1
|
Alkatan HM, Aljenaidel AM, Maktabi AM, Abusayf MM, Alfawaz AM. Clinicopathological characterization of non-guttata corneal endothelial dystrophy in Saudi patients with idiopathic endothelial failure. Sci Rep 2025; 15:12751. [PMID: 40222991 PMCID: PMC11994752 DOI: 10.1038/s41598-025-97873-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 04/08/2025] [Indexed: 04/15/2025] Open
Abstract
Corneal endothelial cell dysfunction is a common cause of corneal decompensation in elderly. We describe a non-guttata corneal endothelial dystrophy with correlation of the clinical features to the histopathological and ultrastructural characteristics in a cohort of Saudi patients. A retrospective study of all consecutive cases of primary corneal decompensation in phakic eyes due to endothelial attenuation, in the absence of guttata is conducted. Patients were treated by either penetrating keratoplasty (PKP) or Descemet's Stripping Automated Endothelial Keratoplasty (DSAEK) as a primary procedure between 2002 and 2016. Clinical and demographic data were obtained through chart review and the histopathological data were collected by reviewing Descemet's membrane (DM) in the corneal tissue samples of the affected eyes. We included 17 eyes from 17 patients (10 females and 7 males), with a mean age of 67.17 ± 8.98 years. All patients were phakic, and decreased vision was the patients' main complaint at presentation. The pre-operative endothelial cell count was obtained in 3 eyes with a mean of 531.7 ± 309.5/mm2. Histopathology of the 17 corneal specimens showed thick multi-laminated DM and attenuated endothelium. The success rate of the primary procedure was 70%. The cornea of the other eye remained clear in 12/17 patients. This is a type of corneal endothelial cell dysfunction with a late onset of presentation, spontaneous corneal decompensation in phakic eyes or a rapid onset of decompensation following uncomplicated surgery. It seems to be asymmetrically bilateral among our Saudi patients. Fellow eyes are at the same risk of decompensation. DM lacks the presence of guttata clinically and histopathologically.
Collapse
Affiliation(s)
- Hind M Alkatan
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
- King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia.
- Department of Pathology & Laboratory Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Abdullah M Aljenaidel
- Cornea and Anterior Segment Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Azza My Maktabi
- Pathology & Laboratory Medicine Department, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Mohammed M Abusayf
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah M Alfawaz
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Jammes M, Tabasi A, Bach T, Ritter T. Healing the cornea: Exploring the therapeutic solutions offered by MSCs and MSC-derived EVs. Prog Retin Eye Res 2025; 105:101325. [PMID: 39709150 DOI: 10.1016/j.preteyeres.2024.101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Affecting a large proportion of the population worldwide, corneal disorders constitute a concerning health hazard associated to compromised eyesight or blindness for most severe cases. In the last decades, mesenchymal stem/stromal cells (MSCs) demonstrated promising abilities in improving symptoms associated to corneal diseases or alleviating these affections, especially through their anti-inflammatory, immunomodulatory and pro-regenerative properties. More recently, MSC therapeutic potential was shown to be mediated by the molecules they release, and particularly by their extracellular vesicles (EVs; MSC-EVs). Consequently, using MSC-EVs emerged as a pioneering strategy to mitigate the risks related to cell therapy while providing MSC therapeutic benefits. Despite the promises given by MSC- and MSC-EV-based approaches, many improvements are considered to optimize the therapeutic significance of these therapies. This review aspires to provide a comprehensive and detailed overview of current knowledge on corneal therapies involving MSCs and MSC-EVs, the strategies currently under evaluation, and the gaps remaining to be addressed for clinical implementation. From encapsulating MSCs or their EVs into biomaterials to enhance the ocular retention time to loading MSC-EVs with therapeutic drugs, a wide range of ground-breaking strategies are currently contemplated to lead to the safest and most effective treatments. Promising research initiatives also include diverse gene therapies and the targeting of specific cell types through the modification of the EV surface, paving the way for future therapeutic innovations. As one of the most important challenges, MSC-EV large-scale production strategies are extensively investigated and offer a wide array of possibilities to meet the needs of clinical applications.
Collapse
Affiliation(s)
- Manon Jammes
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Abbas Tabasi
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Trung Bach
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Thomas Ritter
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; CURAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland.
| |
Collapse
|
3
|
Jonas JB, Panda-Jonas S, Mehta JS, Jonas RA. Anatomic Relationship Among Descemet's Membrane, Trabecular Meshwork, Scleral Spur, and Ciliary Muscle. Invest Ophthalmol Vis Sci 2025; 66:8. [PMID: 39903178 PMCID: PMC11801396 DOI: 10.1167/iovs.66.2.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/11/2025] [Indexed: 02/06/2025] Open
Abstract
Purpose The purpose of this study was to examine anatomic relationships between Descemet's membrane (DM) and neighboring tissues. Methods Human eyes enucleated due to malignant uveal melanoma were histomorphometrically examined. Results In all 50 eyes included in the study (age = 59.2 ± 13.3 years), a cellular tissue (mean thickness at the DM end = 14.2 ± 19.5 µm), originating in the transitional zone, extended into the space between the peripheral DM and corneal stroma for a length of 142 ± 71 µm. This length decreased with the longer part of the DM covered with Hassall-Henle-bodies (beta = -0.30, B = -0.28, 95% confidence interval [CI] = -0.54 to -0.03, P = 0.03) and was not related with age (P = 0.84), axial length (P = 0.94), transitional zone length (P = 0.51), and the DM-scleral spur distance (P = 0.72). The DM thinned toward its end and the DM-like components appeared getting together and merging with transitional zone tissue fibers. The transitional zone length (mean = 267 ± 115 µm) varied from 82 µm to 586 µm, increased with longer DM-scleral spur distance (beta = 0.80, B = 0.67, 95% CI = 0.52 to 0.82, P < 0.001), and was not related with axial length (P = 0.74) or age (P = 0.18). The DM-scleral spur distance (mean = 660 ± 136 µm, range = 302 µm-979 µm) was not related with axial length (P = 0.60) or age (P = 0.06). The scleral spur dimensions (basis = 193 ± 103 µm, height = 151 ± 46 µm, length = 231 ± 75 µm) were not related with the DM-scleral spur distance (all P > 0.35), axial length (all P > 0.07), and age (all P > 0.25). In all eyes, the scleral spur tip was orientated anteriorly, with the longitudinal ciliary muscle inserting at its posterior side. Conclusions DM is firmly connected with the transitional zone tissue, and indirectly through the corneoscleral TM, with the scleral spur. With the latter connected through the longitudinal ciliary muscle and Bruch's membrane with the optic disc, the DM is part of an anatomic spherical unit of the globe.
Collapse
Affiliation(s)
- Jost B. Jonas
- Rothschild Foundation Hospital, Institut Français de Myopie, Paris, France
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore
- Private Practice, Professor Jonas and Dr. Panda-Jonas, Heidelberg, Germany
- Beijing Visual Science and Translational Eye Research Institute (BERI), Beijing Tsinghua Changgung Hospital, Tsinghua Medicine, Tsinghua University, Beijing, China
- L. V. Prasad Eye Institute, L. V. Prasad Marg, Banjara Hills, Hyderabad, Telangana, India
| | - Songhomitra Panda-Jonas
- Private Practice, Professor Jonas and Dr. Panda-Jonas, Heidelberg, Germany
- Department of Ophthalmology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jodhbir S. Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
- Corneal and External Eye Disease Service, Singapore National Eye Centre, Singapore, Singapore
| | - Rahul A. Jonas
- Department of Ophthalmology, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Wu KY, Qian SY, Faucher A, Tran SD. Advancements in Hydrogels for Corneal Healing and Tissue Engineering. Gels 2024; 10:662. [PMID: 39451315 PMCID: PMC11507397 DOI: 10.3390/gels10100662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Hydrogels have garnered significant attention for their versatile applications across various fields, including biomedical engineering. This review delves into the fundamentals of hydrogels, exploring their definition, properties, and classification. Hydrogels, as three-dimensional networks of crosslinked polymers, possess tunable properties such as biocompatibility, mechanical strength, and hydrophilicity, making them ideal for medical applications. Uniquely, this article offers original insights into the application of hydrogels specifically for corneal tissue engineering, bridging a gap in current research. The review further examines the anatomical and functional complexities of the cornea, highlighting the challenges associated with corneal pathologies and the current reliance on donor corneas for transplantation. Considering the global shortage of donor corneas, this review discusses the potential of hydrogel-based materials in corneal tissue engineering. Emphasis is placed on the synthesis processes, including physical and chemical crosslinking, and the integration of bioactive molecules. Stimuli-responsive hydrogels, which react to environmental triggers, are identified as promising tools for drug delivery and tissue repair. Additionally, clinical applications of hydrogels in corneal pathologies are explored, showcasing their efficacy in various trials. Finally, the review addresses the challenges of regulatory approval and the need for further research to fully realize the potential of hydrogels in corneal tissue engineering, offering a promising outlook for future developments in this field.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Shu Yu Qian
- Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Anne Faucher
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
5
|
Bosch BM, Delgado LM, Rodríguez-González R, Perez RA. The time dependent influence of curvature and topography of biomaterials in the behavior of corneal endothelial cells. Front Bioeng Biotechnol 2024; 12:1454675. [PMID: 39386038 PMCID: PMC11461339 DOI: 10.3389/fbioe.2024.1454675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
Among the different layers of the cornea, the corneal endothelium, which is composed of corneal endothelial cells (CEC), plays a key role in the maintenance of cornea transparency. Based on the donor shortages and the limitations associated with transplantation, in this work we have developed collagen hydrogels with different patterned structures on the surface to provide topographies in ranges similar to the natural environment that CEC sense. This aimed at stimulating cells to maintain a typical CEC phenotype and provide alternatives to corneal transplantation. In this sense, we have elaborated curved collagen hydrogels (concave and convex) with three different topographies (50, 200 and 300 µm grooves), with the help of 3D printed mold and replicating the mold with the collagen hydrogel, onto which CEC were cultured in order to analyze its behavior. Flat hydrogels were used as controls. Cell morphology, cell circularity and gene expression of ATP1A1 and ZO-1 genes were analyzed after 3 and 6 days. Results showed an effect of the curvature and the topography compared to flat collagen hydrogels, showing higher expression of ZO-1 and ATP1A1 in curved non-patterned hydrogels at day 3. The patterned hydrogels did not have such a significant effect on gene expression compared to flat hydrogels, showing stronger effect of the curvature compared to the topography. The effect was opposite at day 6, showing higher gene expression at days 6 on the patterned hydrogels, especially for the ZO-1 gene. The gene expression results were in accordance with the cell morphology observed at the different time points, showing circularities closer to hexagon like morphology at shorter time points. Overall, this platform can serve as a system to culture cell under proper environment to further be able to transplant a CEC monolayer or to allow transplantation of thin collagen layers with cultured CEC.
