1
|
Wang M, Chen R, Wang Y, Li Y, Zhou Q, Cao R, Li Y, Ge H, Wang X, Yang L. Expression Distribution of Keratins in Normal and Pathological Corneas and the Regulatory Role of Krt17 on Limbal Stem Cells. Invest Ophthalmol Vis Sci 2025; 66:55. [PMID: 40257786 PMCID: PMC12020953 DOI: 10.1167/iovs.66.4.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/03/2025] [Indexed: 04/22/2025] Open
Abstract
Purpose This study aimed to compare variations in keratins (KRTs), particularly stress KRTs, under normal and pathological conditions, with a specific focus on investigating the role of KRT17. Methods This research examined changes in KRT and limbal stem cell (LSC) markers in normal and various pathological corneas using mRNA and proteomic sequencing data alongside single-cell sequencing data from normal mouse corneas. The effects of the Krt17 recombinant protein and specific small interfering RNA on the clonal formation and proliferation of human limbal epithelial cells (HLECs) were investigated. mRNA sequencing was conducted on Krt17 knockdown HLECs, and the findings were validated using qPCR, immunofluorescence staining, neutrophil chemotaxis, and herpes simplex virus 1 infection assay. The STRING database was used to predict Krt17's interacting proteins. Results Various KRTs in the corneal epithelia exhibited differences in expression levels and patterns. Under pathological conditions, stress KRTs Krt17 and Krt16 were upregulated, while differentiation-related Krt12 was downregulated, and the expression of the LSC markers Krt17, Krt14, and IFITM3 were commonly increased. Supplementation and intervention experiments confirmed that Krt17 promotes clonal formation and proliferation in HLECs. Krt17 knockdown resulted in the upregulation of genes related to inflammation and defense responses, while downregulating molecules associated with differentiation pathways. Krt17 knockdown promoted neutrophil chemotaxis and alleviated herpes simplex virus 1 infection in HLECs. Conclusions KRTs play a crucial role in the homeostasis and pathological regulation of the corneal epithelium. The stress Krt17 located in LSCs is involved in regulating the stemness, proliferation, and differentiation of LSCs, as well as immune and defense responses.
Collapse
Affiliation(s)
- Min Wang
- Eye Institute of Shandong First Medical University, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Eye Diseases, Shandong University, Jinan, China
| | - Rong Chen
- Eye Institute of Shandong First Medical University, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Eye Diseases, Shandong University, Jinan, China
- Ningbo Eye Hospital, Ningbo, China
| | - Yao Wang
- Eye Institute of Shandong First Medical University, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Eye Diseases, Shandong University, Jinan, China
| | - Ya Li
- Eye Institute of Shandong First Medical University, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Eye Diseases, Shandong University, Jinan, China
| | - Qingjun Zhou
- Eye Institute of Shandong First Medical University, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Eye Diseases, Shandong University, Jinan, China
| | - Rui Cao
- Eye Institute of Shandong First Medical University, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Eye Diseases, Shandong University, Jinan, China
| | - Yizhou Li
- Eye Institute of Shandong First Medical University, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Eye Diseases, Shandong University, Jinan, China
| | - Hongqi Ge
- Eye Institute of Shandong First Medical University, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Eye Diseases, Shandong University, Jinan, China
| | - Xiaolei Wang
- Eye Institute of Shandong First Medical University, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Eye Diseases, Shandong University, Jinan, China
| | - Lingling Yang
- Eye Institute of Shandong First Medical University, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Eye Diseases, Shandong University, Jinan, China
| |
Collapse
|
2
|
Swamynathan SK, Swamynathan S. Corneal epithelial development and homeostasis. Differentiation 2023; 132:4-14. [PMID: 36870804 PMCID: PMC10363238 DOI: 10.1016/j.diff.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/27/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
The corneal epithelium (CE), the most anterior cellular structure of the eye, is a self-renewing stratified squamous tissue that protects the rest of the eye from external elements. Each cell in this exquisite three-dimensional structure needs to have proper polarity and positional awareness for the CE to serve as a transparent, refractive, and protective tissue. Recent studies have begun to elucidate the molecular and cellular events involved in the embryonic development, post-natal maturation, and homeostasis of the CE, and how they are regulated by a well-coordinated network of transcription factors. This review summarizes the status of related knowledge and aims to provide insight into the pathophysiology of disorders caused by disruption of CE development, and/or homeostasis.
Collapse
Affiliation(s)
| | - Sudha Swamynathan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| |
Collapse
|
3
|
Ying PX, Fu M, Huang C, Li ZH, Mao QY, Fu S, Jia XH, Cao YC, Hong LB, Cai LY, Guo X, Liu RB, Meng FK, Yi GG. Profile of biological characterizations and clinical application of corneal stem/progenitor cells. World J Stem Cells 2022; 14:777-797. [PMID: 36483848 PMCID: PMC9724387 DOI: 10.4252/wjsc.v14.i11.777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Corneal stem/progenitor cells are typical adult stem/progenitor cells. The human cornea covers the front of the eyeball, which protects the eye from the outside environment while allowing vision. The location and function demand the cornea to maintain its transparency and to continuously renew its epithelial surface by replacing injured or aged cells through a rapid turnover process in which corneal stem/progenitor cells play an important role. Corneal stem/progenitor cells include mainly corneal epithelial stem cells, corneal endothelial cell progenitors and corneal stromal stem cells. Since the discovery of corneal epithelial stem cells (also known as limbal stem cells) in 1971, an increasing number of markers for corneal stem/progenitor cells have been proposed, but there is no consensus regarding the definitive markers for them. Therefore, the identification, isolation and cultivation of these cells remain challenging without a unified approach. In this review, we systematically introduce the profile of biological characterizations, such as anatomy, characteristics, isolation, cultivation and molecular markers, and clinical applications of the three categories of corneal stem/progenitor cells.
Collapse
Affiliation(s)
- Pei-Xi Ying
- Department of Ophthalmology, Zhujiang Hospital, The Second Clinical School, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Min Fu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Chang Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200030, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai 200030, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200030, China
| | - Zhi-Hong Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510550, Guangdong Province, China
| | - Qing-Yi Mao
- The Second Clinical School, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Sheng Fu
- Hengyang Medical School, The University of South China, Hengyang 421001, Hunan Province, China
| | - Xu-Hui Jia
- The Second Clinical School, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Yu-Chen Cao
- The Second Clinical School, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Li-Bing Hong
- The Second Clinical School, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Li-Yang Cai
- The Second Clinical School, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Xi Guo
- Medical College of Rehabilitation, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Ru-Bing Liu
- The Second Clinical School, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Fan-ke Meng
- Emergency Department, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Guo-Guo Yi
- Department of Ophthalmology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong Province, China
| |
Collapse
|
4
|
André da Silva R, Moraes de Paiva Roda V, Philipe de Souza Ferreira L, Oliani SM, Paula Girol A, Gil CD. Annexins as potential targets in ocular diseases. Drug Discov Today 2022; 27:103367. [PMID: 36165812 DOI: 10.1016/j.drudis.2022.103367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/05/2022] [Accepted: 09/14/2022] [Indexed: 11/20/2022]
Abstract
Annexins (AnxAs) are Ca2+/phospholipid-binding proteins extensively studied and generally involved in several diseases. Although evidence exists regarding the distribuition of AnxAs in the visual system, their exact roles and the exact cell types of the eye where these proteins are expressed are not well-understood. AnxAs have pro-resolving roles in infectious, autoimmune, degenerative, fibrotic and angiogenic conditions, making them an important target in ocular tissue homeostasis. This review summarizes the current knowledge on the distribution and function of AnxA1-8 isoforms under normal and pathological conditions in the visual system, as well as perspectives for ophthalmologic treatments, including the potential use of the AnxA1 recombinant and/or its mimetic peptide Ac2-26.
