1
|
Jin S, Huang J, Wang Y, Zou H. SRSF10 regulates isoform expression of transcripts associated with proliferative diabetes retinopathy in ARPE-19 cells based on long-read RNA and immunoprecipitation sequencing. Gene 2025; 957:149412. [PMID: 40090530 DOI: 10.1016/j.gene.2025.149412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 03/01/2025] [Accepted: 03/09/2025] [Indexed: 03/18/2025]
Abstract
BACKGROUND Following injury and disruption of the retinal barrier, retinal pigment epithelium can differentiate into a fibroblastic phenotype, leading to proliferation and migration, thereby resulting in pathological conditions such as proliferative vitreoretinopathy and diabetic retinopathy. Previous studies have detected the specific expression of serine/arginine-rich splicing factor 10 (SRSF10) in the retina; however, its specific function has not been thoroughly studied. SRSF10 has been hypothesized to play an important role in retinal function. METHODS We used Oxford Nanopore Technologies (ONT) full-length transcriptome sequencing and Illumina next-generation transcriptome sequencing platforms to detect splice isoforms affected by SRSF10 and employed improved RNA immunoprecipitation sequencing (iRIP-seq) in human retinal pigment epithelial cells to detect RNA binding with SRSF10. RESULTS ARPE-19 cells overexpressing SRSF10 showed significant transcriptional differences in the sequencing data obtained from the ONT and Illumina sequencing platforms. Notably, ONT sequencing was more sensitive in detecting new transcripts compared to Illumina. ONT and Illumina sequencing platforms revealed characteristics of alternative splicing events regulated by SRSF10. ONT data showed a primary impact on overlapping exons (olp) events followed by alternative 3' splice site (alt3p) and alt5p, aligning with SRSF10's known functions in exon skipping and inclusion. ONT long-read transcriptome sequencing analysis identified polyadenylation sites (PASs) affected by SRSF10, indicating its role in the dysregulation of polyadenylation in key metabolic genes. In addition, SRSF10 regulates autophagy in cells by influencing the polyadenylation of DEAD-box helicase 58 (DDX58), thereby affecting cell apoptosis. CONCLUSIONS The study establishes SRSF10 as a significant splicing factor regulating the alternative splicing of multiple genes and interacting with splicing factors. It plays a pivotal role in cell proliferation, apoptosis, and possibly in the epithelial-mesenchymal transition (EMT) of ARPE-19 cells.
Collapse
Affiliation(s)
- Siyan Jin
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000 Jilin, China
| | - Ju Huang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000 Jilin, China
| | - Yu Wang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000 Jilin, China
| | - He Zou
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000 Jilin, China.
| |
Collapse
|
2
|
Sanie-Jahromi F, Sadeghi N, Moayedfard Z, Gharegezloo Z, Nejabat M, Nowroozzadeh MH. Effects of exosomes derived from activated corneal stromal keratocytes on the inflammation, proliferation, neuroprotection and epithelial-mesenchymal transition in retinal pigment epithelium cells. Life Sci 2025; 371:123592. [PMID: 40174671 DOI: 10.1016/j.lfs.2025.123592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/04/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025]
Abstract
AIMS This study investigated the effects of activated keratocyte-derived exosomes (aKExo) on retinal pigment epithelial (RPE) cells in-vitro, focusing on cell viability, inflammatory cytokine expression, and neuroprotective properties. MATERIALS AND METHODS Keratocytes were cultured, and exosomes were extracted and characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), flow cytometry, and dynamic light scattering (DLS). RPE cells, isolated from a human donor, were confirmed via RPE65 expression. aKExo effects on RPE cells were assessed using MTT assay at concentrations from 10-1 (35 μg/mL) to 10-5 (3.5 × 10-3 μg/mL). The optimal aKExo concentration (10-5) enhanced cell viability and exhibited the highest proliferative potential compared to the control group, making it the optimal dose for subsequent experiments including gene expression analysis, and ELISA. KEY FINDINGS aKExo downregulated IL-6 mRNA (0.70 ± 0.06, p = 0.0009) and marginally reduced TGF-β mRNA (0.75 ± 0.16, p = 0.0575). ELISA confirmed a reduction in IL-6 (31.33 ± 5.77 pg/mL vs. 50.22 ± 13.47 pg/mL, p = 0.0894) and TGF-β (8.91 ± 0.16 pg/mL vs. 11.39 ± 1.49 pg/mL, p = 0.0460). No significant changes were observed for IL-1β expression or other epithelial-mesenchymal transition (EMT)-related genes (α-SMA, ZEB-1, β-catenin). Neuroprotective genes NGF (4.34 ± 1.05, p = 0.0053) and CD90 (1.55 ± 0.25, p = 0.0184) were significantly upregulated, while VEGF-A was elevated (1.65 ± 0.15, p = 0.0018). SIGNIFICANCE These findings highlight aKExo's immunomodulatory, neuroprotective, and anti-EMT effects, suggesting potential therapeutic applications for retinal disorders, while noting that VEGF-A upregulation requires further investigation.
Collapse
Affiliation(s)
- Fatemeh Sanie-Jahromi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Niloofar Sadeghi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Moayedfard
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Gharegezloo
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmood Nejabat
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - M Hossein Nowroozzadeh
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Cheng X, Gu X, Wang F. Mitochondrial Dysfunction During TGF-β1-Induced Epithelial-Mesenchymal Transition in Retinal Pigment Epithelial Cells. Curr Eye Res 2025; 50:527-535. [PMID: 39936897 DOI: 10.1080/02713683.2025.2464783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/21/2025] [Accepted: 02/04/2025] [Indexed: 02/13/2025]
Abstract
PURPOSE Epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells contributes to the epiretinal membrane development in proliferative vitreoretinopathy (PVR). This study aimed at investigating changes in mitochondrial function during EMT in PVR. METHODS Transmission electron microscopy (TEM) was utilized to examine the mitochondrial morphology in human PVR epiretinal membranes and retinal pigment epithelium of human donor eyes. Utilizing TGF-β1 induced EMT in ARPE-19 cells as an in vitro model, we assessed mitochondrial morphology using transmission electron microscopy (TEM), evaluated mitochondrial function through various assays including detection and analysis of mitochondrial membrane potential (MMP), mitochondrial deoxyribonucleic acid (mtDNA), reactive oxygen species (ROS), ATP, oxygen consumption rate (OCR), and extracellular acidification rate (ECAR). RNA sequencing was performed to identify differentially expressed genes (DEGs) related to mitochondrial function and PVR pathogenesis. RESULTS Mitochondrial morphological damage was observed in human PVR epiretinal membranes. TGF-β1 treatment led to morphological changes in mitochondria, increased oxidative stress, mitochondrial membrane depolarization, and reduction in mtDNA, mitochondrial respiration, and ATP production, indicating mitochondrial dysfunction in EMT ARPE-19 cells. Furthermore, RNA sequencing data highlighted the dysfunction, showing downregulation of mitochondria-related pathways and mitochondrial transcription factor A (TFAM), crucial for mtDNA maintenance. CONCLUSION Our findings indicated that TGF-β1 treatment induced mitochondrial dysfunction in RPE cells during EMT, providing insights into the molecular mechanisms of PVR development.
Collapse
Affiliation(s)
- Xinyi Cheng
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xunyi Gu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fang Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Bright Eye Hospital, Shanghai, China
| |
Collapse
|
4
|
Park BS, Bang E, Lee H, Kim GY, Choi YH. Tagetes erecta Linn flower extract inhibits particulate matter 2.5-promoted epithelial-mesenchymal transition by attenuating reactive oxygen species generation in human retinal pigment epithelial ARPE-19 cells. Nutr Res Pract 2025; 19:170-185. [PMID: 40226757 PMCID: PMC11982690 DOI: 10.4162/nrp.2025.19.2.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/15/2024] [Accepted: 11/12/2024] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND/OBJECTIVES Particulate matter 2.5 (PM2.5) exposure can promote epithelial-mesenchymal transition (EMT) in human retinal pigment epithelial (RPE) cells. The flowers of Tagetes erecta Linn, commonly known as marigold, are rich in diverse flavonoids and carotenoids and play a significant role in preventing cellular damage induced by oxidative stress, but the role of their extracts in RPE cells has not been reported. This study aimed to evaluate the influence of an ethanol extract of T. erecta Linn flower (TE) on PM2.5-induced EMT processes in RPE ARPE-19 cells. MATERIALS/METHODS To investigate the protective effect of TE against ARPE-19 cell damage following PM2.5 treatment, cells were exposed to TE for 1 h before exposure to PM2.5 for 24 h. We investigated whether the efficacy of TE on suppressing PM2.5-induced EMT was related to antioxidant activity and the effect on the expression changes of factors involved in EMT regulation. Additionally, we further explored the role of intracellular signaling pathways associated with EMT inhibition. RESULTS TE significantly blocked PM2.5-induced cytotoxicity while effectively preventing mitochondrial dysfunction, increased reactive oxygen species (ROS) generation, and mitochondrial membrane potential disruption. TE inhibited PM2.5-induced EMT and inflammatory response by suppressing the ROS-mediated transforming growth factor-β/suppressor of mothers against decapentaplegic/mitogen-activated protein kinases signaling pathway. CONCLUSION Our results suggest that marigold extract is a highly effective in protection against PM2.5-induced eye damage.
Collapse
Affiliation(s)
- Beom Su Park
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti-Aging Research Center, Dong-eui University, Busan 47227, Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Korea
| | - EunJin Bang
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti-Aging Research Center, Dong-eui University, Busan 47227, Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Korea
| | - Hyesook Lee
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea
| | - Yung Hyun Choi
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti-Aging Research Center, Dong-eui University, Busan 47227, Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Korea
| |
Collapse
|
5
|
Huang L, Shen Q, Yu K, Yang J, Li X. RBPMS-AS1 sponges miR-19a-3p to restrain cervical cancer cells via enhancing PLCL1-mediated pyroptosis. Biotechnol Appl Biochem 2025; 72:340-354. [PMID: 39300709 DOI: 10.1002/bab.2667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/31/2024] [Indexed: 09/22/2024]
Abstract
Cervical cancer (CC) poses a threat to human health. Enhancing pyroptosis can prevent the proliferation and epithelial-mesenchymal transition (EMT) of tumor cells. This study aims to reveal the candidates that modulate pyroptosis in CC. Accordingly, the common microRNAs (miRNAs/miRs) that were sponged by RBPMS antisense RNA 1 (RBPMS-AS1) and could target Phospholipase C-Like 1 (PLCL1) were intersected. The expression of PBPMS-AS1/miR-19a-3p (candidate miRNA)/PLCL1 was predicted in cervical squamous cell carcinoma (CESC), by which the expression location of RBPMS-AS1 and the binding between RBPMS-AS1/PLCL1 and miR-19a-3p were analyzed. The targeting relationship between RBPMS-AS1/PLCL1 and miR-19a-3p was confirmed by dual-luciferase reporter assay. After the transfection, cell counting kit-8 assay, colony formation assay, quantitative reverse transcription PCR, and Western blot were implemented for cell viability and proliferation analysis as well as gene and protein expression quantification analysis. Based on the results, RBPMS-AS1 and PLCL1 were lowly expressed, yet miR-19a-3p was highly expressed in CESC. RBPMS-AS1 overexpression diminished the proliferation and expressions of N-cadherin, vimentin, and miR-19a-3p, yet enhanced those of E-cadherin, PLCL1, and pyroptosis-relevant proteins (inteleukin-1β, caspase-1, and gasdermin D N-terminal). However, the above RBPMS-AS1 overexpression-induced effects were counteracted in the presence of miR-19a-3p. There also existed a targeting relationship and negative interplay between PLCL1 and miR-19a-3p. In short, RBPMS-AS1 sponges miR-19a-3p and represses the growth and EMT of CC cells via enhancing PLCL1-mediated pyroptosis.
Collapse
Affiliation(s)
- Lina Huang
- Department of Gynecology, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Qinqin Shen
- Department of Gynecology, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Kun Yu
- Department of Gynecology, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jie Yang
- Department of Gynecology, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiuxiu Li
- Department of Science and Education, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
6
|
Chen Y, Liu X, Kini A, Liu JY, Lu X, Gao L, Kaplan HJ, Dean DC, Liu Y. Involvement of tdTomato-Tagged RPE cells in a mouse PVR model with enzymatically compromised retina. Sci Rep 2025; 15:9737. [PMID: 40119078 PMCID: PMC11928672 DOI: 10.1038/s41598-025-93999-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 03/11/2025] [Indexed: 03/24/2025] Open
Abstract
Ocular trauma and surgery are considered the most common cause for proliferative vitreoretinopathy (PVR). Many retinal cell types are thought to be the cellular source for PVR although most risk factors for PVR are associated with intravitreal dispersion of the retinal pigment epithelium (RPE) cells. Major PVR animal models are rabbit and swine with an artificial implantation of exogenous cells into the vitreous to form epiretinal membrane (ERM) which does not recapitulate a real PVR pathology. To clarify and validate the participation of RPE cells, to mimic ocular trauma in situ, and to reveal the related macromolecule changes in PVR pathology, we utilized a dispase treatment to damage the retina in establishment of a reliable RPE-tagged PVR mouse model with ERM-like tissues formed within and on both surface of the retina. The immunostaining of patient epiretinal membranes with lineage markers confirms RPE is involved in PVR development. Quantitative PCR analysis indicates the dedifferentiation of RPE cells switches RPE from epithelial to mesenchymal phenotype to re-enter a proliferative and mobile state underlying PVR. Gene expression results of the mouse PVR model retinas are consistent with the microarray gene expression profile of human PVR retinas, validating that our mouse PVR model resembles human PVR and is thereby suitable for molecular mechanism and pharmaceutical studies.