Collapse
Affiliation(s)
- Begoña M. Bosch
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
- Bioengineering Department, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Luis M. Delgado
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
- Bioengineering Department, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Raquel Rodríguez-González
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
- Bioengineering Department, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Roman A. Perez
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
- Bioengineering Department, Universitat Internacional de Catalunya, Barcelona, Spain
| |
Collapse
|
6
|
Suanno G, Genna VG, Maurizi E, Dieh AA, Griffith M, Ferrari G. Cell therapy in the cornea: The emerging role of microenvironment. Prog Retin Eye Res 2024; 102:101275. [PMID: 38797320 DOI: 10.1016/j.preteyeres.2024.101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
The cornea is an ideal testing field for cell therapies. Its highly ordered structure, where specific cell populations are sequestered in different layers, together with its accessibility, has allowed the development of the first stem cell-based therapy approved by the European Medicine Agency. Today, different techniques have been proposed for autologous and allogeneic limbal and non-limbal cell transplantation. Cell replacement has also been attempted in cases of endothelial cell decompensation as it occurs in Fuchs dystrophy: injection of cultivated allogeneic endothelial cells is now in advanced phases of clinical development. Recently, stromal substitutes have been developed with excellent integration capability and transparency. Finally, cell-derived products, such as exosomes obtained from different sources, have been investigated for the treatment of severe corneal diseases with encouraging results. Optimization of the success rate of cell therapies obviously requires high-quality cultured cells/products, but the role of the surrounding microenvironment is equally important to allow engraftment of transplanted cells, to preserve their functions and, ultimately, lead to restoration of tissue integrity and transparency of the cornea.
Collapse
Affiliation(s)
- Giuseppe Suanno
- Vita-Salute San Raffaele University, Milan, Italy; Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Eleonora Maurizi
- Centre for Regenerative Medicine ''S. Ferrari'', University of Modena and Reggio Emilia, Modena, Italy
| | - Anas Abu Dieh
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
| | - May Griffith
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada.
| | - Giulio Ferrari
- Vita-Salute San Raffaele University, Milan, Italy; Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
7
|
Sariyeva Ismayilov A, Akaci O. Corneal endothelial cell morphology in children with autosomal recessive Alport syndrome: a longitudinal study. Ophthalmic Genet 2024; 45:372-377. [PMID: 38622802 DOI: 10.1080/13816810.2024.2337882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/22/2024] [Accepted: 03/27/2024] [Indexed: 04/17/2024]
Abstract
PURPOSE To evaluate the corneal endothelial cell morphology in children with autosomal recessive Alport syndrome (ARAS). METHODS This is a longitudinal, prospective cohort study that evaluated pediatric patients with genetically diagnosed ARAS. Fifty-eight eyes of 29 pediatric patients (12 patients, 17 controls) underwent a full ophthalmic examination. Corneal endothelial cell density (ECD) (cells/mm²), coefficient variation (CV) of cell area (polymegathism), the percentage of hexagonal cells (HEX) (pleomorphism), and central corneal thickness (CCT) were analyzed automatically using a noncontact specular microscopy. RESULTS The mean ECD was 2904 ± 355.48 cell/mm² in the ARAS group and 3263.20 ± 261.71 cell/mm² in the control group (p = 0.004). In the ARAS group, the mean CV was 46.53 ± 10.43, which was significantly higher than that in controls (p = 0.026). The mean HEX was 48.86 ± 14.71 in the ARAS group and 59.06 ± 10.64 in the control group (p = 0.038). The mean CCT was 565.26 ± 39.77 µm in the ARAS group and 579.66 ± 31.65 µm in the control group (p = 0.282). The comparison of endothelial cell characteristic of the ARAS group with 1-year follow-up is as follows: The mean ECD decreased from 2904 ± 355.48 cell/mm² to 2735 ± 241.58 cell/mm² (p = 0.003). The mean CV increased from 46.53 ± 10.43 to 47.93 ± 10.50 (p = 0.471). The mean HEX decreased from 48.86 ± 14.71 to 48.50 ± 10.06 (p = 0.916). The mean CCT decreased from 565.26 ± 39.77 µm to 542.86 ± 40.39 µm (p = 0.000). CONCLUSION Measurement of ECD and percentage of hexagonality can also be used as an indicator of the health of the corneal endothelium. In this study, the mean ECD and HEX were significantly lower in ARAS group than in age-matched pediatric controls. Polymegathism, which reflects cellular stress, was statistically significantly higher in ARAS group. The mean ECD and CCT decreased significantly at 1-year follow-up. This study may demostrated that endothelial damages and stress in ARAS patients appear in childhood and show a rapid increase with age.
Collapse
Affiliation(s)
- Ayna Sariyeva Ismayilov
- Department of Ophthalmology, Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Okan Akaci
- Department of Pediatric Nephrology, Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| |
Collapse
|
8
|
Xie ZJ, Yuan BW, Chi MM, Hong J. Focus on seed cells: stem cells in 3D bioprinting of corneal grafts. Front Bioeng Biotechnol 2024; 12:1423864. [PMID: 39050685 PMCID: PMC11267584 DOI: 10.3389/fbioe.2024.1423864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Corneal opacity is one of the leading causes of severe vision impairment. Corneal transplantation is the dominant therapy for irreversible corneal blindness. However, there is a worldwide shortage of donor grafts and consequently an urgent demand for alternatives. Three-dimensional (3D) bioprinting is an innovative additive manufacturing technology for high-resolution distribution of bioink to construct human tissues. The technology has shown great promise in the field of bone, cartilage and skin tissue construction. 3D bioprinting allows precise structural construction and functional cell printing, which makes it possible to print personalized full-thickness or lamellar corneal layers. Seed cells play an important role in producing corneal biological functions. And stem cells are potential seed cells for corneal tissue construction. In this review, the basic anatomy and physiology of the natural human cornea and the grafts for keratoplasties are introduced. Then, the applications of 3D bioprinting techniques and bioinks for corneal tissue construction and their interaction with seed cells are reviewed, and both the application and promising future of stem cells in corneal tissue engineering is discussed. Finally, the development trends requirements and challenges of using stem cells as seed cells in corneal graft construction are summarized, and future development directions are suggested.
Collapse
Affiliation(s)
- Zi-jun Xie
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Bo-wei Yuan
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Miao-miao Chi
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Jing Hong
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| |
Collapse
|
9
|
Melles GRJ, Parker JS. How Would Nature See Our Corneal Triumphs? The LXXIX Edward Jackson Lecture. Am J Ophthalmol 2024; 263:11-22. [PMID: 38281570 DOI: 10.1016/j.ajo.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
PURPOSE To describe discrepancies between clinical observation and current teachings in corneal endothelial disease, particularly in Fuchs endothelial dystrophy and its potential association with primary open angle glaucoma. DESIGN Perspective. METHODS A perspective is presented on Fuchs dystrophy, a disorder that commonly presents with a compromised endothelium but minimal stromal edema, indicating that the corneal imbibition pressure is relatively "too high." RESULTS The discrepancy between the relative lack of stromal edema in the absence of an endothelial cell layer cannot be explained by the current theories involving a circulatory pumping mechanism over the endothelial cell layer, but may point to the following: (1) secondary involvement of the corneal endothelium in Fuchs dystrophy; (2) separate hydration systems for maintaining the imbibition pressure (vertical static hydration) and corneal nutrition (horizontal dynamic hydration); (3) the cornea as net contributor of aqueous humor; (4) a close relationship between the corneal imbibition and intraocular pressure, with potentially a shared regulatory system; and (5) a potential steroid-type hormone dependency of this regulatory system. CONCLUSIONS Clinical observation shows that the stromal imbibition pressure is "too high" in Fuchs endothelial dystrophy, indicating that it may not primarily be an endothelial disease, but a type of "corneal glaucoma."
Collapse
Affiliation(s)
- Gerrit R J Melles
- From the Netherlands Institute for Innovative Ocular Surgery (G.R.J.M.), Rotterdam, the Netherlands; Melles Cornea Clinic (G.R.J.M.), Rotterdam, the Netherlands; Amnitrans EyeBank Rotterdam (G.R.J.M.), the Netherlands; NIIOS-USA (G.R.J.M., J.S.P.) San Diego, California, USA.
| | - Jack S Parker
- NIIOS-USA (G.R.J.M., J.S.P.) San Diego, California, USA; Parker Cornea (J.S.P.), Birmingham, Alabama, USA
| |
Collapse
|
10
|
Thomasy SM, Leonard BC, Greiner MA, Skeie JM, Raghunathan VK. Squishy matters - Corneal mechanobiology in health and disease. Prog Retin Eye Res 2024; 99:101234. [PMID: 38176611 PMCID: PMC11193890 DOI: 10.1016/j.preteyeres.2023.101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
The cornea, as a dynamic and responsive tissue, constantly interacts with mechanical forces in order to maintain its structural integrity, barrier function, transparency and refractive power. Cells within the cornea sense and respond to various mechanical forces that fundamentally regulate their morphology and fate in development, homeostasis and pathophysiology. Corneal cells also dynamically regulate their extracellular matrix (ECM) with ensuing cell-ECM crosstalk as the matrix serves as a dynamic signaling reservoir providing biophysical and biochemical cues to corneal cells. Here we provide an overview of mechanotransduction signaling pathways then delve into the recent advances in corneal mechanobiology, focusing on the interplay between mechanical forces and responses of the corneal epithelial, stromal, and endothelial cells. We also identify species-specific differences in corneal biomechanics and mechanotransduction to facilitate identification of optimal animal models to study corneal wound healing, disease, and novel therapeutic interventions. Finally, we identify key knowledge gaps and therapeutic opportunities in corneal mechanobiology that are pressing for the research community to address especially pertinent within the domains of limbal stem cell deficiency, keratoconus and Fuchs' endothelial corneal dystrophy. By furthering our understanding corneal mechanobiology, we can contextualize discoveries regarding corneal diseases as well as innovative treatments for them.
Collapse
Affiliation(s)
- Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, CA, United States; Department of Ophthalmology & Vision Science, School of Medicine, University of California - Davis, Davis, CA, United States; California National Primate Research Center, Davis, CA, United States.
| | - Brian C Leonard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, CA, United States; Department of Ophthalmology & Vision Science, School of Medicine, University of California - Davis, Davis, CA, United States
| | - Mark A Greiner
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States; Iowa Lions Eye Bank, Coralville, IA, United States
| | - Jessica M Skeie
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States; Iowa Lions Eye Bank, Coralville, IA, United States
| | | |
Collapse
|
11
|
Kingsbury KD, Skeie JM, Cosert K, Schmidt GA, Aldrich BT, Sales CS, Weller J, Kruse F, Thomasy SM, Schlötzer-Schrehardt U, Greiner MA. Type II Diabetes Mellitus Causes Extracellular Matrix Alterations in the Posterior Cornea That Increase Graft Thickness and Rigidity. Invest Ophthalmol Vis Sci 2023; 64:26. [PMID: 37326594 DOI: 10.1167/iovs.64.7.26] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
Purpose There is a pressing need to investigate the impact of type II diabetes mellitus on the posterior cornea in donor tissues given its increasing prevalence and potential impact on endothelial keratoplasty surgical outcomes. Methods Immortalized human cultured corneal endothelial cells (CECs; HCEC-B4G12) were grown in hyperglycemic media for 2 weeks. Extracellular matrix (ECM) adhesive glycoprotein expression and advanced glycation end products (AGEs) in cultured cells and corneoscleral donor tissues, as well as the elastic modulus for the Descemet membrane (DMs) and CECs of diabetic and nondiabetic donor corneas, were measured. Results In CEC cultures, increasing hyperglycemia resulted in increased transforming growth factor beta-induced (TGFBI) protein expression and colocalization with AGEs in the ECM. In donor corneas, the thicknesses of the DM and the interfacial matrix (IFM) between the DM and stroma both increased from 8.42 ± 1.35 µm and 0.504 ± 0.13 µm in normal corneas, respectively, to 11.13 ± 2.91 µm (DM) and 0.681 ± 0.24 µm (IFM) in non-advanced diabetes (P = 0.013 and P = 0.075, respectively) and 11.31 ± 1.76 µm (DM) and 0.744 ± 0.18 µm (IFM) in advanced diabetes (AD; P = 0.0002 and P = 0.003, respectively). Immunofluorescence in AD tissues versus controls showed increased AGEs (P < 0.001) and markedly increased labeling intensity for adhesive glycoproteins, including TGFBI, that colocalized with AGEs. The elastic modulus significantly increased between AD and control tissues for the DMs (P < 0.0001) and CECs (P < 0.0001). Conclusions Diabetes and hyperglycemia alter human CEC ECM structure and composition, likely contributing to previously documented complications of endothelial keratoplasty using diabetic donor tissue, including tearing during graft preparation and reduced graft survival. AGE accumulation in the DM and IFM may be a useful biomarker for determining diabetic impact on posterior corneal tissue.
