1
|
Liu C, Xu F, Wei R, Cheng Y, Wang Y, Shi Y, Yang K, Peng W, Jian W, Wu H, Li M. Metabolomics unveils the role of pipecolic acid in regulating monocytes/macrophages-endothelial cells crosstalk to modulate choroidal neovascularization. Exp Eye Res 2025; 254:110315. [PMID: 40020897 DOI: 10.1016/j.exer.2025.110315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/07/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Choroidal neovascularization (CNV) is a leading cause of vision loss in ocular diseases, including age-related macular degeneration (AMD). Despite extensive research, the underlying mechanisms of CNV remain incompletely understood, with a predominant focus on endothelial dysfunction. CNV, however, is a multi-cellular, multi-stage process involving complex interactions between endothelial cells, monocytes/macrophages, and other immune cells. In this study, we employed a dual-platform metabolomics approach combining liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) to identify key metabolic alterations associated with CNV. Our results revealed significant changes in metabolic pathways during CNV progression. Using a myeloid lineage tracing mouse model, we further explored how Pipecolic acid regulates interactions between monocytes/macrophages and endothelial cells, key players in CNV development. We found that Pipecolic acid modulates monocyte/macrophage-endothelial cell crosstalk, inhibiting pathological angiogenesis. These results provide valuable insights into the molecular mechanisms driving CNV and highlight potential therapeutic targets for treating ocular neovascular diseases.
Collapse
Affiliation(s)
- Chang Liu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China; Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China; Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Fangcheng Xu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China; Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China; Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Ruoyan Wei
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China; Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China; Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China; Shanghai Medical College and Zhongshan Hospital Immunotherapy Translational Research Center, Shanghai, China
| | - Yun Cheng
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China; Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China; Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yunzhe Wang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China; Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China; Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yefei Shi
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Ke Yang
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Wenhui Peng
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Weixia Jian
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China.
| | - Haixiang Wu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China; Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China; Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
| | - Meiyan Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China; Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China; Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.
| |
Collapse
|
2
|
Choi AJ, Hefley BS, Strobel HA, Moss SM, Hoying JB, Nicholas SE, Moshayedi S, Kim J, Karamichos D. Fabrication of a 3D Corneal Model Using Collagen Bioink and Human Corneal Stromal Cells. J Funct Biomater 2025; 16:118. [PMID: 40278226 PMCID: PMC12028034 DOI: 10.3390/jfb16040118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/14/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Corneal transplantation remains a critical treatment option for individuals with corneal disorders, but it faces challenges such as rejection, high associated medical costs, and donor scarcity. A promising alternative for corneal replacement involves fabricating artificial cornea from a patient's own cells. Our study aimed to leverage bioprinting to develop a corneal model using human corneal stromal cells embedded in a collagen-based bioink. We generated both cellular and acellular collagen I (COL I) constructs. Cellular constructs were cultured for up to 4 weeks, and gene expression analysis was performed to assess extracellular matrix (ECM) remodeling and fibrotic markers. Our results demonstrated a significant decrease in the expression of COL I, collagen III (COL III), vimentin (VIM), and vinculin (VCL), indicating a dynamic remodeling process towards a more physiologically relevant corneal ECM. Overall, our study provides a foundational framework for developing customizable, corneal replacements using bioprinting technology. Further research is necessary to optimize the bioink composition and evaluate the functional and biomechanical properties of these bioengineered corneas.
Collapse
Affiliation(s)
- Alexander J. Choi
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX 76107, USA; (A.J.C.); (B.S.H.); (S.E.N.); (S.M.); (J.K.)
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | - Brenna S. Hefley
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX 76107, USA; (A.J.C.); (B.S.H.); (S.E.N.); (S.M.); (J.K.)
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | - Hannah A. Strobel
- Advanced Solutions Life Sciences, 500 N Commercial St., Manchester, NH 03101, USA; (H.A.S.); (S.M.M.); (J.B.H.)
| | - Sarah M. Moss
- Advanced Solutions Life Sciences, 500 N Commercial St., Manchester, NH 03101, USA; (H.A.S.); (S.M.M.); (J.B.H.)
| | - James B. Hoying
- Advanced Solutions Life Sciences, 500 N Commercial St., Manchester, NH 03101, USA; (H.A.S.); (S.M.M.); (J.B.H.)
| | - Sarah E. Nicholas
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX 76107, USA; (A.J.C.); (B.S.H.); (S.E.N.); (S.M.); (J.K.)
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | - Shadi Moshayedi
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX 76107, USA; (A.J.C.); (B.S.H.); (S.E.N.); (S.M.); (J.K.)
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | - Jayoung Kim
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX 76107, USA; (A.J.C.); (B.S.H.); (S.E.N.); (S.M.); (J.K.)
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX 76107, USA; (A.J.C.); (B.S.H.); (S.E.N.); (S.M.); (J.K.)
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| |
Collapse
|
3
|
White TD, Almutairi A, Gai-Tusing Y, Stephenson DJ, Stephenson BD, Chalfant CE, Lei X, Lu B, Hammock BD, DiLorenzo TP, Ramanadham S. Differential lipid signaling from CD4 + and CD8 + T cells contributes to type 1 diabetes development. Front Immunol 2024; 15:1444639. [PMID: 39359722 PMCID: PMC11445035 DOI: 10.3389/fimmu.2024.1444639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/14/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction We reported that Ca2+-independent phospholipase A2β (iPLA2β)-derived lipids (iDLs) contribute to type 1 diabetes (T1D) onset. As CD4+ and CD8+ T cells are critical in promoting β-cell death, we tested the hypothesis that iDL signaling from these cells participates in T1D development. Methods CD4+ and CD8+ T cells from wild-type non-obese diabetic (NOD) and NOD.iPLA2β+/- (NOD.HET) mice were administered in different combinations to immunodeficient NOD.scid. Results In mice receiving only NOD T cells, T1D onset was rapid (5 weeks), incidence 100% by 20 weeks, and islets absent. In contrast, onset was delayed 1 week and incidence reduced 40%-50% in mice receiving combinations that included NOD.HET T cells. Consistently, islets from these non-diabetic mice were devoid of infiltrate and contained insulin-positive β-cells. Reduced iPLA2β led to decreased production of proinflammatory lipids from CD4+ T cells including prostaglandins and dihydroxyeicosatrienoic acids (DHETs), products of soluble epoxide hydrolase (sEH), and inhibition of their signaling decreased (by 82%) IFNγ+CD4+ cells abundance. However, only DHETs production was reduced from CD8+ T cells and was accompanied by decreases in sEH and granzyme B. Discussion These findings suggest that differential select iDL signaling in CD4+ and CD8+ T cells contributes to T1D development, and that therapeutics targeting such signaling might be considered to counter T1D.
Collapse
Affiliation(s)
- Tayleur D. White
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Abdulaziz Almutairi
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Basic Science, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Ying Gai-Tusing
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Daniel J. Stephenson
- Cancer Biology Program, University of Virginia National Cancer Institute (UVA NCI) Comprehensive Cancer Center, University of Virginia-School of Medicine, Charlottesville, VA, United States
- Research Service, Richmond Veterans Administration Medical Center, Richmond, VA, United States
| | - Benjamin D. Stephenson
- Cancer Biology Program, University of Virginia National Cancer Institute (UVA NCI) Comprehensive Cancer Center, University of Virginia-School of Medicine, Charlottesville, VA, United States
- Research Service, Richmond Veterans Administration Medical Center, Richmond, VA, United States
- Department of Medicine, University of Virginia-School of Medicine, Charlottesville, VA, United States
- Department of Cell Biology, University of Virginia-School of Medicine, Charlottesville, VA, United States
| | - Charles E. Chalfant
- Cancer Biology Program, University of Virginia National Cancer Institute (UVA NCI) Comprehensive Cancer Center, University of Virginia-School of Medicine, Charlottesville, VA, United States
- Research Service, Richmond Veterans Administration Medical Center, Richmond, VA, United States
- Department of Medicine, University of Virginia-School of Medicine, Charlottesville, VA, United States
- Department of Cell Biology, University of Virginia-School of Medicine, Charlottesville, VA, United States
| | - Xiaoyong Lei
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Brian Lu
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bruce D. Hammock
- Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Teresa P. DiLorenzo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
4
|
Ghenciu LA, Hațegan OA, Bolintineanu SL, Dănilă AI, Faur AC, Prodan-Bărbulescu C, Stoicescu ER, Iacob R, Șișu AM. Immune-Mediated Ocular Surface Disease in Diabetes Mellitus-Clinical Perspectives and Treatment: A Narrative Review. Biomedicines 2024; 12:1303. [PMID: 38927510 PMCID: PMC11201425 DOI: 10.3390/biomedicines12061303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder marked by hyperglycemia due to defects in insulin secretion, action, or both, with a global prevalence that has tripled in recent decades. This condition poses significant public health challenges, affecting individuals, healthcare systems, and economies worldwide. Among its numerous complications, ocular surface disease (OSD) is a significant concern, yet understanding its pathophysiology, diagnosis, and management remains challenging. This review aims to explore the epidemiology, pathophysiology, clinical manifestations, diagnostic approaches, and management strategies of diabetes-related OSD. The ocular surface, including the cornea, conjunctiva, and associated structures, is vital for maintaining eye health, with the lacrimal functional unit (LFU) playing a crucial role in tear film regulation. In DM, changes in glycosaminoglycan metabolism, collagen synthesis, oxygen consumption, and LFU dysfunction contribute to ocular complications. Persistent hyperglycemia leads to the expression of cytokines, chemokines, and cell adhesion molecules, resulting in neuropathy, tear film abnormalities, and epithelial lesions. Recent advances in molecular research and therapeutic modalities, such as gene and stem cell therapies, show promise for managing diabetic ocular complications. Future research should focus on pathogenetically oriented therapies for diabetic neuropathy and keratopathy, transitioning from animal models to clinical trials to improve patient outcomes.