Collapse
Affiliation(s)
- Yao Chen
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Ophthalmology, Hunan Key Laboratory of Ophthalmology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Xiao Liu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Ophthalmology, the Second Affiliated Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Ashwini Kini
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - John Y Liu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Medicine, James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Xiaoqin Lu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Medicine, James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Ling Gao
- Department of Ophthalmology, the Second Affiliated Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Henry J Kaplan
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Ophthalmology, St. Louis University School of Medicine, St. Louis, MO, 63110, USA
| | - Douglas C Dean
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Medicine, James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| | - Yongqing Liu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Medicine, James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| |
Collapse
|
7
|
Chen Y, Jiang M, Li L, Yang S, Liu Z, Lin S, Wang W, Li J, Chen F, Hou Q, Ma X, Hou L. Absent in melanoma 2: a potent suppressor of retinal pigment epithelial-mesenchymal transition and experimental proliferative vitreoretinopathy. Cell Death Dis 2025; 16:49. [PMID: 39870644 PMCID: PMC11772762 DOI: 10.1038/s41419-025-07367-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/27/2024] [Accepted: 01/16/2025] [Indexed: 01/29/2025]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a critical and complex process involved in normal embryonic development, tissue regeneration, and tumor progression. It also contributes to retinal diseases, such as age-related macular degeneration (AMD) and proliferative vitreoretinopathy (PVR). Although absent in melanoma 2 (AIM2) has been linked to inflammatory disorders, autoimmune diseases, and cancers, its role in the EMT of the retinal pigment epithelium (RPE-EMT) and retinal diseases remains unclear. The present study demonstrated that AIM2 functions as a potent suppressor of RPE cell proliferation and EMT to maintain retinal homeostasis. Transcriptome analysis using RNA-sequencing (RNA-Seq) revealed that AIM2 was significantly downregulated in primary human RPE (phRPE) cells undergoing EMT and proliferation. Consequently, Aim2-deficient mice showed morphological changes and increased FN expression in RPE cells under physiological conditions, whereas AIM2 overexpression in phRPE cells inhibited EMT. In a retinal detachment-induced PVR mouse model, AIM2 deficiency promotes RPE-EMT, resulting in severe experimental PVR. Clinical samples further confirmed the downregulation of AIM2 in the PVR membranes from patients. Kyoto Encyclopedia of Genes and Genome analysis revealed that the PI3K-AKT signaling pathway was significantly related to RPE-EMT and that AIM2 inhibited AKT activation in RPE cells by reducing its phosphorylation. Moreover, treatment with eye drops containing an AKT inhibitor alleviated RPE-EMT and the severity of experimental PVR. These findings provide new insights into the complex mechanisms underlying RPE-EMT and PVR pathogenesis, with implications for rational strategies for potential therapeutic applications in PVR by targeting RPE-EMT.
Collapse
Affiliation(s)
- Yu Chen
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Institute of Developmental and Genetic Ophthalmology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Mingyuan Jiang
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Department of Ophthalmology, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Liping Li
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Zhengzhou Aier Eye Hospital, Zhengzhou, China
| | - Shanshan Yang
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zuimeng Liu
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Shiwen Lin
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wanxiao Wang
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jinyang Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Feng Chen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qiang Hou
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaoyin Ma
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Institute of Developmental and Genetic Ophthalmology, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Ling Hou
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Institute of Developmental and Genetic Ophthalmology, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
8
|
Harju N, Kauppinen A, Loukovaara S. Fibrotic Changes in Rhegmatogenous Retinal Detachment. Int J Mol Sci 2025; 26:1025. [PMID: 39940795 PMCID: PMC11817287 DOI: 10.3390/ijms26031025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/19/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Rhegmatogenous retinal detachment (RRD) is a sight-threatening condition involving retinal detachment and the accumulation of fluid in the subretinal space. Proliferative vitreoretinopathy (PVR) is a pathologic complication that develops after RRD surgery, and approximately 5-10% of RRD cases develop post-operative PVR. Prolonged inflammation in the wound healing process, epithelial-mesenchymal transition (EMT), retinal pigment epithelial (RPE) cell migration and proliferation, and epiretinal, intraretinal, and subretinal fibrosis are typical in the formation of PVR. RPE cells undergo EMT and become fibroblast-like cells that migrate to the retina and vitreous, promoting PVR formation. Fibroblasts transform into myofibroblasts, which promote fibrosis by overproducing the extracellular matrix (ECM). RPE cells, fibroblasts, glial cells, macrophages, T lymphocytes, and increased ECM production form contractile epiretinal membranes. Cytokine release, complement activation, RPE cells, glial cells, and endothelial cells are all involved in retinal immune responses. Normally, wounds heal within 4 to 6 weeks, including hemostasis, inflammation, proliferation, and remodeling phases. Properly initiated inflammation, complement activation, and the function of neutrophils and glial cells heal the wound in the first stage. In a retinal wound, glial cells proliferate and fill the injured area. Gliosis tries to protect the neurons and prevent damage, but it becomes harmful when it causes scarring. If healing is complicated, prolonged inflammation leads to pathological fibrosis. Currently, there is no preventive treatment for the formation of PVR, and it is worth studying in the future.
Collapse
Affiliation(s)
- Niina Harju
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland;
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland;
| | - Sirpa Loukovaara
- Unit of Vitreoretinal Surgery, Department of Ophthalmology, Helsinki University Central Hospital, 00029 Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
9
|
Goenka S. E-cigarette flavoring chemicals and vehicles adversely impact the functions of pigmented human retinal ARPE-19 cells. Toxicol Rep 2024; 13:101789. [PMID: 39526232 PMCID: PMC11550671 DOI: 10.1016/j.toxrep.2024.101789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Electronic cigarettes (ECs) have been shown to adversely impact the human eye's retinal pigment epithelium (RPE). Flavored e-liquids induced cytotoxicity in unpigmented human ARPE-19 cells independent of nicotine's presence in my previous study. In the current study, human ARPE-19 cells pigmented by sepia melanin were employed to examine the effects of four flavoring chemicals, vanillin, menthol, furanone, and cinnamaldehyde, and EC vehicles propylene glycol (PG)/vegetable glycerin (VG) ratios (0:100, 80:20, 100:0 % v/v), on metabolic activity, membrane integrity, oxidative stress, and wound healing capacity of these cells. Results demonstrate that cinnamaldehyde was the most cytotoxic flavoring, and all vehicles showed marked cytotoxicity at the highest concentration of 10 %. All four flavorings elicited a significant production of reactive oxygen species (ROS), while the three vehicles did not impact ROS levels. Vanillin significantly (p < 0.05) suppressed wound healing, while furanone and cinnamaldehyde had no effects, although menthol promoted wound healing at the lowest concentration. Moreover, the vehicles with two ratios of 0:100 PG/VG and 80:20 PG/VG suppressed wound healing. Together, these results suggest that vanillin and VG-containing vehicles exert the greatest adverse effects on ARPE-19 cells. These findings underscore the potential harm that exposure to ECs can cause to the human retina.
Collapse
Affiliation(s)
- Shilpi Goenka
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
10
|
Zong T, Mu T, Tan C, Xie T, Zhuang M, Wang Y, Li Z, Yang Q, Wu M, Cai J, Wang X, Yao Y. Tenascin-C induces transdifferentiation of retinal pigment epithelial cells in proliferative vitreoretinopathy. Exp Eye Res 2024; 248:110097. [PMID: 39284505 DOI: 10.1016/j.exer.2024.110097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/27/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Proliferation and transdifferentiation of the retinal pigment epithelium (RPE) are hallmarks of proliferative vitreoretinopathy (PVR); however, the critical regulators of this process remain to be elucidated. Here, we investigated the role of tenascin-C in PVR development. In vitro, exposure of human ARPE-19 (hRPE) cells to TGF-β2 increased tenascin-C expression. Tenascin-C was shown to be involved in TGF-β2-induced transdifferentiation of hRPE cells, which was inhibited by pretreatment with tenascin-C siRNA. In PVR mouse models, a marked increase in the expression of tenascin-C mRNA and protein was observed. Additionally, immunofluorescence analysis demonstrated a dramatic increase in the colocalization of tenascin-C with RPE65 or α-smooth muscle actin(α-SMA) in the epiretinal membranes of patients with PVR. There was also abundant expression of integrin αV and β-catenin in the PVR membranes. ICG-001, a β-catenin inhibitor, efficiently attenuated PVR progression in a PVR animal model. These findings suggest that tenascin-C is secreted by transdifferentiated RPE cells and promotes the development of PVR via the integrin αV and β-catenin pathways. Therefore, tenascin-C could be a potential therapeutic target for the inhibition of epiretinal membrane development associated with PVR.
Collapse
Affiliation(s)
- Tianyi Zong
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China
| | - Tong Mu
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China
| | - Chengye Tan
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China
| | - Tianhua Xie
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China
| | - Miao Zhuang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China
| | - Yan Wang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China
| | - Ziwen Li
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China
| | - Qian Yang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China; Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Meili Wu
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Jiping Cai
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China
| | - Xiaolu Wang
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China.
| | - Yong Yao
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China.
| |
Collapse
|
11
|
Luo M, Almeida D, Dallacasagrande V, Hedhli N, Gupta M, D'Amico DJ, Kiss S, Hajjar KA. Annexin A2 promotes proliferative vitreoretinopathy in response to a macrophage inflammatory signal in mice. Nat Commun 2024; 15:8757. [PMID: 39384746 PMCID: PMC11464875 DOI: 10.1038/s41467-024-52675-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/13/2024] [Indexed: 10/11/2024] Open
Abstract
Proliferative vitreoretinopathy is a vision-threatening response to penetrating ocular injury, for which there is no satisfactory treatment. In this disorder, retinal pigment epithelial cells, abandon their attachment to Bruch's membrane on the scleral side of the retina, transform into motile fibroblast-like cells, and migrate through the retinal wound to the vitreal surface of the retina, where they secrete membrane-forming proteins. Annexin A2 is a calcium-regulated protein that, in complex with S100A10, assembles plasmin-forming proteins at cell surfaces. Here, we show that, in proliferative vitreoretinopathy, recruitment of macrophages and directed migration of retinal pigment epithelial cells are annexin A2-dependent, and stimulated by macrophage inflammatory protein-1α/β. These factors induce translocation of annexin A2 to the cell surface, thus enabling retinal pigment epithelial cell migration following injury; our studies reveal further that treatment of mice with intraocular antibody to either annexin A2 or macrophage inflammatory protein dampens the development of proliferative vitreoretinopathy in mice.
Collapse
Affiliation(s)
- Min Luo
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Dena Almeida
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | | | - Nadia Hedhli
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
- Hudson Community College, Jersey City, NJ, USA
| | - Mrinali Gupta
- Department of Ophthalmology, Weill Cornell Medicine, New York, NY, USA
| | - Donald J D'Amico
- Department of Ophthalmology, Weill Cornell Medicine, New York, NY, USA
| | - Szilárd Kiss
- Department of Ophthalmology, Weill Cornell Medicine, New York, NY, USA
| | | |
Collapse
|
12
|
Liao M, Zhu X, Lu Y, Yi X, Hu Y, Zhao Y, Ye Z, Guo X, Liang M, Jin X, Zhang H, Wang X, Zhao Z, Chen Y, Yan H. Multi-omics profiling of retinal pigment epithelium reveals enhancer-driven activation of RANK-NFATc1 signaling in traumatic proliferative vitreoretinopathy. Nat Commun 2024; 15:7324. [PMID: 39183203 PMCID: PMC11345415 DOI: 10.1038/s41467-024-51624-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
During the progression of proliferative vitreoretinopathy (PVR) following ocular trauma, previously quiescent retinal pigment epithelial (RPE) cells transition into a state of rapid proliferation, migration, and secretion. The elusive molecular mechanisms behind these changes have hindered the development of effective pharmacological treatments, presenting a pressing clinical challenge. In this study, by monitoring the dynamic changes in chromatin accessibility and various histone modifications, we chart the comprehensive epigenetic landscape of RPE cells in male mice subjected to traumatic PVR. Coupled with transcriptomic analysis, we reveal a robust correlation between enhancer activation and the upregulation of the PVR-associated gene programs. Furthermore, by constructing transcription factor regulatory networks, we identify the aberrant activation of enhancer-driven RANK-NFATc1 pathway as PVR advanced. Importantly, we demonstrate that intraocular interventions, including nanomedicines inhibiting enhancer activity, gene therapies targeting NFATc1 and antibody therapeutics against RANK pathway, effectively mitigate PVR progression. Together, our findings elucidate the epigenetic basis underlying the activation of PVR-associated genes during RPE cell fate transitions and offer promising therapeutic avenues targeting epigenetic modulation and the RANK-NFATc1 axis for PVR management.
Collapse
Affiliation(s)
- Mengyu Liao
- Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Xu Zhu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yumei Lu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaoping Yi
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Youhui Hu
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yumeng Zhao
- Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Zhisheng Ye
- Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Xu Guo
- Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Minghui Liang
- Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xin Jin
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong Zhang
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaohong Wang
- Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ziming Zhao
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
| | - Yupeng Chen
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
13
|
Nishikiori N, Sato T, Ogawa T, Higashide M, Umetsu A, Suzuki S, Furuhashi M, Ohguro H, Watanabe M. TGF-β Isoforms and Local Environments Greatly Modulate Biological Nature of Human Retinal Pigment Epithelium Cells. Bioengineering (Basel) 2024; 11:581. [PMID: 38927817 PMCID: PMC11201039 DOI: 10.3390/bioengineering11060581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
To characterize transforming growth factor-β (TGF-β) isoform (TGF-β1~3)-b's biological effects on the human retinal pigment epithelium (RPE) under normoxia and hypoxia conditions, ARPE19 cells cultured by 2D (two-dimensional) and 3D (three-dimensional) conditions were subjected to various analyses, including (1) an analysis of barrier function by trans-epithelial electrical resistance (TEER) measurements; (2) qPCR analysis of major ECM molecules including collagen 1 (COL1), COL4, and COL6; α-smooth muscle actin (αSMA); hypoxia-inducible factor 1α (HIF1α); and peroxisome proliferator-activated receptor-gamma coactivator (PGC1α), a master regulator for mitochondrial respiration;, tight junction-related molecules, Zonula occludens-1 (ZO1) and E-cadherin; and vascular endothelial growth factor (VEGF); (3) physical property measurements of 3D spheroids; and (4) cellular metabolic analysis. Diverse effects among TGF-β isoforms were observed, and those effects were also different between normoxia and hypoxia conditions: (1) TGF-β1 and TGF-β3 caused a marked increase in TEER values, and TGF-β2 caused a substantial increase in TEER values under normoxia conditions and hypoxia conditions, respectively; (2) the results of qPCR analysis supported data obtained by TEER; (3) 3D spheroid sizes were decreased by TGF-β isoforms, among which TGF-β1 had the most potent effect under both oxygen conditions; (4) 3D spheroid stiffness was increased by TGF-β2 and TGF-β3 or by TGF-β1 and TGF-β3 under normoxia conditions and hypoxia conditions, respectively; and (5) the TGF-β isoform altered mitochondrial and glycolytic functions differently under oxygen conditions and/or culture conditions. These collective findings indicate that the TGF-β-induced biological effects of 2D and 3D cultures of ARPE19 cells were substantially diverse depending on the three TGF-β isoforms and oxygen levels, suggesting that pathological conditions including epithelial-mesenchymal transition (EMT) of the RPE may be exclusively modulated by both factors.