Collapse
Affiliation(s)
- Rafael André da Silva
- Biosciences Graduate Program, Institute of Biosciences, Letters and Exact Sciences, Universidade Estadual Paulista (UNESP), São José do Rio Preto, SP 15054-000, Brazil
| | - Vinicius Moraes de Paiva Roda
- Life Systems Biology Graduate Program, Institute of Biomedical Sciences, Universidade de São Paulo (USP), São Paulo, SP 05508-000, Brazil
| | - Luiz Philipe de Souza Ferreira
- Structural and Functional Biology Graduate Program, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04023-900, Brazil
| | - Sonia M Oliani
- Biosciences Graduate Program, Institute of Biosciences, Letters and Exact Sciences, Universidade Estadual Paulista (UNESP), São José do Rio Preto, SP 15054-000, Brazil; Structural and Functional Biology Graduate Program, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04023-900, Brazil; Advanced Research Center in Medicine (CEPAM) Unilago, São José do Rio Preto, SP 15030-070, Brazil
| | - Ana Paula Girol
- Biosciences Graduate Program, Institute of Biosciences, Letters and Exact Sciences, Universidade Estadual Paulista (UNESP), São José do Rio Preto, SP 15054-000, Brazil; Structural and Functional Biology Graduate Program, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04023-900, Brazil; Centro Universitário Padre Albino (UNIFIPA), Catanduva, SP 15809-144, Brazil
| | - Cristiane D Gil
- Biosciences Graduate Program, Institute of Biosciences, Letters and Exact Sciences, Universidade Estadual Paulista (UNESP), São José do Rio Preto, SP 15054-000, Brazil; Structural and Functional Biology Graduate Program, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04023-900, Brazil.
| |
Collapse
|
5
|
Menzel-Severing J, Spaniol K, Groeber-Becker F, Geerling G. [Regenerative medicine for the corneal epithelium : Cell therapy from bench to bedside]. DIE OPHTHALMOLOGIE 2022; 119:891-901. [PMID: 35925345 DOI: 10.1007/s00347-022-01674-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
In the case of thermal or caustic burns of the ocular surface, loss of limbal epithelial stem cells leads to compromised self-renewal of the corneal epithelium. This results in permanent loss of vision. In these situations, transplantation of cultured limbal epithelial cells on an amniotic membrane or fibrin gel as substrate (Holoclar®) can help to regenerate the corneal surface. The required cells are obtained from the healthy partner eye, if available. Adult stem cells from other parts of the body potentially serve as alternative cell sources: hair follicles, oral mucosa, mesenchymal stromal cells, or induced pluripotent stem cells (originally, e.g., skin fibroblasts). The reprogramming of such cells can be achieved with the help of transcription factors. In addition, work is being done on biosynthetic or synthetic matrices, which not only serve as substrate material for the transplantation but also support the functional properties of these cells (self-renewal, corneal epithelial-typical phenotype).
Collapse
Affiliation(s)
- Johannes Menzel-Severing
- Klinik für Augenheilkunde, Universitätsklinikum Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Deutschland.
| | - Kristina Spaniol
- Klinik für Augenheilkunde, Universitätsklinikum Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Deutschland
| | - Florian Groeber-Becker
- Translationszentrum Regenerative Therapien | TLZ-RT, Leitung In-vitro-Testsysteme, Fraunhofer-Institut für Silicatforschung ISC, Würzburg, Deutschland
| | - Gerd Geerling
- Klinik für Augenheilkunde, Universitätsklinikum Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Deutschland
| |
Collapse
|
6
|
Bonnet C, González S, Roberts JS, Robertson SYT, Ruiz M, Zheng J, Deng SX. Human limbal epithelial stem cell regulation, bioengineering and function. Prog Retin Eye Res 2021; 85:100956. [PMID: 33676006 PMCID: PMC8428188 DOI: 10.1016/j.preteyeres.2021.100956] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022]
Abstract
The corneal epithelium is continuously renewed by limbal stem/progenitor cells (LSCs), a cell population harbored in a highly regulated niche located at the limbus. Dysfunction and/or loss of LSCs and their niche cause limbal stem cell deficiency (LSCD), a disease that is marked by invasion of conjunctival epithelium into the cornea and results in failure of epithelial wound healing. Corneal opacity, pain, loss of vision, and blindness are the consequences of LSCD. Successful treatment of LSCD depends on accurate diagnosis and staging of the disease and requires restoration of functional LSCs and their niche. This review highlights the major advances in the identification of potential LSC biomarkers and components of the LSC niche, understanding of LSC regulation, methods and regulatory standards in bioengineering of LSCs, and diagnosis and staging of LSCD. Overall, this review presents key points for researchers and clinicians alike to consider in deepening the understanding of LSC biology and improving LSCD therapies.
Collapse
Affiliation(s)
- Clémence Bonnet
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, CA, 90095, USA; Cornea Department, Paris University, Cochin Hospital, AP-HP, F-75014, Paris, France
| | - Sheyla González
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, CA, 90095, USA
| | - JoAnn S Roberts
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, CA, 90095, USA
| | - Sarah Y T Robertson
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, CA, 90095, USA
| | - Maxime Ruiz
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, CA, 90095, USA
| | - Jie Zheng
- Basic Science Division, Stein Eye Institute, University of California, Los Angeles, CA, 90095, USA
| | - Sophie X Deng
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
7
|
Sun J, Liu WH, Deng FM, Luo YH, Wen K, Zhang H, Liu HR, Wu J, Su BY, Liu YL. Differentiation of rat adipose-derived mesenchymal stem cells into corneal-like epithelial cells driven by PAX6. Exp Ther Med 2018; 15:1424-1432. [PMID: 29434727 PMCID: PMC5774412 DOI: 10.3892/etm.2017.5576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 09/06/2017] [Indexed: 12/15/2022] Open
Abstract
Corneal integrity, transparency and vision acuity are maintained by corneal epithelial cells (CECs), which are continuously renewed by corneal limbal stem cells (LSCs). Deficiency of CECs and/or LSCs is associated with numerous ocular diseases. Paired box (PAX)6 is an eye development-associated transcription factor that is necessary for cell fate determination and differentiation of LSCs and CECs. In the present study, the PAX6 gene was introduced into adipose-derived rat mesenchymal stem cells (ADMSCs) to investigate whether PAX6-transfected cells were able to transdifferentiate into corneal-like epithelial cells and to further verify whether the cells were suitable as a cell source for corneal transplantation. The ADMSCs were isolated from the bilateral inguinal region of healthy Sprague Dawley rats. The characteristics of ADMSCs were identified using flow cytometric analysis. After subculture, ADMSCs underwent transfection with recombinant plasmid containing either PAX6-enhanced green fluorescent protein (EGFP) complementary (c)DNA or EGFP cDNA (blank plasmid group), followed by selection with G418 and determination of the transfection efficiency. Subsequently, the morphology of the ADMSCs and the expression profiles of corneal-specific markers CK3/12 and epithelial-specific adhesion protein were determined. E-cadherin was detected using immunofluorescence staining and western blot analysis at 21 days following transfection. An MTT cell proliferation and a colony formation assay were performed to assess the proliferative activity and clonogenicity of PAX6-transfected ADMSCs. Finally, the PAX6-expressing ADMSCs were transplanted onto the cornea of a rabbits with limbal stem cell deficiency (LSCD). At 21 days after transfection, the ADMSCs with PAX6 transfection exhibited a characteristic flagstone-like appearance with assembled corneal-like epithelial cells, and concomitant prominent expression of the corneal-specific markers cytokeratin 3/12 and E-cadherin. Furthermore, the proliferation and colony formation ability of PAX6-overexpressing ADMSCs was significantly retarded. The transplantation experiment indicated that PAX6-reprogramed ADMSCs attached to and replenished the damaged cornea via formation of stratified corneal epithelium. Taken together, these results suggested that conversion of ADMSCs into corneal-like epithelium may be driven by PAX6 transfection, which makes ADMSCs a promising cell candidate for the treatment of LSCD.
Collapse
Affiliation(s)
- Jing Sun
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, P.R. China
- Department of Regeneration Key Lab of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Wei-Hua Liu
- Department of Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Feng-Mei Deng
- Department of Regeneration Key Lab of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Yong-Hui Luo
- Department of Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Ke Wen
- Department of Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Hong Zhang
- Department of Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Hai-Rong Liu
- Department of Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Jiang Wu
- Department of Biomedical Engineering, West China Center of Medical Sciences, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Bing-Yin Su
- Department of Regeneration Key Lab of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Yi-Lun Liu
- Department of Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| |
Collapse
|
8
|
Gonzalez G, Sasamoto Y, Ksander BR, Frank MH, Frank NY. Limbal stem cells: identity, developmental origin, and therapeutic potential. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 7. [PMID: 29105366 DOI: 10.1002/wdev.303] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/22/2017] [Accepted: 09/03/2017] [Indexed: 12/15/2022]
Abstract
The cornea is our window to the world and our vision is critically dependent on corneal clarity and integrity. Its epithelium represents one of the most rapidly regenerating mammalian tissues, undergoing full-turnover over the course of approximately 1-2 weeks. This robust and efficient regenerative capacity is dependent on the function of stem cells residing in the limbus, a structure marking the border between the cornea and the conjunctiva. Limbal stem cells (LSC) represent a quiescent cell population with proliferative capacity residing in the basal epithelial layer of the limbus within a cellular niche. In addition to LSC, this niche consists of various cell populations such as limbal stromal fibroblasts, melanocytes and immune cells as well as a basement membrane, all of which are essential for LSC maintenance and LSC-driven regeneration. The LSC niche's components are of diverse developmental origin, a fact that had, until recently, prevented precise identification of molecularly defined LSC. The recent success in prospective LSC isolation based on ABCB5 expression and the capacity of this LSC population for long-term corneal restoration following transplantation in preclinical in vivo models of LSC deficiency underline the considerable potential of pure LSC formulations for clinical therapy. Additional studies, including genetic lineage tracing of the developmental origin of LSC will further improve our understanding of this critical cell population and its niche, with important implications for regenerative medicine. WIREs Dev Biol 2018, 7:e303. doi: 10.1002/wdev.303 This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cells and Disease Adult Stem Cells, Tissue Renewal, and Regeneration > Tissue Stem Cells and Niches Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration.
