysaccharide (LPS) injection at the concentration of 200 μg. Clinical scores, cellular inflammation, the aqueous humor (ApH) protein concentration, as well as the levels of tumor necrosis factor (TNF)-α, cyclooxygenase (COX)-2 and inducible NO synthase (iNOS) in AqH, and histopathological grades were assessed. Immunohistostaining and mRNA analyses measured expressions of TNF-α, COX-2, iNOS, activated nuclear factor (NF)-κB p65, I kappa B (IκB)-α degradation, phosphorylated (p)-IκB kinase (IKK) α/β, β-catenin, and glycogen synthase kinase (GSK)-3β. Compared to LPS treated group (LPS txg), WD-Hpt treatment groups (WD-Hpt txg) resulted in the following results: 1) clinical scores improved [LPS txg; 3.90 ± 0.20, WD-Hpt txg; 2.40 ± 0.37 (P<0.05)], 2) the number of inflammatory cells in AqH decreased [LPS txg; 8.65 ± 1.41 × 105 cells/mL, WD-Hpt txg; 3.83 ± 1.20 × 105 cells/mL (P<0.05)], 3) AqH protein concentration reduced [LPS txg; 36.65 ± 2.71 mg/mL, WD-Hpt txg; 28.73 ± 2.36 mg/mL (P<0.05)], and 4) decreased levels of TNF-α [LPS txg; 69.55 ± 7.38 pg/mL, WD-Hpt txg; 35.18 ± 9.22 pg/mL (P<0.001)], iNOS [LPS txg; 153.37 ± 12.72 μM, WD-Hpt txg; 110.79 ± 13.27 μM (P<0.05)], and COX-2 [LPS txg; 1,080.56 ± 196.06 pg/mL, WD-Hpt txg; 477.80 ± 66.61 pg/mL (P<0.01)] in AqH were observed, and histopathological grades improved [LPS txg; 2.80 ± 0.40, WD-Hpt txg; 1.50 ± 0.50 (P<0.05)]. Immunostaining and mRNA analysis revealed that 50 mg/kg WD-Hpt effectively suppressed iNOS, COX-2, NF-κB p65, IκB-α degradation, p-IKKα/β, β-catenin, and GSK-3β expression. These findings suggested that WD-Hpt exerts anti-inflammatory effects by targeting the NF-κB and Wnt/β-catenin pathways.
Collapse
Affiliation(s)
- Daiki OKADA
- Department of Small Animal Internal Medicine II, School of
Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Kazutaka KANAI
- Department of Small Animal Internal Medicine II, School of
Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Yuya OTAKA
- Department of Small Animal Internal Medicine II, School of
Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Tsubasa MATSUMOTO
- Department of Small Animal Internal Medicine II, School of
Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Akane IZUMOTO
- Department of Small Animal Internal Medicine II, School of
Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Yumiko UCHIYAMA
- Department of Small Animal Internal Medicine II, School of
Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Noriaki NAGAI
- Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Yohei YAMASHITA
- Department of Small Animal Internal Medicine II, School of
Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Yoichiro ICHIKAWA
- Department of Small Animal Internal Medicine II, School of
Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Misaki SUGIUCHI
- Department of Small Animal Internal Medicine II, School of
Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Kazuki TAJIMA
- Department of Small Animal Internal Medicine II, School of
Veterinary Medicine, Kitasato University, Aomori, Japan
| |
Collapse
|
3
|
Özcan D, Özçelik F, Mammadov R, Aktaş M, Altındağ F, Alkan AA, Karapapak M, Altuner D, Süleyman H. Biochemical and histopathological evaluation of systemic and ocular toxicity of favipiravir in rats. Cutan Ocul Toxicol 2024; 43:105-112. [PMID: 38174703 DOI: 10.1080/15569527.2023.2300788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
Purpose: Favipiravir (FAV) used against COVID-19 is an antiviral drug that causes adverse reactions, such as hyperuricaemia, liver damage, and hematopoetic toxicity. The aim of the study was to investigate the systemic and ocular side-effects of FAV in rats, for the first time.Materials and methods: A total of 18 albino male Wistar rats were used in the study. The rats were divided into 3 groups as the healthy group (HG), the group given 50 mg/kg/day favipiravir (FAV50), and the group given 200 mg/kg/d favipiravir (FAV200). These doses were given to the experimental groups for one week. At the end of the experiment histopathological examinations were performed on the conjunctiva and sclera of the eye. In addition, malondialdehyde (MDA), total glutathione (tGSH), superoxide dismutase (SOD), interleukin-1β (IL-1β), and tumor necrosis factor alpha (TNF-α) levels were measured in blood samples taken from rats. Results: Compared to HG, the MDA (1.37 ± 0.61 vs. 4.82 ± 1.40 µmol/mL), IL-1β (2.52 ± 1.14 vs. 6.67 ± 1.99 pg/mL), and TNF-α levels (3.28 ± 1.42 vs. 8.53 ± 3.06 pg/mL) of the FAV200 group were higher. The levels of tGSH (7.58 ± 1.98 vs. 2.50 ± 0.98 nmol/mL) and SOD (13.63 ± 3.43 vs. 3.81 ± 1.43 U/mL) the FAV200 group were lower than the HG (p < 0.05, for all). The degree of damage to the cornea and sclera of the FAV200 group was quite high according to HG (p < 0.001). Conclusions: FAV can cause damage to rat conjunctiva and sclera by increasing oxidant stress and inflammation at high dose.
Collapse
Affiliation(s)
- Delil Özcan
- Department of Ophthalmology, University of Health Sciences, Seyrantepe Hamidiye Etfal Training and Research Hospital, İstanbul, Turkey
| | - Fatih Özçelik
- Department of Medical Biochemistry, University of Health Sciences, Seyrantepe Hamidiye Etfal Training and Research Hospital, İstanbul, Turkey
| | - Renad Mammadov
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Mehmet Aktaş
- Department of Biochemistry, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Fikret Altındağ
- Department of Histology and Embryology, Faculty of Medicine, Van Yüzüncü Yıl University, Van, Turkey
| | | | - Murat Karapapak
- Department of Ophthalmology, Başakşehir Çam and Sakura City Hospital, İstanbul, Turkey
| | - Durdu Altuner
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Halis Süleyman
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| |
Collapse
|
4
|
Han Y, Guo S, Li Y, Li J, Zhu L, Liu Y, Lv Y, Yu D, Zheng L, Huang C, Li C, Hu J, Liu Z. Berberine ameliorate inflammation and apoptosis via modulating PI3K/AKT/NFκB and MAPK pathway on dry eye. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155081. [PMID: 37748390 DOI: 10.1016/j.phymed.2023.155081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/08/2023] [Accepted: 09/10/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Dry eye disease (DED) is a multifactorial disease in ocular surface, and inflammation plays an etiological role. Berberine (BBR) has shown efficacy in treating inflammatory diseases. Yet, there was no adequate information related to the therapeutic effects of BBR for DED. PURPOSE To detect the effects and explore the potential mechanisms of BBR on DED. STUDY DESIGN In vitro, in vivo study and network pharmacology analysis were involved. METHOD The human corneal epithelium cells viability was evaluated with different concentrations of BBR. Dry eye murine model was established by exposing to the desiccating stress, and Ciclosporin (CSA), BBR eye drops or vehicle were topical administration for 7 days. The phenol red cotton tests, Oregon-green-dextran staining and Periodic acid-Schiff staining were performed and evaluated the dry eye after treatment. Inflammation and apoptosis levels of ocular surface were quantified. The potential targets related to berberine and dry eye were collected from databases. The Protein-Protein interaction network analysis and GO & KEGG enrichment analysis were realized by STRING database, Metascape platform and Cytoscape software to find core targets and signaling pathways. The SchrÖdinger software was used to molecular docking and PyMOL software to visualization. Finally, the levels of PI3K/AKT/NFκB and MAPK pathways were detected. RESULT The data revealed BBR could rescue impaired HCE under hyperosmotic conditions. In addition, BBR eye drops could ameliorate dry eye. And BBR eye drops suppressed the inflammatory factors and CD4+T cells infiltration in conjunctiva. Besides, BBR eye drops protected ocular surface by avoiding the severe apoptosis and decreasing the level of MMP-3 and MMP-9. 148 common targets intersection between BBR and dry eye were found via network pharmacology analysis. Core proteins and core pathways were identified through PPI and GO&KEGG enrichment analysis. Molecular docking displayed excellent binding between BBR and those core targets. Finally, in vivo study verified that BBR eye drops had a therapeutic effect in dry eye by inhibiting PI3K/AKT/NFκB and MAPK pathways. CONCLUSION The research provided convincing evidence that BBR could be a candidate drug for dry eye.
Collapse
Affiliation(s)
- Yi Han
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Engineering and Research Center of Eye Regenerative Medicine, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China; Department of Ophthalmology, the First Affiliated Hospital of University of South China, Postdoctoral mobile station of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shujia Guo
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Engineering and Research Center of Eye Regenerative Medicine, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yunpeng Li
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Engineering and Research Center of Eye Regenerative Medicine, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jiani Li
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Engineering and Research Center of Eye Regenerative Medicine, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Linfangzi Zhu
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Engineering and Research Center of Eye Regenerative Medicine, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yuwen Liu
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Engineering and Research Center of Eye Regenerative Medicine, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yufei Lv
- Department of Ophthalmology, the First Affiliated Hospital of University of South China, Postdoctoral mobile station of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Dong Yu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Lan Zheng
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Engineering and Research Center of Eye Regenerative Medicine, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Caihong Huang
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Engineering and Research Center of Eye Regenerative Medicine, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Cheng Li
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Engineering and Research Center of Eye Regenerative Medicine, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China; Department of Ophthalmology, the First Affiliated Hospital of University of South China, Postdoctoral mobile station of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Jiaoyue Hu
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Engineering and Research Center of Eye Regenerative Medicine, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Zuguo Liu
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Engineering and Research Center of Eye Regenerative Medicine, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China; Department of Ophthalmology, the First Affiliated Hospital of University of South China, Postdoctoral mobile station of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
5
|
Kang TK, Le TT, Kwon H, Park G, Kim KA, Ko H, Hong S, Lee WB, Jung SH. Lithospermum erythrorhizon Siebold & Zucc. extract reduces the severity of endotoxin-induced uveitis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155133. [PMID: 37812852 DOI: 10.1016/j.phymed.2023.155133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Uveitis is an inflammatory eye condition that threatens vision, and effective anti-inflammatory treatments with minimal side effects are necessary to treat uveitis. PURPOSE This study aimed to investigate the effects of Lithospermum erythrorhizon Siebold & Zucc. against endotoxin-induced uveitis in rat and mouse models. METHODS Endotoxin-induced uveitis models of rats and mice were used to evaluate the effects of l. erythrorhizon treatment. Clinical inflammation scores and retinal thickness were assessed in the extract of l. erythrorhizon-treated rats. Histopathological examination revealed inflammatory cell infiltration into the ciliary body. Protein concentration, cellular infiltration, and prostaglandin-E2 levels were measured in the aqueous humor of the extract of l. erythrorhizon-treated rats. Protective effects of l. erythrorhizon on the anterior segment of the eye were examined in mice with endotoxin-induced uveitis. Additionally, we investigated the effect of l. erythrorhizon on the expression of pro-inflammatory cytokines [tumor necrosis factor alpha, interleukin-6, and interleukin-8] in lipopolysaccharide-stimulated THP1 human macrophages and examined the involvement of nuclear factor kappaB/activator protein 1 and interferon regulatory factor signaling pathways. Furthermore, three components of l. erythrorhizon were identified and assessed for their inhibitory effects on LPS-induced inflammation in RAW264.7 macrophage cells. RESULTS Treatment of the extract of l. erythrorhizon significantly reduced clinical inflammation scores and retinal thickening in rats with endotoxin-induced uveitis. Histopathological examination revealed decreased inflammatory cell infiltration into the ciliary body. The extract of l. erythrorhizon effectively reduced the protein concentration, cellular infiltration, and PG-E2 levels in the aqueous humor of rats with endotoxin-induced uveitis. In mice with endotoxin-induced uveitis, the extract of l. erythrorhizon demonstrated a protective effect on the anterior segment of the eye by reducing inflammation and retinal thickening. The extract of l. erythrorhizon suppressed the expression of pro-inflammatory cytokines (tumor necrosis factor alpha, interleukin-6, and interleukin-8) in lipopolysaccharide-induced inflammation in THP1 human macrophages, by modulating nuclear factor kappaB/activator protein 1 and interferon regulatory factor signaling pathways. Moreover, shikonin, acetylshikonin, and β, β-dimethylacryloylshikonin showed dose-dependent inhibition of nitric oxide, tumor necrosis factor alpha and interleukin-6 production in RAW264.7 macrophage cells. CONCLUSION The extract of l. erythrorhizon is a potential therapeutic agent for uveitis management. Administration of the extract of l. erythrorhizon led to reduced inflammation, retinal thickening, and inflammatory cell infiltration in rat and mouse models of uveitis. The compounds (shikonin, acetylshikonin, and β, β-dimethylacryloylshikonin) identified in this study played crucial roles in mediating the anti-inflammatory effects of l. erythrorhizon. These findings indicate that the extract of l. erythrorhizon and its constituent compounds are promising candidates for further research and development of novel treatment modalities for uveitis.