Collapse
Affiliation(s)
- Kenten D Kingsbury
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
- Iowa Lions Eye Bank, Coralville, Iowa, United States
| | - Jessica M Skeie
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
- Iowa Lions Eye Bank, Coralville, Iowa, United States
| | - Krista Cosert
- Department of Surgical & Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, California, United States
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Davis, California, United States
| | | | - Benjamin T Aldrich
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
- Iowa Lions Eye Bank, Coralville, Iowa, United States
| | - Christopher S Sales
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
- Iowa Lions Eye Bank, Coralville, Iowa, United States
| | - Julia Weller
- Department of Ophthalmology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Friedrich Kruse
- Department of Ophthalmology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Sara M Thomasy
- Department of Surgical & Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, California, United States
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Davis, California, United States
| | | | - Mark A Greiner
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
- Iowa Lions Eye Bank, Coralville, Iowa, United States
| |
Collapse
|
12
|
Seo JS, Tumursukh NE, Choi JH, Song Y, Jeon G, Kim NE, Kim SJ, Kim N, Song JE, Khang G. Modified gellan gum-based hydrogel with enhanced mechanical properties for application as a cell carrier for cornea endothelial cells. Int J Biol Macromol 2023; 236:123878. [PMID: 36894057 DOI: 10.1016/j.ijbiomac.2023.123878] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/13/2023] [Accepted: 02/26/2023] [Indexed: 03/09/2023]
Abstract
Recently, the number of people suffering from visual loss due to eye diseases is increasing rapidly around the world. However, due to the severe donor shortage and the immune response, corneal replacement is needed. Gellan gum (GG) is biocompatible and widely used for cell delivery or drug delivery, but its strength is not suitable for the corneal substitute. In this study, a GM hydrogel was prepared by blending methacrylated gellan gum with GG (GM) to give suitable mechanical properties to the corneal tissue. In addition, lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP), a crosslinking initiator, was added to the GM hydrogel. After the photo-crosslinking treatment, it was named GM/LAP hydrogel. GM and GM/LAP hydrogels were analyzed for physicochemical properties, mechanical characterization, and transparency tests to confirm their applicability as carriers for corneal endothelial cells (CEnCs). Also, in vitro studies were performed with cell viability tests, cell proliferation tests, cell morphology, cell-matrix remodeling analysis, and gene expression evaluation. The compressive strength of the GM/LAP hydrogel was improved compared to the GM hydrogel. The GM/LAP hydrogel showed excellent cell viability, proliferation, and cornea-specific gene expression than the GM hydrogel. Crosslinking-improved GM/LAP hydrogel can be applied as a promising cell carrier in corneal tissue engineering.
Collapse
Affiliation(s)
- Jin Sol Seo
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea.
| | - Nomin-Erdene Tumursukh
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea.
| | - Joo Hee Choi
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea
| | - Youngeun Song
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea
| | - Gayeong Jeon
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea
| | - Na Eun Kim
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea
| | - Seung Jae Kim
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea
| | - Nahyeon Kim
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea
| | - Jeong Eun Song
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea.
| | - Gilson Khang
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea; Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Republic of Korea; Department of Orthopaedic & Traumatology, Airlangga University, Jl. Airlangga No.4 - 6, Airlangga, Kec. Gubeng, Kota SBY, Jawa Timur 60115, Indonesia.
| |
Collapse
|
13
|
GSK-3 inhibition reverts mesenchymal transition in primary human corneal endothelial cells. Eur J Cell Biol 2023; 102:151302. [PMID: 36905755 DOI: 10.1016/j.ejcb.2023.151302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/18/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023] Open
Abstract
Human corneal endothelial cells are organized in a tight mosaic of hexagonal cells and serve a critical function in maintaining corneal hydration and clear vision. Regeneration of the corneal endothelial tissue is hampered by its poor proliferative capacity, which is partially retrieved in vitro, albeit only for a limited number of passages before the cells undergo mesenchymal transition (EnMT). Although different culture conditions have been proposed in order to delay this process and prolong the number of cell passages, EnMT has still not been fully understood and successfully counteracted. In this perspective, we identified herein a single GSK-3 inhibitor, CHIR99021, able to revert and avoid EnMT in primary human corneal endothelial cells (HCEnCs) from old donors until late passages in vitro (P8), as shown from cell morphology analysis (circularity). In accordance, CHIR99021 reduced expression of α-SMA, an EnMT marker, while restored endothelial markers such as ZO-1, Na+/K+ ATPase and N-cadherin, without increasing cell proliferation. A further analysis on RNA expression confirmed that CHIR99021 induced downregulation of EnMT markers (α-SMA and CD44), upregulation of the proliferation repressor p21 and revealed novel insights into the β-catenin and TGFβ pathways intersections in HCEnCs. The use of CHIR99021 sheds light on the mechanisms involved in EnMT, providing a substantial advantage in maintaining primary HCEnCs in culture until late passages, while preserving the correct morphology and phenotype. Altogether, these results bring crucial advancements towards the improvement of the corneal endothelial cells based therapy.
Collapse
|
14
|
Daniele E, Bosio L, Hussain NA, Ferrari B, Ferrari S, Barbaro V, McArdle B, Rassu N, Mura M, Parmeggiani F, Ponzin D. Denuded Descemet's membrane supports human embryonic stem cell-derived retinal pigment epithelial cell culture. PLoS One 2023; 18:e0281404. [PMID: 36745611 PMCID: PMC9901769 DOI: 10.1371/journal.pone.0281404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/22/2023] [Indexed: 02/07/2023] Open
Abstract
Recent clinical studies suggest that retinal pigment epithelial (RPE) cell replacement therapy may preserve vision in retinal degenerative diseases. Scaffold-based methods are being tested in ongoing clinical trials for delivering pluripotent-derived RPE cells to the back of the eye. The aim of this study was to investigate human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cells survival and behaviour on a decellularized Descemet's Membrane (DM), which may be of clinical relevance in retinal transplantation. DMs were isolated from human donor corneas and treated with thermolysin. The DM surface topology and the efficiency of the denudation method were evaluated by atomic force microscope, scanning electron microscopy and histology. hESC-RPE cells were seeded onto the endothelial-side surface of decellularized DM in order to determine the potential of the membrane to support hESC-RPE cell culture, alongside maintaining their viability. Integrity of the hESC-RPE monolayer was assessed by measuring transepithelial resistance. RPE-specific gene expression and growth factors secretion were assessed to confirm maturation and functionality of the cells over the new substrate. Thermolysin treatment did not affect the integrity of the tissue, thus ensuring a reliable method to standardize the preparation of decellularized DM. 24 hours post-seeding, hESC-RPE cell attachment and initial proliferation rate over the denuded DM were higher than hESC-RPE cells cultured on tissue culture inserts. On the new matrix, hESC-RPE cells succeeded in forming an intact monolayer with mature tight junctions. The resulting cell culture showed characteristic RPE cell morphology and proper protein localization. Gene expression analysis and VEGF secretion demonstrate DM provides supportive scaffolding and inductive properties to enhance hESC-RPE cells maturation. Decellularized DM was shown to be capable of sustaining hESC-RPE cells culture, thus confirming to be potentially a suitable candidate for retinal cell therapy.
Collapse
Affiliation(s)
- Elena Daniele
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Veneto Eye Bank Foundation, Venice, Italy
- * E-mail:
| | | | - Noor Ahmed Hussain
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | | | | - Brian McArdle
- The Eye-Bank for Sight Restoration, Inc., New York City, New York, United States of America
| | - Nicolò Rassu
- Ophthalmic Unit, Ospedale dell’Angelo, Venice, Italy
| | - Marco Mura
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Francesco Parmeggiani
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- ERN-EYE Network - Center for Retinitis Pigmentosa of Veneto Region, Camposampiero Hospital, Padua, Italy
| | | |
Collapse
|
15
|
Petrela RB, Patel SP. The soil and the seed: The relationship between Descemet's membrane and the corneal endothelium. Exp Eye Res 2023; 227:109376. [PMID: 36592681 DOI: 10.1016/j.exer.2022.109376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Descemet's membrane (DM), the basement membrane of the corneal endothelium, is formed from the extracellular matrix (ECM) secreted by corneal endothelial cells. The ECM supports the growth and function of the corneal endothelial cells. Changes to DM are central to the diagnosis of the most common corneal endothelial disease, Fuchs endothelial corneal dystrophy (FECD). Changes in DM are also noted in systemic diseases such as diabetes mellitus. In FECD, the DM progressively accumulates guttae, "drop-like deposits" that disrupt the corneal endothelial cell monolayer. While the pathophysiologic changes to corneal endothelial cells in the course of FECD have been well described and reviewed, the changes to DM have received limited attention. The reciprocity of influence between the corneal endothelial cells and DM demands full attention to the latter in our search for novel treatment and preventive strategies. In this review, we discuss what is known about the formation and composition of DM and how it changes in FECD and other conditions. We review characteristics of guttae and the interplay between corneal endothelial cells and guttae, particularly as it might apply to future cell-based and genetic therapies for FECD.
Collapse
Affiliation(s)
- Redion B Petrela
- Ross Eye Institute, Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 1176 Main Street, Buffalo, NY, 14209, USA; Norton College of Medicine, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA.
| | - Sangita P Patel
- Ross Eye Institute, Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 1176 Main Street, Buffalo, NY, 14209, USA; Research and Ophthalmology Services, Veterans Administration of Western New York Healthcare System, 3495 Bailey Ave, Buffalo, NY, 14215, USA.
| |
Collapse
|
16
|
Jalilian I, Muppala S, Ali M, Anderson JD, Phinney B, Salemi M, Wilmarth PA, Murphy CJ, Thomasy SM, Raghunathan V. Cell derived matrices from bovine corneal endothelial cells as a model to study cellular dysfunction. Exp Eye Res 2023; 226:109303. [PMID: 36343671 PMCID: PMC11349083 DOI: 10.1016/j.exer.2022.109303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/12/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE Fuchs endothelial corneal dystrophy (FECD) is a progressive corneal disease that impacts the structure and stiffness of the Descemet's membrane (DM), the substratum for corneal endothelial cells (CECs). These structural alterations of the DM could contribute to the loss of the CECs resulting in corneal edema and blindness. Oxidative stress and transforming growth factor-β (TGF-β) pathways have been implicated in endothelial cell loss and endothelial to mesenchymal transition of CECs in FECD. Ascorbic acid (AA) is found at high concentrations in FECD and its impact on CEC survival has been investigated. However, how TGF-β and AA effect the composition and rigidity of the CEC's matrix remains unknown. METHODS In this study, we investigated the effect of AA, TGF-β1 and TGF-β3 on the deposition, ultrastructure, stiffness, and composition of the extracellular matrix (ECM) secreted by primary bovine corneal endothelial cells (BCECs). RESULTS Immunofluorescence and electron microscopy post-decellularization demonstrated a robust deposition and distinct structure of ECM in response to treatments. AFM measurements showed that the modulus of the matrix in BCECs treated with TGF-β1 and TGF-β3 was significantly lower than the controls. There was no difference in the stiffness of the matrix between the AA-treated cell and controls. Gene Ontology analysis of the proteomics results revealed that AA modulates the oxidative stress pathway in the matrix while TGF-β induces the expression of matrix proteins collagen IV, laminin, and lysyl oxidase homolog 1. CONCLUSIONS Molecular pathways identified in this study demonstrate the differential role of soluble factors in the pathogenesis of FECD.