Collapse
Affiliation(s)
- Gabriel Gonzalez
- Department of Medicine, VA Boston Healthcare System, Boston, MA, USA.,Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yuzuru Sasamoto
- Department of Medicine, VA Boston Healthcare System, Boston, MA, USA
| | - Bruce R Ksander
- Massachusetts Eye and Ear, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, USA
| | - Markus H Frank
- Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.,School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - Natasha Y Frank
- Department of Medicine, VA Boston Healthcare System, Boston, MA, USA.,Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Limbal Stem Cells from Aged Donors Are a Suitable Source for Clinical Application. Stem Cells Int 2016; 2016:3032128. [PMID: 28042298 PMCID: PMC5155095 DOI: 10.1155/2016/3032128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 10/02/2016] [Accepted: 10/09/2016] [Indexed: 12/13/2022] Open
Abstract
Limbal stem cells (LSC) are the progenitor cells that maintain the transparency of the cornea. Limbal stem cell deficiency (LSCD) leads to corneal opacity, inflammation, scarring, and blindness. A clinical approach to treat this condition consists in LSC transplantation (LSCT) after ex vivo expansion of LSC. In unilateral LSCD, an autologous transplant is possible, but cases of bilateral LSCD require allogenic LSCT. Cadaveric donors represent the most important source of LSC allografts for treatment of bilateral LSCD when living relative donors are not available. To evaluate the suitability of aged cadaveric donors for LSCT, we compared three pools of LSC from donors of different ages (<60 years, 60–75 years, and >75 years). We evaluated graft quality in terms of percent of p63-positive (p63+) cells by immunofluorescence, colony forming efficiency, and mRNA and protein expression of p63, PAX6, Wnt7a, E-cadherin, and cytokeratin (CK) 12, CK3, and CK19. The results showed that LSC cultures from aged donors can express ≥3% of p63+ cells—considered as the minimum value for predicting favorable clinical outcomes after LSCT—suggesting that these cells could be a suitable source of LSC for transplantation. Our results also indicate the need to evaluate LSC graft quality criteria for each donor.
Collapse
|
10
|
Immunohistochemical Characterization of the Ectopic Epithelium Devoid of Goblet Cells From a Posttraumatic Iris Cyst Causing Mucogenic Glaucoma. J Glaucoma 2016; 25:e291-4. [PMID: 26550968 DOI: 10.1097/ijg.0000000000000346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE Mucogenic glaucoma is an unusual form of secondary open-angle glaucoma caused by intracameral ectopic mucus-producing epithelium. To date, only 3 cases have been described in detail. Numerous goblet cells in the specimens indicated a possible conjunctival origin. We immunohistochemically characterized the implanted epithelium from an iris cyst responsible for mucogenic glaucoma. METHODS A series of immunostaining analyses were performed on a sector-iridectomy specimen derived from an eye with mucogenic glaucoma and a history of limbal penetrating injury. An iris cyst was present in the inferonasal quadrant of the right eye of a 58-year-old man. The anterior chamber was filled with hazy, translucent material, and the chamber angle was gonioscopically open. The cyst was resected due to medically uncontrollable high intraocular pressure. RESULTS The ectopic epithelium was mostly positive for CK19, a corneal and conjunctival epithelial marker. Negative staining for MUC5AC, a secretory mucin, and positive staining for MUC1, a membrane-bound mucin, corroborated the absence of goblet cells. Ectopic epithelial cells were abundantly positive for CK15, a limbal basal cell marker, but there was patchy immunostaining of CK13, a conjunctival epithelial marker, and sparse labeling with CK12, a corneal epithelial marker. Immunostaining patterns of CK15, CK13, and CK12 were nearly mutually exclusive. CONCLUSIONS The ectopic epithelium of an iris cyst causing mucogenic glaucoma was most likely to originate from limbal basal cells, which showed dual direction of differentiation toward both the conjunctival and corneal epithelia. The membrane-bound mucin may have caused mucogenic glaucoma in the absence of goblet cells.
Collapse
|
11
|
Khan AZ, Utheim TP, Jackson CJ, Reppe S, Lyberg T, Eidet JR. Nucleus Morphometry in Cultured Epithelial Cells Correlates with Phenotype. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2016; 22:612-20. [PMID: 27329312 DOI: 10.1017/s1431927616000830] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Phenotype of cultured ocular epithelial transplants has been shown to affect clinical success rates following transplantation to the cornea. The purpose of this study was to evaluate the relationship between cell nucleus morphometry and phenotype in three types of cultured epithelial cells. This study provides knowledge for the development of a non-invasive method of determining the phenotype of cultured epithelium before transplantation. Cultured human conjunctival epithelial cells (HCjE), human epidermal keratinocytes (HEK), and human retinal pigment epithelial cells (HRPE) were analyzed by quantitative immunofluorescence. Assessments of nucleus morphometry and nucleus-to-cytoplasm ratio (N/C ratio) were performed using ImageJ. Spearman's correlation coefficient was employed for statistical analysis. Levels of the proliferation marker PCNA in HCjE, HEK, and HRPE correlated positively with nuclear area. Nuclear area correlated significantly with levels of the undifferentiated cell marker ABCG2 in HCjE. Bmi1 levels, but not p63α levels, correlated significantly with nuclear area in HEK. The N/C ratio did not correlate significantly with any of the immunomarkers in HCjE (ABCG2, CK7, and PCNA) and HRPE (PCNA). In HEK, however, the N/C ratio was negatively correlated with levels of the undifferentiated cell marker CK14 and positively correlated with Bmi1 expression. The size of the nuclear area correlated positively with proliferation markers in all three epithelia. Morphometric indicators of phenotype in cultured epithelia can be identified using ImageJ. Conversely, the N/C ratio did not show a uniform relationship with phenotype in HCjE, HEK, or HRPE. N/C ratio therefore, may not be a useful morphometric marker for in vitro assessment of phenotype in these three epithelia.
Collapse
Affiliation(s)
- Ayyad Z Khan
- 1Institute of Clinical Medicine, Faculty of Medicine,University of Oslo,P.O Box 1171,Blindern,0318 Oslo,Norway
| | - Tor P Utheim
- 2Department of Medical Biochemistry,Oslo University Hospital,Kirkeveien 166,P.O. Box 4956,Nydalen,0424 Oslo,Norway
| | - Catherine J Jackson
- 2Department of Medical Biochemistry,Oslo University Hospital,Kirkeveien 166,P.O. Box 4956,Nydalen,0424 Oslo,Norway
| | - Sjur Reppe
- 2Department of Medical Biochemistry,Oslo University Hospital,Kirkeveien 166,P.O. Box 4956,Nydalen,0424 Oslo,Norway
| | - Torstein Lyberg
- 2Department of Medical Biochemistry,Oslo University Hospital,Kirkeveien 166,P.O. Box 4956,Nydalen,0424 Oslo,Norway
| | - Jon R Eidet
- 2Department of Medical Biochemistry,Oslo University Hospital,Kirkeveien 166,P.O. Box 4956,Nydalen,0424 Oslo,Norway
| |
Collapse
|
12
|
Zhang Y, Sun H, Liu Y, Chen S, Cai S, Zhu Y, Guo P. The Limbal Epithelial Progenitors in the Limbal Niche Environment. Int J Med Sci 2016; 13:835-840. [PMID: 27877075 PMCID: PMC5118754 DOI: 10.7150/ijms.16563] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/01/2016] [Indexed: 02/06/2023] Open
Abstract
Limbal epithelial progenitors are stem cells located in limbal palisades of vogt. In this review, we present the audience with recent evidence that limbal epithelial progenitors may be a powerful stem cell resource for the cure of human corneal stem cell deficiency. Further understanding of their mechanism may shed lights to the future successful application of stem cell therapy not only to the eye tissue, but also to the other tissues in the human body.