Collapse
Affiliation(s)
- Nami Nishikiori
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.H.); (A.U.); (S.S.); (H.O.)
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Toshifumi Ogawa
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Megumi Higashide
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.H.); (A.U.); (S.S.); (H.O.)
| | - Araya Umetsu
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.H.); (A.U.); (S.S.); (H.O.)
| | - Soma Suzuki
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.H.); (A.U.); (S.S.); (H.O.)
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.); (M.F.)
| | - Hiroshi Ohguro
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.H.); (A.U.); (S.S.); (H.O.)
| | - Megumi Watanabe
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.H.); (A.U.); (S.S.); (H.O.)
| |
Collapse
|
14
|
Mysore Y, Hytti M, Deen AJ, Ranta-Aho S, Piippo N, Toppila M, Loukovaara S, Harju N, Kauppinen A. Epithelial-mesenchymal Transition (EMT) and the Effect of Atorvastatin on it in ARPE-19 cells. Cell Biochem Biophys 2024; 82:1523-1536. [PMID: 38777991 PMCID: PMC11344705 DOI: 10.1007/s12013-024-01305-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Proliferative vitreoretinopathy (PVR) develops after an unsuccessful or complicated recovery from rhegmatogenous retinal detachment (RRD) surgery. Intraocular scar formation with the contribution of epithelial-mesenchymal transition (EMT) in RPE cells is prominent in the pathology of PVR. In the present study, the EMT process was experimentally induced in human retinal pigment epithelium (RPE; ARPE-19) cells, and the effect of atorvastatin on the process was studied. The mRNA and protein levels of mesenchymal markers actin alpha 2 (ACTA2) / alpha-smooth muscle actin (α-SMA) and fibronectin (FN), and epithelial markers occludin (OCLN) and zonula occludens-1 (ZO-1) were measured using quantitative real-time PCR (qRT-PCR) and western blot methods, respectively. In addition, α-SMA and FN were visualized using immunofluorescence staining. Cells were photographed under a phase contrast light microscope. Changes in the functionality of cells following the EMT process were studied using the IncuCyte scratch wound cell migration assay and the collagen cell invasion assay with confocal microscopy. The induction of EMT in ARPE-19 cells increased the expression of mesenchymal markers ACTA2/α-SMA and fibronectin and reduced the expression of epithelial marker OCLN both at mRNA and protein levels. The mRNA levels of ZO-1 were lower after EMT, as well. Increased levels of α-SMA and FN were confirmed by immunofluorescence staining. Atorvastatin further increased the mRNA levels of mesenchymal markers ACTA2 and FN as well as the protein levels of α-SMA and reduced the mRNA levels of epithelial markers OCLN and ZO-1 under the EMT process. EMT promoted wound closure and cell invasion into the 3D collagen matrix when compared to untreated control cells. These data present cellular changes upon the induction of the EMT process in ARPE-19 cells and the propensity of atorvastatin to complement the effect. More studies are needed to confirm the exact influence of the EMT process and atorvastatin treatment on the PVR development after RRD surgery.
Collapse
Affiliation(s)
- Yashavanthi Mysore
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Maria Hytti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital and School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ashik Jawahar Deen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sofia Ranta-Aho
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Niina Piippo
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Maija Toppila
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sirpa Loukovaara
- Department of Ophthalmology, Unit of Vitreoretinal Surgery, Helsinki University Central Hospital, and Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Niina Harju
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.
- Head and Neck Center, Ophthalmology Research Unit, Helsinki University Central Hospital, Helsinki, Finland.
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
15
|
Du Y. The Hippo signalling pathway and its impact on eye diseases. J Cell Mol Med 2024; 28:e18300. [PMID: 38613348 PMCID: PMC11015399 DOI: 10.1111/jcmm.18300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/26/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The Hippo signalling pathway, an evolutionarily conserved kinase cascade, has been shown to be crucial for cell fate determination, homeostasis and tissue regeneration. Recent experimental and clinical studies have demonstrated that the Hippo signalling pathway is involved in the pathophysiology of ocular diseases. This article provides the first systematic review of studies on the regulatory and functional roles of mammalian Hippo signalling systems in eye diseases. More comprehensive studies on this pathway are required for a better understanding of the pathophysiology of eye diseases and the development of effective therapies.
Collapse
Affiliation(s)
- Yuxiang Du
- Precision Medicine Laboratory for Chronic Non‐communicable Diseases of Shandong Province, Institute of Precision MedicineJining Medical UniversityJiningShandongPeople's Republic of China
| |
Collapse
|
16
|
Hui Q, Yang N, Xiong C, Zhou S, Zhou X, Jin Q, Xu X. Isorhamnetin suppresses the epithelial-mesenchymal transition of the retinal pigment epithelium both in vivo and in vitro through Nrf2-dependent AKT/GSK-3β pathway. Exp Eye Res 2024; 240:109823. [PMID: 38331017 DOI: 10.1016/j.exer.2024.109823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Age-related macular degeneration (AMD) is a major cause of blindness in the elderly worldwide. Multiple studies have shown that epithelial-mesenchymal transition (EMT) plays a pivotal role in the pathogenesis of AMD. Isorhamnetin (Isor) is a flavonoid compound that inhibits EMT in tumor cells. However, whether it can also attenuate EMT in the retinal pigment epithelium (RPE) is unknown. Therefore, our study was designed to probe the possible impact of Isor on EMT process in both mouse retina and ARPE-19 cells. C57BL/6 mice were utilized to establish a dry AMD model. Isor and LCZ (a mixture of luteine/β-carotene/zinc gluconate) were administered orally for 3 months. The effects of Isor on the retina were evaluated using fundus autofluorescence, optical coherence tomography, and transmission electron microscopy. Transwell and wound healing assay were employed to assess ARPE-19 cell migration. Western blotting and immunofluorescence were used to measure the protein expressions associated with EMT, Nrf2 and AKT/GSK-3β pathway. The findings indicated that Isor alleviated dry AMD-like pathological changes in vehicle mice retina, inhibited the migration of Ox-LDL-treated ARPE-19 cells, and repressed the EMT processes in vivo and in vitro. Furthermore, Isor activated Nrf2 pathway and deactivated AKT/GSK-3β pathway in both vehicle mice and ARPE-19 cells. Interestingly, when Nrf2 siRNA was transfected into ARPE-19 cells, the inhibitory effect of Isor on EMT and AKT/GSK-3β pathway was attenuated. These results suggested that Isor inhibited EMT processes via Nrf2-dependent AKT/GSK-3β pathway and is a promising candidate for dry AMD treatment.
Collapse
Affiliation(s)
- Qinyi Hui
- Department of Ophthalmology, Jiangsu Province Hospital of Chinese Medicine (Affiliated Hospital of Nanjing University of Chinese Medicine), Nanjing, 210029, China
| | - Ning Yang
- Department of Ophthalmology, Jiangsu Province Hospital of Chinese Medicine (Affiliated Hospital of Nanjing University of Chinese Medicine), Nanjing, 210029, China
| | - Caijian Xiong
- Department of Ophthalmology, Jiangsu Province Hospital of Chinese Medicine (Affiliated Hospital of Nanjing University of Chinese Medicine), Nanjing, 210029, China
| | - Siqi Zhou
- Department of Ophthalmology, Jiangsu Province Hospital of Chinese Medicine (Affiliated Hospital of Nanjing University of Chinese Medicine), Nanjing, 210029, China
| | - Xin Zhou
- Department of Ophthalmology, Jiangsu Province Hospital of Chinese Medicine (Affiliated Hospital of Nanjing University of Chinese Medicine), Nanjing, 210029, China
| | - Qingzi Jin
- Department of Ophthalmology, Jiangsu Province Hospital of Chinese Medicine (Affiliated Hospital of Nanjing University of Chinese Medicine), Nanjing, 210029, China
| | - Xinrong Xu
- Department of Ophthalmology, Jiangsu Province Hospital of Chinese Medicine (Affiliated Hospital of Nanjing University of Chinese Medicine), Nanjing, 210029, China.
| |
Collapse
|
17
|
Zou G, Que L, Liu Y, Lu Q. Interplay of endothelial-mesenchymal transition, inflammation, and autophagy in proliferative diabetic retinopathy pathogenesis. Heliyon 2024; 10:e25166. [PMID: 38327444 PMCID: PMC10847601 DOI: 10.1016/j.heliyon.2024.e25166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/13/2024] [Accepted: 01/22/2024] [Indexed: 02/09/2024] Open
Abstract
Background Assessment and validation of endothelial-mesenchymal transition (EndoMT) in the retinal endothelium of patients with proliferative diabetic retinopathy (PDR) at the level of retinal and vitreous specimens, and preliminary discussion of its regulatory mechanisms. Methods Transcriptome sequencing profiles of CD31+ cells from 9 retinal fibrovascular mem-branes (FVMs) and 4 postmortem retinas were downloaded from GEO databases to analyze EndoMT-related differentially expressed genes (DEGs). Then, 42 PDR patients and 34 idiopathic macular holes (IMH) patients were enrolled as the PDR and control groups, respectively. Vitreous humor (VH) samples were collected, and the expression of EndoMT-related proteins was quantified by enzyme-linked immunosorbent assay. Results A total of 5845 DEGs were identified, and we subsequently focused on the analysis of 24 EndoMT-related marker genes, including the trigger of EndoMT, endothelial genes, mesenchymal genes, transcription factors, inflammatory factors, and autophagy markers. Six of these genes were selected for protein assay validation in VH, showing increased mesenchymal marker (type I collagen α 2 chain, COL1A2) and decreased endothelial marker (VE-cadherin, CDH5) accompanied by increased TGFβ, IL-1β, LC3B and P62 in PDR patients. In addition, anti-VEGF therapy could enhance EndoMT-related phenotypes. Conclusions EndoMT may underlie the pathogenesis of PDR, and the induction and regulation correlate with autophagy defects and the inflammatory response.
Collapse
Affiliation(s)
- Gaocheng Zou
- Department of Ophthalmology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Lijuan Que
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yaping Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guang-dong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qianyi Lu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
18
|
Wang Y, Zhang YR, Ding ZQ, Zhang YC, Sun RX, Zhu HJ, Wang JN, Xu B, Zhang P, Ji JD, Liu QH, Chen X. m6A-Mediated Upregulation of Imprinted in Prader-Willi Syndrome Induces Aberrant Apical-Basal Polarization and Oxidative Damage in RPE Cells. Invest Ophthalmol Vis Sci 2024; 65:10. [PMID: 38315495 PMCID: PMC10851782 DOI: 10.1167/iovs.65.2.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
Purpose To reveal the clinical significance, pathological involvement and molecular mechanism of imprinted in Prader-Willi syndrome (IPW) in RPE anomalies that contribute to AMD. Methods IPW expression under pathological conditions were detected by microarrays and qPCR assays. In vitro cultured fetal RPE cells were used to study the pathogenicity induced by IPW overexpression and to analyze its upstream and downstream regulatory networks. Results We showed that IPW is upregulated in the macular RPE-choroid tissue of dry AMD patients and in fetal RPE cells under oxidative stress, inflammation and dedifferentiation. IPW overexpression in fetal RPE cells induced aberrant apical-basal polarization as shown by dysregulated polarized markers, disrupted tight and adherens junctions, and inhibited phagocytosis. IPW upregulation was also associated with RPE oxidative damages, as demonstrated by intracellular accumulation of reactive oxygen species, reduced cell proliferation, and accelerated cell apoptosis. Mechanically, N6-methyladenosine level of the IPW transcript regulated its stability with YTHDC1 as the reader. IPW mediated RPE features by suppressing MEG3 expression to sequester its inhibition on the AKT serine-threonine kinase (AKT)/mammalian target of rapamycin (mTOR) pathway. We also noticed that the mTOR inhibitor rapamycin suppresses the AKT/mTOR pathway to alleviate the IPW-induced RPE anomalies. Conclusions We revealed that IPW overexpression in RPE induces aberrant apical-basal polarization and oxidative damages, thus contributing to AMD progression. We also annotated the upstream and downstream regulatory networks of IPW in RPE. Our findings shed new light on the molecular mechanisms of RPE dysfunctions, and indicate that IPW blockers may be a promising option to treat RPE abnormalities in AMD.
Collapse
Affiliation(s)
- Ying Wang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Ye-Ran Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Zi-Qin Ding
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yi-Chen Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Ru-Xu Sun
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Hong-Jing Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jia-Nan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Bei Xu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Ping Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jiang-Dong Ji
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qing-Huai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Xue Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Jiang H, Chen Y, He Z, Li J, Gao Q, Li W, Wei W, Zhang Y. Targeting non-muscle myosin II inhibits proliferative vitreoretinopathy through regulating epithelial-mesenchymal transition. Biochem Biophys Res Commun 2023; 686:149149. [PMID: 37918204 DOI: 10.1016/j.bbrc.2023.149149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/10/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Proliferative vitreoretinopathy (PVR) is a common complication of rhegmatogenous retinal detachment, eventually leading to vision loss. To date, there are no effective drugs for the treatment of this disease. In this study, we investigated the effect of blebbistatin, a non-muscle myosin II inhibitor, on the ARPE-19 cell line and in a rabbit model of proliferative vitreoretinopathy. In vitro, we found that blebbistatin inhibited the epithelial-mesenchymal transition of retinal pigment epithelial (RPE) cells and inhibited the ability of RPE cells to migrate, proliferate, generate extracellular matrix, and affect contractility. In vivo the PVR model showed that blebbistatin significantly delayed PVR progression. It also partially prevents the loss of retinal function caused by PVR. Our results suggest that blebbistatin is a potential drug with clinical applications for the treatment of PVR.