Collapse
Affiliation(s)
- Iman Jalilian
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Santoshi Muppala
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA; Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Maryam Ali
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Johnathon D Anderson
- Department of Otolaryngology, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA
| | - Brett Phinney
- Proteomics Core, University of California, Davis Genome Center, Davis, CA, 95616, USA
| | - Michelle Salemi
- Proteomics Core, University of California, Davis Genome Center, Davis, CA, 95616, USA
| | - Phillip A Wilmarth
- Proteomics Shared Resources, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Christopher J Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA; Department of Ophthalmology & Vision Science, School of Medicine, UC Davis Medical Center, Sacramento, CA, 95817, USA
| | - Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA; Department of Ophthalmology & Vision Science, School of Medicine, UC Davis Medical Center, Sacramento, CA, 95817, USA.
| | - VijayKrishna Raghunathan
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, 77204, USA; Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
17
|
Trindade LC, Attanasio de Rezende R, Bisol T, J Rapuano C. Late Descemet membrane detachment after uneventful cataract surgery. Am J Ophthalmol Case Rep 2022; 29:101783. [PMID: 36632336 PMCID: PMC9827023 DOI: 10.1016/j.ajoc.2022.101783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose To report 5 patients with late Descemet membrane (DM) detachment after uneventful cataract surgery. Observations After a retrospective chart analysis of consecutive patients that developed DM detachment after uneventful cataract surgery, six eyes of five patients were enrolled. In all cases, patients reported good vision initially after cataract surgery. Within days to months, these patients developed late DM detachment with decreased vision. In one patient, the detachment affected both eyes. Filtered air or diluted sulfur hexafluoride were injected in the anterior chamber to tamponade the DM detachment. In five eyes, the cornea cleared after DM reattachment. In two eyes of the same patient, DM reattached spontaneously requiring no further surgical intervention. In one patient, the Descemet failed to reattach and required an endothelial keratoplasty. Conclusion and importance Descemet membrane detachment may occur after uneventful cataract surgery. Filtered air or long-lasting intraocular gas may be used to reattach DM. Spontaneous DM reattachment may also occur and surgeons should be aware of this to avoid unnecessary procedures.
Collapse
Affiliation(s)
- Lovaglio Cançado Trindade
- Medical Sciences Medical School–FELUMA, Belo Horizonte, Brazil,Medical Sciences Eye Institute–FELUMA, Belo Horizonte, Brazil,Cançado-Trindade Eye Institute, Belo Horizonte, Brazil,Corresponding author. Rua Manaus 595, São Lucas - 30.150-350, Belo Horizonte, MG, Brazil.
| | - Renata Attanasio de Rezende
- PUC-Rio University, Rio de Janeiro, Brazil,Instituto de Diagnóstico e Terapia Ocular, Rio de Janeiro, Brazil,São Vicente de Paulo Hospital, Rio de Janeiro, Brazil
| | - Tiago Bisol
- PUC-Rio University, Rio de Janeiro, Brazil,Instituto de Diagnóstico e Terapia Ocular, Rio de Janeiro, Brazil,São Vicente de Paulo Hospital, Rio de Janeiro, Brazil
| | - Christopher J Rapuano
- Wills Eye Hospital, Philadelphia, PA, USA,Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
18
|
Effect of Collagenase A on Descemet Membrane Endothelial Keratoplasty Scroll Tightness. Cornea 2022; 41:1029-1034. [PMID: 35830580 DOI: 10.1097/ico.0000000000003030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 02/11/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE The scrolling properties of the Descemet membrane endothelial keratoplasty (DMEK) graft are essential for surgical success. Currently, there is limited knowledge on what dictates the tightness of the DMEK scroll. The purpose of this study was to determine the impact of temperature and protein digestion on DMEK graft scroll tightness. METHODS For the temperature experiment, a total of 28 eyes were used for this study. Scrolls in the cold group were kept at 4°C while scrolls in the hot group were kept at 37°C. Scroll width was recorded at the 5-, 15-, and 30-minute mark. For the protein digestion experiment, a total of 18 eyes were exposed to collagenase A (10 CDU/mL) in Optisol solution. Scroll width was recorded at the time points of 1, 3, 5, 10, and 20 minutes. RESULTS The results of the temperature experiment did not yield any statistically significant changes in the mean scroll width of the DMEK scrolls across both temperature ranges and observation times. For the protein digestion experiment, the mean scroll width grew from 1.85 mm to 2.13 mm from the beginning of the experiment until the final observation at 20 minutes. This is a 14.7% change over 20 minutes with a P value (<0.001), exemplifying a statistically significant change in scroll width. CONCLUSIONS Temperature did not have any significant effect over scroll tightness, but scroll tightness decreased with collagenase exposure.
Collapse
|
19
|
Bosch BM, Bosch-Rue E, Perpiñan-Blasco M, Perez RA. Design of functional biomaterials as substrates for corneal endothelium tissue engineering. Regen Biomater 2022; 9:rbac052. [PMID: 35958516 PMCID: PMC9362998 DOI: 10.1093/rb/rbac052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/29/2022] [Accepted: 07/16/2022] [Indexed: 11/12/2022] Open
Abstract
Corneal endothelium defects are one of the leading causes of blindness worldwide. The actual treatment is transplantation, which requires the use of human cadaveric donors, but it faces several problems, such as global shortage of donors. Therefore, new alternatives are being developed and, among them, cell therapy has gained interest in the last years due to its promising results in tissue regeneration. Nevertheless, the direct administration of cells may sometimes have limited success due to the immune response, hence requiring the combination with extracellular mimicking materials. In this review, we present different methods to obtain corneal endothelial cells from diverse cell sources such as pluripotent or multipotent stem cells. Moreover, we discuss different substrates in order to allow a correct implantation as a cell sheet and to promote an enhanced cell behavior. For this reason, natural or synthetic matrixes that mimic the native environment have been developed. These matrixes have been optimized in terms of their physicochemical properties, such as stiffness, topography, composition and transparency. To further enhance the matrixes properties, these can be tuned by incorporating certain molecules that can be delivered in a sustained manner in order to enhance biological behavior. Finally, we elucidate future directions for corneal endothelial regeneration, such as 3D printing, in order to obtain patient-specific substrates.
Collapse
Affiliation(s)
- Begona M Bosch
- Universitat Internacional de Catalunya Bioengineering Institute of Technology (BIT), , Sant Cugat del Valles, Barcelona, 08195, Spain
| | - Elia Bosch-Rue
- Universitat Internacional de Catalunya Bioengineering Institute of Technology (BIT), , Sant Cugat del Valles, Barcelona, 08195, Spain
| | - Marina Perpiñan-Blasco
- Universitat Internacional de Catalunya Bioengineering Institute of Technology (BIT), , Sant Cugat del Valles, Barcelona, 08195, Spain
| | - Roman A Perez
- Universitat Internacional de Catalunya Bioengineering Institute of Technology (BIT), , Sant Cugat del Valles, Barcelona, 08195, Spain
| |
Collapse
|
20
|
Romano V, Parekh M, Kazaili A, Steger B, Akhtar R, Ferrari S, Kaye SB, Levis HJ. Eye bank versus surgeon prepared Descemet stripping automated endothelial keratoplasty tissues: Influence on adhesion force in a pilot study. Indian J Ophthalmol 2022; 70:523-528. [PMID: 35086230 PMCID: PMC9023930 DOI: 10.4103/ijo.ijo_3637_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 06/06/2021] [Accepted: 09/16/2021] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To evaluate and compare the biomechanical properties of the eye bank-prepared and surgeon prepared Descemet stripping automated endothelial keratoplasty (DSAEK) tissues. METHODS In this laboratory study, corneal tissues for research were randomly allocated in the following groups: a) surgeon-cut DSAEK and b) eye bank-prepared (pre-cut and pre-loaded) DSAEK. Endothelial cell loss (ECL), immunostaining for tight junction protein ZO-1, elastic modulus, and adhesion force were investigated. RESULTS ECL was not found to be significantly different between surgeon-cut DSAEK (7.8% ±6.5%), pre-cut DSAEK (8.6% ±2.3%), and pre-loaded DSAEK (11.1% ±4.8%) (P = 0.5910). ZO-1 was expressed equally across all groups. Surgeon-cut DSAEK grafts showed a significantly higher elastic modulus compared to pre-cut and pre-loaded DSAEK groups (P = 0.0047 and P < 0.0001, respectively). Adhesion force was significantly greater in the surgeon-cut DSAEK compared to pre-cut (P < 0.0001) or pre-loaded DSAEK groups (P = 0.0101). CONCLUSION The laboratory data on the biomechanics of DSAEK grafts suggests that surgeon-cut DSAEK grafts present higher elastic modulus and adhesion force compared to eye bank-prepared DSAEK grafts.
Collapse
Affiliation(s)
- Vito Romano
- St. Paul’s Eye Unit, Royal Liverpool University Hospital London, London, UK
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool London, London, UK
- Instituto Universitario Fernandez-Vega, Universidad de Oviedo and Fundacion de Investigacion Oftalmologica, Oviedo, Spain
| | - Mohit Parekh
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, London, UK
| | - Ahmed Kazaili
- Department of Mechanical, Materials and Aerospace Engineering, School of Engineering, University of Liverpool London, London, UK
- Department of Biomedical Engineering, College of Engineering, University of Babylon, Hillah, Iraq
- Babylon Health Directorate, Ministry of Health, Babylon, Iraq
| | - Bernhard Steger
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | - Riaz Akhtar
- Department of Mechanical, Materials and Aerospace Engineering, School of Engineering, University of Liverpool London, London, UK
| | - Stefano Ferrari
- International Centre for Ocular Physiopathology, Fondazione Banca degli Occhi del Veneto Onlus, Venice, Italy
| | - Stephen B Kaye
- St. Paul’s Eye Unit, Royal Liverpool University Hospital London, London, UK
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool London, London, UK
| | - Hannah J Levis
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool London, London, UK
| |
Collapse
|
21
|
Zhao Y, Li Y, Hong J, Le Q, Xu J. Fourier-Domain Optical Coherence Tomographic Assessment of Changes in the Schlemm's Canal of Nonglaucomatous Subjects After Keratoplasty. Front Physiol 2021; 12:716117. [PMID: 34925051 PMCID: PMC8675085 DOI: 10.3389/fphys.2021.716117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: This study aimed to evaluate the impact of keratoplasty on the in vivo anatomical structures in the Schlemm's canal (SC) of nonglaucomatous subjects using Fourier-domain optical coherence tomography (FD-OCT). Methods: Sixty-six nonglaucomatous eyes that underwent penetrating keratoplasty (PK), deep anterior lamellar keratoplasty (DALK), or triple surgery were enrolled in this prospective, comparative, observational study. The SC imaging was performed using FD-OCT before and after surgery in both the nasal and temporal quadrants. Patient demographics, SC parameters [e.g., cross-sectional area (CSA), meridional diameter of SC (MSC), sagittal diameter of SC (SSC), and circumference (CCF)], and the correlations between the variation of SC parameters and intraocular pressure (IOP) were analyzed. Results: The mean age of all subjects was 40.27 ± 18.97 years. Among all cases, the nasal, temporal, and mean MSC significantly decreased on the first day after surgery and then increased at 1 week (p = 0.04, 0.017, and 0.01, respectively). Temporal CSA (tCSA), temporal MSC (tMSC), and temporal circumference (tCCF) after PK (p = 0.017, 0.020, and 0.018, respectively) and nasal MSC (nMSC) after DALK (p = 0.025) decreased significantly on the first day after surgery. The shift in mean IOP was significantly correlated with the changes in tMSC (r = 0.341, p = 0.003) and CCF (r = 0.207, p = 0.048). Conclusion: SC had significant in vivo morphological changes in the early period after keratoplasty in nonglaucomatous eyes, accompanied with elevation of IOP. Early intervention might be necessary to prevent secondary glaucoma early after keratoplasty.