Collapse
Affiliation(s)
- Laura Andreea Ghenciu
- Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
| | - Ovidiu Alin Hațegan
- Discipline of Anatomy and Embriology, Medicine Faculty, ‘Vasile Goldis’ Western University of Arad, Revolution Boulevard 94, 310025 Arad, Romania
| | - Sorin Lucian Bolintineanu
- Department of Anatomy and Embriology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (S.L.B.); (A.-I.D.); (A.C.F.); (C.P.-B.); (R.I.); (A.M.Ș.)
| | - Alexandra-Ioana Dănilă
- Department of Anatomy and Embriology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (S.L.B.); (A.-I.D.); (A.C.F.); (C.P.-B.); (R.I.); (A.M.Ș.)
| | - Alexandra Corina Faur
- Department of Anatomy and Embriology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (S.L.B.); (A.-I.D.); (A.C.F.); (C.P.-B.); (R.I.); (A.M.Ș.)
| | - Cătălin Prodan-Bărbulescu
- Department of Anatomy and Embriology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (S.L.B.); (A.-I.D.); (A.C.F.); (C.P.-B.); (R.I.); (A.M.Ș.)
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- IInd Surgery Clinic, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Emil Robert Stoicescu
- Field of Applied Engineering Sciences, Specialization Statistical Methods and Techniques in Health and Clinical Research, Faculty of Mechanics, ‘Politehnica’ University Timisoara, Mihai Viteazul Boulevard No. 1, 300222 Timisoara, Romania;
- Department of Radiology and Medical Imaging, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Roxana Iacob
- Department of Anatomy and Embriology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (S.L.B.); (A.-I.D.); (A.C.F.); (C.P.-B.); (R.I.); (A.M.Ș.)
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Field of Applied Engineering Sciences, Specialization Statistical Methods and Techniques in Health and Clinical Research, Faculty of Mechanics, ‘Politehnica’ University Timisoara, Mihai Viteazul Boulevard No. 1, 300222 Timisoara, Romania;
| | - Alina Maria Șișu
- Department of Anatomy and Embriology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (S.L.B.); (A.-I.D.); (A.C.F.); (C.P.-B.); (R.I.); (A.M.Ș.)
| |
Collapse
|
5
|
Ricciutelli M, Angeloni S, Conforti S, Corneli M, Caprioli G, Sagratini G, Alabed HBR, D'Amato Tóthová J, Pellegrino RM. An untargeted metabolomics approach to study changes of the medium during human cornea culture. Metabolomics 2024; 20:44. [PMID: 38581549 DOI: 10.1007/s11306-024-02102-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/15/2024] [Indexed: 04/08/2024]
Abstract
INTRODUCTION Two main approaches (organ culture and hypothermia) for the preservation and storage of human donor corneas are globally adopted for corneal preservation before the transplant. Hypothermia is a hypothermic storage which slows down cellular metabolism while organ culture, a corneal culture performed at 28-37 °C, maintains an active corneal metabolism. Researchers, till now, have just studied the impact of organ culture on human cornea after manipulating and disrupting tissues. OBJECTIVES The aim of the current work was to optimize an analytical procedure which can be useful for discovering biomarkers capable of predicting tissue health status. For the first time, this research proposed a preliminary metabolomics study on medium for organ culture without manipulating and disrupting the valuable human tissues which could be still used for transplantation. METHODS In particular, the present research proposed a method for investigating changes in the medium, over a storage period of 20 days, in presence and absence of a human donor cornea. An untargeted metabolomics approach using UHPLC-QTOF was developed to deeply investigate the differences on metabolites and metabolic pathways and the influence of the presence of the cornea inside the medium. RESULTS Differences in the expression of some compounds emerged from this preliminary metabolomics approach, in particular in medium maintained for 10 and 20 days in presence but also in the absence of cornea. A total of 173 metabolites have been annotated and 36 pathways were enriched by pathway analysis. CONCLUSION The results revealed a valuable untargeted metabolomics approach which can be applied in organ culture metabolomics.
Collapse
Affiliation(s)
- Massimo Ricciutelli
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, I-62032, Camerino, Italy
| | - Simone Angeloni
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, I-62032, Camerino, Italy.
| | - Silvia Conforti
- The Marche Region Eye Bank, AST Ancona - E. Profili Hospital, 60044, Fabriano, Italy
| | - Massimiliano Corneli
- The Marche Region Eye Bank, AST Ancona - E. Profili Hospital, 60044, Fabriano, Italy
| | - Giovanni Caprioli
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, I-62032, Camerino, Italy
| | - Gianni Sagratini
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, I-62032, Camerino, Italy
| | - Husam B R Alabed
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100, Perugia, Italy
| | | | - Roberto Maria Pellegrino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100, Perugia, Italy
| |
Collapse
|
6
|
Yin Z, Ge P, Zeng C, Liu C, Zhao Y, Zhang Q, Xie H, Wang A, Liu X, Kang S, Zhang Q, Zhang Y, Zhang D, Zhao J. Association of lysine pathway metabolites with moyamoya disease. Clin Nutr 2024; 43:787-795. [PMID: 38340411 DOI: 10.1016/j.clnu.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 02/12/2024]
Abstract
BACKGROUND AND OBJECTIVE Lysine and its pathway metabolites have been identified as novel biomarkers for metabolic and vascular diseases. The role of them in the identification of moyamoya disease (MMD) has not been elucidated. This study aimed to determine the association between lysine pathway metabolites and the presence of MMD. METHODS We prospectively enrolled 360 MMD patients and 89 healthy controls from September 2020 to December 2021 in Beijing Tiantan Hospital. Serum levels of lysine, pipecolic acid and 2-aminoadipic acid were measured by liquid chromatography-mass spectrometry. We employed logistic regression and restricted cubic spline to explore the association between these metabolites and the presence of MMD. Stratified analyses were also conducted to test the robustness of results. RESULTS We observed that lysine levels in MMD patients were significantly higher and pipecolic acid levels were significantly lower compared to HCs (both p < 0.001), while no difference was found in the level of 2-AAA between both groups. When comparing metabolites by quartiles, elevated lysine levels were linked to increased odds for MMD (the fourth quartile [Q4] vs the first quartile [Q1]: odds ratio, 3.48, 95%CI [1.39-8.75]), while reduced pipecolic acid levels correlated with higher odds (Q4 vs Q1: odds ratio, 0.08; 95 % CI [0.03-0.20]). The restricted cubic spline found a L-shaped relationship between pipecolic acid level and the presence of MMD, with a cutoff point at 2.52 μmol/L. Robust results were also observed across subgroups. CONCLUSION Elevated lysine levels were correlated with increased odds of MMD presence, while lower pipecolic acid levels were associated with higher odds of the condition. These results suggest potential new biomarkers for the identification of MMD. CLINICAL TRIAL REGISTRY NUMBER URL: https://www.chictr.org.cn/. Unique identifier: ChiCTR2200061889.
Collapse
Affiliation(s)
- Zihan Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Peicong Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Chaofan Zeng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Chenglong Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Yahui Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Qihang Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Hutao Xie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Anjie Wang
- Department of Neurology, First People's Hospital of Guangyuan, Guangyuan, Sichuan, China.
| | - Xingju Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Shuai Kang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Qian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Yan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Dong Zhang
- Department of Neurosurgery, Beijing Hospital, Beijing, China.
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
7
|
Sharma P, Ma JX, Karamichos D. Effects of hypoxia in the diabetic corneal stroma microenvironment. Exp Eye Res 2024; 240:109790. [PMID: 38224848 DOI: 10.1016/j.exer.2024.109790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/15/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Corneal dysfunctions associated with Diabetes Mellitus (DM), termed diabetic keratopathy (DK), can cause impaired vision and/or blindness. Hypoxia affects both Type 1 (T1DM) and Type 2 (T2DM) surprisingly, the role of hypoxia in DK is unexplored. The aim of this study was to examine the impact of hypoxia in vitro on primary human corneal stromal cells derived from Healthy (HCFs), and diabetic (T1DMs and T2DMs) subjects, by exposing them to normoxic (21% O2) or hypoxic (2% O2) conditions through 2D and 3D in vitro models. Our data revealed that hypoxia affected T2DMs by slowing their wound healing capacity, leading to significant alterations in oxidative stress-related markers, mitochondrial health, cellular homeostasis, and endoplasmic reticulum health (ER) along with fibrotic development. In T1DMs, hypoxia significantly modulated markers related to membrane permeabilization, oxidative stress via apoptotic marker (BAX), and protein degradation. Hypoxic environment induced oxidative stress (NOQ1 mediated reduction of superoxide in T1DMs and Nrf2 mediated oxidative stress in T2DMs), modulation in mitochondrial health (Heat shock protein 27 (HSP27), and dysregulation of cellular homeostasis (HSP90) in both T1DMs and T2DMs. This data underscores the significant impact of hypoxia on the diabetic cornea. Further studies are warranted to delineate the complex interactions.
Collapse
Affiliation(s)
- Purnima Sharma
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
| |
Collapse
|
8
|
Liu Y, Liu JE, He H, Qin M, Lei H, Meng J, Liu C, Chen X, Luo W, Zhong S. Characterizing the metabolic divide: distinctive metabolites differentiating CAD-T2DM from CAD patients. Cardiovasc Diabetol 2024; 23:14. [PMID: 38184583 PMCID: PMC10771670 DOI: 10.1186/s12933-023-02102-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/25/2023] [Indexed: 01/08/2024] Open
Abstract
OBJECTIVE To delineate the metabolomic differences in plasma samples between patients with coronary artery disease (CAD) and those with concomitant CAD and type 2 diabetes mellitus (T2DM), and to pinpoint distinctive metabolites indicative of T2DM risk. METHOD Plasma samples from CAD and CAD-T2DM patients across three centers underwent comprehensive metabolomic and lipidomic analyses. Multivariate logistic regression was employed to discern the relationship between the identified metabolites and T2DM risk. Characteristic metabolites' metabolic impacts were further probed through hepatocyte cellular experiments. Subsequent transcriptomic analyses elucidated the potential target sites explaining the metabolic actions of these metabolites. RESULTS Metabolomic analysis revealed 192 and 95 significantly altered profiles in the discovery (FDR < 0.05) and validation (P < 0.05) cohorts, respectively, that were associated with T2DM risk in univariate logistic regression. Further multivariate regression analyses identified 22 characteristic metabolites consistently associated with T2DM risk in both cohorts. Notably, pipecolinic acid and L-pipecolic acid, lysine derivatives, exhibited negative association with CAD-T2DM and influenced cellular glucose metabolism in hepatocytes. Transcriptomic insights shed light on potential metabolic action sites of these metabolites. CONCLUSIONS This research underscores the metabolic disparities between CAD and CAD-T2DM patients, spotlighting the protective attributes of pipecolinic acid and L-pipecolic acid. The comprehensive metabolomic and transcriptomic findings provide novel insights into the mechanism research, prophylaxis and treatment of comorbidity of CAD and T2DM.