Collapse
Affiliation(s)
- Haiping Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuning Chen
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Zhengquan He
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingqin Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenbin Wei
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
20
|
Hanazaki H, Yokota H, Yamagami S, Nakamura Y, Nagaoka T. The Effect of Anti-Autotaxin Aptamers on the Development of Proliferative Vitreoretinopathy. Int J Mol Sci 2023; 24:15926. [PMID: 37958909 PMCID: PMC10647324 DOI: 10.3390/ijms242115926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
This study investigated the effect of anti-autotaxin (ATX) aptamers on the development of proliferative vitreoretinopathy (PVR) in both in vivo and in vitro PVR swine models. For the in vitro study, primary retinal pigment epithelial (RPE) cells were obtained from porcine eyes and cultured for cell proliferation and migration assays. For the in vivo study, a swine PVR model was established by inducing retinal detachment and injecting cultured RPE cells (2.0 × 106). Concurrently, 1 week after RPE cell injection, the anti-ATX aptamer, RBM-006 (10 mg/mL, 0.1 mL), was injected twice into the vitreous cavity. Post-injection effects of the anti-ATX aptamer on PVR development in the in vivo swine PVR model were investigated. For the in vitro evaluation, the cultured RPE cell proliferation and migration were significantly reduced at anti-ATX aptamer concentrations of 0.5-0.05 mg and at only 0.5 mg, respectively. Intravitreal administration of the anti-ATX aptamer also prevented tractional retinal detachment caused by PVR in the in vivo PVR model. We observed that the anti-ATX aptamer, RBM-006, inhibited PVR-related RPE cell proliferation and migration in vitro and inhibited the progression of PVR in the in vivo model, suggesting that the anti-ATX aptamer may be effective in preventing PVR.
Collapse
Affiliation(s)
- Hirotsugu Hanazaki
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo 173-8610, Japan; (H.H.); (H.Y.); (S.Y.)
| | - Harumasa Yokota
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo 173-8610, Japan; (H.H.); (H.Y.); (S.Y.)
| | - Satoru Yamagami
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo 173-8610, Japan; (H.H.); (H.Y.); (S.Y.)
| | - Yoshikazu Nakamura
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
- RIBOMIC Inc., Minato-ku, Tokyo 108-0071, Japan
| | - Taiji Nagaoka
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo 173-8610, Japan; (H.H.); (H.Y.); (S.Y.)
| |
Collapse
|
21
|
Hillenmayer A, Strehle LD, Hilterhaus C, Ohlmann A, Wertheimer CM, Wolf A. Epiretinal Amniotic Membrane Influences the Cellular Behavior of Profibrotic Dedifferentiated Cells of Proliferative Vitreoretinopathy In Vitro. J Tissue Eng Regen Med 2023; 2023:8820844. [PMID: 40226394 PMCID: PMC11918902 DOI: 10.1155/2023/8820844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/20/2023] [Accepted: 09/01/2023] [Indexed: 04/15/2025]
Abstract
Proliferative vitreoretinopathy (PVR) as a rare fibrotic ocular disease is the main reason for failure of retinal detachment surgery and a reduced prognosis following surgery. Amniotic membrane (AM) is a versatile surgical tool for tissue stabilization, antifibrotic properties, and regeneration. Initial clinical case studies now demonstrated intravitreal tolerance as well as good anatomical and functional results for degenerative retinal diseases. Due to its diverse wound healing properties, AM could have promoting, suppressive, or no effects on PVR. To illuminate the potential of epiretinal AM transplantation in complex retinal detachment cases, we investigated its influence on human primary PVR (hPVR) cells in vitro. In our cell culture study, hPVR cells were isolated from surgically removed PVR membranes. Following incubation with AM for 48 h, AM-incubated hPVR showed significantly reduced proliferation (BrdU-ELISA; p < 0.001), migration (Boyden chamber, scratch assay; p = 0.003 and p < 0.001), and cell adhesion (p = 0.005). Collagen contraction was nearly unaffected (p = 0.04), and toxicity (histone-complexed DNA ELISA, WST-1 assay, and life/dead staining) was excluded. Next, immunofluorescence showed a myofibroblastic phenotype with reduced expression of fibrosis markers in AM-incubated cells, which was confirmed by Western blot analysis. In the proteomics assay, AM significantly regulated proteins by a more than 2-fold increase in expression which were related to the cytoskeleton, lipid metabolism, cell-matrix contraction, and protein folding. In conclusion, this in vitro work suggests no induction of fibrosis and other key steps in the pathogenesis of PVR through AM but rather inhibiting properties of profibrotic cell behavior, making it a possible candidate for suppression of PVR. Further clinical studies are necessary to evaluate the therapeutic relevance.
Collapse
Affiliation(s)
- Anna Hillenmayer
- Department of Ophthalmology, University of Ulm, Prittwitzstr. 43, Ulm 89075, Germany
| | - Laura D. Strehle
- Department of Ophthalmology, University of Ulm, Prittwitzstr. 43, Ulm 89075, Germany
| | - Christina Hilterhaus
- Department of Ophthalmology, University of Ulm, Prittwitzstr. 43, Ulm 89075, Germany
| | - Andreas Ohlmann
- Department of Ophthalmology, Ludwig-Maximilians University, Mathildenstr. 8, Munich 80336, Germany
| | | | - Armin Wolf
- Department of Ophthalmology, University of Ulm, Prittwitzstr. 43, Ulm 89075, Germany
| |
Collapse
|
22
|
Zhou M, Zhao Y, Weber SR, Gates C, Carruthers NJ, Chen H, Liu X, Wang H, Ford M, Swulius MT, Barber AJ, Grillo SL, Sundstrom JM. Extracellular vesicles from retinal pigment epithelial cells expressing R345W-Fibulin-3 induce epithelial-mesenchymal transition in recipient cells. J Extracell Vesicles 2023; 12:e12373. [PMID: 37855063 PMCID: PMC10585439 DOI: 10.1002/jev2.12373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/06/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023] Open
Abstract
We have shown previously that expression of R345W-Fibulin-3 induces epithelial-mesenchymal transition (EMT) in retinal pigment epithelial (RPE) cells. The purpose of the current study was to determine if extracellular vesicles (EVs) derived from RPE cells expressing R345W-Fibulin-3 mutation are sufficient to induce EMT in recipient cells. ARPE-19 cells were infected with luciferase-tagged wild-type (WT)- Fibulin-3 or luciferase-tagged R345W-Fibulin-3 (R345W) using lentiviruses. EVs were isolated from the media by ultracentrifugation or density gradient ultracentrifugation. Transmission electron microscopy and cryogenic electron microscopy were performed to study the morphology of the EVs. The size distribution of EVs were determined by nanoparticle tracking analysis (NTA). EV cargo was analysed using LC-MS/MS based proteomics. EV-associated transforming growth factor beta 1 (TGFβ1) protein was measured by enzyme-linked immunosorbent assay. The capacity of EVs to stimulate RPE migration was evaluated by treating recipient cells with WT- or R345W-EVs. The role of EV-bound TGFβ was determined by pre-incubation of EVs with a pan-TGFβ blocking antibody or IgG control. EM imaging revealed spherical vesicles with two subpopulations of EVs: a group with diameters around 30 nm and a group with diameters over 100 nm, confirmed by NTA analysis. Pathway analysis revealed that members of the sonic hedgehog pathway were less abundant in R345W- EVs, while EMT drivers were enriched. Additionally, R345W-EVs had higher concentrations of TGFβ1 compared to control. Critically, treatment with R345W-EVs was sufficient to increase EMT marker expression, as well as cell migration in recipient cells. This EV-increased cell migration was significantly inhibited by pre-incubation of EVs with pan-TGFβ-neutralising antibody. In conclusion, the expression of R345W-Fibulin-3 alters the size and cargo of EVs, which are sufficient to enhance the rate of cell migration in a TGFβ dependent manner. These results suggest that EV-bound TGFβ plays a critical role in the induction of EMT in RPE cells.
Collapse
Affiliation(s)
- Mi Zhou
- Department of OphthalmologyPenn State Hershey College of MedicineHersheyPennsylvaniaUSA
| | - Yuanjun Zhao
- Department of OphthalmologyPenn State Hershey College of MedicineHersheyPennsylvaniaUSA
| | - Sarah R. Weber
- Department of OphthalmologyPenn State Hershey College of MedicineHersheyPennsylvaniaUSA
| | - Christopher Gates
- Bioinformatics Core, Biomedical Research Core FacilitiesUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Nicholas J. Carruthers
- Bioinformatics Core, Biomedical Research Core FacilitiesUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Han Chen
- Microscopy Imaging Core FacilityPenn State Hershey College of MedicineHersheyPennsylvaniaUSA
| | - Xiaoming Liu
- Department of Pediatrics, Division of Hematology and OncologyPenn State Hershey College of MedicineHersheyPennsylvaniaUSA
| | - Hong‐Gang Wang
- Department of Pediatrics, Division of Hematology and OncologyPenn State Hershey College of MedicineHersheyPennsylvaniaUSA
| | | | - Matthew T. Swulius
- Department of Biochemistry and Molecular BiologyPenn State Hershey College of MedicineHersheyPennsylvaniaUSA
| | - Alistair J. Barber
- Department of OphthalmologyPenn State Hershey College of MedicineHersheyPennsylvaniaUSA
| | - Stephanie L. Grillo
- Department of OphthalmologyPenn State Hershey College of MedicineHersheyPennsylvaniaUSA
| | - Jeffrey M. Sundstrom
- Department of OphthalmologyPenn State Hershey College of MedicineHersheyPennsylvaniaUSA
| |
Collapse
|
23
|
Yin Y, Liu S, Liu H, Wu W. Nintedanib inhibits normal human vitreous-induced epithelial-mesenchymal transition in human retinal pigment epithelial cells. Biomed Pharmacother 2023; 166:115403. [PMID: 37659204 DOI: 10.1016/j.biopha.2023.115403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023] Open
Abstract
PURPOSE In this study, we aim to investigate the potential of nintedanib as a therapeutic approach to proliferative vitreoretinopathy (PVR), which is the leading cause of failure in retinal detachment repair. PVR is characterized by the epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells, and understanding the effects of nintedanib on EMT in the normal human vitreous (HV)-induced RPE cells is crucial. METHODS Our research focuses on assessing the impact of nintedanib on HV-induced EMT in human retinal pigment epithelial (ARPE-19) cells in vitro. We employed various techniques, including quantitative real-time PCR (qPCR), western blot analysis, and immunofluorescence staining, to evaluate the mRNA and protein expression of EMT biomarkers in HV-induced ARPE-19 cells. Additionally, we measured the proliferation of RPE cells using cell counting, CCK-8, and Ki-67 assays. Migration was assessed through wound healing and transwell migration assays, while contraction was determined using a collagen gel contraction assay. Morphological changes were examined using phase-contrast microscopy. RESULTS Our results demonstrate that nintedanib selectively attenuates the upregulation of mesenchymal markers in HV-induced ARPE-19 cells, at both the mRNA and protein levels. Furthermore, nintedanib effectively suppresses the HV-induced proliferation, migration, and contraction of ARPE-19 cells, while maintaining the cells' basal activity. These findings strongly suggest that nintedanib exhibits protective effects against EMT in ARPE-19 cells and could be a promising therapeutic option for PVR. CONCLUSIONS By elucidating the anti-EMT effects of nintedanib in HV-induced RPE cells, our study highlights the potential of this oral triple tyrosine kinase inhibitor in the treatment of PVR. These findings contribute to the growing body of research aimed at developing novel strategies to prevent and manage PVR, ultimately improving the success rates of retinal detachment repair.
Collapse
Affiliation(s)
- Yiwei Yin
- Department of Ophthalmology, Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China; Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, China
| | - Shikun Liu
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, China
| | - Hanhan Liu
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, China.
| | - Wenyi Wu
- Department of Ophthalmology, Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| |
Collapse
|
24
|
Liu D, Zhang C, Zhang J, Xu GT, Zhang J. Molecular pathogenesis of subretinal fibrosis in neovascular AMD focusing on epithelial-mesenchymal transformation of retinal pigment epithelium. Neurobiol Dis 2023; 185:106250. [PMID: 37536385 DOI: 10.1016/j.nbd.2023.106250] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of vision loss among elderly people in developed countries. Neovascular AMD (nAMD) accounts for more than 90% of AMD-related vision loss. At present, intravitreal injection of anti-vascular endothelial growth factor (anti-VEGF) is widely used as the first-line therapy to decrease the choroidal and retinal neovascularizations, and thus to improve or maintain the visual acuity of the patients with nAMD. However, about 1/3 patients still progress to irreversible visual impairment due to subretinal fibrosis even with adequate anti-VEGF treatment. Extensive literatures support the critical role of epithelial-mesenchymal transformation (EMT) of retinal pigment epithelium (RPE) in the pathogenesis of subretinal fibrosis in nAMD, but the underlying mechanisms still remain largely unknown. This review summarized the molecular pathogenesis of subretinal fibrosis in nAMD, especially focusing on the transforming growth factor-β (TGF-β)-induced EMT pathways. It was also discussed how these pathways crosstalk and respond to signals from the microenvironment to mediate EMT and contribute to the progression of nAMD-related subretinal fibrosis. Targeting EMT signaling pathways might provide a promising and effective therapeutic strategy to treat subretinal fibrosis secondary to nAMD.
Collapse
Affiliation(s)
- Dandan Liu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Chaoyang Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Jingting Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Guo-Tong Xu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China.
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China.
| |
Collapse
|
25
|
Abu El-Asrar AM, De Hertogh G, Allegaert E, Nawaz MI, Abouelasrar Salama S, Gikandi PW, Opdenakker G, Struyf S. Macrophage-Myofibroblast Transition Contributes to Myofibroblast Formation in Proliferative Vitreoretinal Disorders. Int J Mol Sci 2023; 24:13510. [PMID: 37686317 PMCID: PMC10487544 DOI: 10.3390/ijms241713510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Inflammation and fibrosis are key features of proliferative vitreoretinal disorders. We aimed to define the macrophage phenotype and investigate the role of macrophage-myofibroblast transition (MMT) in the contribution to myofibroblast populations present in epiretinal membranes. Vitreous samples from proliferative diabetic retinopathy (PDR), proliferative vitreoretinopathy (PVR) and nondiabetic control patients, epiretinal fibrovascular membranes from PDR patients and fibrocellular membranes from PVR patients, human retinal Müller glial cells and human retinal microvascular endothelial cells (HRMECs) were studied by ELISA, immunohistochemistry and flow cytometry analysis. Myofibroblasts expressing α-SMA, fibroblast activation protein-α (FAP-α) and fibroblast-specific protein-1 (FSP-1) were present in all membranes. The majority of CD68+ monocytes/macrophages co-expressed the M2 macrophage marker CD206. In epiretinal membranes, cells undergoing MMT were identified by co-expression of the macrophage marker CD68 and myofibroblast markers α-SMA and FSP-1. Further analysis revealed that CD206+ M2 macrophages co-expressed α-SMA, FSP-1, FAP-α and ß-catenin. Soluble (s) CD206 and sFAP-α levels were significantly higher in vitreous samples from PDR and PVR patients than in nondiabetic control patients. The proinflammatory cytokine TNF-α and the hypoxia mimetic agent cobalt chloride induced upregulation of sFAP-α in culture media of Müller cells but not of HRMECs. The NF-ĸß inhibitor BAY11-7085 significantly attenuated TNF-α-induced upregulation of sFAP-α in Müller cells. Our findings suggest that the process of MMT might contribute to myofibroblast formation in epiretinal membranes, and this transition involved macrophages with a predominant M2 phenotype. In addition, sFAP-α as a vitreous biomarker may be derived from M2 macrophages transitioned to myofibroblasts and from Müller cells.