Collapse
Affiliation(s)
- Yujin Zhao
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yue Li
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jiaxu Hong
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Key Laboratory of Myopia, National Health and Family Planning Commission, Shanghai, China
| | - Qihua Le
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jianjiang Xu
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
22
|
The Response of Corneal Endothelial Cells to Shear Stress in an In Vitro Flow Model. J Ophthalmol 2021; 2021:9217866. [PMID: 34873452 PMCID: PMC8643247 DOI: 10.1155/2021/9217866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose Corneal endothelial cells are usually exposed to shear stress caused by the aqueous humour, which is similar to the exposure of vascular endothelial cells to shear stress caused by blood flow. However, the effect of fluid shear stress on corneal endothelial cells is still poorly understood. The purpose of this study was to explore whether the shear stress that results from the aqueous humour influences corneal endothelial cells. Methods An in vitro model was established to generate fluid flow on cells, and the effect of fluid flow on corneal endothelial cells after exposure to two levels of shear stress for different durations was investigated. The mRNA and protein expression of corneal endothelium-related markers in rabbit corneal endothelial cells was evaluated by real-time PCR and western blotting. Results The expression of the corneal endothelium-related markers ZO-1, N-cadherin, and Na+-K+-ATPase in rabbit corneal endothelial cells (RCECs) was upregulated at both the mRNA and protein levels after exposure to shear stress. Conclusion This study demonstrates that RCECs respond favourably to fluid shear stress, which may contribute to the maintenance of corneal endothelial cell function. Furthermore, this study also provides a theoretical foundation for further investigating the response of human corneal endothelial cells to the shear stress caused by the aqueous humour.
Collapse
|
23
|
Park S, Leonard BC, Raghunathan VK, Kim S, Li JY, Mannis MJ, Murphy CJ, Thomasy SM. Animal models of corneal endothelial dysfunction to facilitate development of novel therapies. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1271. [PMID: 34532408 PMCID: PMC8421955 DOI: 10.21037/atm-20-4389] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022]
Abstract
Progressive corneal endothelial disease eventually leads to corneal edema and vision loss due to the limited regenerative capacity of the corneal endothelium in vivo and is a major indication for corneal transplantation. Despite the relatively high success rate of corneal transplantation, there remains a pressing global clinical need to identify improved therapeutic strategies to address this debilitating condition. To evaluate the safety and efficacy of novel therapeutics, there is a growing demand for pre-clinical animal models of corneal endothelial dysfunction. In this review, experimentally induced, spontaneously occurring and genetically modified animal models of corneal endothelial dysfunction are described to assist researchers in making informed decisions regarding the selection of the most appropriate animal models to meet their research goals.
Collapse
Affiliation(s)
- Sangwan Park
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Brian C. Leonard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Vijay Krishna Raghunathan
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, TX, USA
- Department of Basic Sciences, University of Houston, Houston, TX, USA
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX, USA
| | - Soohyun Kim
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Jennifer Y. Li
- Department of Ophthalmology & Vision Science, School of Medicine, University of California Davis, Davis, CA, USA
| | - Mark J. Mannis
- Department of Ophthalmology & Vision Science, School of Medicine, University of California Davis, Davis, CA, USA
| | - Christopher J. Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
- Department of Ophthalmology & Vision Science, School of Medicine, University of California Davis, Davis, CA, USA
| | - Sara M. Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
- Department of Ophthalmology & Vision Science, School of Medicine, University of California Davis, Davis, CA, USA
| |
Collapse
|
24
|
Tsai MC, Daniels JT. The impact of biomechanics on corneal endothelium tissue engineering. Exp Eye Res 2021; 209:108690. [PMID: 34216616 DOI: 10.1016/j.exer.2021.108690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/03/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022]
Abstract
The integrity of innermost layer of the cornea, the corneal endothelium, is key to sustaining corneal transparency. Therefore, disease or injury causing loss or damage to the corneal endothelial cell population may threaten vision. Transplantation of corneal tissue is the standard treatment used to replace malfunctioning corneal endothelial cells. However, this surgery is dependent upon donor tissue, which is limited in supply. Hence, tissue engineers have attempted to construct alternative transplantable tissues or cell therapies to alleviate this problem. Nevertheless, the intrinsic non-dividing nature of corneal endothelial cells continues to foil scientists in their attempts to yield large numbers of cells in the laboratory for use in such novel therapies. Interestingly, the contribution of the biomechanical properties of the underlying extracellular matrix (ECM) on cell division, tissue development and maintenance has been extensively investigated in other many cell types. However, the impact of biomechanics on corneal endothelial cell behaviour is relatively unexplored. Here, we describe contemporary tissue engineering solutions aimed at circumventing donor tissue scarcity. We review the ECM structure and biomechanical features of corneal endothelial cells. We discuss the alterations of ECM in endothelial disease development and progression and point out the role of ECM in developing a tissue-engineered corneal endothelium. We highlight the main biomechanical cues, including topographical and mechanical features, that impact cellular behaviors. Finally, we discuss the influence of biomechanical cues on cell and tissue development, and how corneal endothelial cells response to individual biomechanical stimuli in tissue engineering, which have implications for designing an engineered endothelium and maintaining cell function.
Collapse
Affiliation(s)
- Meng-Chen Tsai
- UCL Institute of Ophthalmology, University College London, London, UK.
| | - Julie T Daniels
- UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
25
|
Leonard BC, Kermanian CS, Michalak SR, Kass PH, Hollingsworth SR, Good KL, Maggs DJ, Thomasy SM. A Retrospective Study of Corneal Endothelial Dystrophy in Dogs (1991-2014). Cornea 2021; 40:578-583. [PMID: 32947393 PMCID: PMC7960559 DOI: 10.1097/ico.0000000000002488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/25/2020] [Indexed: 11/25/2022]
Abstract
PURPOSE To retrospectively evaluate the clinical data, diagnostic tests, treatments, and outcomes for dogs with corneal endothelial dystrophy (CED) and determine risk factors for CED when compared with a canine reference population. METHODS Medical records of 99 dogs (1991-2014) diagnosed with CED at the University of California Davis Veterinary Medical Teaching Hospital were reviewed and compared with 458,680 dogs comprising the general hospital population during the study period. Retrieved data included signalment, examination findings, diagnoses, treatments, and outcomes associated with CED. The exact Pearson χ2 test or exact Kruskal-Wallis test was used to compare parameters between the groups. Progression of corneal edema was assessed using 3 independent Kaplan-Meier curves, identifying clinically significant changes in corneal opacity. RESULTS Boston terriers, German wirehaired pointers, and Dachshunds were overrepresented in the CED-affected group, whereas Labradors were underrepresented. Dogs older than 11 years were overrepresented in the CED-affected group, whereas intact dogs were underrepresented. Surgical intervention was performed (n = 11) based on the severity of disease and secondary complications from CED. Median time to progression of corneal edema was 1) 368 days when an at-risk eye initially without edema developed edema at a subsequent visit, 2) 701 days when there was progression from mild to marked corneal edema, and 3) 340 days when there was progression from focal to diffuse corneal edema. CONCLUSIONS Many CED-affected dogs progress over months to years without surgical intervention, making dogs with CED a useful model for studying genetic predispositions and development of novel therapeutics for Fuchs endothelial corneal dystrophy.
Collapse
Affiliation(s)
- Brian C. Leonard
- Departments of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA
| | - Celine S. Kermanian
- Departments of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA
| | - Sarah R. Michalak
- Departments of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA
| | - Philip H. Kass
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA
| | - Steven R. Hollingsworth
- Departments of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA
| | - Kathryn L. Good
- Departments of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA
| | - David J. Maggs
- Departments of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA
| | - Sara M. Thomasy
- Departments of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Davis, CA
| |
Collapse
|
26
|
Hwang JS, Ma DJ, Choi J, Shin YJ. COL8A2 Regulates the Fate of Corneal Endothelial Cells. Invest Ophthalmol Vis Sci 2021; 61:26. [PMID: 32931574 PMCID: PMC7500139 DOI: 10.1167/iovs.61.11.26] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose To investigate the effect of COL8A2 repression on corneal endothelial cells (CECs) in vitro and in vivo. Methods Cultured human CECs (hCECs) were transfected with COL8A2 siRNA (siCOL8A2), and the cell viability and proliferation rate were measured. The expression of cell proliferation–associated molecules was evaluated by Western blotting and real-time reverse transcription PCR. Cell shape, Wingless-INT (WNT) signaling, and mitochondrial oxidative stress were also measured. For in vivo experiments, siCOL8A2 was transfected into rat CECs (rCECs), and corneal opacity and corneal endothelium were evaluated. Results After transfection with siCOL8A2, COL8A2 expression was reduced (80%). Cell viability, cell proliferation rate, cyclin D1 expression, and the number of cells in the S-phase were reduced in siCOL8A2-treated cells. The cell attained a fibroblast-like shape, and SNAI1, pSMAD2, and β-catenin expression, along with mitochondrial mass and oxidative stress levels, were altered. Corneal opacity increased, and the CECs were changed in rats in the siCOL8A2 group. Conclusions COL8A2 is required to maintain normal wound healing and CEC function.
Collapse
Affiliation(s)
- Jin Sun Hwang
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Dae Joong Ma
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Jinju Choi
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Young Joo Shin
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
27
|
Abstract
The corneal endothelium is the innermost layer of the cornea that selectively pumps ions and metabolites and regulates the hydration level of the cornea, ensuring its transparency. Trauma or disease affecting human corneal endothelial cells (hCECs) can result in major imbalances of such transport activity with consequent deterioration or loss of vision. Since tissue transplantation from deceased donors is only available to a fraction of patients worldwide, alternative solutions are urgently needed. Cell therapy approaches, in particular by attempting to expand primary culture of hCECs in vitro, aim to tackle this issue. However, existing cell culture protocols result in limited expansion of this cell type. Recent studies in this field have shown that topographical features with specific dimensions and shapes could improve the efficacy of hCEC expansion. Therefore, potential solutions to overcome the limitation of the conventional culture of hCECs may include recreating nanometer scale topographies (nanotopographies) that mimic essential biophysical cues present in their native environment. In this review, we summarize the current knowledge and understanding of the effect of substrate topographies on the response of hCECs. Moreover, we also review the latest developments for the nanofabrication of such bio-instructive cell substrates.