Collapse
Affiliation(s)
- Yingjian Liu
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan 2nd Road, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Ju-E Liu
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Huafeng He
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan 2nd Road, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Min Qin
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan 2nd Road, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Heping Lei
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Jinxiu Meng
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Chen Liu
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Wenwei Luo
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan 2nd Road, Guangzhou, 510080, China.
| | - Shilong Zhong
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China.
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan 2nd Road, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
9
|
Luo L, Cai Y, Jiang Y, Gong Y, Cai C, Lai D, Jin X, Guan Z, Qiu Q. Pipecolic acid mitigates ferroptosis in diabetic retinopathy by regulating GPX4-YAP signaling. Biomed Pharmacother 2023; 169:115895. [PMID: 37984309 DOI: 10.1016/j.biopha.2023.115895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023] Open
Abstract
Diabetic retinopathy (DR) is currently recognized as the leading cause of end-stage eye disease. Pipecolic acid, a metabolite, has a significant regulatory effect on several pathological processes. However, the exact mechanism by which it causes damage in diabetic retinopathy is unknown. Between September 2021 and December 2022, 40 patients were retrospectively examined and divided into two groups: the healthy group (n = 20) and the DR group (n = 20). Metabolomic analysis found that pipecolic acid plays an important role in this process. Streptozotocin-induced diabetic mice and high-glucose cultured human retinal capillary endothelial cells (HRCECs) were then treated with pipecolic acid. Several oxidative stress measurements and RNA sequencing of retinal cells were tested. A gene interaction study was conducted using bioinformatics. Comparison of serological metabolites between healthy volunteers and DR patients showed that pipecolic acid was significantly lower in DR patients, and there was a negative correlation between the level of pipecolic acid with blood glucose and glycated hemoglobin. Yes-associated protein (YAP) mRNA, Malondialdehyde (MDA), and reactive oxygen species (ROS) levels were significantly higher in diabetic mice, but glutathione peroxidase (GSH-Px) levels were significantly lower. Pipecolic acid significantly alleviated oxidative stress and YAP expression. The number of vascular tubes was significantly higher in the DR group, and pipecolic acid treatment significantly reduced tube formation. RNA-Sequencing analysis revealed that YAP and glutathione-dependent lipid hydroperoxidase glutathione peroxidase 4 (GPX4) expression was reduced, and functional enrichment analysis revealed that ferroptosis and Hippo signaling pathways play an important role in this process. Additionally, pipecolic acid's ability to improve DR is diminished after YAP and GPX4 ablation. This study found that pipecolic acid, as a metabolite, may impede the progression of DR by inhibiting the YAP-GPX4 signaling pathway.
Collapse
Affiliation(s)
- Liying Luo
- Department of Ophthalmology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yuying Cai
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Yanyun Jiang
- Department of Ophthalmology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yingying Gong
- Department of Ophthalmology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Chunyang Cai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Dongwei Lai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Xiao Jin
- Department of Rheumatology and Immunology, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical University, Xuzhou, Jiangsu PR China
| | - Zhiqiang Guan
- Department of Dermatology, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical University, Xuzhou, Jiangsu, PR China.
| | - Qinghua Qiu
- Department of Ophthalmology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
10
|
Gao J, Yang T, Song B, Ma X, Ma Y, Lin X, Wang H. Abnormal tryptophan catabolism in diabetes mellitus and its complications: Opportunities and challenges. Biomed Pharmacother 2023; 166:115395. [PMID: 37657259 DOI: 10.1016/j.biopha.2023.115395] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023] Open
Abstract
In recent years, the incidence rate of diabetes mellitus (DM), including type 1 diabetes mellitus(T1DM), type 2 diabetes mellitus(T2DM), and gestational diabetes mellitus (GDM), has increased year by year and has become a major global health problem. DM can lead to serious complications of macrovascular and microvascular. Tryptophan (Trp) is an essential amino acid for the human body. Trp is metabolized in the body through the indole pathway, kynurenine (Kyn) pathway and serotonin (5-HT) pathway, and is regulated by intestinal microorganisms to varying degrees. These three metabolic pathways have extensive regulatory effects on the immune, endocrine, neural, and energy metabolism systems of the body, and are related to the physiological and pathological processes of various diseases. The key enzymes and metabolites in the Trp metabolic pathway are also deeply involved in the pathogenesis of DM, playing an important role in pancreatic function, insulin resistance (IR), intestinal barrier, and angiogenesis. In DM and its complications, there is a disruption of Trp metabolic balance. Several therapy approaches for DM and complications have been proven to modify tryptophan metabolism. The metabolism of Trp is becoming a new area of focus for DM prevention and care. This paper reviews the impact of the three metabolic pathways of Trp on the pathogenesis of DM and the alterations in Trp metabolism in these diseases, expecting to provide entry points for the treatment of DM and its complications.
Collapse
Affiliation(s)
- Jialiang Gao
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ting Yang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Bohan Song
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaojie Ma
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yichen Ma
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaowei Lin
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Hongwu Wang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
11
|
Maus KD, Stephenson DJ, Macknight HP, Vu NT, Hoeferlin LA, Kim M, Diegelmann RF, Xie X, Chalfant CE. Skewing cPLA 2α activity toward oxoeicosanoid production promotes neutrophil N2 polarization, wound healing, and the response to sepsis. Sci Signal 2023; 16:eadd6527. [PMID: 37433004 PMCID: PMC10565596 DOI: 10.1126/scisignal.add6527] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 06/16/2023] [Indexed: 07/13/2023]
Abstract
Uncontrolled inflammation is linked to poor outcomes in sepsis and wound healing, both of which proceed through distinct inflammatory and resolution phases. Eicosanoids are a class of bioactive lipids that recruit neutrophils and other innate immune cells. The interaction of ceramide 1-phosphate (C1P) with the eicosanoid biosynthetic enzyme cytosolic phospholipase A2 (cPLA2) reduces the production of a subtype of eicosanoids called oxoeicosanoids. We investigated the effect of shifting the balance in eicosanoid biosynthesis on neutrophil polarization and function. Knockin mice expressing a cPLA2 mutant lacking the C1P binding site (cPLA2αKI/KI mice) showed enhanced and sustained neutrophil infiltration into wounds and the peritoneum during the inflammatory phase of wound healing and sepsis, respectively. The mice exhibited improved wound healing and reduced susceptibility to sepsis, which was associated with an increase in anti-inflammatory N2-type neutrophils demonstrating proresolution behaviors and a decrease in proinflammatory N1-type neutrophils. The N2 polarization of cPLA2αKI/KI neutrophils resulted from increased oxoeicosanoid biosynthesis and autocrine signaling through the oxoeicosanoid receptor OXER1 and partially depended on OXER1-dependent inhibition of the pentose phosphate pathway (PPP). Thus, C1P binding to cPLA2α suppresses neutrophil N2 polarization, thereby impairing wound healing and the response to sepsis.
Collapse
Affiliation(s)
- Kenneth D Maus
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Daniel J Stephenson
- Department of Medicine, Division of Hematology and Oncology, University of Virginia, Charlottesville, VA 22903, USA
| | - H Patrick Macknight
- Department of Medicine, Division of Hematology and Oncology, University of Virginia, Charlottesville, VA 22903, USA
| | - Ngoc T Vu
- Department of Applied Biochemistry, School of Biotechnology, International University-VNU HCM, Ho Chi Minh City, Vietnam
| | - L Alexis Hoeferlin
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University-School of Medicine, Richmond VA 23298, USA
| | - Minjung Kim
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Robert F Diegelmann
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University-School of Medicine, Richmond VA 23298, USA
| | - Xiujie Xie
- Department of Medicine, Division of Hematology and Oncology, University of Virginia, Charlottesville, VA 22903, USA
| | - Charles E Chalfant
- Department of Medicine, Division of Hematology and Oncology, University of Virginia, Charlottesville, VA 22903, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22903, USA
- Program in Cancer Biology, University of Virginia Cancer Center, Charlottesville, VA 22903, USA
- Research Service, Richmond Veterans Administration Medical Center, Richmond VA, 23298, USA
| |
Collapse
|
12
|
Metabolomics in Corneal Diseases: A Narrative Review from Clinical Aspects. Metabolites 2023; 13:metabo13030380. [PMID: 36984820 PMCID: PMC10055016 DOI: 10.3390/metabo13030380] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Corneal pathologies may have subtle manifestations in the initial stages, delaying diagnosis and timely treatment. This can lead to irreversible visual loss. Metabolomics is a rapidly developing field that allows the study of metabolites in a system, providing a complementary tool in the early diagnosis and management of corneal diseases. Early identification of biomarkers is key to prevent disease progression. The advancement of nuclear magnetic resonance and mass spectrometry allows the identification of new biomarkers in the analysis of tear, cornea, and aqueous humor. Novel perspectives on disease mechanisms are identified, which provide vital information for potential targeted therapies in the future. Current treatments are analyzed at a molecular level to offer further information regarding their efficacy. In this article, we provide a comprehensive review of the metabolomic studies undertaken in the cornea and various pathologies such as dry eye disease, Sjogren’s syndrome, keratoconus, post-refractive surgery, contact lens wearers, and diabetic corneas. Lastly, we discuss the exciting future that metabolomics plays in cornea research.