Collapse
Affiliation(s)
- Ahmed M. Abu El-Asrar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (M.I.N.); (P.W.G.); (G.O.)
- Dr. Nasser Al-Rashid Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia
| | - Gert De Hertogh
- Laboratory of Histochemistry and Cytochemistry, University of Leuven, KU Leuven, 3000 Leuven, Belgium; (G.D.H.); (E.A.)
- University Hospitals UZ Gasthuisberg, 3000 Leuven, Belgium
| | - Eef Allegaert
- Laboratory of Histochemistry and Cytochemistry, University of Leuven, KU Leuven, 3000 Leuven, Belgium; (G.D.H.); (E.A.)
- University Hospitals UZ Gasthuisberg, 3000 Leuven, Belgium
| | - Mohd I. Nawaz
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (M.I.N.); (P.W.G.); (G.O.)
| | - Sara Abouelasrar Salama
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, University of Leuven, KU Leuven, 3000 Leuven, Belgium; (S.A.S.); (S.S.)
| | - Priscilla W. Gikandi
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (M.I.N.); (P.W.G.); (G.O.)
| | - Ghislain Opdenakker
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (M.I.N.); (P.W.G.); (G.O.)
- University Hospitals UZ Gasthuisberg, 3000 Leuven, Belgium
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, University of Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, University of Leuven, KU Leuven, 3000 Leuven, Belgium; (S.A.S.); (S.S.)
| |
Collapse
|
26
|
Sun RX, Zhu HJ, Zhang YR, Wang JN, Wang Y, Cao QC, Ji JD, Jiang C, Yuan ST, Chen X, Liu QH. ALKBH5 causes retinal pigment epithelium anomalies and choroidal neovascularization in age-related macular degeneration via the AKT/mTOR pathway. Cell Rep 2023; 42:112779. [PMID: 37436898 DOI: 10.1016/j.celrep.2023.112779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 05/24/2023] [Accepted: 06/25/2023] [Indexed: 07/14/2023] Open
Abstract
Retinal pigment epithelium (RPE) dysfunction and choroidal neovascularization (CNV) are predominant features of age-related macular degeneration (AMD), with an unclear mechanism. Herein, we show that RNA demethylase α-ketoglutarate-dependent dioxygenase alkB homolog 5 (ALKBH5) is up-regulated in AMD. In RPE cells, ALKBH5 overexpression associates with depolarization, oxidative stress, disturbed autophagy, irregular lipid homeostasis, and elevated VEGF-A secretion, which subsequently promotes proliferation, migration, and tube formation of vascular endothelial cells. Consistently, ALKBH5 overexpression in mice RPE correlates with various pathological phenotypes, including visual impairments, RPE anomalies, choroidal neovascularization (CNV), and interrupted retinal homeostasis. Mechanistically, ALKBH5 regulates retinal features through its demethylation activity. It targets PIK3C2B and regulates the AKT/mTOR signaling pathway with YTHDF2 as the N6-methyladenosine reader. IOX1, an ALKBH5 inhibitor, suppresses hypoxia-induced RPE dysfunction and CNV progression. Collectively, we demonstrate that ALKBH5 induces RPE dysfunction and CNV progression in AMD via PIK3C2B-mediated activation of the AKT/mTOR pathway. Pharmacological inhibitors of ALKBH5, like IOX1, are promising therapeutic options for AMD.
Collapse
Affiliation(s)
- Ru-Xu Sun
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Hong-Jing Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Ye-Ran Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Jia-Nan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Ying Wang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Qiu-Chen Cao
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Jiang-Dong Ji
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Chao Jiang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Song-Tao Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China.
| | - Xue Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China.
| | - Qing-Huai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
27
|
Yang X, Chung JY, Rai U, Esumi N. SIRT6 overexpression in the nucleus protects mouse retinal pigment epithelium from oxidative stress. Life Sci Alliance 2023; 6:e202201448. [PMID: 37185874 PMCID: PMC10130745 DOI: 10.26508/lsa.202201448] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Retinal pigment epithelium (RPE) is essential for the survival of retinal photoreceptors. To study retinal degeneration, sodium iodate (NaIO3) has been used to cause oxidative stress-induced RPE death followed by photoreceptor degeneration. However, analyses of RPE damage itself are still limited. Here, we characterized NaIO3-induced RPE damage, which was divided into three regions: periphery with normal-shaped RPE, transitional zone with elongated cells, and center with severely damaged or lost RPE. Elongated cells in the transitional zone exhibited molecular characteristics of epithelial-mesenchymal transition. Central RPE was more susceptible to stresses than peripheral RPE. Under stresses, SIRT6, an NAD+-dependent protein deacylase, rapidly translocated from the nucleus to the cytoplasm and colocalized with stress granule factor G3BP1, leading to nuclear SIRT6 depletion. To overcome this SIRT6 depletion, SIRT6 overexpression was induced in the nucleus in transgenic mice, which protected RPE from NaIO3 and partially preserved catalase expression. These results demonstrate topological differences of mouse RPE and warrant further exploring SIRT6 as a potential target for protecting RPE from oxidative stress-induced damage.
Collapse
Affiliation(s)
- Xue Yang
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jin-Yong Chung
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Usha Rai
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Noriko Esumi
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
28
|
Sloan LJ, Funk KM, Tamiya S, Song ZH. Effect of N-oleoyl dopamine on myofibroblast trans-differentiation of retinal pigment epithelial cells. Biochem Biophys Res Commun 2023; 667:127-131. [PMID: 37216828 DOI: 10.1016/j.bbrc.2023.05.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/13/2023] [Indexed: 05/24/2023]
Abstract
Retinal pigment epithelial (RPE) cells contribute to several clinical conditions resulting in retinal fibrotic scars. Myofibroblast trans-differentiation of RPE cells is a critical step in the process of retinal fibrosis. In this study, we investigated the effects of N-oleoyl dopamine (OLDA), a newer endocannabinoid with a structure distinct from classic endocannabinoids, on TGF-β2-induced myofibroblast trans-differentiation of porcine RPE cells. Using an in vitro collagen matrix contraction assay, OLDA was found to inhibit TGF-β2 induced contraction of collagen matrices by porcine RPE cells. This effect was concentration-dependent, with significant inhibition of contraction observed at 3 μM and 10 μM. OLDA did not affect the proliferation of porcine RPE cells. Immunocytochemistry showed that at 3 μM, OLDA decreased incorporation of α-SMA in the stress fibers of TGF-β2-treated RPE cells. In addition, western blot analysis showed that 3 μM OLDA significantly downregulated TGF-β2-induced α-SMA protein expression. Taken together these results demonstrate that OLDA inhibits TGF-β induced myofibroblast trans-differentiation of RPE cells. It has been established that classic endocannabinoid such as anandamide, by activating the CB1 cannabinoid receptor, promote fibrosis in multiple organ systems. In contrast, this study demonstrates that OLDA, an endocannabinoid with a chemical structure distinct from classic endocannabinoids, inhibits myofibroblast trans-differentiation, an important step in fibrosis. Unlike classic endocannabinoids, OLDA has weak affinity for the CB1 receptor. Instead, OLDA acts on non-classic cannabinoid receptors such as GPR119, GPR6, and TRPV1. Therefore, our study indicates that the newer endocannabinoid OLDA and its non-classic cannabinoid receptors could potentially be novel therapeutic targets for treating ocular diseases involving retinal fibrosis and fibrotic pathologies in other organ systems.
Collapse
Affiliation(s)
- Lucy J Sloan
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, United States
| | - Kyle M Funk
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, United States
| | - Shigeo Tamiya
- Department of Ophthalmology and Visual Sciences, Ohio State University College of Medicine, Columbus, OH, 43210, United States.
| | - Zhao-Hui Song
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, United States.
| |
Collapse
|
29
|
Sripathi SR, Hu MW, Turaga RC, Mikeasky R, Satyanarayana G, Cheng J, Duan Y, Maruotti J, Wahlin KJ, Berlinicke CA, Qian J, Esumi N, Zack DJ. IKKβ Inhibition Attenuates Epithelial Mesenchymal Transition of Human Stem Cell-Derived Retinal Pigment Epithelium. Cells 2023; 12:1155. [PMID: 37190063 PMCID: PMC10136838 DOI: 10.3390/cells12081155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 05/17/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT), which is well known for its role in embryonic development, malignant transformation, and tumor progression, has also been implicated in a variety of retinal diseases, including proliferative vitreoretinopathy (PVR), age-related macular degeneration (AMD), and diabetic retinopathy. EMT of the retinal pigment epithelium (RPE), although important in the pathogenesis of these retinal conditions, is not well understood at the molecular level. We and others have shown that a variety of molecules, including the co-treatment of human stem cell-derived RPE monolayer cultures with transforming growth factor beta (TGF-β) and the inflammatory cytokine tumor necrosis factor alpha (TNF-α), can induce RPE-EMT; however, small molecule inhibitors of RPE-EMT have been less well studied. Here, we demonstrate that BAY651942, a small molecule inhibitor of nuclear factor kapa-B kinase subunit beta (IKKβ) that selectively targets NF-κB signaling, can modulate TGF-β/TNF-α-induced RPE-EMT. Next, we performed RNA-seq studies on BAY651942 treated hRPE monolayers to dissect altered biological pathways and signaling events. Further, we validated the effect of IKKβ inhibition on RPE-EMT-associated factors using a second IKKβ inhibitor, BMS345541, with RPE monolayers derived from an independent stem cell line. Our data highlights the fact that pharmacological inhibition of RPE-EMT restores RPE identity and may provide a promising approach for treating retinal diseases that involve RPE dedifferentiation and EMT.
Collapse
Affiliation(s)
- Srinivasa R. Sripathi
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Henderson Ocular Stem Cell Laboratory, Retina Foundation of the Southwest, Dallas, TX 75231, USA
| | - Ming-Wen Hu
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ravi Chakra Turaga
- Caris Life Sciences, 350 W Washington St., Tempe, AZ 85281, USA
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Rebekah Mikeasky
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ganesh Satyanarayana
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
- Emory Eye Center, Department of Ophthalmology, Emory University, Atlanta, GA 30322, USA
| | - Jie Cheng
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yukan Duan
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Karl J. Wahlin
- Shiley Eye Institute, University of California, San Diego, CA 92093, USA
| | - Cynthia A. Berlinicke
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiang Qian
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Noriko Esumi
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Donald J. Zack
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Whiting School of Engineering, Baltimore, MD 21218, USA
| |
Collapse
|
30
|
Zandi S, Li Y, Jahnke L, Schweri-Olac A, Ishikawa K, Wada I, Nakao S, Zinkernagel MS, Enzmann V. Animal model of subretinal fibrosis without active choroidal neovascularization. Exp Eye Res 2023; 229:109428. [PMID: 36803995 DOI: 10.1016/j.exer.2023.109428] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/01/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
Subretinal fibrosis can occur during neovascular age-related macular degeneration (nAMD) and consequently provokes progressing deterioration of AMD patient's vision. Intravitreal anti-vascular endothelial growth factor (VEGF) injections decrease choroidal neovascularization (CNV), however, subretinal fibrosis remains principally unaffected. So far, no successful treatment nor established animal model for subretinal fibrosis exists. In order to investigate the impact of anti-fibrotic compounds on solely fibrosis, we refined a time-dependent animal model of subretinal fibrosis without active choroidal neovascularization (CNV). To induce CNV-related fibrosis, wild-type (WT) mice underwent laser photocoagulation of the retina with rupture of Bruch's membrane. The lesions volume was assessed with optical coherence tomography (OCT). CNV (Isolectin B4) and fibrosis (type 1 collagen) were separately quantified with confocal microscopy of choroidal whole-mounts at every time point post laser induction (day 7-49). In addition, OCT, autofluorescence and fluorescence angiography were carried out at designated timepoints (day 7, 14, 21, 28, 35, 42, 49) to monitor CNV and fibrosis transformation over time. From 21 to 49 days post laser lesion leakage in the fluorescence angiography decreased. Correspondingly, Isolectin B4 decreased in lesions of choroidal flat mounts and type 1 collagen increased. Fibrosis markers, namely vimentin, fibronectin, alpha-smooth muscle actin (α-SMA) and type 1 collagen were detected at different timepoints of tissue repair in choroids and retinas post laser. These results prove that the late phase of the CNV-related fibrosis model enables screening of anti-fibrotic compounds to accelerate the therapeutic advancement for the prevention, reduction, or inhibition of subretinal fibrosis.
Collapse
Affiliation(s)
- Souska Zandi
- Department of Ophthalmology and Department of BioMedical Sciences, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| | - Yuebing Li
- Department of Ophthalmology and Department of BioMedical Sciences, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Laura Jahnke
- Department of Ophthalmology and Department of BioMedical Sciences, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Anelia Schweri-Olac
- Department of Ophthalmology and Department of BioMedical Sciences, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Keijiro Ishikawa
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Iori Wada
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shintaro Nakao
- Department of Ophthalmology, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Martin S Zinkernagel
- Department of Ophthalmology and Department of BioMedical Sciences, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Volker Enzmann
- Department of Ophthalmology and Department of BioMedical Sciences, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
31
|
Zhang J, Li W, Xiong Z, Zhu J, Ren X, Wang S, Kuang H, Lin X, Mora A, Li X. PDGF-D-induced immunoproteasome activation and cell-cell interactions. Comput Struct Biotechnol J 2023; 21:2405-2418. [PMID: 37066124 PMCID: PMC10090480 DOI: 10.1016/j.csbj.2023.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Platelet-derived growth factor-D (PDGF-D) is abundantly expressed in ocular diseases. Yet, it remains unknown whether and how PDGF-D affects ocular cells or cell-cell interactions in the eye. In this study, using single-cell RNA sequencing (scRNA-seq) and a mouse model of PDGF-D overexpression in retinal pigment epithelial (RPE) cells, we found that PDGF-D overexpression markedly upregulated the key immunoproteasome genes, leading to increased antigen processing/presentation capacity of RPE cells. Also, more than 6.5-fold ligand-receptor pairs were found in the PDGF-D overexpressing RPE-choroid tissues, suggesting markedly increased cell-cell interactions. Moreover, in the PDGF-D-overexpressing tissues, a unique cell population with a transcriptomic profile of both stromal cells and antigen-presenting RPE cells was detected, suggesting PDGF-D-induced epithelial-mesenchymal transition of RPE cells. Importantly, administration of ONX-0914, an immunoproteasome inhibitor, suppressed choroidal neovascularization (CNV) in a mouse CNV model in vivo. Together, we show that overexpression of PDGF-D increased pro-angiogenic immunoproteasome activities, and inhibiting immunoproteasome pathway may have therapeutic value for the treatment of neovascular diseases.