Collapse
Affiliation(s)
- Yuan Zhang
- Research and Development Department, TissueTech, Inc., 7000 SW 97th Avenue, Suite 212, Miami, FL 33173, USA
| | - Hong Sun
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yongsong Liu
- Department of Ophthalmology, Yan' An Hospital of Kunming City, Kunming, 650051, China
| | - Shuangling Chen
- Research and Development Department, TissueTech, Inc., 7000 SW 97th Avenue, Suite 212, Miami, FL 33173, USA
| | - Subo Cai
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yingting Zhu
- Research and Development Department, TissueTech, Inc., 7000 SW 97th Avenue, Suite 212, Miami, FL 33173, USA
| | - Ping Guo
- Shenzhen Eye Hospital, School of Optometry & Ophthalmology of Shenzhen University, Shenzhen Key Laboratory of Department of Ophthalmology, Shenzhen, 518000, China
| |
Collapse
|
13
|
Mikhailova A, Jylhä A, Rieck J, Nättinen J, Ilmarinen T, Veréb Z, Aapola U, Beuerman R, Petrovski G, Uusitalo H, Skottman H. Comparative proteomics reveals human pluripotent stem cell-derived limbal epithelial stem cells are similar to native ocular surface epithelial cells. Sci Rep 2015; 5:14684. [PMID: 26423138 PMCID: PMC4589773 DOI: 10.1038/srep14684] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/08/2015] [Indexed: 12/13/2022] Open
Abstract
Limbal epithelial stem cells (LESCs) are tissue-specific stem cells responsible for renewing the corneal epithelium. Acute trauma or chronic disease affecting LESCs may disrupt corneal epithelial renewal, causing vision threatening and painful ocular surface disorders, collectively referred to as LESC deficiency (LESCD). These disorders cannot be treated with traditional corneal transplantation and therefore alternative cell sources for successful cell-based therapy are needed. LESCs derived from human pluripotent stem cells (hPSCs) are a prospective source for ocular surface reconstruction, yet critical evaluation of these cells is crucial before considering clinical applications. In order to quantitatively evaluate hPSC-derived LESCs, we compared protein expression in native human corneal cells to that in hPSC-derived LESCs using isobaric tag for relative and absolute quantitation (iTRAQ) technology. We identified 860 unique proteins present in all samples, including proteins involved in cell cycling, proliferation, differentiation and apoptosis, various LESC niche components, and limbal and corneal epithelial markers. Protein expression profiles were nearly identical in LESCs derived from two different hPSC lines, indicating that the differentiation protocol is reproducible, yielding homogeneous cell populations. Their protein expression profile suggests that hPSC-derived LESCs are similar to the human ocular surface epithelial cells, and possess LESC-like characteristics.
Collapse
Affiliation(s)
| | - Antti Jylhä
- Department of Ophthalmology, School of Medicine, University of Tampere, Finland
| | | | - Janika Nättinen
- Department of Ophthalmology, School of Medicine, University of Tampere, Finland
| | | | - Zoltán Veréb
- Stem Cells and Eye Research Laboratory, Department of Ophthalmology, Faculty of Medicine, University of Szeged, Hungary
| | - Ulla Aapola
- Department of Ophthalmology, School of Medicine, University of Tampere, Finland
| | - Roger Beuerman
- Department of Ophthalmology, School of Medicine, University of Tampere, Finland.,Singapore Eye Research Institute and School of Medicine, Singapore
| | - Goran Petrovski
- Stem Cells and Eye Research Laboratory, Department of Ophthalmology, Faculty of Medicine, University of Szeged, Hungary
| | - Hannu Uusitalo
- Department of Ophthalmology, School of Medicine, University of Tampere, Finland.,Tampere University Hospital Eye Center, University of Tampere, Finland
| | | |
Collapse
|
14
|
Massie I, Levis HJ, Daniels JT. Response of human limbal epithelial cells to wounding on 3D RAFT tissue equivalents: effect of airlifting and human limbal fibroblasts. Exp Eye Res 2014; 127:196-205. [PMID: 25108221 DOI: 10.1016/j.exer.2014.07.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/25/2014] [Accepted: 07/29/2014] [Indexed: 12/13/2022]
Abstract
Limbal epithelial stem cell deficiency can cause blindness but may be treated by human limbal epithelial cell (hLE) transplantation, normally on human amniotic membrane. Clinical outcomes using amnion can be unreliable and so we have developed an alternative tissue equivalent (TE), RAFT (Real Architecture for 3D Tissue), which supports hLE expansion, and stratification when airlifted. Human limbal fibroblasts (hLF) may be incorporated into RAFT TEs, where they support overlying hLE and improve phenotype. However, the impact of neither airlifting nor hLF on hLE function has been investigated. hLE on RAFT TEs (±hLF and airlifting) were wounded using heptanol and re-epithelialisation (fluorescein diacetate staining), and percentage putative stem cell marker p63α and proliferative marker Ki67 expression (wholemount immunohistochemistry), measured. Airlifted, hLF- RAFT TEs were unable to close the wound and p63α expression was 7 ± 0.2% after wounding. Conversely, non-airlifted, hLF- RAFT TEs closed the wound within 9 days and p63α expression was higher at 22 ± 5% (p < 0.01). hLE on both hLF- and hLF+ RAFT TEs (non-airlifted) closed the wound and p63α expression was 26 ± 8% and 36 ± 3% respectively (ns). Ki67 expression by hLE increased from 1.3 ± 0.5% before wounding to 7.89 ± 2.53% post-wounding for hLF- RAFT TEs (p < 0.01), and 0.8 ± 0.08% to 17.68 ± 10.88% for hLF+ RAFT TEs (p < 0.05), suggesting that re-epithelialisation was a result of proliferation. These data suggest that neither airlifting nor hLF are necessarily required to maintain a functional epithelium on RAFT TEs, thus simplifying and shortening the production process. This is important when working towards clinical application of regenerative medicine products.
Collapse
Affiliation(s)
- Isobel Massie
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK.
| | - Hannah J Levis
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK.
| | - Julie T Daniels
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK.
| |
Collapse
|
15
|
Sareen D, Saghizadeh M, Ornelas L, Winkler MA, Narwani K, Sahabian A, Funari VA, Tang J, Spurka L, Punj V, Maguen E, Rabinowitz YS, Svendsen CN, Ljubimov AV. Differentiation of human limbal-derived induced pluripotent stem cells into limbal-like epithelium. Stem Cells Transl Med 2014; 3:1002-12. [PMID: 25069777 DOI: 10.5966/sctm.2014-0076] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Limbal epithelial stem cell (LESC) deficiency (LSCD) leads to corneal abnormalities resulting in compromised vision and blindness. LSCD can be potentially treated by transplantation of appropriate cells, which should be easily expandable and bankable. Induced pluripotent stem cells (iPSCs) are a promising source of transplantable LESCs. The purpose of this study was to generate human iPSCs and direct them to limbal differentiation by maintaining them on natural substrata mimicking the native LESC niche, including feederless denuded human amniotic membrane (HAM) and de-epithelialized corneas. These iPSCs were generated with nonintegrating vectors from human primary limbal epithelial cells. This choice of parent cells was supposed to enhance limbal cell differentiation from iPSCs by partial retention of parental epigenetic signatures in iPSCs. When the gene methylation patterns were compared in iPSCs to parental LESCs using Illumina global methylation arrays, limbal-derived iPSCs had fewer unique methylation changes than fibroblast-derived iPSCs, suggesting retention of epigenetic memory during reprogramming. Limbal iPSCs cultured for 2 weeks on HAM developed markedly higher expression of putative LESC markers ABCG2, ΔNp63α, keratins 14, 15, and 17, N-cadherin, and TrkA than did fibroblast iPSCs. On HAM culture, the methylation profiles of select limbal iPSC genes (including NTRK1, coding for TrkA protein) became closer to the parental cells, but fibroblast iPSCs remained closer to parental fibroblasts. On denuded air-lifted corneas, limbal iPSCs even upregulated differentiated corneal keratins 3 and 12. These data emphasize the importance of the natural niche and limbal tissue of origin in generating iPSCs as a LESC source with translational potential for LSCD treatment.