Collapse
|
13
|
Shrestha P, Whelchel AE, Nicholas SE, Liang W, Ma JX, Karamichos D. Monocarboxylate Transporters: Role and Regulation in Corneal Diabetes. Anal Cell Pathol (Amst) 2022; 2022:6718566. [PMID: 36340268 PMCID: PMC9629935 DOI: 10.1155/2022/6718566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/01/2022] [Indexed: 03/23/2024] Open
Abstract
Diabetes mellitus (DM) is a group of metabolic diseases that is known to cause structural and functional ocular complications. In the human cornea, DM-related complications affect the epithelium, stroma, and nerves. Monocarboxylate transporters (MCTs) are a family of proton-linked plasma membrane transporters that carry monocarboxylates across plasma membranes. In the context of corneal health and disease, their role, presence, and function are largely undetermined and solely focused on the most common MCT isoforms, 1 through 4. In this study, we investigated the regulation of MCT1, 2, 4, 5, 8, and 10, in corneal DM, using established 3D self-assembled extracellular matrix (ECM) in vitro models. Primary stromal corneal fibroblasts were isolated from healthy (HCFs), type I (T1DMs), and type II (T2DMs) DM donors. Monoculture 3D constructs were created by stimulating stromal cells on transwells with stable vitamin C for two or four weeks. Coculture 3D constructs were created by adding SH-SY5Y neurons at two different densities, 12 k and 500 k, on top of the monocultures. Our data showed significant upregulation of MCT1 at 4 weeks for HCF, T1DM, and T2DM monocultures, as well as the 500 k nerve cocultures. MCT8 was significantly upregulated in HCF and T1DM monocultures and all of the 500 k nerve cocultures. Further, MCT10 was only expressed at 4 weeks for all cocultures and was limited to HCFs and T1DMs in monocultures. Immunofluorescence analysis showed cytoplasmic MCT expression for all cell types and significant downregulation of both MCT2 and MCT4 in HCFs, when compared to T1DMs and T2DMs. Herein, we reveal the existence and modulation of MCTs in the human diabetic cornea in vitro. Changes appeared dependent on neuronal density, suggesting that MCTs are very likely critical to the neuronal defects observed in diabetic keratopathy/neuropathy. Further studies are warranted in order to fully delineate the role of MCTs in corneal diabetes.
Collapse
Affiliation(s)
- Pawan Shrestha
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | - Amy E. Whelchel
- Department of Physiology, University of Oklahoma Health Sciences Center, 940 Stanton L Young Blvd, Oklahoma City, OK 73104, USA
| | - Sarah E. Nicholas
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | - Wentao Liang
- Department of Physiology, University of Oklahoma Health Sciences Center, 940 Stanton L Young Blvd, Oklahoma City, OK 73104, USA
- Department of Biochemistry, Wake Forest University School of Medicine, 575 N Patterson Ave, Winston-Salem, NC 27101, USA
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest University School of Medicine, 575 N Patterson Ave, Winston-Salem, NC 27101, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| |
Collapse
|
14
|
Yu FSX, Lee PSY, Yang L, Gao N, Zhang Y, Ljubimov AV, Yang E, Zhou Q, Xie L. The impact of sensory neuropathy and inflammation on epithelial wound healing in diabetic corneas. Prog Retin Eye Res 2022; 89:101039. [PMID: 34991965 PMCID: PMC9250553 DOI: 10.1016/j.preteyeres.2021.101039] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 02/08/2023]
Abstract
Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes, with several underlying pathophysiological mechanisms, some of which are still uncertain. The cornea is an avascular tissue and sensitive to hyperglycemia, resulting in several diabetic corneal complications including delayed epithelial wound healing, recurrent erosions, neuropathy, loss of sensitivity, and tear film changes. The manifestation of DPN in the cornea is referred to as diabetic neurotrophic keratopathy (DNK). Recent studies have revealed that disturbed epithelial-neural-immune cell interactions are a major cause of DNK. The epithelium is supplied by a dense network of sensory nerve endings and dendritic cell processes, and it secretes growth/neurotrophic factors and cytokines to nourish these neighboring cells. In turn, sensory nerve endings release neuropeptides to suppress inflammation and promote epithelial wound healing, while resident immune cells provide neurotrophic and growth factors to support neuronal and epithelial cells, respectively. Diabetes greatly perturbs these interdependencies, resulting in suppressed epithelial proliferation, sensory neuropathy, and a decreased density of dendritic cells. Clinically, this results in a markedly delayed wound healing and impaired sensory nerve regeneration in response to insult and injury. Current treatments for DPN and DNK largely focus on managing the severe complications of the disease. Cell-based therapies hold promise for providing more effective treatment for diabetic keratopathy and corneal ulcers.
Collapse
Affiliation(s)
- Fu-Shin X Yu
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - Patrick S Y Lee
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Nan Gao
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Yangyang Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Alexander V Ljubimov
- Departments of Biomedical Sciences and Neurosurgery, Cedars-Sinai Medical Center, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ellen Yang
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.
| |
Collapse
|
15
|
Bu Y, Shih KC, Tong L. The ocular surface and diabetes, the other 21st Century epidemic. Exp Eye Res 2022; 220:109099. [DOI: 10.1016/j.exer.2022.109099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022]
|
16
|
Maus KD, Stephenson DJ, Ali AN, MacKnight HP, Huang HJ, Serrats J, Kim M, Diegelmann RF, Chalfant CE. Ceramide kinase regulates acute wound healing by suppressing 5-oxo-ETE biosynthesis and signaling via its receptor OXER1. J Lipid Res 2022; 63:100187. [PMID: 35219746 PMCID: PMC8980959 DOI: 10.1016/j.jlr.2022.100187] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 01/10/2023] Open
Abstract
The sphingolipid, ceramide-1-phosphate (C1P), has been shown to promote the inflammatory phase and inhibit the proliferation and remodeling stages of wound repair via direct interaction with group IVA cytosolic phospholipase A2, a regulator of eicosanoid biosynthesis that fine-tunes the behaviors of various cell types during wound healing. However, the anabolic enzyme responsible for the production of C1P that suppresses wound healing as well as bioactive eicosanoids and target receptors that drive enhanced wound remodeling have not been characterized. Herein, we determined that decreasing C1P activity via inhibitors or genetic ablation of the anabolic enzyme ceramide kinase (CERK) significantly enhanced wound healing phenotypes. Importantly, postwounding inhibition of CERK enhanced the closure rate of acute wounds, improved the quality of healing, and increased fibroblast migration via a "class switch" in the eicosanoid profile. This switch reduced pro-inflammatory prostaglandins (e.g., prostaglandin E2) and increased levels of 5-hydroxyeicosatetraenoic acid and the downstream metabolite 5-oxo-eicosatetraenoic acid (5-oxo-ETE). Moreover, dermal fibroblasts from mice with genetically ablated CERK showed enhanced wound healing markers, while blockage of the murine 5-oxo-ETE receptor (oxoeicosanoid receptor 1) inhibited the enhanced migration phenotype of these cell models. Together, these studies reinforce the vital roles eicosanoids play in the wound healing process and demonstrate a novel role for CERK-derived C1P as a negative regulator of 5-oxo-ETE biosynthesis and the activation of oxoeicosanoid receptor 1 in wound healing. These findings provide foundational preclinical results for the use of CERK inhibitors to shift the balance from inflammation to resolution and increase the wound healing rate.
Collapse
Affiliation(s)
- Kenneth D Maus
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Daniel J Stephenson
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Anika N Ali
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Henry Patrick MacKnight
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Huey-Jing Huang
- Neuroscience Drug Discovery Unit, Takeda California, San Diego, CA, USA
| | - Jordi Serrats
- Neuroscience Drug Discovery Unit, Takeda California, San Diego, CA, USA
| | - Minjung Kim
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Robert F Diegelmann
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University-School of Medicine, Richmond, VA, USA
| | - Charles E Chalfant
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA; Cancer Biology and Evolution Program, The Moffitt Cancer Center, Tampa, FL, USA; Research Service, James A. Haley Veterans Hospital, Tampa, FL, USA; Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, VA, USA; Department of Cell Biology, University of Virginia, Charlottesville, VA, USA; Program in Cancer Biology, University of Virginia Cancer Center, Charlottesville, VA, USA; Research Service, Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, VA, USA.
| |
Collapse
|
17
|
Why Do High-Risk Patients Develop or Not Develop Coronary Artery Disease? Metabolic Insights from the CAPIRE Study. Metabolites 2022; 12:metabo12020123. [PMID: 35208197 PMCID: PMC8876355 DOI: 10.3390/metabo12020123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/17/2022] Open
Abstract
Traditional cardiovascular (CV) risk factors (RFs) and coronary artery disease (CAD) do not always show a direct correlation. We investigated the metabolic differences in a cohort of patients with a high CV risk profile who developed, or did not develop, among those enrolled in the Coronary Atherosclerosis in Outlier Subjects: Protective and Novel Individual Risk Factors Evaluation (CAPIRE) study. We studied 112 subjects with a high CV risk profile, subdividing them according to the presence (CAD/High-RFs) or absence of CAD (No-CAD/High-RFs), assessed by computed tomography angiography. The metabolic differences between the two groups were identified by gas chromatography-mass spectrometry. Characteristic patterns and specific metabolites emerged for each of the two phenotypic groups: high concentrations of pyruvic acid, pipecolic acid, p-cresol, 3-aminoisobutyric acid, isoleucine, glyceric acid, lactic acid, sucrose, phosphoric acid, trimethylamine-N-oxide, 3-hydroxy-3-methylglutaric acid, erythritol, 3-hydroxybutyric acid, glucose, leucine, and glutamic acid; and low concentrations of cholesterol, hypoxanthine, glycerol-3-P, and cysteine in the CAD/High-RFs group vs the No-CAD/High-RFs group. Our results show the existence of different metabolic profiles between patients who develop CAD and those who do not, despite comparable high CV risk profiles. A specific cluster of metabolites, rather than a single marker, appears to be able to identify novel predisposing or protective mechanisms towards CAD beyond classic CVRFs.