Collapse
|
32
|
Experimental Models to Study Epithelial-Mesenchymal Transition in Proliferative Vitreoretinopathy. Int J Mol Sci 2023; 24:ijms24054509. [PMID: 36901938 PMCID: PMC10003383 DOI: 10.3390/ijms24054509] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Proliferative vitreoretinal diseases (PVDs) encompass proliferative vitreoretinopathy (PVR), epiretinal membranes, and proliferative diabetic retinopathy. These vision-threatening diseases are characterized by the development of proliferative membranes above, within and/or below the retina following epithelial-mesenchymal transition (EMT) of the retinal pigment epithelium (RPE) and/or endothelial-mesenchymal transition of endothelial cells. As surgical peeling of PVD membranes remains the sole therapeutic option for patients, development of in vitro and in vivo models has become essential to better understand PVD pathogenesis and identify potential therapeutic targets. The in vitro models range from immortalized cell lines to human pluripotent stem-cell-derived RPE and primary cells subjected to various treatments to induce EMT and mimic PVD. In vivo PVR animal models using rabbit, mouse, rat, and swine have mainly been obtained through surgical means to mimic ocular trauma and retinal detachment, and through intravitreal injection of cells or enzymes to induce EMT and investigate cell proliferation and invasion. This review offers a comprehensive overview of the usefulness, advantages, and limitations of the current models available to investigate EMT in PVD.
Collapse
|
33
|
Ng PQ, Saint-Geniez M, Kim LA, Shu DY. Divergent Metabolomic Signatures of TGFβ2 and TNFα in the Induction of Retinal Epithelial-Mesenchymal Transition. Metabolites 2023; 13:213. [PMID: 36837832 PMCID: PMC9966219 DOI: 10.3390/metabo13020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a dedifferentiation program in which polarized, differentiated epithelial cells lose their cell-cell adhesions and transform into matrix-producing mesenchymal cells. EMT of retinal pigment epithelial (RPE) cells plays a crucial role in many retinal diseases, including age-related macular degeneration, proliferative vitreoretinopathy, and diabetic retinopathy. This dynamic process requires complex metabolic reprogramming to accommodate the demands of this dramatic cellular transformation. Both transforming growth factor-beta 2 (TGFβ2) and tumor necrosis factor-alpha (TNFα) have the capacity to induce EMT in RPE cells; however, little is known about their impact on the RPE metabolome. Untargeted metabolomics using high-resolution mass spectrometry was performed to reveal the metabolomic signatures of cellular and secreted metabolites of primary human fetal RPE cells treated with either TGFβ2 or TNFα for 5 days. A total of 638 metabolites were detected in both samples; 188 were annotated as primary metabolites. Metabolomics profiling showed distinct metabolomic signatures associated with TGFβ2 and TNFα treatment. Enrichment pathway network analysis revealed alterations in the pentose phosphate pathway, galactose metabolism, nucleotide and pyrimidine metabolism, purine metabolism, and arginine and proline metabolism in TNFα-treated cells compared to untreated control cells, whereas TGFβ2 treatment induced perturbations in fatty acid biosynthesis metabolism, the linoleic acid pathway, and the Notch signaling pathway. These results provide a broad metabolic understanding of the bioenergetic rewiring processes governing TGFβ2- and TNFα-dependent induction of EMT. Elucidating the contributions of TGFβ2 and TNFα and their mechanistic differences in promoting EMT of RPE will enable the identification of novel biomarkers for diagnosis, management, and tailored drug development for retinal fibrotic diseases.
Collapse
Affiliation(s)
- Pei Qin Ng
- Department of Plant Science, University of Cambridge, Downing Street, Cambridge CB2 3EA, Cambridgeshire, UK
- Schepens Eye Research Institute of Mass Eye and Ear, Boston, MA 02114, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia
| | - Magali Saint-Geniez
- Schepens Eye Research Institute of Mass Eye and Ear, Boston, MA 02114, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Leo A. Kim
- Schepens Eye Research Institute of Mass Eye and Ear, Boston, MA 02114, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Daisy Y. Shu
- Schepens Eye Research Institute of Mass Eye and Ear, Boston, MA 02114, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
34
|
25-hydroxyvitamin D3 inhibits oxidative stress and ferroptosis in retinal microvascular endothelial cells induced by high glucose through down-regulation of miR-93. BMC Ophthalmol 2023; 23:22. [PMID: 36639741 PMCID: PMC9840274 DOI: 10.1186/s12886-022-02762-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The decrease of vitamin D plays a critical role in diabetes mellitus (DM)-induced oxidative stress and vascular endothelial injury. Therefore, we investigated the effect and mechanism of 25-hydroxyvitamin D3 (25 (OH) D3) on oxidative stress and ferroptosis induced by high glucose in human retinal microvascular endothelial cells (hRMVECs). And the objective of this paper was to propose a new strategy for the prevention and treatment of diabetic retinopathy (DR). METHODS First, hRMVECs were transfected with mimics NC or miR-93. After that, cells were treated with 100 nM / 500 nM 25 (OH) D3 and then cultured in a high glucose (30 mM) environment. Subsequently, qRT-PCR was employed to detect the expression level of miR-93; CCK-8 for the proliferation of cells in each group; biochemical tests for the level of intracellular reactive oxygen species (ROS), malondialdehyde (MDA), reduced glutathione (GSH) and ferrous ion (Fe2+); and Western blot for the expression of ferroptosis-related proteins glutathione peroxidase 4 (GPX4) and SLC7A11). RESULTS Under a high glucose environment, 25 (OH) D3 at 100 nM/500 nM could significantly promote the proliferation of hRMVECs, remarkably decrease the level of intracellular ROS/MDA, and up-regulate the level of GSH. Besides, 25 (OH) D3 greatly reduced Fe2+ level in the cells while increased protein level of GPX4 and SLC7A11. Subsequently, we found that high glucose induced miR-93 expression, while 25 (OH) D3 markedly decreased high glucose-induced miR-93 overexpression. Furthermore, overexpression of miR-93 inhibited the functions of 25 (OH) D3 by activating ROS (ROS and MDA were up-regulated while GSH was down-regulated) and inducing Fe2+ (Fe2+ level was up-regulated while GPX4 and SLC7A11 level was down-regulated) in cells. CONCLUSION 25 (OH) D3 may inhibit oxidative stress and ferroptosis in hRMVECs induced by high glucose via down-regulation of miR-93.
Collapse
|
35
|
Han H, Yang Y, Han Z, Wang L, Dong L, Qi H, Liu B, Tian J, Vanhaesebroeck B, Kazlauskas A, Zhang G, Zhang S, Lei H. NFκB-Mediated Expression of Phosphoinositide 3-Kinase δ Is Critical for Mesenchymal Transition in Retinal Pigment Epithelial Cells. Cells 2023; 12:207. [PMID: 36672142 PMCID: PMC9857235 DOI: 10.3390/cells12020207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Epithelial mesenchymal transition (EMT) plays a vital role in a variety of human diseases including proliferative vitreoretinopathy (PVR), in which retinal pigment epithelial (RPE) cells play a key part. Transcriptomic analysis showed that the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway was up-regulated in human RPE cells upon treatment with transforming growth factor (TGF)-β2, a multifunctional cytokine associated with clinical PVR. Stimulation of human RPE cells with TGF-β2 induced expression of p110δ (the catalytic subunit of PI3Kδ) and activation of NFκB/p65. CRISPR-Cas9-mediated depletion of p110δ or NFκB/p65 suppressed TGF-β2-induced fibronectin expression and activation of Akt as well as migration of these cells. Intriguingly, abrogating expression of NFκB/p65 also blocked TGF-β2-induced expression of p110δ, and luciferase reporter assay indicated that TGF-β2 induced NFκB/p65 binding to the promoter of the PIK3CD that encodes p110δ. These data reveal that NFκB/p65-mediated expression of PI3Kδ is essential in human RPE cells for TGF-β2-induced EMT, uncovering hindrance of TGF-β2-induced expression of p110δ as a novel approach to inhibit PVR.
Collapse
Affiliation(s)
- Haote Han
- Institute of Basic Medicine and Cancer, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 100864, China
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA 02114, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - Yanhui Yang
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, The School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750101, China
| | - Zhuo Han
- Institute of Basic Medicine and Cancer, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 100864, China
| | - Luping Wang
- Institute of Basic Medicine and Cancer, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 100864, China
| | - Lijun Dong
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518000, China
| | - Hui Qi
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518000, China
| | - Bing Liu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA 02114, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510180, China
| | - Jingkui Tian
- Institute of Basic Medicine and Cancer, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 100864, China
| | | | - Andrius Kazlauskas
- Department of Ophthalmology and Visual Sciences, Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Guoming Zhang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518000, China
| | - Shaochong Zhang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518000, China
| | - Hetian Lei
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518000, China
| |
Collapse
|
36
|
Petroff A, Pena Diaz A, Armstrong JJ, Gonga-Cavé BC, Hutnik C, O'Gorman DB. Understanding Inflammation-associated Ophthalmic Pathologies: A Novel 3D Co-culture Model of Monocyte-myofibroblast Immunomodulation. Ocul Immunol Inflamm 2023; 31:65-76. [PMID: 34648419 DOI: 10.1080/09273948.2021.1980816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE Inflammation is associated with, and may be causal of, a variety of ophthalmic pathologies. These pathologies are currently difficult to model in vitro because they involve complex interactions between the innate immune system, stromal cells, and other cells that normally maintain ocular tissue homeostasis. Using transscleral drainage channel fibrosis after glaucoma surgery as an example of inflammation-associated ocular fibrosis, we have assessed a simple but novel 3D cell culture system designed to reveal the immunomodulatory impacts of ocular connective tissue cells on monocytes, a major cellular component of the circulating immune system. METHODS Primary human Tenon's capsule fibroblasts derived from five unrelated patients were activated into myofibroblasts in 3D collagen matrices under isometric tension, with and without exposure to an inflammatory cytokine-enhanced milieu, and co-cultured with an immortalized human monocyte cell line (THP-1 cells). Quantitative PCR analyses were performed on 8 candidate genes to assess the impacts of inflammatory cytokines on the myofibroblasts and the monocytes in mono-cultures and compared to cells in co-culture to clearly distinguish any co-culture-induced impacts on gene expression. RESULTS Our data indicate that both Tenon's capsule myofibroblasts in 3D mono-culture and THP-1 monocytes in suspension mono-culture were responsive to inflammatory cytokine stimuli. Co-culture with Tenon's capsule myofibroblasts significantly modulated the gene expression responses of THP-1 monocytes to inflammatory cytokine stimulation, indicative of an immunomodulatory "feedback" system between these cell types. CONCLUSION Our findings provide proof of principle for the use of simple 3D co-culture systems as a means to enhance our understanding of ocular stromal cell interactions with cells of the innate immune system and to provide more informative in vitro models of inflammation-associated ophthalmic pathologies.
Collapse
Affiliation(s)
- Avi Petroff
- Department of Biochemistry, Western University, London, Canada.,Lawson Health Research Institute, St. Joseph's Health Care, London, Canada
| | - Ana Pena Diaz
- Lawson Health Research Institute, St. Joseph's Health Care, London, Canada
| | - James J Armstrong
- Lawson Health Research Institute, St. Joseph's Health Care, London, Canada.,Schulich School of Medicine and Dentistry, Department of Ophthalmology, London, Canada.,Schulich School of Medicine and Dentistry, Department of Pathology and Laboratory Medicine, London, Canada
| | | | - Cindy Hutnik
- Lawson Health Research Institute, St. Joseph's Health Care, London, Canada.,Schulich School of Medicine and Dentistry, Department of Ophthalmology, London, Canada.,Schulich School of Medicine and Dentistry, Department of Pathology and Laboratory Medicine, London, Canada
| | - David B O'Gorman
- Department of Biochemistry, Western University, London, Canada.,Lawson Health Research Institute, St. Joseph's Health Care, London, Canada.,Department of Surgery, Western University, London, Canada
| |
Collapse
|
37
|
Dong L, Han H, Huang X, Ma G, Fang D, Qi H, Han Z, Wang L, Tian J, Vanhaesebroeck B, Zhang G, Zhang S, Lei H. Idelalisib inhibits experimental proliferative vitroretinopathy. J Transl Med 2022; 102:1296-1303. [PMID: 35854067 DOI: 10.1038/s41374-022-00822-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/09/2022] Open
Abstract
Proliferative vitreoretinopathy (PVR) is a fibrotic eye disease that develops after rhegmatogenous retinal detachment surgery and open-globe traumatic injury. Idelalisib is a specific inhibitor of phosphoinositide 3-kinase (PI3K) δ. While PI3Kδ is primarily expressed in leukocytes, its expression is also considerably high in retinal pigment epithelial (RPE) cells, which play a crucial part in the PVR pathogenesis. Herein we show that GeoMx Digital Spatial Profiling uncovered strong expression of fibronectin in RPE cells within epiretinal membranes from patients with PVR, and that idelalisib (10 μM) inhibited Akt activation, fibronectin expression and collagen gel contraction induced by transforming growth factor (TGF)-β2 in human RPE cells. Furthermore, we discovered that idelalisib at a vitreal concentration of 10 μM, a non-toxic dose to the retina, prevented experimental PVR induced by intravitreally injected RPE cells in rabbits assessed by experienced ophthalmologists using an indirect ophthalmoscope plus a + 30 D fundus lens, electroretinography, optical coherence tomography and histological analysis. These data suggested idelalisib could be harnessed for preventing patients from PVR.