Collapse
|
28
|
Qu Y, Li R, Li X, Yang Q, Chen J, Dong Y, Xiao W, Zheng S, Wang L, Tao Y, Huang Y. Development of Animal Models for Lens and Corneal Diseases Using N-Methyl-N-Nitrosourea. Invest Ophthalmol Vis Sci 2021; 61:38. [PMID: 32721019 PMCID: PMC7425732 DOI: 10.1167/iovs.61.8.38] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose N-methyl-N-nitrosourea (MNU) is an alkylating toxicant with potent mutagenic ability. This study was designed to induce apoptosis in lens epithelial cells (LECs) and corneal endothelial cells (CECs) via MNU administration. We sought to build ocular disease models of cataract and corneal endothelial decompensation. Methods MNU was delivered into the intraperitoneal cavities of neonatal rats and the anterior chambers of adult rabbits. The MNU-treated animals were then subjected to a series of functional and morphological analyses at various time points. Results MNU treatment induced pervasive apoptosis of LECs and CECs. These effects were dose and time dependent. Mature cataracts were found in neonatal rats 3 weeks after MNU treatment. Histological analysis revealed that MNU toxicity induced swelling, vacuolation, and liquefaction in lens fibers of MNU-treated rats. Pentacam examination showed that the average density of rat lens increased significantly after MNU administration. Terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) analysis showed pervasive apoptotic staining in the lenses of MNU-treated rats. In rabbit eyes, intracameral treatment with MNU induced corneal edema and significantly increased central corneal thickness, which peaked at P14. Morphological and immunohistochemical analysis showed that CECs were effectively ablated in the MNU-treated rabbits. The expression of 8-OHdG increased significantly in the cornea of MNU-treated rabbits, compared with vehicle-treated controls. Conclusions MNU is sufficient to induce ocular cell apoptosis in animal models. These models of MNU-induced cataract and corneal endothelial decompensation represent valuable tools for efforts to develop relevant therapies.
Collapse
|
29
|
Ong Tone S, Kocaba V, Böhm M, Wylegala A, White TL, Jurkunas UV. Fuchs endothelial corneal dystrophy: The vicious cycle of Fuchs pathogenesis. Prog Retin Eye Res 2021; 80:100863. [PMID: 32438095 PMCID: PMC7648733 DOI: 10.1016/j.preteyeres.2020.100863] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/05/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022]
Abstract
Fuchs endothelial corneal dystrophy (FECD) is the most common primary corneal endothelial dystrophy and the leading indication for corneal transplantation worldwide. FECD is characterized by the progressive decline of corneal endothelial cells (CECs) and the formation of extracellular matrix (ECM) excrescences in Descemet's membrane (DM), called guttae, that lead to corneal edema and loss of vision. FECD typically manifests in the fifth decades of life and has a greater incidence in women. FECD is a complex and heterogeneous genetic disease where interaction between genetic and environmental factors results in cellular apoptosis and aberrant ECM deposition. In this review, we will discuss a complex interplay of genetic, epigenetic, and exogenous factors in inciting oxidative stress, auto(mito)phagy, unfolded protein response, and mitochondrial dysfunction during CEC degeneration. Specifically, we explore the factors that influence cellular fate to undergo apoptosis, senescence, and endothelial-to-mesenchymal transition. These findings will highlight the importance of abnormal CEC-DM interactions in triggering the vicious cycle of FECD pathogenesis. We will also review clinical characteristics, diagnostic tools, and current medical and surgical management options for FECD patients. These new paradigms in FECD pathogenesis present an opportunity to develop novel therapeutics for the treatment of FECD.
Collapse
Affiliation(s)
- Stephan Ong Tone
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Viridiana Kocaba
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Myriam Böhm
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Adam Wylegala
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Tomas L White
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Ula V Jurkunas
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
30
|
Halfter W, Moes S, Halfter K, Schoenenberger MS, Monnier CA, Kalita J, Asgeirsson D, Binggeli T, Jenoe P, Scholl HPN, Henrich PB. The human Descemet's membrane and lens capsule: Protein composition and biomechanical properties. Exp Eye Res 2020; 201:108326. [PMID: 33147472 DOI: 10.1016/j.exer.2020.108326] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
The Descemet's membrane (DM) and the lens capsule (LC) are two ocular basement membranes (BMs) that are essential in maintaining stability and structure of the cornea and lens. In this study, we investigated the proteomes and biomechanical properties of these two materials to uncover common and unique properties. We also screened for possible protein changes during diabetes. LC-MS/MS was used to determine the proteomes of both BMs. Biomechanical measurements were conducted by atomic force microscopy (AFM) in force spectroscopy mode, and complemented with immunofluorescence microscopy. Proteome analysis showed that all six existing collagen IV chains represent 70% of all LC-protein, and are thus the dominant components of the LC. The DM on the other hand is predominantly composed of a single protein, TGF-induced protein, which accounted for around 50% of all DM-protein. Four collagen IV-family members in DM accounted for only 10% of the DM protein. Unlike the retinal vascular BMs, the LC and DM do not undergo significant changes in their protein compositions during diabetes. Nanomechanical measurements showed that the endothelial/epithelial sides of both BMs are stiffer than their respective stromal/anterior-chamber sides, and both endothelial and stromal sides of the DM were stiffer than the epithelial and anterior-chamber sides of the LC. Long-term diabetes did not change the stiffness of the DM and LC. In summary, our analyses show that the protein composition and biomechanical properties of the DM and LC are different, i.e., the LC is softer than DM despite a significantly higher concentration of collagen IV family members. This finding is unexpected, as collagen IV members are presumed to be responsible for BM stiffness. Diabetes had no significant effect on the protein composition and the biomechanical properties of both the DM and LC.
Collapse
Affiliation(s)
- Willi Halfter
- Department of Ophthalmology, University of Basel, Switzerland.
| | - Suzette Moes
- Proteomics Core Facility, Biozentrum, University of Basel, Switzerland.
| | - Kathrin Halfter
- Munich Cancer Registry, Institute of Medical Informatics, Biometry and Epidemiology, Maximilian University Munich, Germany.
| | | | | | - Joanna Kalita
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Switzerland
| | - Daphne Asgeirsson
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Switzerland.
| | | | - Paul Jenoe
- Proteomics Core Facility, Biozentrum, University of Basel, Switzerland.
| | - Hendrik P N Scholl
- Department of Ophthalmology, University of Basel, Switzerland; Institute of Molecular and Clinical Ophthalmology Basel (IOB), Switzerland; Wilmer Eye Institute, Johns Hopkins University, Baltimore, MA, USA.
| | - Paul Bernhard Henrich
- Department of Ophthalmology, University of Basel, Switzerland; Università della Svizzera Italiana, Lugano, Switzerland.
| |
Collapse
|
31
|
Khalili M, Asadi M, Kahroba H, Soleyman MR, Andre H, Alizadeh E. Corneal endothelium tissue engineering: An evolution of signaling molecules, cells, and scaffolds toward 3D bioprinting and cell sheets. J Cell Physiol 2020; 236:3275-3303. [PMID: 33090510 DOI: 10.1002/jcp.30085] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/31/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022]
Abstract
Cornea is an avascular and transparent tissue that focuses light on retina. Cornea is supported by the corneal-endothelial layer through regulation of hydration homeostasis. Restoring vision in patients afflicted with corneal endothelium dysfunction-mediated blindness most often requires corneal transplantation (CT), which faces considerable constrictions due to donor limitations. An emerging alternative to CT is corneal endothelium tissue engineering (CETE), which involves utilizing scaffold-based methods and scaffold-free strategies. The innovative scaffold-free method is cell sheet engineering, which typically generates cell layers surrounded by an intact extracellular matrix, exhibiting tunable release from the stimuli-responsive surface. In some studies, scaffold-based or scaffold-free technologies have been reported to achieve promising outcomes. However, yet some issues exist in translating CETE from bench to clinical practice. In this review, we compare different corneal endothelium regeneration methods and elaborate on the application of multiple cell types (stem cells, corneal endothelial cells, and endothelial precursors), signaling molecules (growth factors, cytokines, chemical compounds, and small RNAs), and natural and synthetic scaffolds for CETE. Furthermore, we discuss the importance of three-dimensional bioprinting strategies and simulation of Descemet's membrane by biomimetic topography. Finally, we dissected the recent advances, applications, and prospects of cell sheet engineering for CETE.
Collapse
Affiliation(s)
- Mostafa Khalili
- Drug Applied Research Center and Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Asadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Houman Kahroba
- Biomedicine Institute, and Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Soleyman
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Helder Andre
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Effat Alizadeh
- Drug Applied Research Center and Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
32
|
Kassumeh S, Studnitz A, Priglinger SG, Fuchshofer R, Luft N, Moloney G, Dirisamer M, Ohlmann A. Ex vivo excimer laser ablation of cornea guttata and ROCK inhibitor-aided endothelial recolonization of ablated central cornea. Acta Ophthalmol 2020; 98:e773-e780. [PMID: 32017400 DOI: 10.1111/aos.14366] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE To determine whether excimer laser ablation of guttae is a viable strategy for removal of diseased tissue in Fuchs' endothelial corneal dystrophy (FECD) on excised human Descemet membranes and whether an excimer laser-created wound on healthy human corneas ex vivo is recolonized with corneal endothelial cells. METHODS Descemet membranes of FECD patients and corneal endothelium of normal human corneas were ablated ex vivo using an excimer laser licensed for glaucoma surgery. Specimens were kept in cell culture medium supplemented with 10 μm of rho-kinase inhibitor ripasudil. Corneal endothelial cell regeneration was observed using light and electron scanning microscopy. Furthermore, the whole corneal samples were evaluated by haematoxylin/eosin staining and immunohistochemical analysis using antibodies against Na+ /K+ -ATPase. RESULTS Guttae and corneal endothelium could be ablated with an excimer laser without total ultrastructural damage to the Descemet membrane or stroma. Nearly complete endothelial wound closure was accomplished after 26-38 days in treated corneas. Light and electron scanning microscopy suggested the establishment of a layer of flat endothelial cells. Additionally, Na+ /K+ -ATPase expression could only be observed on the inner side of the Descemet membrane. CONCLUSION Our proof of concept study demonstrated that excimer lasers can be used to ablate diseased tissue from excised FECD Descemet membranes ex vivo. Additionally, corneal endothelial cells recolonize a previously ablated endothelial area in healthy human corneas ex vivo under treatment with ripasudil. Thus, our results are the first experimental basis to further investigate the feasibility of an excimer laser ablation as a graftless FECD treatment option.