Collapse
|
18
|
Ning H, Shi D, Tian Z, Liu Z, Wang X, Yan X, Sun C, Niu Y. Metabolomics analysis of urine from rats given long-term high-protein diet using ultra-high-performance liquid chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1190:123082. [PMID: 35032889 DOI: 10.1016/j.jchromb.2021.123082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/20/2021] [Accepted: 12/07/2021] [Indexed: 11/20/2022]
Abstract
Previous studies have indicated high-protein diet (HPD) promotes weight loss and improves metabolic parameters, but most of these studies have focused on the impact of short-term, long-term effects remain unclear. In this study, male Wistar rats were fed two diets for 88 weeks: normal control diet (NCD, 20.5% of energy as protein) or HPD (30.5% of energy as protein). At 88 weeks intervention, compared to NCD rats, HPD rats had lower fat tissue and higher skeletal muscle to body weight ratio, but there were no significantly differences in body weight and food intake. To explore the mechanism underlying metabolism and diet, we further collected rat urine samples at 16, 40, 64 and 88 weeks diet treatment and analyzed metabolomics profiles using ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS). Partial least squares-discriminant analysis (PLS-DA) scores plots from ESI- or ESI+ model revealed a perfect separation between two diets at four time points. We identified 11 dramatically different metabolites (with VIP cut-off value > 1) in HPD, including 3 up-regulated and 8 down-regulated. And these 11 metabolites were identified as effective biomarkers, which were significantly related to HPD-induced metabolism related outcomes (fat tissue and skeletal muscle to body weight ratio). Our results provided vital information regarding metabolism in long-term HPD and more importantly, a few potentially promising metabolites were firstly identified which may related to metabolic responses.
Collapse
Affiliation(s)
- Hua Ning
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Dan Shi
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, PR China
| | - Zhen Tian
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Zhipeng Liu
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Xinyue Wang
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Xuemin Yan
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Changhao Sun
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China.
| | - Yucun Niu
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China.
| |
Collapse
|
19
|
The Corneal Changes in Diabetic Patients. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2021. [DOI: 10.2478/sjecr-2020-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Diabetes mellitus (DM) represents a systemic disorder which afects different organs. Ocular complications of the DM are the worldwide leading cause of blindness. The most common complications are diabetic retinopathy, diabetic cataract, neovascular glaucoma. Recently many investigations point out that DM can cause comlications at ocular surface as well. Condition such as decreased corneal sensitivity, dry eye or neurotrophic corneal ulceraction are the main clinical manifestations of the diabetic keratopathy (DK). Untreated, these conditions can lead to serious visual acuity decrease. Pathological processes, based on chronic inflammation, due to chronic hyperglycemia, are the main step in the process of DK development. Adequate treatment of the main disease - DM is an imperative in maintaining the healthy cornea without subjective sensations of diabetic patients.
Collapse
|
20
|
Sinha NR, Balne PK, Bunyak F, Hofmann AC, Lim RR, Mohan RR, Chaurasia SS. Collagen matrix perturbations in corneal stroma of Ossabaw mini pigs with type 2 diabetes. Mol Vis 2021; 27:666-678. [PMID: 35002212 PMCID: PMC8684810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 12/05/2021] [Indexed: 11/17/2022] Open
Abstract
Purpose Diabetes mellitus (DM) is a metabolic disorder that affects over 450 million people worldwide. DM is characterized by hyperglycemia, causing severe systemic damage to the heart, kidneys, skin, vasculature, nerves, and eye. Type 2 diabetes (T2DM) constitutes 90% of clinical cases and is the most common cause of blindness in working adults. Also, about 70% of T2DM patients show corneal complications including delayed wound healing, often described as diabetic keratopathy (DK). Despite the increasing severity of DM, the research on DK is bleak. This study investigated cellular morphology and collagen matrix alterations of the diabetic and non-diabetic corneas collected from Ossabaw mini pigs, a T2DM animal model with a "thrifty genotype." Methods Pig corneas were collected from six-month-old Ossabaw miniature pigs fed on a western diet (WD) for ten weeks. The tissues were processed for immunohistochemistry and analyzed using hematoxylin and eosin staining, Mason Trichrome staining, Picrosirus Red staining, Collage I staining, and TUNEL assay. mRNA was prepared to quantify fibrotic gene expression using quantitative reverse-transcriptase PCR (qRT-PCR). Transmission electron microscopy (TEM) was performed to evaluate stromal fibril arrangements to compare collagen dynamics in WD vs. standard diet (SD) fed Ossabaw pig corneas. Results Ossabaw mini pigs fed on a WD for 10 weeks exhibit classic symptoms of metabolic syndrome and hyperglycemia seen in T2DM patients. We observed significant disarray in cornea stromal collagen matrix in Ossabaw mini pigs fed on WD compared to the age-matched mini pigs fed on a standard chow diet using Masson Trichome and Picrosirius Red staining. Furthermore, ultrastructure evaluation using TEM showed alterations in stromal collagen fibril size and organization in diabetic corneas compared to healthy age-matched corneas. These changes were accompanied by significantly decreased levels of Collagen IV and increased expression of matrix metallopeptidase 9 in WD-fed pigs. Conclusions This pilot study indicates that Ossabaw mini pigs fed on WD showed collagen disarray and altered gene expression involved in wound healing, suggesting that corneal stromal collagens are vulnerable to diabetic conditions.
Collapse
Affiliation(s)
- Nishant R. Sinha
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- One-Health Vision Research Program, Departments of Ophthalmology and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
| | - Praveen K. Balne
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- One-Health Vision Research Program, Departments of Ophthalmology and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
| | - Filiz Bunyak
- Department of Computer Science, University of Missouri, Columbia, MO
| | - Alexandria C. Hofmann
- One-Health Vision Research Program, Departments of Ophthalmology and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
| | - Rayne R. Lim
- Department of Ophthalmology, University of Washington, Seattle, WA
| | - Rajiv R. Mohan
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- One-Health Vision Research Program, Departments of Ophthalmology and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO
| | - Shyam S. Chaurasia
- One-Health Vision Research Program, Departments of Ophthalmology and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
- Department of Ophthalmology and Visual Sciences, The Eye Institute, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
21
|
Ates KM, Estes AJ, Liu Y. Potential underlying genetic associations between keratoconus and diabetes mellitus. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2021; 1:100005. [PMID: 34746916 PMCID: PMC8570550 DOI: 10.1016/j.aopr.2021.100005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 12/14/2022]
Abstract
Background Keratoconus (KC) is the most common ectatic corneal disease, characterized by significantly localized thinning of the corneal stroma. Genetic, environmental, hormonal, and metabolic factors contribute to the pathogenesis of KC. Additionally, multiple comorbidities, such as diabetes mellitus, may affect the risk of KC. Main Body Patients with diabetes mellitus (DM) have been reported to have lower risk of developing KC by way of increased endogenous collagen crosslinking in response to chronic hyperglycemia. However, this remains a debated topic as other studies have suggested either a positive association or no association between DM and KC. To gain further insight into the underlying genetic components of these two diseases, we reviewed candidate genes associated with KC and central corneal thickness in the literature. We then explored how these genes may be regulated similarly or differentially under hyperglycemic conditions and the role they play in the systemic complications associated with DM. Conclusion Our comprehensive review of potential genetic factors underlying KC and DM provides a direction for future studies to further determine the genetic etiology of KC and how it is influenced by systemic diseases such as diabetes.
Collapse
Affiliation(s)
- Kristin M. Ates
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Amy J. Estes
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
22
|
Ligocki AJ, Fury W, Gutierrez C, Adler C, Yang T, Ni M, Bai Y, Wei Y, Lehmann GL, Romano C. Molecular characteristics and spatial distribution of adult human corneal cell subtypes. Sci Rep 2021; 11:16323. [PMID: 34381080 PMCID: PMC8357950 DOI: 10.1038/s41598-021-94933-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Bulk RNA sequencing of a tissue captures the gene expression profile from all cell types combined. Single-cell RNA sequencing identifies discrete cell-signatures based on transcriptomic identities. Six adult human corneas were processed for single-cell RNAseq and 16 cell clusters were bioinformatically identified. Based on their transcriptomic signatures and RNAscope results using representative cluster marker genes on human cornea cross-sections, these clusters were confirmed to be stromal keratocytes, endothelium, several subtypes of corneal epithelium, conjunctival epithelium, and supportive cells in the limbal stem cell niche. The complexity of the epithelial cell layer was captured by eight distinct corneal clusters and three conjunctival clusters. These were further characterized by enriched biological pathways and molecular characteristics which revealed novel groupings related to development, function, and location within the epithelial layer. Moreover, epithelial subtypes were found to reflect their initial generation in the limbal region, differentiation, and migration through to mature epithelial cells. The single-cell map of the human cornea deepens the knowledge of the cellular subsets of the cornea on a whole genome transcriptional level. This information can be applied to better understand normal corneal biology, serve as a reference to understand corneal disease pathology, and provide potential insights into therapeutic approaches.