Collapse
Affiliation(s)
- Dhruv Sareen
- Regenerative Medicine Institute, Eye Program, and Departments of Biomedical Sciences, Neurosurgery, Genomics Core, and Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA; Norris Comprehensive Cancer Center Bioinformatics Core and Division of Hematology, University of Southern California, Los Angeles, California, USA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Mehrnoosh Saghizadeh
- Regenerative Medicine Institute, Eye Program, and Departments of Biomedical Sciences, Neurosurgery, Genomics Core, and Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA; Norris Comprehensive Cancer Center Bioinformatics Core and Division of Hematology, University of Southern California, Los Angeles, California, USA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Loren Ornelas
- Regenerative Medicine Institute, Eye Program, and Departments of Biomedical Sciences, Neurosurgery, Genomics Core, and Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA; Norris Comprehensive Cancer Center Bioinformatics Core and Division of Hematology, University of Southern California, Los Angeles, California, USA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Michael A Winkler
- Regenerative Medicine Institute, Eye Program, and Departments of Biomedical Sciences, Neurosurgery, Genomics Core, and Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA; Norris Comprehensive Cancer Center Bioinformatics Core and Division of Hematology, University of Southern California, Los Angeles, California, USA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Kavita Narwani
- Regenerative Medicine Institute, Eye Program, and Departments of Biomedical Sciences, Neurosurgery, Genomics Core, and Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA; Norris Comprehensive Cancer Center Bioinformatics Core and Division of Hematology, University of Southern California, Los Angeles, California, USA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Anais Sahabian
- Regenerative Medicine Institute, Eye Program, and Departments of Biomedical Sciences, Neurosurgery, Genomics Core, and Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA; Norris Comprehensive Cancer Center Bioinformatics Core and Division of Hematology, University of Southern California, Los Angeles, California, USA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Vincent A Funari
- Regenerative Medicine Institute, Eye Program, and Departments of Biomedical Sciences, Neurosurgery, Genomics Core, and Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA; Norris Comprehensive Cancer Center Bioinformatics Core and Division of Hematology, University of Southern California, Los Angeles, California, USA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Jie Tang
- Regenerative Medicine Institute, Eye Program, and Departments of Biomedical Sciences, Neurosurgery, Genomics Core, and Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA; Norris Comprehensive Cancer Center Bioinformatics Core and Division of Hematology, University of Southern California, Los Angeles, California, USA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Lindsay Spurka
- Regenerative Medicine Institute, Eye Program, and Departments of Biomedical Sciences, Neurosurgery, Genomics Core, and Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA; Norris Comprehensive Cancer Center Bioinformatics Core and Division of Hematology, University of Southern California, Los Angeles, California, USA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Vasu Punj
- Regenerative Medicine Institute, Eye Program, and Departments of Biomedical Sciences, Neurosurgery, Genomics Core, and Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA; Norris Comprehensive Cancer Center Bioinformatics Core and Division of Hematology, University of Southern California, Los Angeles, California, USA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Ezra Maguen
- Regenerative Medicine Institute, Eye Program, and Departments of Biomedical Sciences, Neurosurgery, Genomics Core, and Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA; Norris Comprehensive Cancer Center Bioinformatics Core and Division of Hematology, University of Southern California, Los Angeles, California, USA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Yaron S Rabinowitz
- Regenerative Medicine Institute, Eye Program, and Departments of Biomedical Sciences, Neurosurgery, Genomics Core, and Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA; Norris Comprehensive Cancer Center Bioinformatics Core and Division of Hematology, University of Southern California, Los Angeles, California, USA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Clive N Svendsen
- Regenerative Medicine Institute, Eye Program, and Departments of Biomedical Sciences, Neurosurgery, Genomics Core, and Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA; Norris Comprehensive Cancer Center Bioinformatics Core and Division of Hematology, University of Southern California, Los Angeles, California, USA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Alexander V Ljubimov
- Regenerative Medicine Institute, Eye Program, and Departments of Biomedical Sciences, Neurosurgery, Genomics Core, and Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA; Norris Comprehensive Cancer Center Bioinformatics Core and Division of Hematology, University of Southern California, Los Angeles, California, USA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
16
|
Haddad A, Faria-e-Sousa SJ. Maintenance of the corneal epithelium is carried out by germinative cells of its basal stratum and not by presumed stem cells of the limbus. ACTA ACUST UNITED AC 2014; 47:470-7. [PMID: 24820068 PMCID: PMC4086173 DOI: 10.1590/1414-431x20143519] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 01/28/2014] [Indexed: 12/18/2022]
Abstract
The purpose of this investigation was to analyze the proliferative behavior of rabbit
corneal epithelium and establish if any particular region was preferentially involved
in epithelial maintenance. [3H]-thymidine was injected intravitreally into
both normal eyes and eyes with partially scraped corneal epithelium. Semithin
sections of the anterior segment were evaluated by quantitative autoradiography.
Segments with active replication (on) and those with no cell division (off) were
intermingled in all regions of the tissue, suggesting that the renewal of the
epithelial surface of the cornea followed an on/off alternating pattern. In the
limbus, heavy labeling of the outermost layers was observed, coupled with a few or no
labeled nuclei in the basal stratum. This suggests that this region is a site of
rapid cell differentiation and does not contain many slow-cycling cells. The
conspicuous and protracted labeling of the basal layer of the corneal epithelium
suggests that its cells undergo repeated cycles of replication before being sent to
the suprabasal strata. This replication model is prone to generate label-retaining
cells. Thus, if these are adult stem cells, one must conclude that they reside in the
corneal basal layer and not the limbal basal layer. One may also infer that the basal
cells of the cornea and not of the limbus are the ones with the main burden of
renewing the corneal epithelium. No particular role in this process could be assigned
to the cells of the basal layer of the limbal epithelium.
Collapse
Affiliation(s)
- A Haddad
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - S J Faria-e-Sousa
- Departamento de Oftalmologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| |
Collapse
|
17
|
Honoré B, Vorum H. Proteomic analysis as a means to approach limbal stem cell biology in a search for stem cell markers. Proteomics Clin Appl 2014; 8:178-84. [PMID: 24497450 DOI: 10.1002/prca.201300049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/06/2013] [Accepted: 12/02/2013] [Indexed: 12/13/2022]
Abstract
The cornea consists of three main layers: an outer surface epithelium, the stroma, and the endothelium. A clear cornea is necessary for optimal vision and is maintained and repaired from limbal epithelial stem cells located in the limbus between the cornea and the sclera. Diseases and injury may result in deficiency of the stem cells impairing their ability to renew the corneal epithelium. Patients with limbal stem cell deficiency experience chronic pain and ultimately blindness. Attempts to treat the disease are based on replacement of the stem cells by transplantation or by culturing the stem cells. We here review the proteomic techniques that so far have been used to approach characterization of limbal stem cells and markers to identify them. It is apparent that the field is in a rather inchoate state due to the scarcity and relative inaccessibility of the stem cells. However, the importance of revealing limbal stem cell biology and identifying stem cell biomarkers calls for greater use of emerging methodology. Strategies for future studies are discussed.
Collapse
Affiliation(s)
- Bent Honoré
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
18
|
Han B, Chen SY, Zhu YT, Tseng SCG. Integration of BMP/Wnt signaling to control clonal growth of limbal epithelial progenitor cells by niche cells. Stem Cell Res 2014; 12:562-73. [PMID: 24530980 DOI: 10.1016/j.scr.2014.01.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 12/13/2022] Open
Abstract
Both BMP and Wnt signaling control stem cells in bulge/dermal papilla, intestinal crypt, and bone marrow. To explore their roles in the limbal niche, which govern corneal epithelial homeostasis, we established an in vitro model of sphere growth by reunion between single limbal epithelial progenitor cells (LEPCs) and aggregates of limbal niche cells (LNCs) in 3D Matrigel. Compared to LEPCs alone, spheres formed by LEPC+LNC exhibited higher clonal growth and less corneal epithelial differentiation. Furthermore, pSmad1/5/8 was in the nucleus of LEPCs, but not LNCs, and correlated with upregulation of BMP1, BMP3, BMP4, all three BMP receptors, and BMP target genes. Inactivation of BMP signaling in LNCs was correlated with upregulation of noggin preferentially expressed by LNCs. Additionally, β-catenin was stabilized in the perinuclear cytoplasm in LEPCs and correlated with upregulation of Wnt7A and FZD5 preferentially expressed by LEPCs. Inactivation of Wnt signaling in LNCs was correlated with upregulation of DKK1/2 by LNCs. Addition of XAV939 that expectedly downregulated perinuclear β-catenin in LEPCs led to significant reduction of epithelial clonal growth, but upregulated all three BMP receptors and downregulated LNC-derived noggin, resulting in activation of BMP signaling in LNCs. Addition of noggin that expectedly downregulated nuclear localization of pSmad1/5/8 in LEPCs led to nuclear localization of β-catenin in larger LEPCs but membrane relocation of β-catenin in smaller LEPCs and significant upregulation of DKK1/2. Hence, balancing acts between Wnt signaling and BMP signaling exist not only within LEPCs but also between LEPCs and LNCs to regulate clonal growth of LEPCs.