Collapse
Affiliation(s)
- Tae Kyeom Kang
- Natural Product Research Center, Korea Institute of Science & Technology, Gangneung 25451, Republic of Korea
| | - Tam Thi Le
- Natural Product Research Center, Korea Institute of Science & Technology, Gangneung 25451, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Gangneung 25451, Republic of Korea
| | - Hyukjoon Kwon
- Natural Product Research Center, Korea Institute of Science & Technology, Gangneung 25451, Republic of Korea
| | - Geon Park
- Natural Product Research Center, Korea Institute of Science & Technology, Gangneung 25451, Republic of Korea
| | - Kyung-A Kim
- Division of Medical Oncology, Department of Internal Medicine, Graduate School of Medical Science Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyejin Ko
- Natural Product Research Center, Korea Institute of Science & Technology, Gangneung 25451, Republic of Korea
| | - Suhee Hong
- Department of Aquatic Life Medicine, Gangneung-Wonju National University, Gangneung, 25457, Republic of Korea
| | - Wook-Bin Lee
- Natural Product Research Center, Korea Institute of Science & Technology, Gangneung 25451, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Gangneung 25451, Republic of Korea.
| | - Sang Hoon Jung
- Natural Product Research Center, Korea Institute of Science & Technology, Gangneung 25451, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Gangneung 25451, Republic of Korea.
| |
Collapse
|
6
|
Krainer J, Hendling M, Siebenhandl S, Fuehner S, Kessel C, Verweyen E, Vierlinger K, Foell D, Schönthaler S, Weinhäusel A. Patients with Systemic Juvenile Idiopathic Arthritis (SJIA) Show Differences in Autoantibody Signatures Based on Disease Activity. Biomolecules 2023; 13:1392. [PMID: 37759792 PMCID: PMC10527260 DOI: 10.3390/biom13091392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Systemic juvenile idiopathic arthritis (SJIA) is a severe rheumatic disease in children. It is a subgroup of juvenile idiopathic arthritis (JIA; MIM #604302), which is the most common rheumatic disease in children. The diagnosis of SJIA often comes with a significant delay, and the classification between autoinflammatory and autoimmune disease is still discussed. In this study, we analyzed the immunological responses of patients with SJIA, using human proteome arrays presenting immobilized recombinantly expressed human proteins, to analyze the involvement of autoantibodies in SJIA. Results from group comparisons show several differentially reactive antigens involved in inflammatory processes. Intriguingly, many of the identified antigens had a high reactivity against proteins involved in the NF-κB pathway, and it is also notable that many of the detected DIRAGs are described as dysregulated in rheumatoid arthritis. Our data highlight novel proteins and pathways potentially dysregulated in SJIA and offer a unique approach to unraveling the underlying disease pathogenesis in this chronic arthropathy.
Collapse
Affiliation(s)
- Julie Krainer
- Center for Health and Bioresources, Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria; (M.H.); (K.V.); (S.S.)
| | - Michaela Hendling
- Center for Health and Bioresources, Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria; (M.H.); (K.V.); (S.S.)
| | - Sandra Siebenhandl
- Center for Health and Bioresources, Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria; (M.H.); (K.V.); (S.S.)
| | - Sabrina Fuehner
- Pediatric Rheumatology & Immunology, University Children’s Hospital, 48149 Münster, Germany; (S.F.); (C.K.); (E.V.); (D.F.)
| | - Christoph Kessel
- Pediatric Rheumatology & Immunology, University Children’s Hospital, 48149 Münster, Germany; (S.F.); (C.K.); (E.V.); (D.F.)
| | - Emely Verweyen
- Pediatric Rheumatology & Immunology, University Children’s Hospital, 48149 Münster, Germany; (S.F.); (C.K.); (E.V.); (D.F.)
| | - Klemens Vierlinger
- Center for Health and Bioresources, Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria; (M.H.); (K.V.); (S.S.)
| | - Dirk Foell
- Pediatric Rheumatology & Immunology, University Children’s Hospital, 48149 Münster, Germany; (S.F.); (C.K.); (E.V.); (D.F.)
| | - Silvia Schönthaler
- Center for Health and Bioresources, Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria; (M.H.); (K.V.); (S.S.)
| | - Andreas Weinhäusel
- Center for Health and Bioresources, Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria; (M.H.); (K.V.); (S.S.)
| |
Collapse
|
7
|
Alkholief M, Kalam MA, Raish M, Ansari MA, Alsaleh NB, Almomen A, Ali R, Alshamsan A. Topical Sustained-Release Dexamethasone-Loaded Chitosan Nanoparticles: Assessment of Drug Delivery Efficiency in a Rabbit Model of Endotoxin-Induced Uveitis. Pharmaceutics 2023; 15:2273. [PMID: 37765242 PMCID: PMC10537057 DOI: 10.3390/pharmaceutics15092273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/14/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Uveitis is an ocular illness that if not treated properly can lead to a total loss of vision. In this study, we evaluated the utility of HA-coated Dexamethasone-sodium-phosphate (DEX)-chitosan nanoparticles (CSNPs) coated with hyaluronic acid (HA) as a sustained ocular delivery vehicle for the treatment of endotoxin-induced-uveitis (EIU) in rabbits. The CSNPs were characterized for particle size, zeta potential, polydispersity, surface morphology, and physicochemical properties. Drug encapsulation, in vitro drug release, and transcorneal permeation were also evaluated. Finally, eye irritation, ocular pharmacokinetics, and pharmacodynamics were in vivo. The CSNPs ranged from 310.4 nm and 379.3 nm pre-(uncoated) and post-lyophilization (with HA-coated), respectively. The zeta potentials were +32 mV (uncoated) and -5 mV (HA-uncoated), while polydispersity was 0.178-0.427. Drug encapsulation and loading in the CSNPs were 73.56% and 6.94% (uncoated) and 71.07% and 5.54% (HA-coated), respectively. The in vitro DEX release over 12 h was 77.1% from the HA-coated and 74.2% from the uncoated NPs. The physicochemical properties of the CSNPs were stable over a 3-month period when stored at 25 °C. Around a 10-fold increased transcorneal-flux and permeability of DEX was found with HA-CSNPs compared to the DEX-aqueous solution (DEX-AqS), and the eye-irritation experiment indicated its ocular safety. After the ocular application of the CSNPs, DEX was detected in the aqueous humor (AH) till 24 h. The area under the concentrations curve (AUC0-24h) for DEX from the CSNPs was 1.87-fold (uncoated) and 2.36-fold (HA-coated) higher than DEX-AqS. The half-life (t1/2) of DEX from the uncoated and HA-coated NPs was 2.49-and 3.36-fold higher, and the ocular MRT0-inf was 2.47- and 3.15-fold greater, than that of DEX-AqS, respectively. The EIU rabbit model showed increased levels of MPO, TNF-α, and IL-6 in AH. Topical DEX-loaded CSNPs reduced MPO, TNF-α, and IL-6 levels as well as inhibited NF-κB expression. Our findings demonstrate that the DEX-CSNPs platform has improved the delivery properties and, hence, the promising anti-inflammatory effects on EIU in rabbits.
Collapse
Affiliation(s)
- Musaed Alkholief
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.A.K.); (M.R.); (R.A.)
| | - Mohd Abul Kalam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.A.K.); (M.R.); (R.A.)
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.A.K.); (M.R.); (R.A.)
| | - Mushtaq Ahmad Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.A.A.); (N.B.A.)
| | - Nasser B. Alsaleh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.A.A.); (N.B.A.)
| | - Aliyah Almomen
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Raisuddin Ali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.A.K.); (M.R.); (R.A.)
| | - Aws Alshamsan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.A.K.); (M.R.); (R.A.)
| |
Collapse
|
8
|
Otaka Y, Kanai K, Mori A, Okada D, Nagai N, Yamashita Y, Ichikawa Y, Tajima K. 5-ALA/SFC Ameliorates Endotoxin-Induced Ocular Inflammation in Rats by Inhibiting the NF-κB Signaling Pathway and Activating the HO-1/Nrf2 Signaling Pathway. Int J Mol Sci 2023; 24:ijms24108653. [PMID: 37239995 DOI: 10.3390/ijms24108653] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Sodium ferrous citrate (SFC) is involved in the metabolism of 5-aminolevulinic acid (5-ALA) and enhances its anti-inflammatory effects. The effects of 5-ALA/SFC on inflammation in rats with endotoxin-induced uveitis (EIU) have yet to be elucidated. In this study, during lipopolysaccharide injection, 5-ALA/SFC (10 mg/kg 5-ALA plus 15.7 mg/kg SFC) or 5-ALA (10 or 100 mg/kg) was administered via gastric gavage, wherein we saw that 5-ALA/SFC ameliorated ocular inflammation in EIU rats by suppressing clinical scores; by infiltrating cell counts, aqueous humor protein, and inflammatory cytokine levels; and by improving histopathological scores to the same extent as 100 mg/kg 5-ALA. Immunohistochemistry showed that 5-ALA/SFC suppressed iNOS and COX-2 expression, NF-κB activation, IκB-α degradation, and p-IKKα/β expression, and activated HO-1 and Nrf2 expression. Therefore, this study has investigated how 5-ALA/SFC reduces inflammation and revealed the pathways involved in EIU rats. 5-ALA/SFC is shown to inhibit ocular inflammation in EIU rats by inhibiting NF-κB and activating the HO-1/Nrf2 pathways.
Collapse
Affiliation(s)
- Yuya Otaka
- Department of Small Animal Internal Medicine II, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23ban-cho, Towada 034-8628, Aomori, Japan
| | - Kazutaka Kanai
- Department of Small Animal Internal Medicine II, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23ban-cho, Towada 034-8628, Aomori, Japan
| | - Arisa Mori
- Department of Small Animal Internal Medicine II, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23ban-cho, Towada 034-8628, Aomori, Japan
| | - Daiki Okada
- Department of Small Animal Internal Medicine II, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23ban-cho, Towada 034-8628, Aomori, Japan
| | - Noriaki Nagai
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| | - Yohei Yamashita
- Department of Small Animal Internal Medicine II, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23ban-cho, Towada 034-8628, Aomori, Japan
| | - Yoichiro Ichikawa
- Department of Small Animal Internal Medicine II, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23ban-cho, Towada 034-8628, Aomori, Japan
| | - Kazuki Tajima
- Department of Small Animal Internal Medicine II, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23ban-cho, Towada 034-8628, Aomori, Japan
| |
Collapse
|
9
|
Maxia C, Isola M, Grecu E, Cuccu A, Scano A, Orrù G, Di Girolamo N, Diana A, Murtas D. Synergic Action of Insulin-like Growth Factor-2 and miRNA-483 in Pterygium Pathogenesis. Int J Mol Sci 2023; 24:ijms24054329. [PMID: 36901760 PMCID: PMC10002351 DOI: 10.3390/ijms24054329] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
Pterygium is a multifactorial disease in which UV-B is speculated to play a key role by inducing oxidative stress and phototoxic DNA damage. In search for candidate molecules that are useful for justifying the intense epithelial proliferation observed in pterygium, our attention has been focused on Insulin-like Growth Factor 2 (IGF-2), mainly detected in embryonic and fetal somatic tissues, which regulate metabolic and mitogenic functions. The binding between IGF-2 and its receptor Insulin-like Growth Factor 1 Receptor (IGF-1R) activates the PI3K-AKT pathway, which leads to the regulation of cell growth, differentiation, and the expression of specific genes. Since IGF2 is regulated by parental imprinting, in different human tumors, the IGF2 Loss of Imprinting (LOI) results in IGF-2- and IGF2-derived intronic miR-483 overexpression. Based on these activities, the purpose of this study was to investigate the overexpression of IGF-2, IGF-1R, and miR-483. Using an immunohistochemical approach, we demonstrated an intense colocalized epithelial overexpression of IGF-2 and IGF-1R in most pterygium samples (Fisher's exact test, p = 0.021). RT-qPCR gene expression analysis confirmed IGF2 upregulation and demonstrated miR-483 expression in pterygium compared to normal conjunctiva (253.2-fold and 12.47-fold, respectively). Therefore, IGF-2/IGF-1R co-expression could suggest their interplay through the two different paracrine/autocrine IGF-2 routes for signaling transfer, which would activate the PI3K/AKT signaling pathway. In this scenario, miR-483 gene family transcription might synergically reinforce IGF-2 oncogenic function through its boosting pro-proliferative and antiapoptotic activity.
Collapse
Affiliation(s)
- Cristina Maxia
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
- Correspondence:
| | - Michela Isola
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Eleonora Grecu
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Alberto Cuccu
- Department of Surgical Science, Eye Clinic, Azienda Ospedaliero-Universitaria (AOU), 09123 Cagliari, Italy
| | - Alessandra Scano
- Department of Surgical Sciences, Molecular Biology Service Laboratory, University of Cagliari, 09123 Cagliari, Italy
| | - Germano Orrù
- Department of Surgical Sciences, Molecular Biology Service Laboratory, University of Cagliari, 09123 Cagliari, Italy
| | - Nick Di Girolamo
- Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 4385, Australia
| | - Andrea Diana
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Daniela Murtas
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| |
Collapse
|
10
|
Bacteria and Dry Eye: A Narrative Review. J Clin Med 2022; 11:jcm11144019. [PMID: 35887783 PMCID: PMC9319739 DOI: 10.3390/jcm11144019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/17/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Dry eye is a multifactorial disease of the ocular surface, the incidence of which has been increasing sharply. The pathogenesis of dry eye, especially in terms of the bacterial flora, has drawn great attention. Additionally, the potential treatment methods need to be explored. (2) Methods: We reviewed more than 100 studies and summarized them briefly in a review. (3) Results: We summarized the bacterial communities found on the ocular surface in the general population and patients with dry eye and found a relationship between dry eye and antibiotic therapy. We identified the possible mechanisms of bacteria in the development of dry eye by discussing factors such as the destruction of the antibacterial barrier, infectious diseases, microbiome homeostasis, inflammatory factors on the ocular surface and vitamin deficiency. (4) Conclusion: We systematically reviewed the recent studies to summarize the bacterial differences between patients with dry eye and the general population and brought up several possible mechanisms and possible treatment targets.
Collapse
|
11
|
Thompson B, Davidson EA, Chen Y, Orlicky DJ, Thompson DC, Vasiliou V. Oxidative stress induces inflammation of lens cells and triggers immune surveillance of ocular tissues. Chem Biol Interact 2022; 355:109804. [PMID: 35123994 PMCID: PMC9136680 DOI: 10.1016/j.cbi.2022.109804] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/24/2021] [Accepted: 01/05/2022] [Indexed: 11/03/2022]
Abstract
Recent reports have challenged the notion that the lens is immune-privileged. However, these studies have not fully identified the molecular mechanism(s) that promote immune surveillance of the lens. Using a mouse model of targeted glutathione (GSH) deficiency in ocular surface tissues, we have investigated the role of oxidative stress in upregulating cytokine expression and promoting immune surveillance of the eye. RNA-sequencing of lenses from postnatal day (P) 1-aged Gclcf/f;Le-CreTg/- (KO) and Gclcf/f;Le-Cre-/- control (CON) mice revealed upregulation of many cytokines (e.g., CCL4, GDF15, CSF1) and immune response genes in the lenses of KO mice. The eyes of KO mice had a greater number of cells in the aqueous and vitreous humors at P1, P20 and P50 than age-matched CON and Gclcw/w;Le-CreTg/- (CRE) mice. Histological analyses revealed the presence of innate immune cells (i.e., macrophages, leukocytes) in ocular structures of the KO mice. At P20, the expression of cytokines and ROS content was higher in the lenses of KO mice than in those from age-matched CRE and CON mice, suggesting that oxidative stress may induce cytokine expression. In vitro administration of the oxidant, hydrogen peroxide, and the depletion of GSH (using buthionine sulfoximine (BSO)) in 21EM15 lens epithelial cells induced cytokine expression, an effect that was prevented by co-treatment of the cells with N-acetyl-l-cysteine (NAC), a antioxidant. The in vivo and ex vivo induction of cytokine expression by oxidative stress was associated with the expression of markers of epithelial-to-mesenchymal transition (EMT), α-SMA, in lens cells. Given that EMT of lens epithelial cells causes posterior capsule opacification (PCO), we propose that oxidative stress induces cytokine expression, EMT and the development of PCO in a positive feedback loop. Collectively these data indicate that oxidative stress induces inflammation of lens cells which promotes immune surveillance of ocular structures.