Collapse
Affiliation(s)
- Ann J Ligocki
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | - Wen Fury
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | | | | | - Tao Yang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | - Min Ni
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | - Yu Bai
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | - Yi Wei
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | | | - Carmelo Romano
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA.
| |
Collapse
|
23
|
Nerve influence on the metabolism of type I and type II diabetic corneal stroma: an in vitro study. Sci Rep 2021; 11:13627. [PMID: 34211074 PMCID: PMC8249404 DOI: 10.1038/s41598-021-93164-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/15/2021] [Indexed: 01/22/2023] Open
Abstract
Corneal innervation plays a major role in the pathobiology of diabetic corneal disease. However, innervation impact has mainly been investigated in the context of diabetic epitheliopathy and wound healing. Further studies are warranted in the corneal stroma-nerve interactions. This study unravels the nerve influence on corneal stroma metabolism. Corneal stromal cells were isolated from healthy (HCFs) and diabetes mellitus (Type1DM and Type2 DM) donors. Cells were cultured on polycarbonate membranes, stimulated by stable Vitamin C, and stroma-only and stroma-nerve co-cultures were investigated for metabolic alterations. Innervated compared to stroma-only constructs exhibited significant alterations in pyrimidine, glycerol phosphate shuttle, electron transport chain and glycolysis. The most highly altered metabolites between healthy and T1DMs innervated were phosphatidylethanolamine biosynthesis, and pyrimidine, methionine, aspartate metabolism. Healthy and T2DMs main pathways included aspartate, glycerol phosphate shuttle, electron transport chain, and gluconeogenesis. The metabolic impact on T1DMs and T2DMs was pyrimidine, purine, aspartate, and methionine. Interestingly, the glucose-6-phosphate and oxaloacetate was higher in T2DMs compared to T1DMs. Our in vitro co-culture model allows the examination of key metabolic pathways corresponding to corneal innervation in the diabetic stroma. These novel findings can pave the way for future studies to fully understand the metabolic distinctions in the diabetic cornea.
Collapse
|
24
|
Age-related differences in corneal nerve regeneration after SMILE and the mechanism revealed by metabolomics. Exp Eye Res 2021; 209:108665. [PMID: 34118276 DOI: 10.1016/j.exer.2021.108665] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 11/20/2022]
Abstract
PURPOSE To investigate the effect of age on wound healing after small incision lenticule extraction (SMILE) and the underlying metabolomic mechanisms. METHODS This prospective study was conducted on 216 patients in four groups: the 18-20 (n = 38, Group I), 21-30 (n = 84, Group Ⅱ), 31-40 (n = 58, Group Ⅲ), and 41-50 (n = 36, Group IV) age groups. The density of corneal epithelial wing cells, basal cells, corneal stromal cells, endothelial cells and corneal nerves were examined with a laser confocal microscope (HRT III-RCM) before and 1 month, 3 month, 6 month and 1 year after SMILE. The central nerve fiber length (CNFL), the central corneal nerve fibre density (CNFD), and the central corneal nerve branch density (CNBD) were analyzed by Nero J. The corneal stroma lenticules were obtained from SMILE to analyze metabolites by high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (HPLC-QTOF-MS). RESULTS The density of corneal wing epithelial cells and basal epithelial cells have no significant difference among the four groups. The CNFL was 21.90 ± 1.68 mm/mm2 in Group Ⅰ and 21.63 ± 2.09 mm/mm2 in Group Ⅱ after 1 year of SMILE, which represented a return to the preoperative level, whereas the CNFL of Group Ⅲ (19.40 ± 0.98 mm/mm2) and Group Ⅳ (18.94 ± 0.72 mm/mm2) were lower than that preoperation (P ˂0.01). CNFL repair had a negative correlation with age after surgery (Pearson's R = -0.572, P ˂0.01). The CNFD and the CNBD showed the same trend with the CNFL (Pearson's R = -0.602 and -0.531, P ˂0.05). Through screening the significantly different metabolites between the 18-30 age group (including Group I and Group Ⅱ) and other two groups, 6 common remarkably different metabolites were identified. Meanwhile, 5 unique different metabolites were identified only between the 18-30 age group and the 31-40 age group. Six unique different metabolites were identified only between the 18-30 age group and the 41-50 age group. CONCLUSION Corneal nerve repair after SMILE was significantly affected by age. The identified age-associated differences in metabolites were mainly related to inflammation, oxidation, nerve protection and regeneration.
Collapse
|
25
|
Li M, Liu L, Qu C, Shi Y, Sun L, Zhou X, Zou J. Metabolomic Analysis in Corneal Lenticules From Contact Lens Wearers. J Refract Surg 2021; 36:317-325. [PMID: 32396643 DOI: 10.3928/1081597x-20200312-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 03/10/2020] [Indexed: 11/20/2022]
Abstract
PURPOSE To investigate the mechanisms of pathological changes in corneal stroma and the wearing time of soft contact lenses using the metabolomic method. METHODS Laser scanning confocal microscopy was used to evaluate the pathological changes of corneal stroma between wearing time groups before small incision lenticule extraction. After small incision lenticule extraction, 190 corneal stroma samples were obtained, and a metabolomic method using high performance liquid chromatography coupled with time of flight mass spectrometry was established to analyze the changes in metabolites between wearing time groups. RESULTS Laser scanning confocal microscope results demonstrated that the corneal nerve fiber length, the number of corneal anterior stromal cells, and the number of corneal posterior stromal cells were reduced gradually with increasing wearing time. The metabolomic study demonstrated that 11 biomarkers were identified between patients who did and did not wear soft contact lenses and 6 biomarkers were identified between less than 5 years and more than 5 years of wearing time. These biomarkers participate in energy metabolism, lipid metabolism, inflammatory reactions, and neuroprotecton processes, and partially lead to the pathology of dry eyes, eye inflammation, and corneal nerve fiber length decrease. Five biomarkers in the citrate cycle metabolism pathway were found demonstrating that energy metabolism was seriously disturbed. CONCLUSIONS This study systematically revealed the metabolite mechanism for eye discomfort and related disease after wearing soft contact lenses. The identified biomarkers and related physiology pathways supply a new direction for avoiding the side effects of wearing soft contact lenses. [J Refract Surg. 2020;36(5):317-325.].
Collapse
|
26
|
Shah R, Amador C, Tormanen K, Ghiam S, Saghizadeh M, Arumugaswami V, Kumar A, Kramerov AA, Ljubimov AV. Systemic diseases and the cornea. Exp Eye Res 2021; 204:108455. [PMID: 33485845 PMCID: PMC7946758 DOI: 10.1016/j.exer.2021.108455] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/08/2023]
Abstract
There is a number of systemic diseases affecting the cornea. These include endocrine disorders (diabetes, Graves' disease, Addison's disease, hyperparathyroidism), infections with viruses (SARS-CoV-2, herpes simplex, varicella zoster, HTLV-1, Epstein-Barr virus) and bacteria (tuberculosis, syphilis and Pseudomonas aeruginosa), autoimmune and inflammatory diseases (rheumatoid arthritis, Sjögren's syndrome, lupus erythematosus, gout, atopic and vernal keratoconjunctivitis, multiple sclerosis, granulomatosis with polyangiitis, sarcoidosis, Cogan's syndrome, immunobullous diseases), corneal deposit disorders (Wilson's disease, cystinosis, Fabry disease, Meretoja's syndrome, mucopolysaccharidosis, hyperlipoproteinemia), and genetic disorders (aniridia, Ehlers-Danlos syndromes, Marfan syndrome). Corneal manifestations often provide an insight to underlying systemic diseases and can act as the first indicator of an undiagnosed systemic condition. Routine eye exams can bring attention to potentially life-threatening illnesses. In this review, we provide a fairly detailed overview of the pathologic changes in the cornea described in various systemic diseases and also discuss underlying molecular mechanisms, as well as current and emerging treatments.
Collapse
Affiliation(s)
- Ruchi Shah
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Cynthia Amador
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kati Tormanen
- Center for Neurobiology and Vaccine Development, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sean Ghiam
- Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv, Israel
| | - Mehrnoosh Saghizadeh
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Departments of Molecular and Medical Pharmacology, Medicine, and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Vaithi Arumugaswami
- Departments of Molecular and Medical Pharmacology, Medicine, and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI, USA
| | - Andrei A Kramerov
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexander V Ljubimov
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Departments of Molecular and Medical Pharmacology, Medicine, and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
27
|
Jiao H, Lim AS, Fazio Coles TE, McQuade RM, Furness JB, Chinnery HR. The effect of high-fat diet-induced metabolic disturbance on corneal neuroimmune features. Exp Eye Res 2020; 201:108298. [PMID: 33069696 DOI: 10.1016/j.exer.2020.108298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 01/10/2023]
Abstract
PURPOSE The highly innervated cornea is susceptible to nerve loss secondary to systemic diseases such as diabetes and metabolic disturbances caused by high-fat diet. In this study, we characterize the effect of high-fat diet on the mouse corneal neuroimmune phenotype, including changes to corneal nerve density and resident immune cells, alongside the clinical assessment of corneal thickness and endothelial cell density. METHODS Male C57Bl6/J mice, aged 10 weeks, were fed a high-fat diet (60 kcal% fat, 5.2 kcal/g) or control diet (10 kcal%, 3.8 kcal/g) for 16 weeks. At the study endpoint, metabolic parameters (HbA1c, weight, fasting glucose, body fat) were measured to confirm metabolic disturbance. Clinical imaging of the anterior segment was performed using optical coherence tomography to measure the corneal epithelial and stromal thickness. Corneal sensory nerves were visualized using flatmount immunostaining and confocal microscopy. The topographical distribution and density of sensory nerves (BIII-tubulin+), intraepithelial CD45+ and MHC- II+ cells, stromal macrophages (IBA1+CD206+) and endothelial cells (ZO-1+) were analysed using FIJI. RESULTS High-fat diet mice had significantly higher blood HbA1c, higher body weight, a higher percentage of body fat and elevated fasting glucose compared to the control diet mice. Corneal epithelial and stromal thickness was similar in both groups. The sum length of the basal nerve plexus was lower in the central and peripheral cornea of mice fed a high-fat diet. In contrast, the sum length of superficial nerve terminals was similar between groups. Epithelial immune cell density was two-fold higher in the central corneas of high-fat diet mice compared to control diet mice. IBA1+CD206+ macrophage density was similar in the anterior stroma of both groups but was significantly higher in the posterior stroma of the peripheral cornea in the high-fat diet mice compared to controls. The percentage of nerve-associated MHC-II+ cells in the epithelium and stroma was higher in HFD mice compared to controls. Endothelial cell density was similar in the corneas of high-fat diet mice compared to controls. CONCLUSION Together with corneal neuropathy, corneal immune cells in mice fed a high-fat diet were differentially affected depending on their topographical distribution and location within cornea, and appeared in closer proximity to epithelial and stromal nerves, suggesting a local neuroimmune disruption induced by systemic metabolic disturbance.