Collapse
Affiliation(s)
- Bo Han
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Ocular Surface Research & Education Foundation, Miami, FL, USA
| | - Szu-Yu Chen
- R&D Department, TissueTech, Inc., Miami, FL, USA
| | | | - Scheffer C G Tseng
- R&D Department, TissueTech, Inc., Miami, FL, USA; Ocular Surface Center, Miami, FL, USA; Ocular Surface Research & Education Foundation, Miami, FL, USA.
| |
Collapse
|
19
|
Topical administration of orbital fat-derived stem cells promotes corneal tissue regeneration. Stem Cell Res Ther 2013; 4:72. [PMID: 23769140 PMCID: PMC3707029 DOI: 10.1186/scrt223] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 05/20/2013] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Topical administration of eye drops is the major route for drug delivery to the cornea. Orbital fat-derived stem cells (OFSCs) possess an in vitro corneal epithelial differentiation capacity. Both the safety and immunomodulatory ability of systemic OFSC transplantation were demonstrated in our previous work. In this study, we investigated the safety, therapeutic effect, and mechanism(s) of topical OFSC administration in an extensive alkali-induced corneal wound. METHODS Corneal injury was created by contact of a piece of 0.5 N NaOH-containing filter paper on the corneal surface of a male Balb/c mouse for 30 s. The area of the filter paper covered the central 70% or 100% of the corneal surface. OFSCs (2 × 10(5)) in 5 μl phosphate-buffered saline (PBS) were given by topical administration (T) twice a day or by two intralimbal (IL) injections in the right cornea, while 5 μl of PBS in the left cornea served as the control. RESULTS Topical OFSCs promoted corneal re-epithelialization of both the limbal-sparing and limbal-involved corneal wounds. In the first three days, topical OFSCs significantly reduced alkali-induced corneal edema and stromal infiltration according to a histopathological examination. Immunohistochemistry and immunofluorescence staining revealed that transplanted cells were easily detectable in the corneal epithelium, limbal epithelium and stroma, but only some of transplanted cells at the limbal epithelium had differentiated into cytokeratin 3-expressing cells. OFSCs did not alter neutrophil (Ly6G) levels in the cornea, but significantly reduced macrophage (CD68) infiltration and inducible nitrous oxide synthetase (iNOS) production during acute corneal injury as quantified by a Western blot analysis. Continuous topical administration of OFSCs for seven days improved corneal transparency, and this was accompanied by diffuse stromal engraftment of transplanted cells and differentiation into p63-expressing cells at the limbal area. The therapeutic effect of the topical administration of OFSCs was superior to that of the IL injection. OFSCs from the IL injection clustered in the limbal area and central corneal epithelium, which was associated with a persistent corneal haze. CONCLUSIONS Topical OFSC administration is a simple, non-surgical route for stem cell delivery to promote corneal tissue regeneration through ameliorating acute inflammation and corneal epithelial differentiation. The limbal area serves as a niche for OFSCs differentiating into corneal epithelial cells in the first week, while the stroma is a potential site for anti-inflammation of OFSCs. Inhibition of corneal inflammation is related to corneal transparency.
Collapse
|
20
|
Ocular surface development and gene expression. J Ophthalmol 2013; 2013:103947. [PMID: 23533700 PMCID: PMC3595720 DOI: 10.1155/2013/103947] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/16/2013] [Indexed: 01/10/2023] Open
Abstract
The ocular surface-a continuous epithelial surface with regional specializations including the surface and glandular epithelia of the cornea, conjunctiva, and lacrimal and meibomian glands connected by the overlying tear film-plays a central role in vision. Molecular and cellular events involved in embryonic development, postnatal maturation, and maintenance of the ocular surface are precisely regulated at the level of gene expression by a well-coordinated network of transcription factors. A thorough appreciation of the biological characteristics of the ocular surface in terms of its gene expression profiles and their regulation provides us with a valuable insight into the pathophysiology of various blinding disorders that disrupt the normal development, maturation, and/or maintenance of the ocular surface. This paper summarizes the current status of our knowledge related to the ocular surface development and gene expression and the contribution of different transcription factors to this process.
Collapse
|
21
|
Fogarty SW, Patel II, Trevisan J, Nakamura T, Hirschmugl CJ, Fullwood NJ, Martin FL. Sub-cellular spectrochemical imaging of isolated human corneal cells employing synchrotron radiation-based Fourier-transform infrared microspectroscopy. Analyst 2013; 138:240-8. [DOI: 10.1039/c2an36197c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Priya CG, Prasad T, Prajna NV, Muthukkaruppan V. Identification of Human Corneal Epithelial Stem Cells on the Basis of High ABCG2 Expression Combined With a LargeN/C Ratio. Microsc Res Tech 2012; 76:242-8. [DOI: 10.1002/jemt.22159] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/11/2012] [Indexed: 12/13/2022]
Affiliation(s)
- Chidambaranathan Gowri Priya
- Department of Immunology; Stem Cell Biology; Aravind Medical Research Foundation; Dr. G. Venkataswamy Eye Research Institute; Madurai; 625 020; Tamil Nadu; India
| | - Tilak Prasad
- Department of Immunology; Stem Cell Biology; Aravind Medical Research Foundation; Dr. G. Venkataswamy Eye Research Institute; Madurai; 625 020; Tamil Nadu; India
| | | | - Veerappan Muthukkaruppan
- Department of Immunology; Stem Cell Biology; Aravind Medical Research Foundation; Dr. G. Venkataswamy Eye Research Institute; Madurai; 625 020; Tamil Nadu; India
| |
Collapse
|
23
|
Xie HT, Chen SY, Li GG, Tseng SCG. Limbal epithelial stem/progenitor cells attract stromal niche cells by SDF-1/CXCR4 signaling to prevent differentiation. Stem Cells 2012; 29:1874-85. [PMID: 21948620 DOI: 10.1002/stem.743] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Corneal epithelial stem cells (SCs) are an ideal model for investigating how adult lineage-committed epithelial SCs are regulated by an anatomically defined and accessible niche, that is, limbal palisades of Vogt, located between the cornea and the conjunctiva. We have used collagenase digestion to isolate the entire limbal epithelial SCs and subjacent mesenchymal cells, and we have demonstrated that their close association is crucial for promoting epithelial clonal growth, implying that the latter serves as niche cells (NCs). After their close association was disrupted by trypsin/EDTA, single SCs and NCs could reunite to generate sphere growth in three-dimensional Matrigel in the embryonic SC medium, and that such sphere growth initiated by SC-NC reunion was mediated by SDF-1 uniquely expressed by limbal epithelial progenitor cells and its receptor CXCR4, but not CXCR7, strongly expressed by limbal stromal NCs. Inhibition of CXCR4 by AMD3100 or a blocking antibody to CXCR4 but not CXCR7 disrupted their reunion and yielded separate spheres with a reduced size, while resultant epithelial spheres exhibited more corneal differentiation and a notable loss of holoclones. For the first time, these results provide strong evidence supporting that limbal SC function depends on close physical association with their native NCs via SDF-1/CXCR4 signaling. This novel in vitro model of sphere growth with NCs can be used for investigating how limbal SC self-renewal and fate decision might be regulated in the limbal niche.
Collapse
Affiliation(s)
- Hua-Tao Xie
- R&D Department, Tissue Tech, Inc, Ocular Surface Center, Ocular Surface Research & Education Foundation, Miami, Florida 33173, USA
| | | | | | | |
Collapse
|
24
|
Umbilical cord lining stem cells as a novel and promising source for ocular surface regeneration. Stem Cell Rev Rep 2012; 7:935-47. [PMID: 21431286 DOI: 10.1007/s12015-011-9245-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The stem cells involved in renewal of the corneal epithelium are located in the basal region of the limbus, a narrow transition zone surrounding the cornea. In many ocular surface disorders loss of these stem cells results in partial or complete vision loss. Conventional corneal transplant in these patients is associated with dismal results. Stem cell transplantation offers new hope to such patients. The umbilical cord is emerging as an important source of stem cells that may have potential clinical applications. There are advantages to the use of umbilical cord stem cells as these cells are less immunogenic, non-tumorigenic, highly proliferative and ethically acceptable. In this study, we have confirmed the expression of several putative limbal stem cell markers such as HES1, ABCG2, BMI1, CK15 as well as cell adhesion-associated molecules INTEGRIN-α6, -α9, -β1, COLLAGEN-IV and LAMININ in our recently characterized CLEC-muc population derived from human umbilical cord. Ex vivo expansion of these cells on a human amniotic membrane substrate formed a stratified cell sheet that similarly expresses some of these molecules as well as cornea-specific cytokeratins, CK3 and CK12. Transplantation of a bioengineered CLEC-muc sheet in limbal stem cell-deficient rabbit eyes resulted in regeneration of a smooth, clear corneal surface with phenotypic expression of the normal corneal-specific epithelial markers CK3, CK12 but not CK4 or CK1/10. Our results suggest that CLEC-muc is a novel stem cell that can be ex vivo expanded for corneal epithelial regeneration in the treatment of various eye diseases.