Collapse
Affiliation(s)
- Brian Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, USA
| | - Emily A Davidson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, USA
| | - David J Orlicky
- Department of Pathology, Anschutz School of Medicine, University of Colorado, Aurora, CO, USA
| | - David C Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, USA; Department of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, USA.
| |
Collapse
|
12
|
Guan G, Su H, Wei X, Zheng Y, Jin X. The promotion of tetrabromobisphenol A exposure on Ishikawa cells proliferation and pivotal role of ubiquitin-mediated IκB' degradation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111254. [PMID: 32890954 DOI: 10.1016/j.ecoenv.2020.111254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/05/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Tetrabromobisphenol A (TBBPA), one of the highly common industrial brominated flame retardants (BFRs), has been recently reported to influence the progression of endometrial carcinoma. However, the underlying mechanism between them has not been fully illuminated. Our findings demonstrated that treatment with low concentrations of TBBPA significantly induced the proliferation of Ishikawa cells in a concentration- and time-dependent manner. Mechanically, TBBPA stimulation led to the elevation of NF-κB expression, accompanied by the occurrence of ubiquitin-mediated IκB' degradation. Additionally, the upregulation of pro-inflammatory cytokines upon TBBPA exposure was observed in both mRNA and protein levels. Interestingly, the above toxic effects of TBBPA on Ishikawa cells were markedly attenuated by the addition of MG-132, a proteasome inhibitor, suggesting the crucial role of ubiquitin-mediated IκB' degradation in the TBBPA-stimulated proliferation of Ishikawa cells. Confirmation using in vivo model was also presented in this work. Accordingly, our data indicated that ubiquitin-mediated IκB' degradation and inflammatory response could serve as critical and sensitive biomarkers for the TBBPA-induced endometrial carcinoma, which would be helpful for the future carcinogenic risk assessments of TBBPA exposure on uterus.
Collapse
Affiliation(s)
- Ge Guan
- School of Public Health, Qingdao University, Qingdao, China
| | - Huilan Su
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Xiaoran Wei
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China
| | - Xiaoting Jin
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
13
|
Wang J, Wang B, Lv X, Wang L. NIK inhibitor impairs chronic periodontitis via suppressing non-canonical NF-κB and osteoclastogenesis. Pathog Dis 2020; 78:ftaa045. [PMID: 32860691 DOI: 10.1093/femspd/ftaa045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022] Open
Abstract
Periodontitis is an inflammatory disease that causes damages to periodontium and alveolar bone. Overactivation and formation of osteoclasts can cause bone destruction, which contributes to periodontitis development. Receptor activator of nuclear factor κB ligand (RANKL)-mediated NF-κB signaling plays an essential role in osteoclasts differentiation. We aimed to study the effects of NIK-SMI1, an NF-κB-inducing kinase (NIK) inhibitor, on the osteoclastogenesis in vitro and periodontitis progression in vivo. A ligature-induced mice model of periodontitis was incorporated to test the potential therapeutic effect of NIK-SMI1 on periodontitis. The target protein and mRNA expression levels were determined by Western blot assay and real-time PCR assay, respectively. We found that the administration of NIK-SMI1 strongly inhibited the RANKL-stimulated non-canonical NF-κB signaling as demonstrated by decreased nuclear p52 expression and activity. Blocking NIK activity also resulted in reduced osteoclasts specific genes expression and enhanced IFN-β expression. NIK-SMI1 treatment resulted in attenuated periodontitis progression and pro-inflammatory cytokines expression in vivo. Our study suggested that NIK-SMI1 exerts beneficial effects on the mitigation of osteoclastogenesis in vitro and periodontitis progression in vivo. Application of NIK-SMI1 may serve as a potential therapeutic approach for periodontitis.
Collapse
Affiliation(s)
- Jiang Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, The Hospital of Stomatology, The Fourth Military Medical University, Shaanxi 710000, China
| | - Bo Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Digital Center, The Hospital of Stomatology, The Fourth Military Medical University, Shaanxi 710000, China
| | - Xin Lv
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, The Hospital of Stomatology, The Fourth Military Medical University, Shaanxi 710000, China
| | - Lei Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, The Hospital of Stomatology, The Fourth Military Medical University, Shaanxi 710000, China
| |
Collapse
|
14
|
Chang YM, Cian AA, Weng TH, Liang CM, Pao SI, Chen YJ. Beneficial Effects of Hypercapnic Acidosis on the Inhibition of Transforming Growth Factor β-1-induced Corneal Fibrosis in Vitro. Curr Eye Res 2020; 46:648-656. [PMID: 32886570 DOI: 10.1080/02713683.2020.1820526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Corneal scarring is a common poor outcome of corneal trauma. Transforming growth factor β-1 plays a vital role in corneal fibrosis, inducing keratocyte transformation to myofibroblasts. Other than corneal transplantation, no other curative treatment methods for corneal scarring are currently available. Hypercapnic acidosis exerts anti-inflammatory and anti-migratory effects on numerous organs; however, its effect on corneal fibroblasts remains unknown. Hence, this study aimed to evaluate the effect of hypercapnic acidosis on transforming growth factor β-1-induced fibrosis in corneal fibroblasts and to elucidate the underlying mechanisms. MATERIALS AND METHODS Corneal fibroblasts were obtained from human limbal tissue and cultured with or without transforming growth factor β-1 under hypercapnic acidosis or no-hypercapnic acidosis conditions, and subjected to scratch wound, cell migration, and collagen matrix contraction assays. Furthermore, immunocytochemistry was performed to evaluate the alpha-smooth muscle actin stress fiber. Finally, western blotting was performed to assess the expression of proteins in the NF-κB and Smad pathways. RESULTS Hypercapnic acidosis suppressed collagen gel contraction capacity in transforming growth factor β-1-treated corneal fibroblasts and inhibited transforming growth factor β-1-induced cell migration. Moreover, hypercapnic acidosis downregulated corneal fibrosis marker alpha-smooth muscle actin in transforming growth factor β-1-treated corneal fibroblasts. Furthermore, hypercapnic acidosis suppressed transforming growth factor β-1-induced fibrosis, at least partly, by inhibiting Smad2/3 phosphorylation and down-regulating p-IκB-dependent and RelB signaling transduction. CONCLUSIONS Hypercapnic acidosis inhibits transforming growth factor β-1-induced corneal fibroblast migration, collagen gel contraction capacity, and alpha smooth muscle actin expression, potentially through the Smad and NF-κB pathways. Therefore, hypercapnic acidosis may be a potentially useful anti-fibrotic therapy for corneal scarring.
Collapse
Affiliation(s)
- Yu-Min Chang
- Department of Ophthalmology, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - An-An Cian
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Tzu-Heng Weng
- Department of Ophthalmology, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chang-Min Liang
- Department of Ophthalmology, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Shu-I Pao
- Department of Ophthalmology, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Ying-Jen Chen
- Department of Ophthalmology, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| |
Collapse
|
15
|
Liu H, Gambino F, Algenio CS, Wu C, Gao Y, Bouchard CS, Qiao L, Bu P, Zhao S. Inflammation and oxidative stress induced by lipid peroxidation metabolite 4-hydroxynonenal in human corneal epithelial cells. Graefes Arch Clin Exp Ophthalmol 2020; 258:1717-1725. [PMID: 32445015 DOI: 10.1007/s00417-020-04647-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/04/2020] [Accepted: 03/13/2020] [Indexed: 01/03/2023] Open
Abstract
PURPOSE Oxidative stress is widely known to be a major contributor in the pathogenesis of dry eye disease (DED). 4-Hydroxynonenal (4-HNE), a well-known byproduct frequently measured as an indicator of oxidative stress-induced lipid peroxidation, has been shown to be elevated in both human and murine corneal DED samples. This study aims to investigate if 4-HNE is responsible for the oxidative stress in human corneal epithelial cells (HCECs) and explores the underlying mechanism by which it confers its effects. METHODS SV40-immortalized HCECs were cultured in minimum essential media (MEM) with 1% penicillin/streptomycin and 10% fetal bovine serum. HCECs were exposed to media with or without 4-HNE and cell culture supernatants were collected at 4 and 24 h. Cellular reactive oxygen species (ROS) measurement was performed using a 2',7'-dichlorofluorescein diacetate (DCFDA) assay kit according to the manufacturer's instructions. Protein levels of antioxidant enzymes copper/zinc superoxide dismutase 1 (SOD1) and NAD(P)H quinone dehydrogenase 1 (NQO1) were analyzed by Western blot. NF-κB activation and expression of IL-6 and IL-8 were measured using an NF-κB p65 Total SimpleStep ELISA Kit and Proteome Profiler Human Cytokine Array Kit. Cell viability was evaluated by LDH cytotoxicity assay. RESULTS Treatment with 4-HNE decreased cell viability of HCECs. Band intensities corresponding to levels of ROS production showed a significant increase in ROS generation after treatment with 4-HNE. 4-HNE decreased SOD1 levels and upregulated NQO1 expression in HCECs. A significant increase in activation of NF-κB and production of pro-inflammatory cytokines IL-6 and IL-8 was observed after treatment with 4-HNE. Exposure to N-acetylcysteine (NAC), an antioxidant and ROS scavenger, antagonized the oxidative effects of 4-HNE on HCECs. CONCLUSION 4-HNE induces oxidative stress in corneal epithelial cells by increasing levels of ROS generation and modifying the expression of antioxidant enzyme levels, decreasing cell viability of HCECs in vitro. This study demonstrates a potential pathway by which 4-HNE functions to confer its detrimental effects and provides a new therapeutic target for the treatment of DED.
Collapse
Affiliation(s)
- Hui Liu
- Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute, College of Optometry and Ophthalmology, Tianjin Medical University, Tianjin, 300384, China.,Department of Ophthalmology, Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Frank Gambino
- Department of Microbiology and Immunology, Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Crystal S Algenio
- Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Charles Wu
- Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Yichen Gao
- Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute, College of Optometry and Ophthalmology, Tianjin Medical University, Tianjin, 300384, China
| | - Charles S Bouchard
- Department of Ophthalmology, Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Liang Qiao
- Department of Microbiology and Immunology, Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, IL, 60153, USA.
| | - Ping Bu
- Department of Ophthalmology, Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, IL, 60153, USA.
| | - Shaozhen Zhao
- Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute, College of Optometry and Ophthalmology, Tianjin Medical University, Tianjin, 300384, China.
| |
Collapse
|
16
|
Liu Y, Kitaichi N, Wu D, Hase K, Satoh M, Iwata D, Namba K, Kanda A, Noda K, Itai A, Iwabuchi K, Ishida S. Attenuation of experimental autoimmune uveoretinitis in mice by IKKβ inhibitor IMD-0354. Biochem Biophys Res Commun 2020; 525:589-594. [PMID: 32115150 DOI: 10.1016/j.bbrc.2020.02.117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/18/2020] [Indexed: 10/24/2022]
Abstract
Uveitis is a sight-threatening intraocular inflammatory disease that accounts for almost 10% of blindness worldwide. NF-κB signaling plays pivotal roles in inflammatory diseases. We have reported that IMD-0354, which inhibits NF-κB signaling via selective blockade of IKK-β, suppresses inflammation in several ocular disease models. Here, we examined the therapeutic effect of IMD-0354 in an experimental autoimmune uveoretinitis (EAU) model, a well-established animal model for endogenous uveitis in humans. Systemic administration of IMD-0354 significantly suppressed the clinical and histological severity, inflammatory edema, and the translocation of NF-κB p65 into the nucleus of retinas in EAU mice. Furthermore, IMD-0354 treatment significantly inhibited the levels of several Th1/Th17-mediated pro-inflammatory cytokines in vitro. Our current data demonstrate that inhibition of IKKβ with IMD-0354 ameliorates inflammatory responses in the mouse EAU model, suggesting that IMD-0354 may be a promising therapeutic agent for human endogenous uveitis.
Collapse
Affiliation(s)
- Ye Liu
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan; Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Nobuyoshi Kitaichi
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan; Department of Ophthalmology, Health Sciences University of Hokkaido, Sapporo, Japan.
| | - Di Wu
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Keitaro Hase
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masashi Satoh
- Department of Immunology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Daiju Iwata
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kenichi Namba
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Atsuhiro Kanda
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kousuke Noda
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Akiko Itai
- Institute of Medical Molecular Design Inc, Tokyo, Japan
| | - Kazuya Iwabuchi
- Department of Immunology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Susumu Ishida
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
17
|
Sun Y, Rong X, Li D, Lu Y, Ji Y. NF-κB/Cartilage Acidic Protein 1 Promotes Ultraviolet B Irradiation-Induced Apoptosis of Human Lens Epithelial Cells. DNA Cell Biol 2020; 39:513-521. [PMID: 31999475 DOI: 10.1089/dna.2019.5086] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The apoptosis of human lens epithelial cells (HLECs) is a characteristic change that occurs during the development of cataracts. Ultraviolet B (UVB) is known to induce the generation of reactive oxygen species (ROS) and apoptosis in HLECs, and thus cause cataracts. Previously, we reported the functions of cartilage acidic protein 1 (CRTAC1) in UVB-treated HLECs. However, the underlying mechanism was not known. In this study, we found that CRTAC1 expression and nuclear factor-kappa B (NF-κB) p65 nuclear translocation were elevated in capsule tissues of cataract patients in comparison with normal controls. The NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC), alleviated UVB-induced apoptosis in HLECs; while activation of NF-κB suppressed the effects of the ROS inhibitor, N-acetyl-L-cysteine (NAC), on UVB-treated HLECs. The expression and promoter activity of CRTAC1 was inhibited by PDTC and NAC. Moreover, the suppressed effects of CRTAC1 knockdown on UVB-induced ROS generation, cell apoptosis, nuclear translocation of NF-κB p65, and p38 phosphorylation were attenuated by a p38 agonist. In contrast, the p38 inhibitor abolished the promotional effects of CRTAC1 overexpression on HLECs. Taken together, our results for the first time show that NF-κB is a potential transcription factor for CRTAC1. The regulatory network involving NF-κB, CRTAC1, and p38 may therefore play an important role in cataract formation.