Collapse
Affiliation(s)
- Stefan Kassumeh
- Cell and Molecular Biology Laboratory Department of Ophthalmology University Hospital LMU Munich Munich Germany
| | - Annabel Studnitz
- Cell and Molecular Biology Laboratory Department of Ophthalmology University Hospital LMU Munich Munich Germany
| | - Siegfried G. Priglinger
- Cell and Molecular Biology Laboratory Department of Ophthalmology University Hospital LMU Munich Munich Germany
| | - Rudolf Fuchshofer
- Institute of Human Anatomy and Embryology University of Regensburg Regensburg Germany
| | - Nikolaus Luft
- Cell and Molecular Biology Laboratory Department of Ophthalmology University Hospital LMU Munich Munich Germany
| | - Gregory Moloney
- Discipline of Ophthalmology Sydney Medical School Sydney Eye Hospital The University of Sydney Sydney NSW Australia
| | - Martin Dirisamer
- Cell and Molecular Biology Laboratory Department of Ophthalmology University Hospital LMU Munich Munich Germany
| | - Andreas Ohlmann
- Cell and Molecular Biology Laboratory Department of Ophthalmology University Hospital LMU Munich Munich Germany
| |
Collapse
|
33
|
Maurizi E, Schiroli D, Zini R, Limongelli A, Mistò R, Macaluso C, Pellegrini G. A fine-tuned β-catenin regulation during proliferation of corneal endothelial cells revealed using proteomics analysis. Sci Rep 2020; 10:13841. [PMID: 32796906 PMCID: PMC7427785 DOI: 10.1038/s41598-020-70800-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
Corneal endothelial (CE) dysfunction is the main indication for corneal transplantation, an invasive procedure with several limitations. Developing novel strategies to re-activate CE regenerative capacity is, therefore, of fundamental importance. This goal has proved to be challenging as corneal endothelial cells (CEnC) are blocked in the G0/G1 phase of the cell cycle in vivo and, albeit retaining proliferative capacity in vitro, this is further hindered by endothelial-to-mesenchymal transition. Herein we investigated the mechanisms regulating CEnC proliferation in vitro. Comparing the proteome of non-proliferating (in vivo-G0/G1) and proliferating (in vitro-G2/M) rabbit CEnC (rCEnC), 77 proteins, out of 3,328 identified, were differentially expressed in the two groups (p < 0.005). Literature and Gene Ontology analysis revealed β-catenin and transforming growth factor (TGF-β) pathways to be correlated with the identified proteins. Treatment of rCEnC with a β-catenin activator and inhibitor showed that β-catenin activation was necessary during rCEnC proliferation, but not sufficient for its induction. Furthermore, both pro-proliferative activity of basic fibroblast growth factor and anti-proliferative effects of TGF-β were regulated through β-catenin. Overall, these results provide novel insights into the molecular basis underlying the proliferation process that CEnC re-activate in vitro, consolidating the role of β-catenin and TGF-β.
Collapse
Affiliation(s)
- Eleonora Maurizi
- Centre for Regenerative Medicine "S. Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
- Department of Medicine and Surgery, Dentistry Center, University of Parma, Parma, Italy.
| | - Davide Schiroli
- Transfusion Medicine Unit, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - Roberta Zini
- Centre for Regenerative Medicine "S. Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | - Claudio Macaluso
- Department of Medicine and Surgery, Dentistry Center, University of Parma, Parma, Italy
| | - Graziella Pellegrini
- Centre for Regenerative Medicine "S. Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
34
|
McKay TB, Schlötzer-Schrehardt U, Pal-Ghosh S, Stepp MA. Integrin: Basement membrane adhesion by corneal epithelial and endothelial cells. Exp Eye Res 2020; 198:108138. [PMID: 32712184 DOI: 10.1016/j.exer.2020.108138] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022]
Abstract
Integrins mediate adhesion of cells to substrates and maintain tissue integrity by facilitating mechanotransduction between cells, the extracellular matrix, and gene expression in the nucleus. Changes in integrin expression in corneal epithelial cells and corneal endothelial cells impacts their adhesion to the epithelial basement membrane (EpBM) and Descemet's membrane, respectively. Integrins also play roles in assembly of basement membranes by both activating TGFβ1 and other growth factors. Over the past two decades, this knowledge has been translated into methods to grow corneal epithelial and endothelial cells in vitro for transplantation in the clinic thereby transforming clinical practice and quality of life for patients. Current knowledge on the expression and function of the integrins that mediate adhesion to the basement membrane expressed by corneal epithelial and endothelial cells in health and disease is summarized. This is the first review to discuss similarities and differences in the integrins expressed by both cell types.
Collapse
Affiliation(s)
- Tina B McKay
- Department of Ophthalmology, Schepens Eye Research Institute / Mass Eye and Ear, 20 Staniford Street, Boston, MA, 02114, USA
| | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology, Universitätsklinikum Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sonali Pal-Ghosh
- Department of Anatomy and Cell Biology, The George Washington School of Medicine and Health Sciences, Washington, DC, 20052, USA
| | - Mary Ann Stepp
- Department of Anatomy and Cell Biology, The George Washington School of Medicine and Health Sciences, Washington, DC, 20052, USA; Department of Ophthalmology, The George Washington School of Medicine and Health Sciences, Washington, DC, 20052, USA.
| |
Collapse
|
35
|
Kennedy S, Lace R, Carserides C, Gallagher AG, Wellings DA, Williams RL, Levis HJ. Poly-ε-lysine based hydrogels as synthetic substrates for the expansion of corneal endothelial cells for transplantation. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:102. [PMID: 31485761 PMCID: PMC6726667 DOI: 10.1007/s10856-019-6303-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Dysfunction of the corneal endothelium (CE) resulting from progressive cell loss leads to corneal oedema and significant visual impairment. Current treatments rely upon donor allogeneic tissue to replace the damaged CE. A donor cornea shortage necessitates the development of biomaterials, enabling in vitro expansion of corneal endothelial cells (CECs). This study investigated the use of a synthetic peptide hydrogel using poly-ε-lysine (pεK), cross-linked with octanedioic-acid as a potential substrate for CECs expansion and CE grafts. PεK hydrogel properties were optimised to produce a substrate which was thin, transparent, porous and robust. A human corneal endothelial cell line (HCEC-12) attached and grew on pεK hydrogels as confluent monolayers after 7 days, whereas primary porcine CECs (pCECs) detached from the pεK hydrogel. Pre-adsorption of collagen I, collagen IV and fibronectin to the pεK hydrogel increased pCEC adhesion at 24 h and confluent monolayers formed at 7 days. Minimal cell adhesion was observed with pre-adsorbed laminin, chondroitin sulphate or commercial FNC coating mix (fibronectin, collagen and albumin). Functionalisation of the pεK hydrogel with synthetic cell binding peptide H-Gly-Gly-Arg-Gly-Asp-Gly-Gly-OH (RGD) or α2β1 integrin recognition sequence H-Asp-Gly-Glu-Ala-OH (DGEA) resulted in enhanced pCEC adhesion with the RGD peptide only. pCECs grown in culture at 5 weeks on RGD pεK hydrogels showed zonula occludins 1 staining for tight junctions and expression of sodium-potassium adenosine triphosphase, suggesting a functional CE. These results demonstrate the pεK hydrogel can be tailored through covalent binding of RGD to provide a surface for CEC attachment and growth. Thus, providing a synthetic substrate with a therapeutic application for the expansion of allogenic CECs and replacement of damaged CE.
Collapse
Affiliation(s)
- Stephnie Kennedy
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Rebecca Lace
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Constandinos Carserides
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Andrew G Gallagher
- SpheriTech Ltd, Business and Technical Park, The Heath, Runcorn, WA7 4QX, UK
| | - Donald A Wellings
- SpheriTech Ltd, Business and Technical Park, The Heath, Runcorn, WA7 4QX, UK
| | - Rachel L Williams
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - Hannah J Levis
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, 6 West Derby Street, Liverpool, L7 8TX, UK
| |
Collapse
|
36
|
Gutermuth A, Maassen J, Harnisch E, Kuhlen D, Sauer-Budge A, Skazik-Voogt C, Engelmann K. Descemet's Membrane Biomimetic Microtopography Differentiates Human Mesenchymal Stem Cells Into Corneal Endothelial-Like Cells. Cornea 2019; 38:110-119. [PMID: 30308581 PMCID: PMC6282677 DOI: 10.1097/ico.0000000000001765] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Supplemental Digital Content is Available in the Text. Purpose: Loss of corneal endothelial cells (CECs) bears disastrous consequences for the patient, including corneal clouding and blindness. Corneal transplantation is currently the only therapy for severe corneal disorders. However, the worldwide shortages of corneal donor material generate a strong demand for personalized stem cell–based alternative therapies. Because human mesenchymal stem cells are known to be sensitive to their mechanical environments, we investigated the mechanotransductive potential of Descemet membrane–like microtopography (DLT) to differentiate human mesenchymal stem cells into CEC-like cells. Methods: Master molds with inverted DLT were produced by 2-photon lithography (2-PL). To measure the mechanotransductive potential of DLT, mesenchymal stem cells were cultivated on silicone or collagen imprints with DLT. Changes in morphology were imaged, and changes in gene expression of CEC typical genes such as zonula occludens (ZO-1), sodium/potassium (Na/K)-ATPase, paired-like homeodomain 2 (PITX2), and collagen 8 (COL-8) were measured with real-time polymerase chain reaction. At least immunofluorescence analysis has been conducted to confirm gene data on the protein level. Results: Adhesion of MSCs to DLT molded in silicone and particularly in collagen initiates polygonal morphology and monolayer formation and enhances not only transcription of CEC typical genes such as ZO-1, Na/K-ATPase, PITX2, and COL-8 but also expression of the corresponding proteins. Conclusions: Artificial reproduction of Descemet membrane with respect to topography and similar stiffness offers a potential innovative way to bioengineer a functional CEC monolayer from autologous stem cells.
Collapse
Affiliation(s)
- Angela Gutermuth
- Department for Applied Cell Biology, Fraunhofer Institute for Production Technology, Aachen, Germany
| | - Jessika Maassen
- Department for Applied Cell Biology, Fraunhofer Institute for Production Technology, Aachen, Germany
| | - Emely Harnisch
- Department for Applied Cell Biology, Fraunhofer Institute for Production Technology, Aachen, Germany
| | - Daniel Kuhlen
- Department for Applied Cell Biology, Fraunhofer Institute for Production Technology, Aachen, Germany
| | - Alexis Sauer-Budge
- Exponent, Department for Polymer Science & Materials Chemistry, Natick, MA
| | - Claudia Skazik-Voogt
- Department for Applied Cell Biology, Fraunhofer Institute for Production Technology, Aachen, Germany
| | - Katrin Engelmann
- Medical Center for Ophthalmology, Chemnitz, Germany.,Experimental Ophthalmology, Institute of Anatomy Dresden, Technical University of Dresden, Dresden, Germany
| |
Collapse
|
37
|
Leonard BC, Jalilian I, Raghunathan VK, Wang W, Jun AS, Murphy CJ, Thomasy SM. Biomechanical changes to Descemet's membrane precede endothelial cell loss in an early-onset murine model of Fuchs endothelial corneal dystrophy. Exp Eye Res 2018; 180:18-22. [PMID: 30471280 DOI: 10.1016/j.exer.2018.11.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/08/2018] [Accepted: 11/20/2018] [Indexed: 01/20/2023]
Abstract
Early-onset Fuchs endothelial corneal dystrophy (FECD) has been associated with nonsynonymous mutations in collagen VIII α2 (COL8A2), a key extracellular matrix (ECM) protein in Descemet's membrane (DM). Two knock-in strains of mice have been generated to each express a mutant COL8A2 protein (Col8a2L450W/L450W and Col8a2Q455K/Q455K) that recapitulate the clinical phenotype of early-onset FECD including endothelial cell loss, cellular polymegathism and pleomorphism, and guttae. Due to abnormalities in ECM protein composition and structure in FECD, the stiffness of DM in Col8a2 knock-in mice and wildtype (WT) controls was measured using atomic force microscopy at 5 and 10 months of age, coinciding with the onset of FECD phenotypic abnormalities. At 5 months, only sporadic guttae were identified via in vivo confocal microscopy (IVCM) in Col8a2Q455K/Q455K mice, otherwise both strains of Col8a2 transgenic mice were indistinguishable from WT controls in terms of endothelial cell density and size. By 10 months of age, Col8a2L450W/L450W and Col8a2Q455K/Q455K mice developed reduced corneal endothelial density, increased endothelial cell area and guttae, with the Col8a2Q455K/Q455K strain exhibiting a more severe phenotype. However, at 5 months of age, prior to the development endothelial cell abnormalities, Col8a2L450W/L450W and Col8a2Q455K/Q455K mice knock-in mice had reduced tissue stiffness of DM that was statistically significant in the Col8a2Q455K/Q455K mice when compared with wildtype controls. These data indicate that alterations in the tissue compliance of DM precede phenotypic changes in endothelial cell count and morphology, and may play a role in onset and progression of FECD.