Collapse
|
25
|
Shahdadfar A, Haug K, Pathak M, Drolsum L, Olstad OK, Johnsen EO, Petrovski G, Moe MC, Nicolaissen B. Ex vivo expanded autologous limbal epithelial cells on amniotic membrane using a culture medium with human serum as single supplement. Exp Eye Res 2012; 97:1-9. [PMID: 22342952 DOI: 10.1016/j.exer.2012.01.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 01/17/2012] [Accepted: 01/29/2012] [Indexed: 11/29/2022]
Abstract
In patients with limbal stem cell deficiency (LSCD), transplantation of ex vivo expanded human limbal epithelial cells (HLECs) can restore the structural and functional integrity of the corneal surface. However, the protocol for cultivation and transplantation of HLECs differ significantly, and in most protocols growth additives such as cholera toxins, exogenous growth factors, hormones and fetal calf serum are used. In the present article, we compare for the first time human limbal epithelial cells (HLECs) cultivated on human amniotic membrane (HAM) in a complex medium (COM) including fetal bovine serum to a medium with human serum as single growth supplement (HSM), and report on our first examinations of HLECs expanded in autologous HSM and used for transplant procedures in patients with LSCD. Expanded HLECs were examined by genome-wide microarray, RT-PCR, Western blotting, and for cell viability, morphology, expression of immunohistochemical markers and colony forming efficiency. Cultivation of HLECs in HSM produced a multilayered epithelium where cells with markers associated with LESCs were detected in the basal layers. There were few transcriptional differences and comparable cell viability between cells cultivated in HSM and COM. The p63 gene associated with LESCs were expressed 3.5 fold more in HSM compared to COM, and Western blotting confirmed a stronger p63α band in HSM cultures. The cornea-specific keratin CK12 was equally found in both culture conditions, while there were significantly more CK3 positive cells in HSM. Cells in epithelial sheets on HAM remaining after transplant surgery of patients with LSCD expressed central epithelial characteristics, and dissociated cells cultured at low density on growth-arrested fibroblasts produced clones containing 21 ± 12% cells positive for p63α (n = 3). In conclusion, a culture medium without growth additives derived from animals or from animal cell cultures and with human serum as single growth supplement may serve as an equivalent replacement for the commonly used complex medium for ex vivo expansion of HLECs on HAM.
Collapse
Affiliation(s)
- Aboulghassem Shahdadfar
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital and University of Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ma DHK, Lai JY, Yu ST, Liu JY, Yang U, Chen HCJ, Yeh LK, Ho YJ, Chang G, Wang SF, Chen JK, Lin KK. Up-regulation of heat shock protein 70-1 (Hsp70-1) in human limbo-corneal epithelial cells cultivated on amniotic membrane: A proteomic study. J Cell Physiol 2012; 227:2030-9. [DOI: 10.1002/jcp.22932] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Mort RL, Douvaras P, Morley SD, Dorà N, Hill RE, Collinson JM, West JD. Stem cells and corneal epithelial maintenance: insights from the mouse and other animal models. Results Probl Cell Differ 2012; 55:357-94. [PMID: 22918816 PMCID: PMC3471528 DOI: 10.1007/978-3-642-30406-4_19] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Maintenance of the corneal epithelium is essential for vision and is a dynamic process incorporating constant cell production, movement and loss. Although cell-based therapies involving the transplantation of putative stem cells are well advanced for the treatment of human corneal defects, the scientific understanding of these interventions is poor. No definitive marker that discriminates stem cells that maintain the corneal epithelium from the surrounding tissue has been discovered and the identity of these elusive cells is, therefore, hotly debated. The key elements of corneal epithelial maintenance have long been recognised but it is still not known how this dynamic balance is co-ordinated during normal homeostasis to ensure the corneal epithelium is maintained at a uniform thickness. Most indirect experimental evidence supports the limbal epithelial stem cell (LESC) hypothesis, which proposes that the adult corneal epithelium is maintained by stem cells located in the limbus at the corneal periphery. However, this has been challenged recently by the corneal epithelial stem cell (CESC) hypothesis, which proposes that during normal homeostasis the mouse corneal epithelium is maintained by stem cells located throughout the basal corneal epithelium with LESCs only contributing during wound healing. In this chapter we review experimental studies, mostly based on animal work, that provide insights into how stem cells maintain the normal corneal epithelium and consider the merits of the alternative LESC and CESC hypotheses. Finally, we highlight some recent research on other stem cell systems and consider how this could influence future research directions for identifying the stem cells that maintain the corneal epithelium.
Collapse
|
28
|
Mason SL, Stewart RMK, Kearns VR, Williams RL, Sheridan CM. Ocular epithelial transplantation: current uses and future potential. Regen Med 2011; 6:767-82. [DOI: 10.2217/rme.11.94] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Visual loss may be caused by a variety of ocular diseases and places a significant burden on society. Replacing or regenerating epithelial structures in the eye has been demonstrated to recover visual loss in a number of such diseases. Several types of cells (e.g., embryonic stem cells, adult stem/progenitor/differentiated epithelial cells and induced pluripotent cells) have generated much interest and research into their potential in restoring vision in a variety of conditions: from ocular surface disease to age-related macular degeneration. While there has been some success in clinical transplantation of conjunctival and particularly corneal epithelium utilizing ocular stem cells, in particular, from the limbus, the replacement of the retinal pigment epithelium by utilizing stem cell sources has yet to reach the clinic. Advances in our understanding of all of these cell types, their differentiation and subsequent optimization of culture conditions and development of suitable substrates for their transplantation will enable us to overcome current clinical obstacles. This article addresses the current status of knowledge concerning the biology of stem cells, their progeny and the use of differentiated epithelial cells to replace ocular epithelial cells. It will highlight the clinical outcomes to date and their potential for future clinical use.
Collapse
Affiliation(s)
- Sharon L Mason
- Department of Eye & Vision Science, Institute of Ageing & Chronic Disease, University of Liverpool, Daulby Street, L69 3GA, UK
| | - Rosalind MK Stewart
- Department of Eye & Vision Science, Institute of Ageing & Chronic Disease, University of Liverpool, Daulby Street, L69 3GA, UK
| | - Victoria R Kearns
- Department of Eye & Vision Science, Institute of Ageing & Chronic Disease, University of Liverpool, Daulby Street, L69 3GA, UK
| | - Rachel L Williams
- Department of Eye & Vision Science, Institute of Ageing & Chronic Disease, University of Liverpool, Daulby Street, L69 3GA, UK
| | | |
Collapse
|
29
|
Afzal E, Ebrahimi M, Najafi SMA, Daryadel A, Baharvand H. Potential role of heat shock proteins in neural differentiation of murine embryonal carcinoma stem cells (P19). Cell Biol Int 2011; 35:713-20. [PMID: 21355853 DOI: 10.1042/cbi20100457] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
HSPs (heat shock proteins) have been recognized to maintain cellular homoeostasis during changes in microenvironment. The present study aimed to investigate the HSPs expression pattern in hierarchical neural differentiation stages from mouse embryonal carcinoma stem cells (P19) and its role in heat stressed exposed cells. For induction of HSPs, cells were heated at 42°C for 30 min and recovered at 37°C in different time points. For neural differentiation, EBs (embryoid bodies) were formed by plating P19 cells in bacterial dishes in the presence of 1 mM RA (retinoic acid) and 5% FBS (fetal bovine serum). Then, on the sixth day, EBs were trypsinized and plated in differentiation medium containing neurobasal medium, B27, N2 and 5% FBS and for an extra 4 days. The expression of HSPs and neural cell markers were evaluated by Western blot, flow cytometry and immunocytochemistry in different stages. Our results indicate that HSC (heat shock constant)70 and HSP60 expressions decreased following RA treatment, EB formation and in mature neural cells derived from heat-stressed single cells and not heat-treated EBs. While the level of HSP90 increased six times following maturation process, HSP25 was expressed constantly during neural differentiation; however, its level was enhanced with heat stress. Accordingly, heat shock 12 h before the initiation of differentiation did not affect the expression of neuroectodermal and neural markers, nestin and β-tubulin III, respectively. However, both markers increased when heat shock was induced after treatment and when EBs were formed. In conclusion, our results raise the possibility that HSPs could regulate cell differentiation and proliferation under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Elahe Afzal
- Department of Regenerative Medicine, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | | | | | | |
Collapse
|
30
|
Lyngholm M, Vorum H, Nielsen K, Ehlers N, Honoré B. Attempting to distinguish between endogenous and contaminating cytokeratins in a corneal proteomic study. BMC Ophthalmol 2011; 11:3. [PMID: 21272323 PMCID: PMC3038150 DOI: 10.1186/1471-2415-11-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 01/27/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The observation of cytokeratins (CK's) in mass spectrometry based studies raises the question of whether the identified CK is a true endogenous protein from the sample or simply represents a contaminant. This issue is especially important in proteomic studies of the corneal epithelium where several CK's have previously been reported to mark the stages of differentiation from corneal epithelial stem cell to the differentiated cell. METHODS Here we describe a method to distinguish very likely endogenous from uncertain endogenous CK's in a mass spectrometry based proteomic study. In this study the CK identifications from 102 human corneal samples were compared with the number of human CK identifications found in 102 murine thymic lymphoma samples. RESULTS It was anticipated that the CK's that were identified with a frequency of <5%, i.e. in less than one spot for every 20 spots analysed, are very likely to be endogenous and thereby represent a 'biologically significant' identification. CK's observed with a frequency >5% are uncertain endogenous since they may represent true endogenous CK's but the probability of contamination is high and therefore needs careful consideration. This was confirmed by comparison with a study of mouse samples where all identified human CK's are contaminants. CONCLUSIONS CK's 3, 4, 7, 8, 11, 12, 13, 15, 17, 18, 19, 20 and 23 are very likely to be endogenous proteins if identified in a corneal study, whilst CK's 1, 2e, 5, 6A, 9, 10, 14 and 16 may be endogenous although some are likely to be contaminants in a proteomic study. Further immunohistochemical analysis and a search of the current literature largely supported the distinction.