Collapse
Affiliation(s)
- Yang Sun
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, China.,Eye Institute, Eye & ENT Hospital of Fudan University, Shanghai, China.,National Health Commission (NHC) Key Laboratory of Myopia (Fudan University), Shanghai, China.,Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Xianfang Rong
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, China.,Eye Institute, Eye & ENT Hospital of Fudan University, Shanghai, China.,National Health Commission (NHC) Key Laboratory of Myopia (Fudan University), Shanghai, China.,Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Dan Li
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, China.,Eye Institute, Eye & ENT Hospital of Fudan University, Shanghai, China.,National Health Commission (NHC) Key Laboratory of Myopia (Fudan University), Shanghai, China.,Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Yi Lu
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, China.,Eye Institute, Eye & ENT Hospital of Fudan University, Shanghai, China.,National Health Commission (NHC) Key Laboratory of Myopia (Fudan University), Shanghai, China.,Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Yinghong Ji
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, China.,Eye Institute, Eye & ENT Hospital of Fudan University, Shanghai, China.,National Health Commission (NHC) Key Laboratory of Myopia (Fudan University), Shanghai, China.,Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| |
Collapse
|
18
|
Tsay TB, Chen PH, Chen LW. Aryl hydrocarbon receptor ligands enhance lung immunity through intestinal IKKβ pathways. J Transl Med 2019; 17:304. [PMID: 31488203 PMCID: PMC6727541 DOI: 10.1186/s12967-019-2043-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 08/18/2019] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Infection by antibiotic-resistant microorganisms is common in intensive care units and has become a global problem. Here, we determined the effect of aryl hydrocarbon receptor (AhR) stimulation on antibiotics-induced systemic defense impairment and its mechanisms. METHODS C57BL/6 wild-type (WT) mice received combined antibiotics with or without Ahr ligands (tryptophan and indole), or dead Lactobacillus plantarum supplementation. The defense mechanisms against Pseudomonas aeruginosa infection in the lung were examined. RESULTS Antibiotic treatments decreased the phagocytic activity, physiological activity, and the peroxynitrite production of alveolar macrophage (AMs). It also enhanced P. aeruginosa pneumonia-induced bacterial counts in the lung. Tryptophan and dead L. plantarum supplementation reversed antibiotic-induced intracellular adhesion molecule (ICAM) as well as IL-6 expression, and increased P. aeruginosa pneumonia-induced bacterial counts in the lung and increased phagocytic activity and peroxynitrite production of AMs. Moreover, these treatments reversed the antibiotics-induced reduction of Ahr expression, antibacterial proteins, reactive oxygen species (ROS) production, and NF-κB DNA binding activity of the intestinal mucosa and plasma IL-6 levels. P. aeruginosa counts increased and phagocytic activity of AMs and myeloperoxidase (MPO) activity decreased in intestinal IKKβ depleted mice. Antibiotics, antibiotic with tryptophan feeding, or antibiotic with dead L. plantarum feeding treatments did not change the phagocytic activity and peroxynitrite production of AMs, plasma IL-6 levels, and the expression of Ahr of intestine in intestinal IKKβ depleted mice. CONCLUSION Antibiotic treatment impairs lung immune defenses by decreasing Ahr expression in the intestine and peroyxnitrite production of the AMs. Ahr ligands reverses antibiotic-induced lung defense against bacterial infection through intestinal ROS production and NF-κB activation. The gut is critical in maintaining lung defense mechanism through the intestinal IKKβ pathways.
Collapse
Affiliation(s)
- Tzyy-Bin Tsay
- Department of Surgery, Kaohsiung Armed Forces General Hospital Zuoying Branch, Kaohsiung, Taiwan
| | - Pei-Hsuan Chen
- Department of Surgery, Kaohsiung Veterans General Hospital, No.386, Ta-chung 1st Road, Kaohsiung, 813, Taiwan
| | - Lee-Wei Chen
- Department of Surgery, Kaohsiung Veterans General Hospital, No.386, Ta-chung 1st Road, Kaohsiung, 813, Taiwan. .,Department of Biological Sciences, National Sun Yat-Sen University, No.70, Lien-Hai Road, Kaohsiung, 804, Taiwan. .,Institute of Emergency and Critical Care Medicine, National Yang-Ming University, No.155, Sec.2, Linong Street, Taipei, 112, Taiwan.
| |
Collapse
|
19
|
Xiao C, Wu M, Liu J, Gu J, Jiao X, Lu D, He J, Lin C, Xue Y, Fu T, Wang H, Wang G, Yang X, Li Z. Acute tobacco smoke exposure exacerbates the inflammatory response to corneal wounds in mice via the sympathetic nervous system. Commun Biol 2019; 2:33. [PMID: 30701198 PMCID: PMC6345828 DOI: 10.1038/s42003-018-0270-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 12/17/2018] [Indexed: 12/18/2022] Open
Abstract
Exposure to tobacco smoke is a major public health concern that can also affect ophthalmic health. Based on previous work demonstrating the important role of the sympathetic nervous system (SNS) in corneal wound repair, we postulated that acute tobacco smoke exposure (ATSE) may act through the SNS in the impairment of corneal wound repair. Here we find that ATSE rapidly increases the markers of inflammatory response in normal corneal limbi. After an abrasion injury, ATSE exaggerates inflammation, impairs wound repair, and enhances the expression of nuclear factor-κB (NF-κB) and inflammatory molecules such as interleukin-6 (IL-6) and IL-17. We find that chemical SNS sympathectomy, local adrenergic receptor antagonism, NF-κB1 inactivation, and IL-6/IL-17A neutralization can all independently attenuate ATSE-induced excessive inflammatory responses and alleviate their impairment of the healing process. These findings highlight that the SNS may represent a major molecular sensor and mediator of ATSE-induced inflammation.
Collapse
Affiliation(s)
- Chengju Xiao
- International Ocular Surface Research Center, Institute of Ophthalmology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Mingjuan Wu
- International Ocular Surface Research Center, Institute of Ophthalmology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Jun Liu
- International Ocular Surface Research Center, Institute of Ophthalmology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Jianqin Gu
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Xinwei Jiao
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Jingxin He
- International Ocular Surface Research Center, Institute of Ophthalmology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
- Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Cuipei Lin
- International Ocular Surface Research Center, Institute of Ophthalmology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
- Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yunxia Xue
- International Ocular Surface Research Center, Institute of Ophthalmology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Ting Fu
- International Ocular Surface Research Center, Institute of Ophthalmology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Hanqing Wang
- International Ocular Surface Research Center, Institute of Ophthalmology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Guang Wang
- Department of Histology and Embryology, Jinan University Medical School, Guangzhou, China
| | - Xuesong Yang
- Department of Histology and Embryology, Jinan University Medical School, Guangzhou, China
| | - Zhijie Li
- International Ocular Surface Research Center, Institute of Ophthalmology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
- Section of Leukocyte Biology, Department of Pediatrics, Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
20
|
Nakano Y, Uchiyama M, Arima T, Nagasaka S, Igarashi T, Shimizu A, Takahashi H. PPARα Agonist Suppresses Inflammation after Corneal Alkali Burn by Suppressing Proinflammatory Cytokines, MCP-1, and Nuclear Translocation of NF-κB. Molecules 2018; 24:molecules24010114. [PMID: 30597991 PMCID: PMC6337747 DOI: 10.3390/molecules24010114] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/24/2018] [Accepted: 12/24/2018] [Indexed: 11/26/2022] Open
Abstract
We investigated the effect of a peroxisome proliferator-activated receptor α (PPARα) agonist after corneal alkali injury. Fenofibrate 0.05% (PPARα agonist group) or vehicle (Vehicle group) was topically instilled onto the rat cornea after injury. Histological, immunohistochemical, and real-time reverse transcription PCR analyses were performed. PPARα-positive cells were observed among basal cells of the corneal epithelium in normal and alkali-burned corneas. The number of infiltrating neutrophils and macrophages at the corneal limbus was lower in the PPARα agonist group. Interleukin-1β (IL-1β), IL-6, IL-8, monocyte chemoattractant protein-1 (MCP-1), and vascular endothelial growth factor-An mRNA expression was suppressed in the PPARα agonist group compared to the Vehicle group. mRNA levels of nuclear factor kappa B (NF-κB) in corneal tissue were not different. However, NF-κB was expressed in the cytoplasm of basal cells in the PPARα agonist group and in the nucleus in the Vehicle group. MCP-1 was more weakly expressed in the PPARα agonist group. The PPARα agonist inhibited inflammation during the early phase after injury. Anti-inflammatory effects of the PPARα agonist included prevention of up-regulation of proinflammatory cytokines and MCP-1, and prevention of inflammatory cell infiltration into the injured cornea. Thus, a PPARα agonist may be a promising treatment for corneal injury.
Collapse
Affiliation(s)
- Yuichiro Nakano
- Department of Ophthalmology, Nippon Medical School, Tokyo 113-8603, Japan.
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo 113-8602, Japan.
| | - Masaaki Uchiyama
- Department of Ophthalmology, Nippon Medical School, Tokyo 113-8603, Japan.
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo 113-8602, Japan.
| | - Takeshi Arima
- Department of Ophthalmology, Nippon Medical School, Tokyo 113-8603, Japan.
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo 113-8602, Japan.
| | - Shinya Nagasaka
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo 113-8602, Japan.
| | - Tsutomu Igarashi
- Department of Ophthalmology, Nippon Medical School, Tokyo 113-8603, Japan.
| | - Akira Shimizu
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo 113-8602, Japan.
| | - Hiroshi Takahashi
- Department of Ophthalmology, Nippon Medical School, Tokyo 113-8603, Japan.
| |
Collapse
|
21
|
Romeo Villadóniga S, Rodríguez García E, Sagastagoia Epelde O, Álvarez Díaz MD, Domingo Pedrol JC. Effects of Oral Supplementation with Docosahexaenoic Acid (DHA) plus Antioxidants in Pseudoexfoliative Glaucoma: A 6-Month Open-Label Randomized Trial. J Ophthalmol 2018; 2018:8259371. [PMID: 30310698 PMCID: PMC6166377 DOI: 10.1155/2018/8259371] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/06/2018] [Indexed: 12/25/2022] Open
Abstract
PURPOSE To assess the effects of antioxidant oral supplementation based on docosahexaenoic acid (DHA) in pseudoexfoliative (PEX) glaucoma. PATIENTS AND METHODS A prospective 6-month open-label randomized controlled trial was conducted in patients with PEX glaucoma and adequate intraocular pressure (IOP) control. Patients in the DHA group received a high-rich DHA (1 g) nutraceutical formulation. Ophthalmological examination, DHA erythrocyte membrane content (% total fatty acids), plasma total antioxidant capacity (TAC), plasma malondialdehyde (MDA), and plasma IL-6 levels were assessed. RESULTS Forty-seven patients (DHA group 23, controls 24; mean age 70.3 years) were included. In the DHA group, the mean IOP in the right eye decreased from 14.7 [3.3] mmHg at baseline to 12.1 [1.5] mmHg at 6 months (P=0.01). In the left eye, IOP decreased from 15.1 [3.3] mmHg at baseline to 12.2 [2.4] mmHg at 6 months (P=0.007). DHA erythrocyte content increased in the DHA group, with significant differences versus controls at 3 months and 6 months (8.1% [0.9] vs. 4.4% [0.7]; P < 0.0001). At 6 months and in the DHA group only, TAC levels as compared with baseline increased significantly (919.7 [117.9] vs. 856.9 [180.3] µM copper-reducing equivalents; P=0.01), and both MDA (4.4 [0.8] vs. 5.2 [1.1] nmol/mL; P = 0.02) and IL-6 (2.8 [1.3] vs. 4.7 [2.3] pg/mL; P=0.006) levels were lower than in controls. CONCLUSIONS Targeting pathophysiology mechanisms of PEX glaucoma by reducing oxidative stress and inflammation with a high-rich DHA supplement might be an attractive therapeutic approach. Despite the short duration of treatment, decrease in IOP supports the clinical significance of DHA supplementation.
Collapse
Affiliation(s)
| | - Elena Rodríguez García
- Service of Ophthalmology, Complejo Hospitalario Universitario de Ferrol, Ferrol, A Coruña, Spain
| | - Olatz Sagastagoia Epelde
- Clinical Analysis Laboratory, Complejo Hospitalario Universitario de Ferrol, Ferrol, A Coruña, Spain
| | - M. Dolores Álvarez Díaz
- Service of Ophthalmology, Complejo Hospitalario Universitario de Ferrol, Ferrol, A Coruña, Spain
| | - Joan Carles Domingo Pedrol
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
22
|
Thymol alleviates lipopolysaccharide-stimulated inflammatory response via downregulation of RhoA-mediated NF-κB signalling pathway in human peritoneal mesothelial cells. Eur J Pharmacol 2018; 833:210-220. [PMID: 29883671 DOI: 10.1016/j.ejphar.2018.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/05/2018] [Accepted: 06/05/2018] [Indexed: 01/16/2023]
Abstract
Thymol is one of the most important dietary constituents in the thyme species and has been shown to possess anti-inflammatory properties both in vivo and in vitro. We investigated the protective effects of thymol on the lipopolysaccharide (LPS)-induced inflammatory responses in the human peritoneal mesothelial cell line (HMrSV5) to clarify the potential mechanism. HMrSV5 cells were stimulated with LPS in the presence or absence of thymol. Our results showed that thymol markedly suppressed the production of cytokines such as tumour necrosis factor α (TNF-α), interleukin (IL)-6, monocyte chemoattractant protein 1 (MCP-1) and α-smooth muscle actin (α-SMA) in a dose-dependent manner. Western blot analysis indicated that RhoA and ROCK activation; Toll-like receptor 4 (TLR4) expression; and Nuclear factor -kappa B (NF-κB) p65, IKK and IκBα phosphorylation were also inhibited by thymol. Moreover, siRNA knockdown of RhoA suppressed the expression of pro-inflammatory cytokines and phosphorylation of NF-κB p65 and IκBα proteins in LPS-stimulated HMrSV5 cells, but did not affect TLR4 expression. In conclusion, thymol inhibits LPS-induced inflammation in HMrSV5 cells by suppressing TLR4-mediated RhoA-dependent NF-κB signalling pathway. Our study suggests that thymol may be a promising therapeutic agent against peritonitis.