Collapse
Affiliation(s)
- Lijun Dong
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Haote Han
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China.,Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Xionggao Huang
- Department of Ophthalmology, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Gaoen Ma
- Department of Ophthalmology, the third Hospital of Xinxiang Medical University, Xinxiang, China
| | - Dong Fang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Hui Qi
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Zhuo Han
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Luping Wang
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jingkui Tian
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | | | - Guoming Zhang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Shaochong Zhang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China.
| | - Hetian Lei
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China.
| |
Collapse
|
38
|
Grigoryan EN. Cell Sources for Retinal Regeneration: Implication for Data Translation in Biomedicine of the Eye. Cells 2022; 11:cells11233755. [PMID: 36497013 PMCID: PMC9738527 DOI: 10.3390/cells11233755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
The main degenerative diseases of the retina include macular degeneration, proliferative vitreoretinopathy, retinitis pigmentosa, and glaucoma. Novel approaches for treating retinal diseases are based on cell replacement therapy using a variety of exogenous stem cells. An alternative and complementary approach is the potential use of retinal regeneration cell sources (RRCSs) containing retinal pigment epithelium, ciliary body, Müller glia, and retinal ciliary region. RRCSs in lower vertebrates in vivo and in mammals mostly in vitro are able to proliferate and exhibit gene expression and epigenetic characteristics typical for neural/retinal cell progenitors. Here, we review research on the factors controlling the RRCSs' properties, such as the cell microenvironment, growth factors, cytokines, hormones, etc., that determine the regenerative responses and alterations underlying the RRCS-associated pathologies. We also discuss how the current data on molecular features and regulatory mechanisms of RRCSs could be translated in retinal biomedicine with a special focus on (1) attempts to obtain retinal neurons de novo both in vivo and in vitro to replace damaged retinal cells; and (2) investigations of the key molecular networks stimulating regenerative responses and preventing RRCS-related pathologies.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
39
|
Gelat B, Rathaur P, Malaviya P, Patel B, Trivedi K, Johar K, Gelat R. The intervention of epithelial-mesenchymal transition in homeostasis of human retinal pigment epithelial cells: a review. J Histotechnol 2022; 45:148-160. [DOI: 10.1080/01478885.2022.2137665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Brijesh Gelat
- Department of Zoology, BMTC and Human Genetics, School of Sciences, Gujarat University, Ahmedabad, India
| | - Pooja Rathaur
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat, India
| | - Pooja Malaviya
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat, India
| | - Binita Patel
- Department of Life Science, School of Sciences, Gujarat University, Ahmedabad, India
| | - Krupali Trivedi
- Department of Zoology, BMTC and Human Genetics, School of Sciences, Gujarat University, Ahmedabad, India
| | - Kaid Johar
- Department of Zoology, BMTC and Human Genetics, School of Sciences, Gujarat University, Ahmedabad, India
| | - Rahul Gelat
- Institute of Teaching and Research in Ayurveda (ITRA), Gujarat Ayurved University, Jamnagar, India
| |
Collapse
|
40
|
Lee S, Kim S, Jeon JS. Microfluidic outer blood-retinal barrier model for inducing wet age-related macular degeneration by hypoxic stress. LAB ON A CHIP 2022; 22:4359-4368. [PMID: 36254466 DOI: 10.1039/d2lc00672c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Wet age-related macular degeneration (AMD) is a severe ophthalmic disease that develops in the outer blood-retinal barrier (oBRB), involving two types of cells, the retinal pigment epithelium (RPE) and the choriocapillaris endothelium (CCE). Unfortunately, the pathogenesis of AMD is unclear, and the risk of the only effective therapy (Anti-VEGF injection) has been consistently argued. Also, since oBRB is hard to observe in vivo, an in vitro model for the pathological study is necessary. Here, we propose an advanced oBRB model, enhanced in two major ways: fully vascularized CCE and the in vivo analogous distance between RPE and CCE. Our model consists of an RPE (ARPE-19) monolayer with adjacent CCE (HUVEC) embedded fibrin gel in the microfluidic chip and required four days to construct an oBRB. Notably, the intercellular distance was tuned to the in vivo scale (<100 μm) without any extraneous scaffold in between. Thus, the two cell layers can interact freely through the extracellular matrix (ECM) in vivo. This is significant as wet AMD is mainly developed through broken intercellular interaction. Thanks to this in vivo similarity, the model incubated under hypoxic conditions, similar to an oxygen-induced retinopathy animal model, showed upregulated vascularization comparable to the AMD condition. We envisage that our model can be used to assist the investigation of AMD.
Collapse
Affiliation(s)
- Seokhun Lee
- Department of Mechanical Engineering, KAIST, Daejeon 34141, Korea.
| | - Seunggyu Kim
- Department of Mechanical Engineering, KAIST, Daejeon 34141, Korea.
| | - Jessie S Jeon
- Department of Mechanical Engineering, KAIST, Daejeon 34141, Korea.
| |
Collapse
|
41
|
Mechanisms of Epithelial-Mesenchymal Transition and Prevention of Dispase-Induced PVR by Delivery of an Antioxidant αB Crystallin Peptide. Antioxidants (Basel) 2022; 11:antiox11102080. [PMID: 36290802 PMCID: PMC9598590 DOI: 10.3390/antiox11102080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/22/2022] [Accepted: 10/19/2022] [Indexed: 11/19/2022] Open
Abstract
Proliferative Vitreoretinopathy (PVR) is a refractory retinal disease whose primary pathogenesis involves the epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells. At present, there is no effective treatment other than surgery for PVR. The purpose of this study was to investigate the effect of αB crystallin peptide (αBC-P) on EMT in PVR. We have previously shown that this peptide is antiapoptotic and regulates RPE redox status. Subconfluent primary human RPE (hRPE) cells were stimulated by TGFβ2 (10 ng/mL) with or without αBC-P (50 or 75 μg/mL) for 48 h and expression of EMT/mesenchymal to epithelial transition (MET) markers was determined. Mitochondrial ROS (mtROS) generation in hRPE cells treated with TGFβ2 was analyzed. The effect of TGFβ2 and αBC-P on oxidative phosphorylation (OXPHOS) and glycolysis in hRPE was studied. RPE cell migration was also assessed. A PVR-like phenotype was induced by intravitreal dispase injection in C57BL/6J mice. PVR progression and potential therapeutic efficiency of αBC-Elastin-like polypeptides (ELP) was studied using fundus photography, OCT imaging, ERG, and histologic analysis of the retina. αSMA, E-cadherin, Vimentin, Fibronectin and, RPE65, and CTGF were analyzed on Day 28. Additionally, the amount of VEGF-A in retinal cell lysates was measured. The EMT-associated αSMA, Vimentin, SNAIL and SLUG showed a significant upregulation with TGFβ2, and their expression was significantly suppressed by cotreatment with αBC-P. The MET-associated markers, E-cadherin and Sirt1, were significantly downregulated by TGFβ2 and were restored by αBC-P. Incubation of hRPE with TGFβ2 for 24 h showed a marked increase in mitochondrial ROS which was noticeably inhibited by αBC-ELP. We also showed that after TGFβ2 treatment, SMAD4 translocated to mitochondria which was blocked by αBC-ELP. Mitochondrial oxygen consumption rate increased with TGFβ2 treatment for 48 h, and αBC-P co-treatment caused a further increase in OCR. Glycolytic functions of RPE were significantly suppressed with αBC-P (75 μg/mL). In addition, αBC-P significantly inhibited the migration from TGFβ2 treatment in hRPE cells. The formation of proliferative membranes was suppressed in the αBC-ELP-treated group, as evidenced by fundus, OCT, and H&E staining in dispase-induced PVR in mice. Furthermore, ERG showed an improvement in c-wave amplitude. In addition, immunostaining showed significant suppression of αSMA and RPE65 expression. It was also observed that αBC-ELP significantly reduced the expression level of vimentin, fibronectin, and CTGF. Our findings suggest that the antioxidant αBC-P may have therapeutic potential in preventing PVR by reversing the phenotype of EMT/MET and improving the mitochondrial function in RPE cells.
Collapse
|
42
|
Gao F, Wang L, Wu B, Ou Q, Tian H, Xu J, Jin C, Zhang J, Wang J, Lu L, Xu GT. Elimination of senescent cells inhibits epithelial-mesenchymal transition of retinal pigment epithelial cells. Exp Eye Res 2022; 223:109207. [PMID: 35926646 DOI: 10.1016/j.exer.2022.109207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/04/2022]
Abstract
Age-related macular degeneration (AMD) is one of the most common leading causes of irreversible blindness, and there is no effective treatment for it. It has been reported that aging is the greatest risk factor for AMD, and epithelial-mesenchymal transition (EMT) of retinal pigment epithelium (RPE) cells plays an important role in the pathogenesis of AMD. To clarify the relationship between senescence and EMT in RPE cells, we used the replicative senescence model, H2O2- and/or Nutlin3a-induced senescence model, and low-density and/or TGF-β-induced EMT model to detect the expression of senescence-, RPE- and EMT-related genes, and assessed the motility of cells by using a scratch wound migration assay. The results showed that replicative senescence of RPE cells was accompanied by increased expression of EMT markers. However, senescent RPE cells themselves did not undergo EMT, as the H2O2and Nutlin3a treated cells showed no increase in EMT characteristics, including unchanged or decreased expression of EMT markers and decreased motility. Furthermore, conditioned medium (CM) from senescent cells induced EMT in presenescent RPE cells, and EMT accelerated the process of senescence. Importantly, dasatinib plus quercetin, which selectively eliminates senescent cells, inhibited low-density-induced EMT in RPE cells. These findings provide a better understanding of the interconnection between senescence and EMT in RPE cells. Removal of senescent cells by certain methods such as senolytics, might be a promising potential approach to prevent or delay the progression of RPE-EMT-related retinal diseases such as AMD.
Collapse
Affiliation(s)
- Furong Gao
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, 389 Xincun Road Shanghai, 200065, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Lei Wang
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Binxin Wu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, 389 Xincun Road Shanghai, 200065, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Qingjian Ou
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, 389 Xincun Road Shanghai, 200065, China
| | - Haibin Tian
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, 389 Xincun Road Shanghai, 200065, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Jingying Xu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, 389 Xincun Road Shanghai, 200065, China
| | - Caixia Jin
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, 389 Xincun Road Shanghai, 200065, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Jieping Zhang
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, 389 Xincun Road Shanghai, 200065, China; Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Juan Wang
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, 389 Xincun Road Shanghai, 200065, China
| | - Lixia Lu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, 389 Xincun Road Shanghai, 200065, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Guo-Tong Xu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, 389 Xincun Road Shanghai, 200065, China; Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
43
|
Hazim RA, Paniagua AE, Tang L, Yang K, Kim KKO, Stiles L, Divakaruni AS, Williams DS. Vitamin B3, nicotinamide, enhances mitochondrial metabolism to promote differentiation of the retinal pigment epithelium. J Biol Chem 2022; 298:102286. [PMID: 35868562 PMCID: PMC9396405 DOI: 10.1016/j.jbc.2022.102286] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 01/04/2023] Open
Abstract
In the mammalian retina, a metabolic ecosystem exists in which photoreceptors acquire glucose from the choriocapillaris with the help of the retinal pigment epithelium (RPE). While the photoreceptor cells are primarily glycolytic, exhibiting Warburg-like metabolism, the RPE is reliant on mitochondrial respiration. However, the ways in which mitochondrial metabolism affect RPE cellular functions are not clear. We first used the human RPE cell line, ARPE-19, to examine mitochondrial metabolism in the context of cellular differentiation. We show that nicotinamide induced rapid differentiation of ARPE-19 cells, which was reversed by removal of supplemental nicotinamide. During the nicotinamide-induced differentiation, we observed using quantitative PCR, Western blotting, electron microscopy, and metabolic respiration and tracing assays that (1) mitochondrial gene and protein expression increased, (2) mitochondria became larger with more tightly folded cristae, and (3) mitochondrial metabolism was enhanced. In addition, we show that primary cultures of human fetal RPE cells responded similarly in the presence of nicotinamide. Furthermore, disruption of mitochondrial oxidation of pyruvate attenuated the nicotinamide-induced differentiation of the RPE cells. Together, our results demonstrate a remarkable effect of nicotinamide on RPE metabolism. We also identify mitochondrial respiration as a key contributor to the differentiated state of the RPE and thus to many of the RPE functions that are essential for retinal health and photoreception.
Collapse
Affiliation(s)
- Roni A Hazim
- Department of Ophthalmology and Stein Eye Institute, University of California, Los Angeles, California, USA
| | - Antonio E Paniagua
- Department of Ophthalmology and Stein Eye Institute, University of California, Los Angeles, California, USA
| | - Lisa Tang
- Department of Ophthalmology and Stein Eye Institute, University of California, Los Angeles, California, USA
| | - Krista Yang
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| | - Kristen K O Kim
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| | - Linsey Stiles
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, California, USA; Division of Endocrinology, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| | - Ajit S Divakaruni
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| | - David S Williams
- Department of Ophthalmology and Stein Eye Institute, University of California, Los Angeles, California, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA; Molecular Biology Institute, University of California, Los Angeles, California, USA; Brain Research Institute, University of California, Los Angeles, California, USA.
| |
Collapse
|
44
|
Wang V, Heffer A, Roztocil E, Feldon SE, Libby RT, Woeller CF, Kuriyan AE. TNF-α and NF-κB signaling play a critical role in cigarette smoke-induced epithelial-mesenchymal transition of retinal pigment epithelial cells in proliferative vitreoretinopathy. PLoS One 2022; 17:e0271950. [PMID: 36048826 PMCID: PMC9436090 DOI: 10.1371/journal.pone.0271950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
Proliferative vitreoretinopathy (PVR) is characterized by the growth and contraction of cellular membranes within the vitreous cavity and on both surfaces of the retina, resulting in recurrent retinal detachments and poor visual outcomes. Proinflammatory cytokines like tumor necrosis factor alpha (TNFα) have been associated with PVR and the epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells. Cigarette smoke is the only known modifiable risk factor for PVR, but the mechanisms are unclear. The purpose of this study was to examine the impact of cigarette smoke on the proinflammatory TNFα/NF-κB/Snail pathway in RPE cells to better understand the mechanisms through which cigarette smoke increases the risk of PVR. Human ARPE-19 cells were exposed to cigarette smoke extract (CSE), for 4 to 24-hours and TNFα, Snail, IL-6, IL-8, and α-SMA levels were analyzed by qPCR and/or Western blot. The severity of PVR formation was assessed in a murine model of PVR after intravitreal injection of ARPE-19 cells pre-treated with CSE or not. Fundus imaging, OCT imaging, and histologic analysis 4 weeks after injection were used to examine PVR severity. ARPE-19 cells exposed to CSE expressed higher levels of TNFα, SNAIL, IL6 and IL8 mRNA as well as SNAIL, Vimentin and α-SMA protein. Inhibition of TNFα and NF-κB pathways blocked the effect of CSE. In vivo, intravitreal injection of ARPE-19 cells treated with CSE resulted in more severe PVR compared to mice injected with untreated RPE cells. These studies suggest that the TNFα pathway is involved in the mechanism whereby cigarette smoke increases PVR. Further investigation into the role of TNFα/NF-κB/Snail in driving PVR and pharmacological targeting of these pathways in disease are warranted.