Collapse
Affiliation(s)
- Brian C Leonard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, United States
| | - Iman Jalilian
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, United States
| | - Vijay Krishna Raghunathan
- The Ocular Surface Institute, University of Houston, Houston, TX, United States; Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, United States; Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX, United States
| | - Wei Wang
- Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Albert S Jun
- Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Christopher J Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, United States; Department of Ophthalmology & Vision Sciences, School of Medicine, University of California, Davis, CA, United States
| | - Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, United States; Department of Ophthalmology & Vision Sciences, School of Medicine, University of California, Davis, CA, United States.
| |
Collapse
|
38
|
Fish Scale-Derived Scaffolds for Culturing Human Corneal Endothelial Cells. Stem Cells Int 2018; 2018:8146834. [PMID: 29853917 PMCID: PMC5949177 DOI: 10.1155/2018/8146834] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/22/2018] [Accepted: 03/19/2018] [Indexed: 11/18/2022] Open
Abstract
Purpose To investigate the biocompatibility of fish scale-derived scaffolds (FSS) with primary human corneal endothelial cells (HCEnCs). Methods HCEnCs were isolated from 30 donor corneas in a donor-matched study and plated in precoated Lab-Tek slides (n = 15) and FSS (n = 15). Cell morphology, proliferation/migration, and glucose uptake were studied (n = 30). Hoechst, ethidium homodimer, and calcein AM (HEC) staining was performed to determine viability and toxicity (n = 6). The cell surface area was calculated based on calcein AM staining. HCEnCs were stained for ZO-1 (n = 6) to detect tight junctions and to measure cell morphology; Ki-67 (n = 6) to measure proliferating cells; and vinculin to quantify focal adhesions (n = 6). The formation of de novo extracellular matrix was analyzed using histology (n = 6). Results HCEnCs attach and grow faster on Lab-Tek slides compared to the undulating topography of the FSS. At day 11, HCEnCs on Lab-Tek slide grew 100% confluent, while FSS was only 65% confluent (p = 0.0883), with no significant difference in glucose uptake between the two (p = 0.5181) (2.2 μg/mL in Lab-Tek versus 2.05 μg/mL in FSS). HEC staining showed no toxicity. The surface area of the cells in Lab-Tek was 409.1 μm2 compared to 452.2 μm2 on FSS, which was not significant (p = 0.5325). ZO-1 showed the presence of tight junctions in both conditions; however, hexagonality was higher (74% in Lab-Tek versus 45% in FSS; p = 0.0006) with significantly less polymorphic cells on Lab-Tek slides (8% in Lab-Tek versus 16% in FSS; p = 0.0041). Proliferative cells were detected in both conditions (4.6% in Lab-Tek versus 4.2% in FSS; p = 0.5922). Vinculin expression was marginally higher in HCEnCs cultured on Lab-Tek (234 versus 199 focal adhesions; p = 0.0507). Histological analysis did not show the formation of a basement membrane. Conclusions HCEnCs cultured on precoated FSS form a monolayer, displaying correct morphology, cytocompatibility, and absence of toxicity. FSS needs further modification in terms of structure and surface chemistry before considering it as a potential carrier for cultured HCEnCs.
Collapse
|
39
|
Shull OR, Reilly CM, Davis LB, Murphy CJ, Thomasy SM. Phenotypic Characterization of Corneal Endothelial Dystrophy in German Shorthaired and Wirehaired Pointers Using In Vivo Advanced Corneal Imaging and Histopathology. Cornea 2018; 37:88-94. [PMID: 29077583 PMCID: PMC5799001 DOI: 10.1097/ico.0000000000001431] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE To evaluate corneal morphology using ultrasonic pachymetry (USP), Fourier-domain optical coherence tomography (FD-OCT), and in vivo confocal microscopy (IVCM) in 2 related canine breeds-German shorthaired pointers (GSHPs) and German wirehaired pointers (GWHPs)-with and without corneal endothelial dystrophy (CED). This condition is characterized by premature endothelial cell degeneration leading to concomitant corneal edema and is similar to Fuchs endothelial corneal dystrophy. METHODS Corneas of 10 CED-affected (4 GSHP and 6 GWHP) and 19 unaffected, age-matched (15 GSHP and 4 GWHP) dogs were examined using USP, FD-OCT, and IVCM. A 2-sample t test or Mann-Whitney rank-sum test was used to statistically compare parameters between both groups. Data are presented as mean ± SD or median (range). RESULTS Central corneal thickness determined using USP was significantly greater in CED-affected than in unaffected dogs at 1179 (953-1959) and 646 (497-737) μm, respectively (P < 0.001). Central epithelial thickness was found to be significantly decreased in CED-affected versus unaffected dogs at 47 ± 7.1 and 55 ± 7.1 μm, respectively (P = 0.011), using FD-OCT. With IVCM, corneal endothelial density was significantly less (P < 0.001) in 5 dogs with CED versus 19 unaffected controls at 499 ± 315 versus 1805 ± 298 cells/mm, respectively. CED-affected dogs exhibited endothelial pleomorphism and polymegethism, whereas CED-unaffected dogs had regular hexagonal arrangement of cells. CONCLUSIONS GSHPs and GWHPs with CED exhibit marked differences in corneal morphology when compared with age-matched control dogs. These 2 CED-affected breeds represent spontaneous, large animal models for human Fuchs endothelial corneal dystrophy.
Collapse
Affiliation(s)
- Olivia R. Shull
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA
| | | | - Lola B. Davis
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA
| | - Christopher J. Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Davis, CA
| | - Sara M. Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Davis, CA
| |
Collapse
|
40
|
Mechels KB, Greenwood MD, Sudhagoni RG, Berdahl JP. Influences on rebubble rate in Descemet's membrane endothelial keratoplasty. Clin Ophthalmol 2017; 11:2139-2144. [PMID: 29255344 PMCID: PMC5722014 DOI: 10.2147/opth.s147217] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose Descemet’s membrane endothelial keratoplasty (DMEK) is a minimally invasive partial corneal transplant procedure used in patients with failing endothelial membranes. This study aims to identify those factors which influence the need for a rebubble of the corneal graft. Methods A total of 94 eyes that received DMEK between March 2014 and January 2016 at Vance Thompson Vision were used in the study. Demographic and graft data were collected from the patients and donors, and perioperative statistics of the procedures. A logistical regression was used to compare eyes that did and did not require a rebubble. Results Among those characteristics that were included (patient age/sex, donor age/sex, death to processing time, donation to surgery time, death to procurement time, specular cell count density, burping procedure, postoperative day 1 intraocular pressure [IOP], and postoperative week 1 IOP, concurrent phacoemulsification, and how well the Descemet graft was centered), only a lower specular cell count density of the corneal graft, and a graft that was not well-centered correlated with needing a rebubble due to partial graft detachment (p=0.021) and (p=0.023), respectively. Conclusion An increased specular cell count density may allow for better placement of the corneal graft by allowing for better unfolding in DMEK procedures. A well-centered graft may decrease postoperative complications by increasing adherence. Additionally, postoperative management of IOP may not affect the rebubble rate, and therefore should be left to the discretion of the provider to determine whether it is necessary.
Collapse
Affiliation(s)
- Keegan B Mechels
- Sanford School of Medicine, University of South Dakota, Vermillion, SD
| | | | - Ramu G Sudhagoni
- School of Health Sciences, University of South Dakota, Vermillion, SD, USA
| | | |
Collapse
|
41
|
Crest J, Diz-Muñoz A, Chen DY, Fletcher DA, Bilder D. Organ sculpting by patterned extracellular matrix stiffness. eLife 2017; 6. [PMID: 28653906 PMCID: PMC5503509 DOI: 10.7554/elife.24958] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 06/07/2017] [Indexed: 12/11/2022] Open
Abstract
How organ-shaping mechanical imbalances are generated is a central question of morphogenesis, with existing paradigms focusing on asymmetric force generation within cells. We show here that organs can be sculpted instead by patterning anisotropic resistance within their extracellular matrix (ECM). Using direct biophysical measurements of elongating Drosophila egg chambers, we document robust mechanical anisotropy in the ECM-based basement membrane (BM) but not in the underlying epithelium. Atomic force microscopy (AFM) on wild-type BM in vivo reveals an anterior–posterior (A–P) symmetric stiffness gradient, which fails to develop in elongation-defective mutants. Genetic manipulation shows that the BM is instructive for tissue elongation and the determinant is relative rather than absolute stiffness, creating differential resistance to isotropic tissue expansion. The stiffness gradient requires morphogen-like signaling to regulate BM incorporation, as well as planar-polarized organization to homogenize it circumferentially. Our results demonstrate how fine mechanical patterning in the ECM can guide cells to shape an organ. DOI:http://dx.doi.org/10.7554/eLife.24958.001 All organs have specific shapes and architectures that are necessary for them to work properly. Many different factors are responsible for arranging the right cells into the correct positions to make an organ. These include physical forces that act within and around cells to pull them into the right shape and location. A structure called the extracellular matrix surrounds cells and provides them with support; it can also guide cell movements. It is not clear whether the extracellular matrix plays only a passive role or a more active, instructive role in shaping organs, in part, because it is difficult to measure the physical forces within densely packed cells. The ovaries of the fruit fly Drosophila melanogaster provide a simple system in which to study how organs take their shape. Crest et al. developed a method to measure forces in the fly ovary as it changes from being an initially spherical group of cells to its final elongated tube shape. The results revealed that, during this process, the extracellular matrix becomes gradually stiffer from one end of the ovary to the other. This change is the main factor responsible for the cell rearrangements that shape the developing organ. This work reveals that, along with providing structural support to cells, the mechanical properties of the matrix also actively guide how organs form. In the future, these findings may aid efforts to grow organs in a laboratory and to regenerate organs in human patients. DOI:http://dx.doi.org/10.7554/eLife.24958.002
Collapse
Affiliation(s)
- Justin Crest
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, United States
| | - Alba Diz-Muñoz
- Department of Bioengineering and Biophysics Program, University of California-Berkeley, Berkeley, United States
| | - Dong-Yuan Chen
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, United States
| | - Daniel A Fletcher
- Department of Bioengineering and Biophysics Program, University of California-Berkeley, Berkeley, United States
| | - David Bilder
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, United States
| |
Collapse
|