Collapse
|
23
|
Zhang Y, Wang S, Zhu J, Li C, Zhang T, Liu H, Xu Q, Ye X, Zhou L, Ye L. Effect of Atmospheric PM2.5 on Expression Levels of NF-κB Genes and Inflammatory Cytokines Regulated by NF-κB in Human Macrophage. Inflammation 2018; 41:784-794. [DOI: 10.1007/s10753-018-0732-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Kaminskyy D, Kryshchyshyn A, Lesyk R. 5-Ene-4-thiazolidinones - An efficient tool in medicinal chemistry. Eur J Med Chem 2017; 140:542-594. [PMID: 28987611 PMCID: PMC7111298 DOI: 10.1016/j.ejmech.2017.09.031] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 07/14/2017] [Accepted: 09/17/2017] [Indexed: 02/02/2023]
Abstract
The presented review is an attempt to summarize a huge volume of data on 5-ene-4-thiazolidinones being a widely studied class of small molecules used in modern organic and medicinal chemistry. The manuscript covers approaches to the synthesis of 5-ene-4-thiazolidinone derivatives: modification of the C5 position of the basic core; synthesis of the target compounds in the one-pot or multistage reactions or transformation of other related heterocycles. The most prominent pharmacological profiles of 5-ene derivatives of different 4-thiazolidinone subtypes belonging to hit-, lead-compounds, drug-candidates and drugs as well as the most studied targets have been discussed. Currently target compounds (especially 5-en-rhodanines) are assigned as frequent hitters or pan-assay interference compounds (PAINS) within high-throughput screening campaigns. Nevertheless, the crucial impact of the presence/nature of C5 substituent (namely 5-ene) on the pharmacological effects of 5-ene-4-thiazolidinones was confirmed by the numerous listed findings from the original articles. The main directions for active 5-ene-4-thiazolidinones optimization have been shown: i) complication of the fragment in the C5 position; ii) introduction of the substituents in the N3 position (especially fragments with carboxylic group or its derivatives); iii) annealing in complex heterocyclic systems; iv) combination with other pharmacologically attractive fragments within hybrid pharmacophore approach. Moreover, the utilization of 5-ene-4-thiazolidinones in the synthesis of complex compounds with potent pharmacological application is described. The chemical transformations cover mainly the reactions which involve the exocyclic double bond in C5 position of the main core and correspond to the abovementioned direction of the 5-ene-4-thiazolidinone modification.
Collapse
Affiliation(s)
- Danylo Kaminskyy
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv-10, 79010, Ukraine
| | - Anna Kryshchyshyn
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv-10, 79010, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv-10, 79010, Ukraine.
| |
Collapse
|
25
|
Yu S, Liu X, Zhang N, Yang S, Mao C, Feng S, Lu H. Protection of Lipopolysaccharide (LPS) Preconditioning against Endotoxin-Induced Uveitis (EIU) in Rats is Associated with Overexpression of Interleukin-1 Receptor-Associated Kinase M (IRAK-M). Ocul Immunol Inflamm 2017; 26:943-950. [PMID: 28609207 DOI: 10.1080/09273948.2017.1291842] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE To investigate the protective effect of LPS preconditioning against EIU in rats. METHODS EIU in Wistar rats was developed by subcutaneous injection of LPS (200 μg). Lower dose of LPS (0.1 mg/kg, intraperitoneally) or its carrier was injected daily for five days before EIU induction. Twenty-four hours after EIU, eyes were examined and then enucleated. The degree of inflammatory reaction was determined by routine histological examinations. Real-time RT-PCR and Western blot were used to determine the activation of NF-kB and expression of IRAK-1, IRAK-4, and IRAK-M Results: Repeated pre-administration of LPS induced a significant reduction in ocular inflammation and the expression of NF-κb p65 in neurons. The expression of IRAK-1 and IRAK-4 was suppressed in endotoxin tolerance group, whereas IRAK-M was increased. CONCLUSIONS Endotoxin tolerance has a protective effect against EIU, and upregulation of IRAK-M through TLR-signaling pathway is one of the most likely candidates to be involved in the observed phenomenon.
Collapse
Affiliation(s)
- Shuo Yu
- a Department of Ophthalmology , Beijing Chao-Yang Hospital, Capital Medical University , Beijing , China
| | - Xinli Liu
- a Department of Ophthalmology , Beijing Chao-Yang Hospital, Capital Medical University , Beijing , China
| | - Nan Zhang
- a Department of Ophthalmology , Beijing Chao-Yang Hospital, Capital Medical University , Beijing , China
| | - Shuo Yang
- a Department of Ophthalmology , Beijing Chao-Yang Hospital, Capital Medical University , Beijing , China
| | - Cui Mao
- b Department of Ophthalmology , The Third Affiliated Hospital of Chongqing Medical University , Chongqing , China
| | - Shilan Feng
- c School of Pharmacy, Lanzhou University , Lanzhou, China
| | - Hong Lu
- a Department of Ophthalmology , Beijing Chao-Yang Hospital, Capital Medical University , Beijing , China
| |
Collapse
|
26
|
Yang YW, Jiang YZ, Hsu CM, Chen LW. Pseudomonas aeruginosa Ventilator-Associated Pneumonia Induces Lung Injury through TNF-α/c-Jun NH2-Terminal Kinase Pathways. PLoS One 2017; 12:e0169267. [PMID: 28060857 PMCID: PMC5218563 DOI: 10.1371/journal.pone.0169267] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 12/14/2016] [Indexed: 11/18/2022] Open
Abstract
Ventilator-associated pneumonia (VAP) is a common nosocomial infection among intensive care unit (ICU) patients. Pseudomonas aeruginosa (PA) is the most common multidrug-resistant Gram-negative pathogen and VAP caused by PA carries a high rate of morbidity and mortality. This study examined the molecular mechanism of PA VAP-induced lung injury. C57BL/6 wild-type (WT) mice and JNK1 knockout (JNK1-/-) mice received mechanical ventilation (MV) for 3 h at 2 days after receiving nasal instillation of PA. The WT and JNK1-/- mice also received MV after the induction of lung injury by instillation of supernatants from PA-stimulated alveolar macrophages (AMs). AMs isolated from WT, IκB-kinase (IKK)βΔMye (IKKβ was selectively deleted in macrophages), and JNK1-/- mice were ex vivo stimulated with live PA and supernatants were collected for cytokine assay. Intranasal instillation of 106 PA enhanced MV-induced NF-κB DNA binding activity in the lungs and nitrite levels in BALF. MV after PA instillation significantly increased the expression of ICAM and VCAM in the lungs and TNF-α, IL-1β, and IL-6 levels in bronchoalveolar lavage fluid (BALF) of WT mice, but not in JNK1-/- mice. MV after supernatant instillation induced more total protein concentration in BALF and neutrophil sequestration in the lungs in WT mice than JNK1-/- mice and cytokine assay of supernatants indicated that TNF-α is a critical regulator of PA VAP-induced lung injury. Ex vivo PA stimulation induced TNF-α production by AMs from WT as well as JNK1-/- mice but not IKKβΔMye mice. In summary, PA colonization plays an important role in PA VAP-induced lung injury through the induction of JNK1-mediated inflammation. These results suggest that the pathogenesis mechanism of PA VAP involves production of TNF-α through activation of IKK/NF-κB pathways in AMs and JNK signaling pathway in the lungs.
Collapse
Affiliation(s)
- Ying-Wei Yang
- Institute of Emergency and Critical Care Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yu-Zhen Jiang
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ching-Mei Hsu
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Lee-Wei Chen
- Institute of Emergency and Critical Care Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| |
Collapse
|
27
|
Lee H, Lee M, Lee Y, Choi S, Yang J. Chondrocyte-derived extracellular matrix suppresses pathogenesis of human pterygium epithelial cells by blocking the NF-κB signaling pathways. Mol Vis 2016; 22:1490-1502. [PMID: 28050122 PMCID: PMC5204452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/22/2016] [Indexed: 11/20/2022] Open
Abstract
PURPOSE We previously have reported that chondrocyte-derived extracellular matrix (CDECM) suppresses the growth of pterygium in athymic nude mice. The aim of this study is to demonstrate the effect of CDECM on the pterygium epithelial cells and molecular signaling pathways in human primary pterygium epithelial cells (hPECs). METHODS Human conjunctival epithelial cells (hConECs) were used for identification of the effect of CDECM on normal conjunctiva. The effects of CDECM on proliferation were measured with the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxy-methoxyphenyl)-2-(4-sulfenyl)-2H-tetrazolium (MTS) assay. Cell migration was evaluated according to the scratch wound closure assay and the Transwell invasion assay. Pterygium-related angiogenesis, inflammation, and extracellular matrix remodeling were analyzed with immunoblot and enzyme-linked immunosorbent assay (ELISA). The level of oxidative stress was detected with 2',7'-dichlorofluorescein diacetate (DCFH-DA). Protein kinase signaling was also analyzed with immunoblot. RESULTS CDECM did not show cytotoxicity until 1 mg/ml in the hConECs and hPECs. Cell migration and invasion were markedly reduced by treatment of 1 mg/ml CDECM in the hPECs to 34% of the control, but not in the hConECs. CDECM significantly downregulated matrix metallopeptidase 9 (MMP-9) and fibronectin and upregulated tissue inhibitor of metalloprotease 1 (TIMP-1) and -2 in the hPECs. Angiogenic factors, such as vascular endothelial growth factor (VEGF), antivascular cellular adhesion molecule 1 (VCAM-1), and cluster of differentiation 31 (CD31), and proinflammatory factors, including tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (Cox2), interleukin 6 (IL-6), and prostaglandin E2 (PGE2), were dramatically reduced by CDECM in the hPECs. Furthermore, CDECM significantly inhibited the generation of intracellular reactive oxygen species and the expression of NADPH oxidase subunits, Nox2 and p47phox. CDECM induced nuclear factor erythroid-2 related factor 2 (Nrf2) mediated-antioxidant enzyme heme oxygenase-1 (HO-1). CDECM also suppressed nuclear factor-kappa B (NF-κB) activation and the phosphorylation of p38 mitogen-activated protein kinase (MAPK), protein kinase C alpha (PKCα), and PKCθ. CONCLUSIONS CDECM was markedly effective in pathogenesis of hPECs. CDECM-suppressed migration of hPECs resulted from the inhibition of NF-κB activation and the improvement of Nrf2 induction by blocking the p38 MAPK and PKC signaling pathways.
Collapse
Affiliation(s)
- Hyesook Lee
- Ocular Neovascular Disease Research Center, Inje University Busan Paik Hospital, Busan, Republic of Korea
| | - Minsup Lee
- Ocular Neovascular Disease Research Center, Inje University Busan Paik Hospital, Busan, Republic of Korea
| | - Yoonjin Lee
- Ocular Neovascular Disease Research Center, Inje University Busan Paik Hospital, Busan, Republic of Korea,Department of Ophthalmology, Inje University College of Medicine, Busan, Republic of Korea
| | - Soojin Choi
- Division of Industrial Technology, Korea Evaluation Institute of Industrial Technology, Daegu, Republic of Korea
| | - Jaewook Yang
- Ocular Neovascular Disease Research Center, Inje University Busan Paik Hospital, Busan, Republic of Korea,Department of Ophthalmology, Inje University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
28
|
Sato K, Mihara Y, Kanai K, Yamashita Y, Kimura Y, Itoh N. Tyrosol ameliorates lipopolysaccharide-induced ocular inflammation in rats via inhibition of nuclear factor (NF)-κB activation. J Vet Med Sci 2016; 78:1429-1438. [PMID: 27238160 PMCID: PMC5059370 DOI: 10.1292/jvms.16-0166] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We evaluated the anti-inflammatory effect of tyrosol (Tyr) on endotoxin-induced uveitis (EIU) in rats. EIU was induced in male Lewis rats by subcutaneous injection of lipopolysaccharide (LPS). Tyr (10, 50 or 100 mg/kg) was intravenously injected 2 hr before, simultaneously and 2 hr after LPS injection. The aqueous humor (AqH) was collected 24 hr after LPS injection; the infiltrating cell number, protein concentration, and tumor necrosis factor (TNF)-α, prostaglandin (PG)-E2 and nitric oxide (NO) levels were determined. Histopathologic examination and immunohistochemical studies for nuclear factor (NF)-κB, inhibitor of κB (IκB)-α, cyclooxygenase (COX)-2 and inducible NO synthase (iNOS) in the iris-ciliary body (ICB) were performed at 3 or 24 hr after LPS injection. To further clarify the anti-inflammatory effects, RAW264.7 macrophages were stimulated with LPS in the presence or absence of Tyr. Tyr reduced, in a dose-dependent manner, the infiltrating cell number, protein concentration, and TNF-α, PGE2 and NO levels in AqH and improved histopathologic scores of EIU. Tyr also inhibited LPS-induced COX-2 and iNOS expression, IκB-α degradation and nuclear translocation of activated NF-κB in ICB. Tyr significantly suppressed inflammatory mediator production in the culture medium and COX-2 and iNOS expression and activated NF-κB translocation in LPS-stimulated RAW264.7 cells. These results suggest that Tyr suppresses ocular inflammation of EIU by inhibiting NF-κB activation and subsequent proinflammatory mediator production.