Collapse
Affiliation(s)
- Haihan Jiao
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Alicia Sl Lim
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Therese E Fazio Coles
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia
| | - Rachel M McQuade
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Department of Medicine, Western Health, Melbourne University, Sunshine, Victoria, Australia
| | - John B Furness
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Holly R Chinnery
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
28
|
Priyadarsini S, Whelchel A, Nicholas S, Sharif R, Riaz K, Karamichos D. Diabetic keratopathy: Insights and challenges. Surv Ophthalmol 2020; 65:513-529. [PMID: 32092364 PMCID: PMC8116932 DOI: 10.1016/j.survophthal.2020.02.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/11/2022]
Abstract
Ocular complications from diabetes mellitus are common. Diabetic keratopathy, the most frequent clinical condition affecting the human cornea, is a potentially sight-threatening condition caused mostly by epithelial disturbances that are of clinical and research attention because of their severity. Diabetic keratopathy exhibits several clinical manifestations, including persistent corneal epithelial erosion, superficial punctate keratopathy, delayed epithelial regeneration, and decreased corneal sensitivity, that may lead to compromised visual acuity or permanent vision loss. The limited amount of clinical studies makes it difficult to fully understand the pathobiology of diabetic keratopathy. Effective therapeutic approaches are elusive. We summarize the clinical manifestations of diabetic keratopathy and discuss available treatments and up-to-date research studies in an attempt to provide a thorough overview of the disorder.
Collapse
Affiliation(s)
- S Priyadarsini
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - A Whelchel
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - S Nicholas
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - R Sharif
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - K Riaz
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - D Karamichos
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| |
Collapse
|
29
|
McKay TB, Hutcheon AEK, Guo X, Zieske JD, Karamichos D. Modeling the cornea in 3-dimensions: Current and future perspectives. Exp Eye Res 2020; 197:108127. [PMID: 32619578 PMCID: PMC8116933 DOI: 10.1016/j.exer.2020.108127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 02/08/2023]
Abstract
The cornea is an avascular, transparent ocular tissue that serves as a refractive and protective structure for the eye. Over 90% of the cornea is composed of a collagenous-rich extracellular matrix within the stroma with the other 10% composed by the corneal epithelium and endothelium layers and their corresponding supporting collagen layers (e.g., Bowman's and Descemet's membranes) at the anterior and posterior cornea, respectively. Due to its prominent role in corneal structure, tissue engineering approaches to model the human cornea in vitro have focused heavily on the cellular and functional properties of the corneal stroma. In this review, we discuss model development in the context of culture dimensionality (e.g., 2-dimensional versus 3-dimensional) and expand on the optical, biomechanical, and cellular functions promoted by the culture microenvironment. We describe current methods to model the human cornea with focus on organotypic approaches, compressed collagen, bioprinting, and self-assembled stromal models. We also expand on co-culture applications with the inclusion of relevant corneal cell types, such as epithelial, stromal keratocyte or fibroblast, endothelial, and neuronal cells. Further advancements in corneal tissue model development will markedly improve our current understanding of corneal wound healing and regeneration.
Collapse
Affiliation(s)
- Tina B McKay
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Audrey E K Hutcheon
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Xiaoqing Guo
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - James D Zieske
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
| |
Collapse
|
30
|
Nazifova-Tasinova N, Radeva M, Galunska B, Grupcheva C. Metabolomic analysis in ophthalmology. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2020; 164:236-246. [PMID: 32690974 DOI: 10.5507/bp.2020.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/24/2020] [Indexed: 12/21/2022] Open
Abstract
Modern science takes into account phenotype complexity and establishes approaches to track changes on every possible level. Many "omics" studies have been developed over the last decade. Metabolomic analysis enables dynamic measurement of the metabolic response of a living system to a variety of stimuli or genetic modifications. Important targets of metabolomics is biomarker development and translation to the clinic for personalized diagnosis and a greater understanding of disease pathogenesis. The current review highlights the major aspects of metabolomic analysis and its applications for the identification of relevant predictive, diagnostic and prognostic biomarkers for some ocular diseases including dry eye, keratoconus, retinal diseases, macular degeneration, and glaucoma. To date, possible biomarker candidates for dry eye disease are lipid metabolites and androgens, for keratoconus cytokeratins, urea, citrate cycle, and oxidative stress metabolites. Palmitoylcarnitine, sphingolipids, vitamin D related metabolites, and steroid precursors may be used for distinguishing glaucoma patients from healthy controls. Dysregulation of amino acid and carnitine metabolism is critical in the development and progression of diabetic retinopathy. Further work is needed to discover and validate metabolic biomarkers as a powerful tool for understanding the molecular mechanisms of ocular diseases, to provide knowledge on their etiology and pathophysiology and opportunities for personalized clinical intervention at an early stage.
Collapse
Affiliation(s)
- Neshe Nazifova-Tasinova
- Department of Biochemistry, Molecular medicine and Nutrigenomics, Faculty of Pharmacy, Medical University of Varna, 84 Tzar Osvoboditel street, 9000 Varna, Bulgaria
| | - Mladena Radeva
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, Medical University of Varna, 15 Doyran street, 9000 Varna, Bulgaria
| | - Bistra Galunska
- Department of Biochemistry, Molecular medicine and Nutrigenomics, Faculty of Pharmacy, Medical University of Varna, 84 Tzar Osvoboditel street, 9000 Varna, Bulgaria
| | - Christina Grupcheva
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, Medical University of Varna, 15 Doyran street, 9000 Varna, Bulgaria
| |
Collapse
|
31
|
Wojakowska A, Pietrowska M, Widlak P, Dobrowolski D, Wylęgała E, Tarnawska D. Metabolomic Signature Discriminates Normal Human Cornea from Keratoconus-A Pilot GC/MS Study. Molecules 2020; 25:molecules25122933. [PMID: 32630577 PMCID: PMC7356237 DOI: 10.3390/molecules25122933] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
The molecular etiology of keratoconus (KC), a pathological condition of the human cornea, remains unclear. The aim of this work was to perform profiling of metabolites and identification of features discriminating this pathology from the normal cornea. The combination of gas chromatography and mass spectrometry (GC/MS) techniques has been applied for profiling and identification of metabolites in corneal buttons from 6 healthy controls and 7 KC patients. An untargeted GC/MS-based approach allowed the detection of 377 compounds, including 46 identified unique metabolites, whose levels enabled the separation of compared groups of samples in unsupervised hierarchical cluster analysis. There were 13 identified metabolites whose levels differentiated between groups of samples. Downregulation of several carboxylic acids, fatty acids, and steroids was observed in KC when compared to the normal cornea. Metabolic pathways associated with compounds that discriminated both groups were involved in energy production, lipid metabolism, and amino acid metabolism. An observed signature may reflect cellular processes involved in the development of KC pathology, including oxidative stress and inflammation.
Collapse
Affiliation(s)
- Anna Wojakowska
- European Centre for Bioinformatics and Genomics, Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego12/14, 61-704 Poznan, Poland;
| | - Monika Pietrowska
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-102 Gliwice, Poland; (M.P.); (P.W.)
| | - Piotr Widlak
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-102 Gliwice, Poland; (M.P.); (P.W.)
| | - Dariusz Dobrowolski
- Department of Ophthalmology & Tissue and Cells Bank, St. Barbara Hospital, Trauma Center, Plac Medyków 1, 41-200 Sosnowiec, Poland;
- Chair and Clinical Department of Ophthalmology, Division of Medical Science in Zabrze, Medical University of Silesia, Panewnicka 65, 40-760 Katowice, Poland;
| | - Edward Wylęgała
- Chair and Clinical Department of Ophthalmology, Division of Medical Science in Zabrze, Medical University of Silesia, Panewnicka 65, 40-760 Katowice, Poland;
- Department of Ophthalmology, District Railway Hospital, Panewnicka 65, 40-760 Katowice, Poland
| | - Dorota Tarnawska
- Department of Ophthalmology, District Railway Hospital, Panewnicka 65, 40-760 Katowice, Poland
- Faculty of Science and Technology, Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
- Correspondence:
| |
Collapse
|
32
|
Luo Y, Cui HP, Liu Y, Chen L. Metabolomics and biomarkers in ocular matrix: beyond ocular diseases. Int J Ophthalmol 2020; 13:991-1003. [PMID: 32566514 DOI: 10.18240/ijo.2020.06.21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/23/2020] [Indexed: 12/15/2022] Open
Abstract
According to the recent report, there are 870 million people suffer from ocular diseases worldwide. The present approaches for diagnosis are morphological examination, imaging examination and immunological examination, regrettably, they lack of sensitivity and difficult to make a definite diagnosis in the early stage. Systemic biology as an effective method has been used in clinical diagnosis and treatment for diseases, especially metabolomics which is more attractive with high sensitivity and accuracy. Although previous researches had been confirmed that endogenous metabolites in the ocular matrix play a crucial role in the progress of diseases related diseases, the standard protocols and systematic summary about the biomarker researches based on ocular matrix has not been established. This review article highlights the pretreatment for ocular matrix and the new biomarkers expressed by the eye diseases, expected to promote the application of biomarkers in the diagnosis and treatment of eye diseases.