Collapse
Affiliation(s)
- Mikkel Lyngholm
- Department of Ophthalmology, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C, Denmark.
| | | | | | | | | |
Collapse
|
31
|
Kulkarni BB, Tighe PJ, Mohammed I, Yeung AM, Powe DG, Hopkinson A, Shanmuganathan VA, Dua HS. Comparative transcriptional profiling of the limbal epithelial crypt demonstrates its putative stem cell niche characteristics. BMC Genomics 2010; 11:526. [PMID: 20920242 PMCID: PMC2997017 DOI: 10.1186/1471-2164-11-526] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 09/29/2010] [Indexed: 12/13/2022] Open
Abstract
Background The Limbal epithelial crypt (LEC) is a solid cord of cells, approximately 120 microns long. It arises from the undersurface of interpalisade rete ridges of the limbal palisades of Vogt and extends deeper into the limbal stroma parallel or perpendicular to the palisade. There are up to 6 or 7 such LEC, variably distributed along the limbus in each human eye. Morphological and immunohistochemical studies on the limbal epithelial crypt (LEC) have demonstrated the presence of limbal stem cells in this region. The purpose of this microarray study was to characterise the transcriptional profile of the LEC and compare with other ocular surface epithelial regions to support our hypothesis that LEC preferentially harbours stem cells (SC). Results LEC was found to be enriched for SC related Gene Ontology (GO) terms including those identified in quiescent adult SC, however similar to cornea, limbus had significant GO terms related to proliferating SC, transient amplifying cells (TAC) and differentiated cells (DC). LEC and limbus were metabolically dormant with low protein synthesis and downregulated cell cycling. Cornea had upregulated genes for cell cycling and self renewal such as FZD7, BTG1, CCNG, and STAT3 which were identified from other SC populations. Upregulated gene expression for growth factors, cytokines, WNT, Notch, TGF-Beta pathways involved in cell proliferation and differentiation were noted in cornea. LEC had highest number of expressed sequence tags (ESTs), downregulated and unknown genes, compared to other regions. Genes expressed in LEC such as CDH1, SERPINF1, LEF1, FRZB1, KRT19, SOD2, EGR1 are known to be involved in SC maintenance. Genes of interest, in LEC belonging to the category of cell adhesion molecules, WNT and Notch signalling pathway were validated with real-time PCR and immunofluorescence. Conclusions Our transcriptional profiling study identifies the LEC as a preferential site for limbal SC with some characteristics suggesting that it could function as a 'SC niche' supporting quiescent SC. It also strengthens the evidence for the presence of "transient cells" in the corneal epithelium. These cells are immediate progeny of SC with self-renewal capacity and could be responsible for maintaining epithelial turn over in normal healthy conditions of the ocular surface (OS). The limbus has mixed population of differentiated and undifferentiated cells.
Collapse
Affiliation(s)
- Bina B Kulkarni
- Division of Ophthalmology and Visual Sciences, Eye & ENT Building Queen's Medical Centre, Derby Road, Nottingham, UK
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Honoré B, Vorum H, Knudsen A. Proteomic profiling of peritoneal rinse fluid sediment separates patients with ovarian cancer from women admitted for cesarean section. A pilot study. Scandinavian Journal of Clinical and Laboratory Investigation 2010; 70:470-7. [DOI: 10.3109/00365513.2010.508129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
de Faria-e-Sousa SJ, Barbosa FL, Haddad A. Autoradiographic study on the regenerative capability of the epithelium lining the center of the cornea after multiple debridements of its peripheral region. Graefes Arch Clin Exp Ophthalmol 2010; 248:1137-44. [PMID: 20358217 DOI: 10.1007/s00417-010-1368-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 03/09/2010] [Accepted: 03/11/2010] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The epithelium lining the center of the cornea is assumed to lack stem cells.The purpose is to investigate by autoradiography the regenerative capability of the epithelium lining the central region of the rabbit cornea following seven scrapings of its peripheral lining, during several months. METHODS After marking the center of the cornea with a 6 mm-diameter trephine, the epithelium outside this area was scraped until reaching the corneoscleral zone. This procedure was repeated seven times on the same eye at intervals of 20 days. One day after the last scraping, (3)H-thymidine was injected intravitreally and the corneas processed for autoradiography. RESULTS At 2 days after injection, the corneal surface was entirely lined by an epithelium made up by two layers of squamous cells, most of them being labeled with the DNA precursor. A multilayered epithelium was visualized at the center with most of its basal cells also labeled. The limbal epithelium had at least two of its layers labeled with the precursor. At 9 days, the multilayered central unscraped epithelium exhibited labeled cells not only in the basal but also in its suprabasal layers. The labeling index (labeled nuclei/100 cells) for its basal stratum was very close to 100%. A similar feature was observed at 16 days, except that the mutilayered central epithelium was seen lining a larger area when compared to the precedent interval and that it exhibited evidences for vertical renewal. CONCLUSIONS The epithelium lining the central region of the cornea--where it was assumed that stem cells do not exist--exhibited capability for regeneration and self-renewal in spite of seven consecutive debridements of its periphery. No evidence was found for transposition of limbal epithelial cells to the center of the cornea during the early merger of the epithelial sliding fronts.
Collapse
|
34
|
Takács L, Tóth E, Berta A, Vereb G. Stem cells of the adult cornea: from cytometric markers to therapeutic applications. Cytometry A 2009; 75:54-66. [PMID: 19051301 DOI: 10.1002/cyto.a.20671] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cornea is a major protective shield of the interior of the eye and represents two thirds of its refractive power. It is made up of three tissue layers that have different developmental origins: the outer, epithelial layer develops from the ectoderm overlying the lens vesicle, whereas the stroma and the endothelium have mesenchymal origin. In the adult organism, the outermost corneal epithelium is the most exposed to environmental damage, and its constant renewal is assured by the epithelial stem cells that reside in the limbus, the circular border of the cornea. Cell turnover in the stromal layer is very slow and the endothelial cells probably do not reproduce in the adult organism. However, recent experimental evidence indicates that stem cells may be found in these layers. Damage to any of the corneal layers leads to loss of transparency and low vision. Corneal limbal stem cell deficiency results in severe ocular surface disease and its treatment by transplantating ex vivo expanded limbal epithelial cells is becoming widely accepted today. Stromal and endothelial stem cells are potential tools of tissue engineering and regenerative therapies of corneal ulcers and endothelial cell loss. In the past few years, intensive research has focused on corneal stem cells aiming to improve the outcomes of the current corneal stem cell transplantation techniques. This review summarizes the current state of knowledge on corneal epithelial, stromal and endothelial stem cells. Special emphasis is placed on the molecular markers that may help to identify these cells, and the recently revealed mechanisms that could maintain their "stemness" or drive their differentiation. The techniques for isolating and culturing/expanding these cells are also described.
Collapse
Affiliation(s)
- Lili Takács
- Department of Ophthalmology, Medical and Health Science Center, University of Debrecen, Hungary
| | | | | | | |
Collapse
|
35
|
Immunohistochemical markers for corneal stem cells in the early developing human eye. Exp Eye Res 2008; 87:115-21. [PMID: 18571648 DOI: 10.1016/j.exer.2008.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 05/08/2008] [Indexed: 11/20/2022]
Abstract
The corneal epithelium is continuously being renewed. Differentiated epithelial cells originate from limbal stem cells (LSCs) located in the periphery of the cornea, the corneoscleral limbus. We have recently identified superoxide dismutase 2 (SOD2) and cytokeratin (CK) 15 as limbal basal cell markers and potential markers for LSCs and early transient amplifying cells in human adults. In this study, we describe the development of the ectodermally derived LSCs and the mesodermally derived niche cells from the time at which the cornea is defined (week 6) until the formation of the early limbal niche (week 14) in human embryos and fetuses. The expression of SOD2 and CK15 was investigated together with other recently identified limbal proteins. Previously suggested LSC and differentiation markers (PAX6, aquaporin-1 and nestin) were also investigated. Both SOD2 and CK15 were present in the corneal epithelium from week 6. However, in week 14 they were predominantly expressed in the limbal epithelium. Both proteins were expressed already from week 7 in a stromal triangular region from which the early mesodermal limbal niche most likely originates. PAX6 was expressed in both ectodermally and mesodermally derived parts of the limbal niche, underscoring the importance of PAX6 in niche formation.
Collapse
|