Collapse
Affiliation(s)
- Kazuaki Sato
- Department of Small Animal Internal Medicine I, School of Veterinary Medicine, University of Kitasato, 35-1, Towada, Aomori 034-8628, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Necrosis-Induced Sterile Inflammation Mediated by Interleukin-1α in Retinal Pigment Epithelial Cells. PLoS One 2015; 10:e0144460. [PMID: 26641100 PMCID: PMC4671579 DOI: 10.1371/journal.pone.0144460] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/18/2015] [Indexed: 12/20/2022] Open
Abstract
Endogenous danger signals released from necrotic cells contribute to retinal inflammation. We have now investigated the effects of necrotic cell extracts prepared from ARPE-19 human retinal pigment epithelial cells (ANCE) on the release of proinflammatory cytokines and chemokines by healthy ARPE-19 cells. ANCE were prepared by subjection of ARPE-19 cells to freeze-thaw cycles. The release of various cytokines and chemokines from ARPE-19 cells was measured with a multiplex assay system or enzyme-linked immunosorbent assays. The expression of interleukin (IL)–1α and the phosphorylation and degradation of the endogenous nuclear factor–κB (NF-κB) inhibitor IκB-α were examined by immunoblot analysis. Among the various cytokines and chemokines examined, we found that ANCE markedly stimulated the release of the proinflammatory cytokine IL-6 and the chemokines IL-8 and monocyte chemoattractant protein (MCP)–1 by ARPE-19 cells. ANCE-induced IL-6, IL-8, and MCP-1 release was inhibited by IL-1 receptor antagonist and by an IKK2 inhibitor (a blocker of NF-κB signaling) in a concentration-dependent manner, but was not affected by a pan-caspase inhibitor (Z-VAD-FMK). Recombinant IL-1α also induced the secretion of IL-6, IL-8, and MCP-1 from ARPE-19 cells, and IL-1α was detected in ANCE. Furthermore, ANCE induced the phosphorylation and degradation of IκB-α in ARPE-19 cells. Our findings thus suggest that IL-1α is an important danger signal that is released from necrotic retinal pigment epithelial cells and triggers proinflammatory cytokine and chemokine secretion from intact cells in a manner dependent on NF-κB signaling. IL-1α is therefore a potential therapeutic target for amelioration of sterile inflammation in the retina.
Collapse
|
30
|
Yang G, Xue X, Chen Y, Song Z, Jiang Z, Hu K. Effects of cardiopulmonary bypass on lung nuclear factor-kappa B activity, cytokine release, and pulmonary function in dogs. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2015; 18:1233-9. [PMID: 26877854 PMCID: PMC4744364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVES To study the effect of cardiopulmonary bypass (CPB) on nuclear factor-kappa B (NF-κB) and cytokine expression and pulmonary function in dogs. MATERIALS AND METHODS Twelve male mongrel dogs were divided into a methylprednisolone group (group M) and a control group (group C). All animals underwent aortic and right atrial catheterization under general anesthesia. Changes in pulmonary function and hemodynamics were monitored and the injured site was histologically evaluated. RESULTS The activity of NF-κB and myeloperoxidase (MPO), levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-8, and the wet/dry (W/D) weight ratio were significantly higher after CPB than before CPB in both groups (P<0.01), with the lower values in group M than in group C, at different time points (P<0.01). Histological evaluation revealed neutrophilic infiltration and thickening of the alveolar interstitium in both groups; however, the degree of pathological changes was significantly lower in group M than in group C. The alveolar-arterial O2 tension difference (PA-aDO2) was significantly higher after CPB than before CBP (P<0.01), and lower in group M than in group C (P<0.01). The pulmonary compliance after removal of the aortic clamp obviously decreased in group C (P<0.05), with no significant change in group M. CONCLUSION CPB can significantly enhance the activation of NF-κB in lung tissues and increase the expression of inflammatory cytokines, thus inducing lung injury. Methylprednisolone can inhibit the NF-κB activation, thus inhibiting the release of cytokines and protecting the lung function.
Collapse
Affiliation(s)
- Gaisheng Yang
- Department of Anesthesiology, Airforce General Hospital, Beijing 100142, China,Corresponding author: Gaisheng Yang. Department of Anesthesiology, Airforce General Hospital, No.30 Fucheng Road, Haidian District, Beijing 100142, China. Tel: +86-010 66928487; Fax: +86-010 66928482;
| | - Xiaodong Xue
- Department of Anesthesiology, Airforce General Hospital, Beijing 100142, China
| | - Yanying Chen
- Department of Anesthesiology, Airforce General Hospital, Beijing 100142, China
| | - Zhihong Song
- Department of Anesthesiology, Airforce General Hospital, Beijing 100142, China
| | - Zhen Jiang
- Department of Anesthesiology, the Affiliated Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Kejian Hu
- Department of Extracorporeal Circulation, the Affiliated Zhongshan Hospital of Fudan University, Shanghai 200032, China
| |
Collapse
|
31
|
Zanon CDF, Sonehara NM, Girol AP, Gil CD, Oliani SM. Protective effects of the galectin-1 protein on in vivo and in vitro models of ocular inflammation. Mol Vis 2015; 21:1036-50. [PMID: 26392742 PMCID: PMC4556161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/31/2015] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Galectin-1 (Gal-1) is a β-galactoside-binding protein with diverse biological activities in the pathogenesis of inflammation but has been poorly investigated in terms of ocular inflammation. In the present study, we monitored the anti-inflammatory effects of Gal-1 using the in vivo rodent model of endotoxin-induced uveitis (EIU) and in vitro assays with human RPE (ARPE-19) cells. METHODS For this purpose, EIU was induced by subcutaneous sterile saline injection of 0.1 ml of lipopolysaccharide (LPS, 1 mg/Kg) in the rat paw, which was maintained under these conditions for 24 h. The therapeutic efficacy of recombinant Gal-1 (rGal-1) was tested in the EIU animals by intraperitoneal inoculation (3 µg/100 µl per animal) 15 min after the LPS injection. In vitro studies were performed using LPS-stimulated ARPE-19 cells (10 μg/ml) for 2, 8, 24 and 48 h, treated or not with rGal-1 (4 μg/ml) or dexamethasone (Dex, 1.0 μM). RESULTS Gal-1 treatment attenuated the histopathological manifestation of EIU via the inhibition of polymorphonuclear cells (PMN) infiltration in the eye and by causing an imbalance in adhesion molecule expression and suppressing interleukin (IL)-1β, IL-6, and monocyte chemotactic protein-1 (MCP-1) productions. Immunohistochemical and western blotting analyses revealed significant upregulation of Gal-1 in the eyes induced by EIU after 24 h. In the retina, there was no difference in the Gal-1 expression, which was high in all groups, demonstrating its structural role in this region. To better understand the effects of Gal-1 in the retina, in vitro studies were performed using ARPE-19 cells. Ultrastructural immunocytochemical analyses showed decreased levels of endogenous Gal-1 in LPS-stimulated cells (24 h), while Dex treatment upregulated this protein. The protective effects of rGal-1 on LPS-stimulated cells were associated with the significant reduction of the release of cytokines (IL-8 and IL-6), similar to Dex treatment. Furthermore, rGal-1 and Dex inhibited cyclooxygenase-2 (COX-2) expression in LPS-stimulated cells, as shown by immunofluorescence. CONCLUSIONS Overall, this study identified potential roles for Gal-1 in ocular inflammation, especially uveitis, and may lead to future therapeutic approaches.
Collapse
Affiliation(s)
- Caroline de Freitas Zanon
- Departament of Biology, Instituto de Biociências, Letras e Ciências Exatas; São Paulo State University (UNESP), São José do Rio Preto, SP, Brazil
| | - Nathália Martins Sonehara
- Departament of Biology, Instituto de Biociências, Letras e Ciências Exatas; São Paulo State University (UNESP), São José do Rio Preto, SP, Brazil
| | - Ana Paula Girol
- Departament of Biology, Instituto de Biociências, Letras e Ciências Exatas; São Paulo State University (UNESP), São José do Rio Preto, SP, Brazil
- Department of Physical and Biological Sciences, Integrated College Padre Albino Foundation (FIPA), Rua dos Estudantes, 225, Catanduva, SP, Brazil
| | - Cristiane Damas Gil
- Department of Morphology and Genetics, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Sonia Maria Oliani
- Departament of Biology, Instituto de Biociências, Letras e Ciências Exatas; São Paulo State University (UNESP), São José do Rio Preto, SP, Brazil
| |
Collapse
|
32
|
Chen L, Li J, Guo T, Ghosh S, Koh SK, Tian D, Zhang L, Jia D, Beuerman RW, Aebersold R, Chan ECY, Zhou L. Global Metabonomic and Proteomic Analysis of Human Conjunctival Epithelial Cells (IOBA-NHC) in Response to Hyperosmotic Stress. J Proteome Res 2015; 14:3982-95. [PMID: 26260330 DOI: 10.1021/acs.jproteome.5b00443] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
"Dry eye" is a multifactorial inflammatory disease affecting the ocular surface. Tear hyperosmolarity in dry eye contributes to inflammation and cell damage. Recent research efforts on dry eye have been directed toward biomarker discovery for diagnosis, response to treatment, and disease mechanisms. This study employed a spontaneously immortalized normal human conjunctival cell line, IOBA-NHC, as a model to investigate hyperosmotic stress-induced changes of metabolites and proteins. Global and targeted metabonomic analyses as well as proteomic analysis were performed on IOBA-NHC cells incubated in serum-free media at 280 (control), 380, and 480 mOsm for 24 h. Twenty-one metabolites and seventy-six iTRAQ-identified proteins showed significant changes under at least one hyperosmotic stress treatment as compared with controls. SWATH-based proteomic analysis further confirmed the involvement of inflammatory pathways such as prostaglandin 2 synthesis in IOBA-NHC cells under hyperosmotic stress. This study is the first to identify glycerophosphocholine synthesis and O-linked β-N-acetylglucosamine glycosylation as key activated pathways in ocular surface cells under hyperosmotic stress. These findings extend the current knowledge in metabolite markers of dry eye and provide potential therapeutic targets for its treatment.
Collapse
Affiliation(s)
- Liyan Chen
- Singapore Eye Research Institute , The Academia, 20 College Road, Discovery Tower Level 6, Singapore 169856, Singapore.,Department of Pharmacy, Faculty of Science, National University of Singapore , 18 Science Drive 4, Singapore 117543, Singapore
| | - Jing Li
- Singapore Eye Research Institute , The Academia, 20 College Road, Discovery Tower Level 6, Singapore 169856, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore , 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore 119228, Singapore.,Department of Ophthalmology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine , 1665 Kongjiang Road, Shanghai 200092, China
| | - Tiannan Guo
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich , Auguste-Piccard-Hof 1, 8093 Zürich, Switzerland
| | - Sujoy Ghosh
- Cardiovascular and Metabolic Disorders Program & Centre for Computational Biology, Duke-NUS Graduate Medical School , 8 College Road, Singapore 169857, Singapore
| | - Siew Kwan Koh
- Singapore Eye Research Institute , The Academia, 20 College Road, Discovery Tower Level 6, Singapore 169856, Singapore
| | - Dechao Tian
- Singapore Eye Research Institute , The Academia, 20 College Road, Discovery Tower Level 6, Singapore 169856, Singapore.,Department of Statistics and Applied Probability, Faculty of Science, National University of Singapore , 6 Science Drive 2, Singapore 117546, Singapore
| | - Liang Zhang
- Singapore Eye Research Institute , The Academia, 20 College Road, Discovery Tower Level 6, Singapore 169856, Singapore.,Department of Statistics and Applied Probability, Faculty of Science, National University of Singapore , 6 Science Drive 2, Singapore 117546, Singapore
| | - Deyong Jia
- Singapore Eye Research Institute , The Academia, 20 College Road, Discovery Tower Level 6, Singapore 169856, Singapore
| | - Roger W Beuerman
- Singapore Eye Research Institute , The Academia, 20 College Road, Discovery Tower Level 6, Singapore 169856, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore , 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore 119228, Singapore.,Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School , 8 College Road, Singapore 169857, Singapore
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich , Auguste-Piccard-Hof 1, 8093 Zürich, Switzerland.,Faculty of Science, University of Zurich , Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore , 18 Science Drive 4, Singapore 117543, Singapore
| | - Lei Zhou
- Singapore Eye Research Institute , The Academia, 20 College Road, Discovery Tower Level 6, Singapore 169856, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore , 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore 119228, Singapore.,Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School , 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
33
|
Zheng C, Lei C, Chen Z, Zheng S, Yang H, Qiu Y, Lei B. Topical administration of diminazene aceturate decreases inflammation in endotoxin-induced uveitis. Mol Vis 2015; 21:403-11. [PMID: 25883526 PMCID: PMC4392833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 04/08/2015] [Indexed: 11/11/2022] Open
Abstract
PURPOSE Our previous study demonstrated that an intraperitoneal injection of Diminazene Aceturate (DIZE) attenuated uveitis by activating ocular angiotensin-converting enzyme 2 (ACE2). Here, we investigated the anti-inflammatory effects on the ocular anterior segment of a topical administration of a DIZE solution and explored the downstream target molecules involved in the anti-inflammatory mechanism after ACE2 activation. METHODS Endotoxin-induced uveitis (EIU) in rats was induced by a subcutaneous injection of lipopolysaccharides (LPS, 200 μg) in 0.1 ml of sterile saline. DIZE (0.025, 0.05, or 0.1%) and dexamethasone (0.1%) solutions were applied topically (10 μl eyedrops) to both eyes 6X every two hours before and after LPS injection. The inflammation of the ocular anterior segment was observed and the clinical scores were evaluated 24 h after LPS injection. The total protein concentration and levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the aqueous humor were determined. CD11b-positive cells adjacent to the iris ciliary body (ICB) were stained by immunohistochemistry. The mRNA levels of inflammatory cytokines and mediators, including IL-1β, TNF-α, COX-2, and iNOS or NF-κB subunit p65 in the ICB, were analyzed by real time RT-PCR. The protein expression of NF-κB p65 and the phosphorylated protein of p38 MAPK were detected by western blotting. RESULTS A topical administration of DIZE decreased clinical scores and the total protein concentration, as well as TNF-α and IL-6 levels in the aqueous humor. Meanwhile, the mRNA levels of inflammatory cytokines and mediators, including IL-1β, TNF-α, COX-2, and iNOS in the ICB, were downregulated. DIZE reduced the recruitment of CD11b-positive cells adjacent to the ICB. Furthermore, DIZE downregulated the expressions of NF-κB subunit p65 at protein and mRNA levels and inhibited the phosphorylation of p38 MAPK protein in the ICB. CONCLUSIONS A topical administration of DIZE suppressed ocular inflammation in EIU and decreased the levels of inflammatory cytokines. DIZE attenuated the activation of NF-κB and p38 MAPK in EIU, which may be associated with ACE2-mediated anti-inflammatory effects. Our data provided further evidence that DIZE may represent a novel class of drug for the management of ocular inflammation.