Collapse
Affiliation(s)
- Victor Wang
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Alison Heffer
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Elisa Roztocil
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Steven E. Feldon
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, United States of America
- Center for Visual Sciences, University of Rochester, Rochester, NY, United States of America
| | - Richard T. Libby
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Collynn F. Woeller
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, United States of America
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States of America
| | - Ajay E. Kuriyan
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, United States of America
- Center for Visual Sciences, University of Rochester, Rochester, NY, United States of America
- Retina Service/Mid Atlantic Retina, Wills Eye Hospital, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States of America
| |
Collapse
|
45
|
Lin HW, Shen TJ, Chen PY, Chen TC, Yeh JH, Tsou SC, Lai CY, Chen CH, Chang YY. Particulate matter 2.5 exposure induces epithelial-mesenchymal transition via PI3K/AKT/mTOR pathway in human retinal pigment epithelial ARPE-19 cells. Biochem Biophys Res Commun 2022; 617:11-17. [PMID: 35689837 DOI: 10.1016/j.bbrc.2022.05.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/13/2022] [Accepted: 05/21/2022] [Indexed: 11/02/2022]
Abstract
Exposure to particulate matter 2.5 (PM2.5) has been linked to ocular surface diseases, yet knowledge of the molecular mechanism impacted on retina pathogenesis is limited. Therefore, the purpose of this study was to explore the effects and involved factors of PM2.5 exposure in human retinal pigment epithelial APRE-19 cells. Our data revealed a decreased cell viability and an increased migratory ability in APRE-19 cells after PM2.5 stimulation. The MMP-2 and MMP-9 protein levels were markedly increased while the MMPs regulators TIMP-1 and TIMP-2 were significantly reduced in PM2.5-exposed APRE-19 cells. PM2.5 also increased pro-MMP-2 expression in the cell culture supernatants. Additionally, PM2.5 promoted the EMT markers through the activation of PI3K/AKT/mTOR pathway. Moreover, the ICAM-1 production was also remarkably increased by PM2.5 but reduced by PI3K/AKT inhibitor LY294002 in APRE-19 cells. Taken together, these results suggest that PM2.5 promotes EMT in a PI3K/AKT/mTOR-dependent manner in the retinal pigment epithelium.
Collapse
Affiliation(s)
- Hui-Wen Lin
- Department of Optometry, Asia University, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Ting-Jing Shen
- Department of Microbiology and Immunology, School of Medicine, Chung-Shan Medical University, and Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Peng-Yu Chen
- Department of Optometry, Asia University, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Tzu-Chun Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Jui-Hsuan Yeh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shang-Chun Tsou
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Chane-Yu Lai
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Chang-Han Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Yuan-Yen Chang
- Department of Microbiology and Immunology, School of Medicine, Chung-Shan Medical University, and Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
46
|
Zhang S, Ye K, Gao G, Song X, Xu P, Zeng J, Xie B, Zheng D, He L, Ji J, Zhong X. Amniotic Membrane Enhances the Characteristics and Function of Stem Cell-Derived Retinal Pigment Epithelium Sheets by Inhibiting the Epithelial-Mesenchymal Transition. Acta Biomater 2022; 151:183-196. [PMID: 35933105 DOI: 10.1016/j.actbio.2022.07.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022]
Abstract
Human pluripotent stem cell-derived retinal pigment epithelium (iRPE) is an attractive cell source for disease modeling and cell replacement therapy of retinal disorders with RPE defects. However, there are still challenges to develop appropriate culture conditions close to in vivo microenvironment to generate iRPE sheets, which mimic more faithfully the characteristics and functions of the human RPE cells. Here, we developed a simple, novel platform to construct authentic iRPE sheets using human amniotic membrane (hAM) as a natural scaffold. The decellularized hAM (dAM) provided a Bruch's membrane (BM)-like bioscaffold, supported the iRPE growth and enhanced the epithelial features, polarity distribution and functional features of iRPE cells. Importantly, RNA-seq analysis was performed to compare the transcriptomes of iRPE cells cultured on different substrates, which revealed the potential mechanism that dAM supported and promoted iRPE growth was the inhibition of epithelial mesenchymal transition (EMT). The tissue-engineered iRPE sheets survived and kept monolayer when transplanted into the subretinal space of rabbits. All together, our results indicate that the dAM imitating the natural BM allows for engineering authentic human RPE sheets, which will provide valuable biomaterials for disease modeling, drug screening and cell replacement therapy of retinal degenerative diseases. STATEMENT OF SIGNIFICANCE: : Engineered RPE sheets have a great advantage over RPE cell suspension for transplantation as they support RPE growth in an intact monolayer which RPE functions are dependent on. The substrates for RPE culture play a critical role to maintain the physiological functions of the RPE in stem cell therapies for patients with retinal degeneration. In this study, we constructed engineered iRPE sheets on the decellularized human amniotic membrane (dAM) scaffolds, which contributed to enhancing epithelial features, polarity distribution and functional features of iRPE. dAM exhibited the ability of anti-epithelial mesenchymal transition (EMT) to support iRPE growth. Furtherly, the results of transplanted in vivo demonstrated the feasibility of iRPE sheets in retina regenerative therapy. Engineering RPE sheets on dAM is a promising strategy to facilitate the development of iRPE replacement therapy and retinal disease modeling.
Collapse
Affiliation(s)
- Suai Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Ke Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Guanjie Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaojing Song
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Ping Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jingrong Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Bingbing Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Dandan Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Liwen He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
| | - Jianping Ji
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
| | - Xiufeng Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
| |
Collapse
|
47
|
Yan T, Yang N, Hu W, Zhang X, Li X, Wang Y, Kong J. Differentiation and Maturation Effect of All-trans Retinoic Acid on Cultured Fetal RPE and Stem Cell-Derived RPE Cells for Cell-Based Therapy. Curr Eye Res 2022; 47:1300-1311. [PMID: 35763026 DOI: 10.1080/02713683.2022.2079144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE Clinical trials using fetal retinal pigment epithelium (fRPE), human embryonic stem cell (hESC)-derived RPE, or human induced pluripotent stem cell (hiPSC)-derived RPE for cell-based therapy for degenerative retinal diseases have been carried out. We investigated the culture-induced changes in passaged fRPE, hESC-RPE and hiPSC-RPE cells and explored the differentiation and maturation effect of all-trans retinoic acid (ATRA) on cells for manufacturing and screening high quality RPE cells for clinical transplantation. METHODS RPE cell lines were set up and the culture-induced changes in subsequent passages caused by manipulating plating density, dissociation method and repeated passaging were studied by microscope, real-time quantitative PCR, western blot and immunofluorescent assays. Gene and protein expression and functional characteristics of RPE cells incubated with ATRA were evaluated. RESULTS Compared with fRPE, hESC-RPE and hiPSC-RPE showed decreased gene and protein expression of RPE markers. RPE cells underwent mesenchymal changes showing increased expression of mesenchymal markers including a-SMA, N-cadherin, fibronectin and decreased expression of RPE markers including RPE65, E-cadherin and ZO-1, as a subsequence of low plating density, inappropriate dissociated method, and repeated passaging. RPE cells treated by ATRA showed increased expression of RPE markers and increased expression of negative complement regulatory proteins (CRPs), and increased transepithelial resistance as well. CONCLUSIONS Differences in protein and gene expression among three RPE types exist. ATRA can increase RPE markers, CRPs gene expression in fRPE and stem cell-derived RPE. These can be used to guide the standard of screening RPE cells for clinical translational cell therapy.
Collapse
Affiliation(s)
- Tingyu Yan
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001 PR China.,Department of Ophthalmology, the Fourth People's Hospital of Shenyang, No. 20 Huanghe Street, Huanggu District, Shenyang, Liaoning Province 110000, P. R. China
| | - Na Yang
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001 PR China.,Department of Medical Genetics, China Medical University, Shenyang, 110122, P. R. China
| | - Wei Hu
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, No.2428 Yuhe Road, Weifang 261031, Shandong, China
| | - Xinxin Zhang
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001 PR China
| | - Xuedong Li
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001 PR China
| | - Youjin Wang
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001 PR China
| | - Jun Kong
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001 PR China
| |
Collapse
|
48
|
Han XD, Jiang XG, Yang M, Chen WJ, Li LG. miRNA‑124 regulates palmitic acid‑induced epithelial‑mesenchymal transition and cell migration in human retinal pigment epithelial cells by targeting LIN7C. Exp Ther Med 2022; 24:481. [PMID: 35761801 PMCID: PMC9214593 DOI: 10.3892/etm.2022.11408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/25/2022] [Indexed: 12/02/2022] Open
Abstract
The present study revealed that palmitic acid (PA) treatment induced epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells, which are involved in the progression of proliferative vitreoretinopathy (PVR). ARPE-19 cells were treated with PA followed by miRNA screening and EMT marker detection using qRT-PCR. Then, miR-124 mimic or inhibitor was transfected into ARPE-19 cells to explore the role of miR-124 on the EMT of ARPE-19 cells using transwell assay. The underlying mechanism of miRNA were predicted by bioinformatics method and confirmed by luciferase activity reporter assay. Furthermore, gain-of-function strategy was also used to explore the role of LIN7C in the EMT of ARPE-19 cells. The expression of miRNA or mRNA expression was determined by qRT-PCR and the protein expression was determined using western blot assay. The result presented that PA reduced the expression of E-cadherin/ZO-1 whilst increasing the expression of fibronectin/α-SMA. In addition, PA treatment enhanced the expression of microRNA (miR)-124 in ARPE-19 cells. Overexpression of miR-124 enhanced PA-induced upregulation of E-cadherin and ZO-1 expression and downregulation of fibronectin and α-SMA. Moreover, miR-124 mimic also enhanced the migration of ARPE-19 cells induced by PA treatment. Inversely, miR-124 inhibitor presented opposite effect on PA-induced EMT and cell migration in ARPE-19 cells. Luciferase activity reporter assay confirmed that Lin-7 homolog C (LIN7C) was a direct target of miR-124 in ARPE-19 cells. Overexpression of LIN7C was found to suppress the migration ability and expression of fibronectin and α-SMA, while increasing expression of E-cadherin and ZO-1; miR-124 mimic abrogated the inhibitive effect of LIN7C on the EMT of ARPE-19 cells and PA further enhanced this abolishment. Collectively, these findings suggest that miR-124/LIN7C can modulate EMT and cell migration in RPE cells, which may have therapeutic implications in the management of PVR diseases.
Collapse
Affiliation(s)
- Xiao-Dong Han
- Department of Ocular Fundus Diseases, Xi'an Aier Ancient City Eye Hospital, Xi'an, Shaanxi 710082, P.R. China
| | - Xu-Guang Jiang
- Department of Ocular Fundus Diseases, Xi'an Aier Ancient City Eye Hospital, Xi'an, Shaanxi 710082, P.R. China
| | - Min Yang
- Department of Ocular Fundus Diseases, Xi'an Aier Ancient City Eye Hospital, Xi'an, Shaanxi 710082, P.R. China
| | - Wen-Jun Chen
- Department of Ocular Fundus Diseases, Xi'an Aier Ancient City Eye Hospital, Xi'an, Shaanxi 710082, P.R. China
| | - Li-Gang Li
- Department of Cataracts, Xi'an Aier Ancient City Eye Hospital, Xi'an, Shaanxi 710082, P.R. China
| |
Collapse
|
49
|
High level of lncRNA NR2F1-AS1 predict the onset and progression of diabetic retinopathy in type 2 diabetes. Exp Eye Res 2022; 219:109069. [DOI: 10.1016/j.exer.2022.109069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/10/2022] [Accepted: 04/03/2022] [Indexed: 11/20/2022]
|
50
|
Nair GKG, Pollalis D, Wren JD, Georgescu C, Sjoelund V, Lee SY. Proteomic Insight into the Role of Exosomes in Proliferative Vitreoretinopathy Development. J Clin Med 2022; 11:2716. [PMID: 35628842 PMCID: PMC9143131 DOI: 10.3390/jcm11102716] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 12/13/2022] Open
Abstract
Purpose: To characterize vitreous humor (VH) exosomes and to explore their role in the development of proliferative vitreoretinopathy (PVR) using mass spectrometry-based proteome profiling. Methods: Exosomes were isolated from undiluted VH from patients with retinal detachment (RD) with various stages of PVR (n = 9), macular hole (MH; n = 5), or epiretinal membrane (ERM; n = 5) using differential ultracentrifugation. The exosomal size, morphology, and exosome markers were analyzed using a nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and an exosome detection antibody array. The tryptic fragment sequencing of exosome-contained proteins was performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and a Thermo Lumos Fusion Tribrid Orbitrap mass spectrometer. The pathway analysis of the MS data was performed. Results: The number of exosome particles were significantly increased only in the RD with severe PVR group compared with the control groups and the RD without PVR or with mild PVR groups. Of 724 exosome proteins identified, 382 were differentially expressed (DE) and 176 were uniquely present in PVR. Both DE proteins and exosome proteins that were only present in PVR were enriched in proteins associated with previously known key pathways related to PVR development, including reactive retinal gliosis, pathologic cellular proliferation, inflammation, growth of connective tissues, and epithelial mesenchymal transition (EMT). The SPP1, CLU, VCAN, COL2A1, and SEMA7A that are significantly upregulated in PVR were related to the tissue remodeling. Conclusions: Exosomes may play a key role in mediating tissue remodeling along with a complex set of pathways involved in PVR development.
Collapse
Affiliation(s)
- Gopa Kumar Gopinadhan Nair
- Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Dimitrios Pollalis
- USC Roski Eye Institute, USC Ginsburg Institute for Biomedical Therapeutics and Department of Ophthalmology, Keck School of Medicine, University of Southern California, 1450 San Pablo, Los Angeles, CA 90033, USA;
| | - Jonathan D. Wren
- Genes & Human Diseases Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (J.D.W.); (C.G.)
| | - Constantin Georgescu
- Genes & Human Diseases Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (J.D.W.); (C.G.)
| | - Virginie Sjoelund
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Sun Young Lee
- Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- USC Roski Eye Institute, USC Ginsburg Institute for Biomedical Therapeutics and Department of Ophthalmology, Keck School of Medicine, University of Southern California, 1450 San Pablo, Los Angeles, CA 90033, USA;
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|