Collapse
|
34
|
Abstract
The connection between Helicobacter pylori (Hp) infection and eye diseases has been increasingly reported in the literature and in active research. The implication of this bacterium in chronic eye diseases, such as blepharitis, glaucoma, central serous chorioretinopathy and others, has been hypothesized. Although the mechanisms by which this association occurs are currently unknown, this review describes shared pathogenetic mechanisms in an attempt to identify a lowest common denominator between eye diseases and Hp infection. The aim of this review is to assess whether different studies could be compared and to establish whether or not Hp infection and Eye diseases share common pathogenetic aspects. In particular, it has been focused on oxidative damage as a possible link between these pathologies. Text word search in Medline from 1998 to July 2014. 152 studies were included in our review. Were taken into considerations only studies that related eye diseases more frequent and/or known. Likely oxidative stress plays a key role. All of the diseases studied seem to follow a common pattern that implicates a cellular response correlated with a sublethal dose of oxidative stress. These alterations seem to be shared by both Hp infections and ocular diseases and include the following: decline in mitochondrial function, increases in the rate of reactive oxygen species production, accumulation of mitochondrial DNA mutations, increases in the levels of oxidative damage to DNA, proteins and lipids, and decreases in the capacity to degrade oxidatively damaged proteins and other macromolecules. This cascade of events appears to repeat itself in different diseases, regardless of the identity of the affected tissue. The trabecular meshwork, conjunctiva, and retina can each show how oxidative stress may acts as a common disease effector as the Helicobacter infection spreads, supported by the increased oxidative damage and other inflammation.
Collapse
Affiliation(s)
- Sergio Claudio Saccà
- From the IRCCS Azienda Ospedaliera Universitaria San Martino - IST Department of Head/Neck Pathologies, St Martino Hospital, Ophthalmology Unit, 16132 Genoa, Italy (SCS); Department of Neurosciences, Ophthalmology and Genetics, University of Genoa, Eye Clinic, 16132 Genoa, Italy (AV); Department of Health Sciences, University of Genoa, 16132 Genoa, Italy (AP, AI); Mutagenesis Unit, IRCCS Azienda Ospedaliera Universitaria San Martino - IST, National Institute for Cancer Research, 16132 Genoa, Italy (AI)
| | | | | | | |
Collapse
|
35
|
Qie S, Chu C, Li W, Wang C, Sang N. ErbB2 activation upregulates glutaminase 1 expression which promotes breast cancer cell proliferation. J Cell Biochem 2014; 115:498-509. [PMID: 24122876 DOI: 10.1002/jcb.24684] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/24/2013] [Indexed: 12/29/2022]
Abstract
Active glutamine utilization is critical for tumor cell proliferation. Glutaminolysis represents the first and rate-limiting step of glutamine utilization and is catalyzed by glutaminase (GLS). Activation of ErbB2 is one of the major causes of breast cancers, the second most common cause of death for women in many countries. However, it remains unclear whether ErbB2 signaling affects glutaminase expression in breast cancer cells. In this study, we show that MCF10A-NeuT cell line has higher GLS1 expression at both mRNA and protein levels than its parental line MCF10A, and knockdown of ErbB2 decreases GLS1 expression in MCF10A-NeuT cells. We further show that in these cells, ErbB2-mediated upregulation of GLS1 is not correlated to c-Myc expression. Moreover, activation of neither PI3K-Akt nor MAPK pathway is sufficient to upregulate GLS1 expression. Interestingly, inhibition of NF-κB blocks ErbB2-stimulated GLS1 expression, whereas stimulation of NF-κB is sufficient to enhance GLS1 levels in MCF10A cells, suggesting a PI3K-Akt-independent activation of NF-κB upregulates GLS1 in ErbB2-positive breast cancer cells. Finally, knockdown or inhibition of GLS1 significantly decreased the proliferation of breast cancer cells with high GLS1 levels. Taken together, our data indicate that ErbB2 activation promotes GLS1 expression via a PI3K-Akt-independent NF-κB pathway in breast cancer cells, identifying another oncogenic signaling pathway which stimulates GLS1 expression, and thus promoting glutamine utilization in cancer cells. These findings, if validated by in vivo model, may facilitate the identification of novel biochemical targets for cancer prevention and therapy.
Collapse
Affiliation(s)
- Shuo Qie
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, 19104; Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, 19104
| | | | | | | | | |
Collapse
|
36
|
Ashour DS, Shohieb ZS, Sarhan NI. Upregulation of Toll-like receptor 2 and nuclear factor-kappa B expression in experimental colonic schistosomiasis. J Adv Res 2014; 6:877-84. [PMID: 26644925 PMCID: PMC4642167 DOI: 10.1016/j.jare.2014.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 07/27/2014] [Accepted: 08/12/2014] [Indexed: 12/08/2022] Open
Abstract
Role of different mediators was described in the development of the granulomatous response and fibrosis observed in intestinal schistosomiasis. However, both Toll-like receptor 2 (TLR2) and nuclear factor kappa B (NF-κB) have not yet been investigated in intestinal schistosomiasis. This study aimed to characterize the role of TLR2 and NF-κB in the pathogenesis of intestinal schistosomiasis. Experimental animals were divided into two groups; group I: non-infected control group and group II: mice infected subcutaneously with S. mansoni cercariae. Colon samples were taken from infected mice, every two weeks, starting from the 6th week postinfection (PI) till 18th week PI. Samples were subjected to histopathological and immunohistochemical studies. Colon of S. mansoni infected mice showed histopathological changes in the form of mucosal degeneration, transmural mononuclear cellular infiltration and granulomas formation. Immunostained sections revealed significant increase in TLR2 and NF-κB positive cells in all layers of the colon, cells of the granuloma and those of the lymphoid follicles 10 weeks PI. All these changes decreased gradually starting from 12 weeks PI onward to be localized focally at 18 weeks PI. In conclusion, recruitment and activation of inflammatory cells to the colonic mucosa in intestinal schistosomiasis are multifactorial events involving TLR2 that can trigger the NF-κB pathways. Hence, down-regulation of both TLR2 and NF-κB could be exploited in the treatment of colonic schistosomiasis.
Collapse
Affiliation(s)
- Dalia S Ashour
- Department of Medical Parasitology, Faculty of Medicine, Tanta University, Egypt
| | - Zeinab S Shohieb
- Department of Medical Parasitology, Faculty of Medicine, Tanta University, Egypt
| | - Naglaa I Sarhan
- Department of Histology, Faculty of Medicine, Tanta University, Egypt
| |
Collapse
|
37
|
Anti-neovascular effect of chondrocyte-derived extracellular matrix on corneal alkaline burns in rabbits. Graefes Arch Clin Exp Ophthalmol 2014; 252:951-61. [DOI: 10.1007/s00417-014-2633-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/18/2014] [Accepted: 04/03/2014] [Indexed: 10/25/2022] Open
|
38
|
Wu CC, Lii CK, Liu KL, Chen PY, Hsieh SL. Antiinflammatory Activity of Gynura bicolor ( Hóng Fèng Cài) Ether Extract Through Inhibits Nuclear Factor Kappa B Activation. J Tradit Complement Med 2014; 3:48-52. [PMID: 24716155 PMCID: PMC3924976 DOI: 10.4103/2225-4110.106547] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
This study investigated effects of the Gynura bicolor (Roxb. and Willd.) DC. ether extract (GBEE) on nitric oxide (NO) and prostaglandin (PG)E2 production on the lipopolysaccharide (LPS)-induced inflammatory response in RAW 264.7 cells. A composition analysis of GBEE showed that the major compounds were b-carotene, chlorophyll, and quercetin, respectively. Furthermore, NO and PGE2 levels of 120 μg/ml GBEE-treated cells were 70% and 9.8%, respectively, than those of cells treated with LPS alone. Immunoblots assays showed that the GBEE dose-dependently suppressed LPS-induced inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 protein levels. The GBEE significantly decreased cytosolic phosphorylated (p)-IκBa and nuclear p65 protein expressions. Electrophoresis mobility shift assays indicated that the GBEE effectively inhibited nuclear factor kappa B (NF-κB) activation induced by LPS. These results support a role of the GBEE in suppressing activation of NF-κB to inhibit NO and PGE2 production in the LPS-induced inflammatory response by RAW 264.7 cells.
Collapse
Affiliation(s)
- Chih-Chung Wu
- Department of Nutrition and Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan
| | - Chong-Kuei Lii
- Department of Nutrition, China Medical University, Taichung 404, Taiwan
| | - Kai-Li Liu
- Department of Nutrition, Chung Shan Medical University, Taichung 402, Taiwan
| | - Pei-Yin Chen
- Department of Nutrition, Chung Shan Medical University, Taichung 402, Taiwan
| | - Shu-Ling Hsieh
- Department of Seafood Sciences, National Kaohsiung Marine University, Kaohsiung 811, Taiwan
| |
Collapse
|
39
|
Pozniak PD, White MK, Khalili K. TNF-α/NF-κB signaling in the CNS: possible connection to EPHB2. J Neuroimmune Pharmacol 2013; 9:133-41. [PMID: 24277482 DOI: 10.1007/s11481-013-9517-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/13/2013] [Indexed: 12/27/2022]
Abstract
Tumor necrosis factor-alpha, TNF-α, is a cytokine that is a well-known factor in multiple disease conditions and is recognized for its major role in central nervous system signaling. TNF-α signaling is most commonly associated with neurotoxicity, but in some conditions it has been found to be neuroprotective. TNF-α has long been known to induce nuclear factor-kappa B, NF-κB, signaling by, in most cases, translocating the p65 (RelA) DNA binding factor to the nucleus. p65 is a key member of NF-κB, which is well established as a family of transcription factors that regulates many signaling events, including growth and process development, in neuronal cell populations. NF-κB has been shown to affect both the receiving aspect of neuronal signaling events in dendritic development as well as the sending of neuronal signals in axonal development. In both cases, NK-κB functions as a promoter and/or inhibitor of growth, depending on the environmental conditions and signaling cascade. In addition, NF-κB is involved in memory formation or neurogenesis, depending on the region of the brain in which the signaling occurs. The ephrin (Eph) receptor family represents a subfamily of receptor tyrosine kinases, RTKs, which received much attention due to its potential involvement in neuronal cell health and function. There are two subsets of ephrin receptors, Eph A and Eph B, each with distinct functions in cardiovascular and skeletal development and axon guidance and synaptic plasticity. The presence of multiple binding sites for NF-κB within the regulatory region of EphB2 gene and its potential regulation by NF-κB pathway suggests that TNF-α may modulate EphB2 via NF-κB and that this may contribute to the neuroprotective activity of TNF-α.
Collapse
Affiliation(s)
- Paul D Pozniak
- Center for Neurovirology, Department of Neuroscience, Temple University School of Medicine, Room 741 MERB, 3500N. Broad Street, Philadelphia, PA, 19140, USA
| | | | | |
Collapse
|
40
|
Wang M, Zhang N, Wang W, Wang B, Xu Z, Yang Y. Expression and function of vascular endothelial growth inhibitor in aged porcine bladder detrusor muscle cells. Biogerontology 2013; 14:543-56. [PMID: 24030243 DOI: 10.1007/s10522-013-9460-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 08/27/2013] [Indexed: 01/12/2023]
Abstract
Aging of the bladder detrusor muscle plays an important role in lower urinary tract symptoms in elderly people. Our previous work demonstrated that elderly patients have increased levels of vascular endothelial growth inhibitor (VEGI) in bladder tissue. Therefore, we hypothesized that VEGI may play a role in aging of the bladder detrusor muscle cells. This study aims to develop and characterize primary cultures of aged porcine bladder detrusor muscle cells in order to explore the expression and function of VEGI. Bladder samples from female pigs were divided into two groups: the aged group (Model) and the young group (Control). We confirmed β-galactosidase expression, a marker for senescence, in aged muscle cells (identified by α-smooth muscle actin (α-SMA) staining), but not in the young group. mRNA levels of VEGI-251 and death receptor 3 (DR3) were up-regulated (P < 0.05) and total cell protein levels of VEGI-251, DR3 and nuclear factor-kappa B [NF-κB (p65)], membrane protein levels of DR3, and nuclear protein levels of NF-κB (p65) were significantly higher (P < 0.01) in the Model cells compared to Control cells. In conclusion, we have established a method to culture aged detrusor muscle cells derived from porcine bladder. Higher levels of VEGI-251, DR3 and NF-κB (p65) were observed in the aged cells. VEGI-251 may function by increasing DR3 on cellular membranes and promoting the transfer of NF-κB into the nucleus. This suggests that VEGI may be a target for reversing the aging process of bladder detrusor muscle cells.
Collapse
Affiliation(s)
- Mingqing Wang
- Urology Department, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | | | | | | | | | | |
Collapse
|
41
|
Ko YA, Yang MC, Huang HT, Hsu CM, Chen LW. NF-κB activation in myeloid cells mediates ventilator-induced lung injury. Respir Res 2013; 14:69. [PMID: 23822633 PMCID: PMC3708752 DOI: 10.1186/1465-9921-14-69] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 06/25/2013] [Indexed: 01/08/2023] Open
Abstract
Background Although use of the mechanical ventilator is a life-saving intervention, excessive tidal volumes will activate NF-κB in the lung with subsequent induction of lung edema formation, neutrophil infiltration and proinflammatory cytokine/chemokine release. The roles of NF-κB and IL-6 in ventilator-induced lung injury (VILI) remain widely debated. Methods To study the molecular mechanisms of the pathogenesis of VILI, mice with a deletion of IкB kinase in the myeloid cells (IKKβ△mye), IL-6-/- to WT chimeric mice, and C57BL/6 mice (WT) were placed on a ventilator for 6 hr. WT mice were also given an IL-6-blocking antibody to examine the role of IL-6 in VILI. Results Our results revealed that high tidal volume ventilation induced pulmonary capillary permeability, neutrophil sequestration, macrophage drifting as well as increased protein in bronchoalveolar lavage fluid (BALF). IL-6 production and IL-1β, CXCR2, and MIP2 expression were also increased in WT lungs but not in those pretreated with IL-6-blocking antibodies. Further, ventilator-induced protein concentrations and total cells in BALF, as well as lung permeability, were all significantly decreased in IKKβ△mye mice as well as in IL6-/- to WT chimeric mice. Conclusion Given that IKKβ△mye mice demonstrated a significant decrease in ventilator-induced IL-6 production, we conclude that NF-κB–IL-6 signaling pathways induce inflammation, contributing to VILI, and IкB kinase in the myeloid cells mediates ventilator-induced IL-6 production, inflammation, and lung injury.
Collapse
Affiliation(s)
- Yi-An Ko
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | | | | | | | | |
Collapse
|
42
|
Wu CC, Lii CK, Liu KL, Chen PY, Hsieh SL. Antiinflammatory Activity of Gynura bicolor (紅鳳菜 Hóng Fèng Cài) Ether Extract Through Inhibits Nuclear Factor Kappa B Activation. J Tradit Complement Med 2013. [DOI: 10.1016/s2225-4110(16)30166-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
43
|
Kalariya NM, Shoeb M, Ansari NH, Srivastava SK, Ramana KV. Antidiabetic drug metformin suppresses endotoxin-induced uveitis in rats. Invest Ophthalmol Vis Sci 2012; 53:3431-40. [PMID: 22562515 DOI: 10.1167/iovs.12-9432] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To investigate the therapeutic effects of metformin, a commonly used antidiabetic drug, in preventing endotoxin-induced uveitis (EIU) in rats. METHODS EIU in Lewis rats was developed by subcutaneous injection of lipopolysaccharide (LPS; 150 μg). Metformin (300 mg/kg body weight, intraperitoneally) or its carrier was injected either 12 hours before or 2 hours after LPS induction. Three and 24 hours after EIU, eyes were enucleated and aqueous humor (AqH) was collected. The MILLIPLEX-MAG Rat cytokine-chemokine magnetic bead array was used to determine inflammatory cytokines. The expression of Cox-2, phosphorylation of AMPK, and NF-κB (p65) were determined immunohistochemically. Primary human nonpigmented ciliary epithelial cells (HNPECs) were used to determine the in vitro efficacy of metformin. RESULTS Compared with controls, the EIU rat AqH had significantly increased number of infiltrating cells and increased levels of various cytokines and chemokines (TNF-α, MCP-1, IL-1β, MIP-1α, IL-6, Leptin, and IL-18) and metformin significantly prevented the increase. Metformin also prevented the expression of Cox-2 and phosphorylation of p65, and increased the activation of AMPK in the ciliary bodies and retinal tissues. Moreover, metformin prevented the expression of Cox-2, iNOS, and activation of NF-kB in the HNPECs and decreased the levels of NO and PGE2 in cell culture media. CONCLUSIONS Our results for the first time demonstrate a novel role of the antidiabetic drug, metformin, in suppressing uveitis in rats and suggest that this drug could be developed to prevent uveitis complications.
Collapse
Affiliation(s)
- Nilesh M Kalariya
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | | | |
Collapse
|
44
|
Lan W, Petznick A, Heryati S, Rifada M, Tong L. Nuclear Factor-κB: central regulator in ocular surface inflammation and diseases. Ocul Surf 2012; 10:137-48. [PMID: 22814642 DOI: 10.1016/j.jtos.2012.04.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 01/31/2012] [Accepted: 04/01/2012] [Indexed: 12/01/2022]
Abstract
The nuclear factor-κB (NF-κB) is a key transcription factor pathway that is responsible for many key biological processes, such as inflammation, apoptosis, stress response, corneal wound healing, angiogenesis, and lymphangiogenesis. Numerous recent studies have investigated NF-κB in the context of ocular surface disorders, including chemical injury, ultraviolet radiation-induced injury, microbial infections, allergic eye diseases, dry eye, pterygium, and corneal graft rejection. The purpose this article is to summarize key findings with regard to the pathways regulating NF-κB and processes governed by the NF-κB pathway. In the innate defense system, NF-κB is involved in signaling from the toll-like receptors 2, 3, 4, 5 and 7, which are expressed in conjunctival, limbal, and corneal epithelial cells. These determine the ocular responses to infections, such as those caused by Pseudomonas aeruginosa, Staphylococcus aureus, adenovirus, and herpes simplex-1 virus. Natural angiogenic inhibitors enhance NF-κB, and this may occur through the mitogen-activated protein kinases and peroxisome proliferator-activated receptor γ. In alkali injury, inhibition of NF-κB can reduce corneal angiogenesis, suggesting a possible therapeutic strategy. The evaluation of NF-κB inhibitors in diseases is also discussed, including emodin, besifloxacin, BOL-303242-X (mapracorat), thymosin-β4, epigallocatechin gallate, Perilla frutescens leaf extract and IKKβ-targeting short interfering RNA.
Collapse
Affiliation(s)
- Wanwen Lan
- Singapore Eye Research Institute, Singapore
| | | | | | | | | |
Collapse
|
45
|
The lipopolysaccharide-induced pro-inflammatory response in RAW264.7 cells is attenuated by an unsaturated fatty acid–bovine serum albumin complex and enhanced by a saturated fatty acid–bovine serum albumin complex. Inflamm Res 2011; 61:151-60. [DOI: 10.1007/s00011-011-0399-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/04/2011] [Accepted: 11/02/2011] [Indexed: 12/27/2022] Open
|
46
|
Yadav UCS, Shoeb M, Srivastava SK, Ramana KV. Amelioration of experimental autoimmune uveoretinitis by aldose reductase inhibition in Lewis rats. Invest Ophthalmol Vis Sci 2011; 52:8033-41. [PMID: 21900376 PMCID: PMC3208000 DOI: 10.1167/iovs.11-7485] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 07/06/2011] [Accepted: 08/30/2011] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Recently, the authors showed that the inhibition of aldose reductase (AR) prevents bacterial endotoxin-induced uveitis in rats. They have now investigated the efficacy of AR inhibitors in the prevention of experimental autoimmune-induced uveitis (EAU) in rats. METHODS Lewis rats were immunized with bovine interphotoreceptor retinoid-binding peptide (IRBP) to develop EAU. Two or 8 days after immunization, the rats started receiving the AR inhibitor fidarestat (7 mg/kg/d; intraperitoneally). They were killed when the disease was at its peak; aqueous humor (AqH) was collected from one eye, and the other eye of each rat was used for histologic studies. The protein concentration and the levels of inflammatory markers were determined in AqH. Immunohistochemical analysis of eye sections was performed to determine the expression of inflammatory markers. The effect of AR inhibition on immune response was investigated in isolated T lymphocytes. RESULTS Immunization of rats by IRBP peptide resulted in a significant infiltration of leukocytes in the posterior and the anterior chambers of the eye. Further, EAU caused an increase in the concentration of proteins, inflammatory cytokines, and chemokines in AqH, and the expression of inflammatory markers such as inducible-nitric oxide synthase and cycloxygenase-2 in the rat eye ciliary bodies and retina. Treatment with fidarestat significantly prevented the EAU-induced ocular inflammatory changes. AR inhibition also prevented the proliferation of spleen-derived T cells isolated from EAU rats in response to the IRBP antigen. CONCLUSIONS These results suggest that AR could be a novel mediator of bovine IRBP-induced uveitis in rats.
Collapse
Affiliation(s)
- Umesh C. S. Yadav
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Mohammad Shoeb
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Satish K. Srivastava
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Kota V. Ramana
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
47
|
Kanagasabai R, Krishnamurthy K, Druhan LJ, Ilangovan G. Forced expression of heat shock protein 27 (Hsp27) reverses P-glycoprotein (ABCB1)-mediated drug efflux and MDR1 gene expression in Adriamycin-resistant human breast cancer cells. J Biol Chem 2011; 286:33289-300. [PMID: 21784846 DOI: 10.1074/jbc.m111.249102] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutant p53 accumulation has been shown to induce the multidrug resistance gene (MDR1) and ATP binding cassette (ABC)-based drug efflux in human breast cancer cells. In the present work, we have found that transcriptional activation of the oxidative stress-responsive heat shock factor 1 (HSF-1) and expression of heat shock proteins, including Hsp27, which is normally known to augment proteasomal p53 degradation, are inhibited in Adriamycin (doxorubicin)-resistant MCF-7 cells (MCF-7/adr). Such an endogenous inhibition of HSF-1 and Hsp27 in turn results in p53 mutation with gain of function in its transcriptional activity and accumulation in MCF-7/adr. Also, lack of HSF-1 enhances nuclear factor κB (NF-κB) DNA binding activity together with mutant p53 and induces MDR1 gene and P-glycoprotein (P-gp, ABCB1), resulting in a multidrug-resistant phenotype. Ectopic expression of Hsp27, however, significantly depleted both mutant p53 and NF-κB (p65), reversed the drug resistance by inhibiting MDR1/P-gp expression in MCF-7/adr cells, and induced cell death by increased G(2)/M population and apoptosis. We conclude from these results that HSF-1 inhibition and depletion of Hsp27 is a trigger, at least in part, for the accumulation of transcriptionally active mutant p53, which can either directly or NF-κB-dependently induce an MDR1/P-gp phenotype in MCF-7 cells. Upon Hsp27 overexpression, this pathway is abrogated, and the acquired multidrug resistance is significantly abolished so that MCF-7/adr cells are sensitized to Dox. Thus, clinical alteration in Hsp27 or NF-κB level will be a potential approach to circumvent drug resistance in breast cancer.
Collapse
Affiliation(s)
- Ragu Kanagasabai
- Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, Department of Internal Medicine, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
48
|
Abstract
In the past years aldose reductase (AKR1B1; AR) is thought to be involved in the pathogenesis of secondary diabetic complications such as retinopathy, neuropathy, nephropathy and cataractogenesis. Subsequently, a number of AR inhibitors have been developed and tested for diabetic complications. Although, these inhibitors have found to be safe for human use, they have not been successful at the clinical studies because of limited efficacy. Recently, the potential physiological role of AR has been reassessed from a different point of view. Diverse groups suggested that AR besides reducing glucose, also efficiently reduces oxidative stress-generated lipid peroxidation-derived aldehydes and their glutathione conjugates. Since lipid aldehydes alter cellular signals by regulating the activation of transcription factors such as NF-kB and AP1, inhibition of AR could inhibit such events. Indeed, a wide array of recent experimental evidence indicates that the inhibition of AR prevents oxidative stress-induced activation of NF-kB and AP1 signals that lead to cell death or growth. Further, AR inhibitors have been shown to prevent inflammatory complications such as sepsis, asthma, colon cancer and uveitis in rodent animal models. The new experimental in-vitro and in-vivo data has provided a basis for investigating the clinical efficacy of AR inhibitors in preventing other inflammatory complications than diabetes. This review describes how the recent studies have identified novel plethoric physiological and pathophysiological significance of AR in mediating inflammatory complications, and how the discovery of such new insights for this old enzyme could have considerable importance in envisioning potential new therapeutic strategies for the prevention or treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Kota V Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, 77555
| |
Collapse
|
49
|
Yadav UCS, Ramana KV, Srivastava SK. Aldose reductase inhibition suppresses airway inflammation. Chem Biol Interact 2011; 191:339-45. [PMID: 21334316 DOI: 10.1016/j.cbi.2011.02.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 02/11/2011] [Accepted: 02/12/2011] [Indexed: 12/12/2022]
Abstract
Airway inflammation induced by reactive oxygen species (ROS)-mediated activation of redox-sensitive transcription factors is the hallmark of asthma, a prevalent chronic respiratory disease. In various cellular and animal models, we have recently demonstrated that, in response to multiple stimuli, aldose reductase (AKR1B1) regulates the inflammatory signals via NF-kappa B activation. Since NF-κB activation is implicated in asthma pathogenesis, we investigated whether AKR1B1 inhibition could prevent ovalbumin (Ova)- and ragweed pollen extract (RWE)-induced airway inflammation and hyper-responsiveness in mice models and tumor necrosis factor-alpha (TNF-α)-, lipopolysachharide (LPS)- and RWE-induced cytotoxic and inflammatory signals in primary human small airway epithelial cells (SAEC). Sensitization and challenge with Ova or RWE caused airway inflammation and production of inflammatory cytokines, accumulation of eosinophils in airways and sub-epithelial regions, mucin production in the bronchoalveolar lavage fluid, airway hyperresponsiveness, elevated IgE levels and release of Th2 cytokines in the airway and treatment with AKR1B1 inhibitors markedly reduced these pathological changes in mice. In SAEC, treatment with TNF-α, LPS or RWE induced apoptosis, reactive oxygen species generation, synthesis of inflammatory markers IL-6, IL-8, and PGE2 and activation of NF-κB and AP-1. Pharmacological inhibition prevented these changes suggesting that AKR1B1 mediates ROS induced inflammation in small airway epithelial cells. Our results indicate that AKR1B1 inhibitors may offer a novel therapeutic approach to treat inflammatory airway diseases such as asthma.
Collapse
Affiliation(s)
- Umesh C S Yadav
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-0647, USA
| | | | | |
Collapse
|
50
|
Yadav UCS, Kalariya NM, Ramana KV. Emerging role of antioxidants in the protection of uveitis complications. Curr Med Chem 2011; 18:931-42. [PMID: 21182473 PMCID: PMC3084581 DOI: 10.2174/092986711794927694] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 12/30/2010] [Indexed: 12/14/2022]
Abstract
Current understanding of the role of oxidative stress in ocular inflammatory diseases indicates that antioxidant therapy may be important to optimize the treatment. Recently investigated antioxidant therapies for ocular inflammatory diseases include various vitamins, plant products and reactive oxygen species scavengers. Oxidative stress plays a causative role in both non-infectious and infectious uveitis complications, and novel strategies to diminish tissue damage and dysfunction with antioxidant therapy may ameliorate visual complications. Preclinical studies with experimental animals and cultured cells demonstrate significant anti-inflammatory effects of a number of promising antioxidant agents. Many of these antioxidants are under clinical trial for various inflammatory diseases other than uveitis such as cardiovascular, rheumatoid arthritis and cancer. Well planned interventional clinical studies in the field of ocular inflammation will be necessary to sufficiently investigate the potential medical benefits of antioxidant therapies for uveitis. This review summarizes the recent investigations of novel antioxidant agents for ocular inflammation, with selected studies focused on uveitis.
Collapse
Affiliation(s)
- Umesh C S Yadav
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX-77555
| | - Nilesh M Kalariya
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX-77555
| | - Kota V Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX-77555
| |
Collapse
|