Collapse
Affiliation(s)
- Yun Luo
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, China
| | - Hong-Pei Cui
- Department of Ophthalmology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan Province, China
| | - Yi Liu
- School of Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Lei Chen
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, China
| |
Collapse
|
33
|
Zhao H, He Y, Ren YR, Chen BH. Corneal alteration and pathogenesis in diabetes mellitus. Int J Ophthalmol 2019; 12:1939-1950. [PMID: 31850180 DOI: 10.18240/ijo.2019.12.17] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/12/2019] [Indexed: 12/15/2022] Open
Abstract
The incidence of diabetes mellitus (DM) and its complications have increased considerably worldwide. Diabetic keratopathy is the major complication of the cornea characterized by delayed corneal wound healing, decreasing corneal epithelial sensitivity, and recurrent corneal ulcers. There is accumulating evidence that diabetic keratopathy is correlated with the hyperglycemic state. Different corneal components may produce different alterations under hyperglycemia. In addition, diabetic nerve alteration may become a novel biomarker of early-stage DM. Abnormalities of the corneal nerve plexus have been associated with diabetic inflammatory states. There is rapidly growing evidence based on investigations of diabetic corneal nerves through in vivo confocal microscopy. Understanding the molecular pathogenesis caused by hyperglycemia may assist in the identification of novel biomarkers, as well as therapeutic targets for early treatment. This review mainly summarizes recent findings on corneal alteration and pathogenesis in DM.
Collapse
Affiliation(s)
- Han Zhao
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha 410011, Hunan Province, China
| | - Yan He
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha 410011, Hunan Province, China
| | - Yue-Rong Ren
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha 410011, Hunan Province, China
| | - Bai-Hua Chen
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha 410011, Hunan Province, China
| |
Collapse
|
34
|
Razquin C, Ruiz-Canela M, Clish CB, Li J, Toledo E, Dennis C, Liang L, Salas-Huetos A, Pierce KA, Guasch-Ferré M, Corella D, Ros E, Estruch R, Gómez-Gracia E, Fitó M, Lapetra J, Romaguera D, Alonso-Gómez A, Serra-Majem L, Salas-Salvadó J, Hu FB, Martínez-González MA. Lysine pathway metabolites and the risk of type 2 diabetes and cardiovascular disease in the PREDIMED study: results from two case-cohort studies. Cardiovasc Diabetol 2019; 18:151. [PMID: 31722714 PMCID: PMC6852717 DOI: 10.1186/s12933-019-0958-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/28/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The pandemic of cardiovascular disease (CVD) and type 2 diabetes (T2D) requires the identification of new predictor biomarkers. Biomarkers potentially modifiable with lifestyle changes deserve a special interest. Our aims were to analyze: (a) The associations of lysine, 2-aminoadipic acid (2-AAA) or pipecolic acid with the risk of T2D or CVD in the PREDIMED trial; (b) the effect of the dietary intervention on 1-year changes in these metabolites, and (c) whether the Mediterranean diet (MedDiet) interventions can modify the effects of these metabolites on CVD or T2D risk. METHODS Two unstratified case-cohort studies nested within the PREDIMED trial were used. For CVD analyses, we selected 696 non-cases and 221 incident CVD cases; for T2D, we included 610 non-cases and 243 type 2 diabetes incident cases. Metabolites were quantified using liquid chromatography-tandem mass spectrometry, at baseline and after 1-year of intervention. RESULTS In weighted Cox regression models, we found that baseline lysine (HR+1 SD increase = 1.26; 95% CI 1.06-1.51) and 2-AAA (HR+1 SD increase = 1.28; 95% CI 1.05-1.55) were both associated with a higher risk of T2D, but not with CVD. A significant interaction (p = 0.032) between baseline lysine and T2D on the risk of CVD was observed: subjects with prevalent T2D and high levels of lysine exhibited the highest risk of CVD. The intervention with MedDiet did not have a significant effect on 1-year changes of the metabolites. CONCLUSIONS Our results provide an independent prospective replication of the association of 2-AAA with future risk of T2D. We show an association of lysine with subsequent CVD risk, which is apparently diabetes-dependent. No evidence of effects of MedDiet intervention on lysine, 2-AAA or pipecolic acid changes was found. Trial registration ISRCTN35739639; registration date: 05/10/2005; recruitment start date 01/10/2003.
Collapse
Affiliation(s)
- Cristina Razquin
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel Ruiz-Canela
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Clary B Clish
- Broad Institute of MIT and Harvard University, Cambridge, USA
| | - Jun Li
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Spain
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Estefania Toledo
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Courtney Dennis
- Broad Institute of MIT and Harvard University, Cambridge, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Albert Salas-Huetos
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Institut d'Investigació Sanitària Pere Virgili, Rovira i Virgili University, Reus, Spain
| | - Kerry A Pierce
- Broad Institute of MIT and Harvard University, Cambridge, USA
| | - Marta Guasch-Ferré
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Spain
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Institut d'Investigació Sanitària Pere Virgili, Rovira i Virgili University, Reus, Spain
| | - Dolores Corella
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Emilio Ros
- Lipid Clinic, Department of Endocrinology and Nutrition, Institut d'Investigacions Biomediques August Pi Sunyer (IDI- BAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Ramon Estruch
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Internal Medicine, Institut d'Investigacions Biomediques August Pi Sunyer (IDI-BAPS), Barcelona, Spain
| | | | - Montse Fitó
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Cardiovascular and Nutrition Research Group, Institut de Recerca Hospital del Mar (IMIM), Barcelona, Spain
| | - Jose Lapetra
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Family Medicine, Research Unit, Distrito Sanitario Atención Primaria Sevilla, Seville, Spain
| | - Dora Romaguera
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria de Palma (IdISPa), University Hospital of Son Espases, Palma de Mallorca, Spain
| | | | - Lluis Serra-Majem
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Jordi Salas-Salvadó
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Institut d'Investigació Sanitària Pere Virgili, Rovira i Virgili University, Reus, Spain
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Spain
- Channing Division for Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Miguel A Martínez-González
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain.
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain.
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Spain.
| |
Collapse
|
35
|
Association between Diabetes and Keratoconus: A Retrospective Analysis. Sci Rep 2019; 9:13808. [PMID: 31551458 PMCID: PMC6760226 DOI: 10.1038/s41598-019-50095-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 09/06/2019] [Indexed: 12/30/2022] Open
Abstract
Keratoconus (KC) and chronic diabetes mellitus (DM) are both associated with significant defects in the human corneal structure. Studies have long suggested that DM is linked to KC, mainly via the crosslinking mechanism, but scientific evidences are lacking. The role of altered systemic metabolism is well-established in both DM and KC with studies suggesting localized altered cellular metabolism leading to the development of corneal pathologies. We have previously characterized the metabolic defects associated with both conditions using targeted metabolomics. To compare metabolic differences between KC and DM-derived corneal fibroblasts, we performed a respective study of two cohorts of the KC and DM populations using a retrospective analysis of targeted metabolomics data. The goal of this study was to identify the group of differentially regulated metabolites, in KC versus DM, so that we may unravel the link between the two devastating corneal pathologies.
Collapse
|
36
|
Eid S, Sas KM, Abcouwer SF, Feldman EL, Gardner TW, Pennathur S, Fort PE. New insights into the mechanisms of diabetic complications: role of lipids and lipid metabolism. Diabetologia 2019; 62:1539-1549. [PMID: 31346658 PMCID: PMC6679814 DOI: 10.1007/s00125-019-4959-1] [Citation(s) in RCA: 286] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/21/2019] [Indexed: 02/07/2023]
Abstract
Diabetes adversely affects multiple organs, including the kidney, eye and nerve, leading to diabetic kidney disease, diabetic retinopathy and diabetic neuropathy, respectively. In both type 1 and type 2 diabetes, tissue damage is organ specific and is secondary to a combination of multiple metabolic insults. Hyperglycaemia, dyslipidaemia and hypertension combine with the duration and type of diabetes to define the distinct pathophysiology underlying diabetic kidney disease, diabetic retinopathy and diabetic neuropathy. Only recently have the commonalities and differences in the metabolic basis of these tissue-specific complications, particularly those involving local and systemic lipids, been systematically examined. This review focuses on recent progress made using preclinical models and human-based approaches towards understanding how bioenergetics and metabolomic profiles contribute to diabetic kidney disease, diabetic retinopathy and diabetic neuropathy. This new understanding of the biology of complication-prone tissues highlights the need for organ-specific interventions in the treatment of diabetic complications.
Collapse
Affiliation(s)
- Stephanie Eid
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Kelli M Sas
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Steven F Abcouwer
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Thomas W Gardner
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, 1000 Wall Street, Ann Arbor, MI, 48105, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Patrice E Fort
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, 1000 Wall Street, Ann Arbor, MI, 48105, USA.
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
37
|
Matysik-Woźniak A, Turski W, Turska M, Paduch R, Łańcut M, Piwowarczyk P, Czuczwar M, Jünemann A, Rejdak R. Examination of Kynurenine Toxicity on Corneal and Conjunctival Epithelium: In vitro and in vivo Studies. Ophthalmic Res 2019; 62:24-35. [DOI: 10.1159/000499021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/19/2019] [Indexed: 11/19/2022]
|
38
|
Caixinha M, Oliveira P, Aires ID, Ambrósio AF, Santiago AR, Santos M, Santos J. In Vivo Characterization of Corneal Changes in a Type 1 Diabetic Animal Model. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:823-832. [PMID: 30606634 DOI: 10.1016/j.ultrasmedbio.2018.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 10/17/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
Diabetes mellitus (DM) is a metabolic disease that affects 9% of the adult population, promoting an increase in glucose concentration that affects the corneal structure, namely, its thickness, as well as the constituents and flow of the aqueous humor. In this study, high-frequency transducers (20-MHz and 50-MHz) were used to measure and characterize changes in the corneal and aqueous humor in streptozotocin-induced type 1 diabetic rats followed over 8 weeks. Increases of 24.6 and 15.4 μm in central corneal thickness were measured with the 20-MHz and 50-MHz probes, respectively, in DM rats (p < 0.001). The increases in thickness of the different corneal layers ranged from 7% to 17%. Structural alterations of the aqueous humor were also studied by relating the amplitudes of the anterior lens and posterior cornea boundary signals, the result of which was denominated by pseudo-attenuation. The results revealed an increase of 49% at week 8 compared with the baseline values (p < 0.020, with the 50-MHz probe). This study illustrated that high-frequency ultrasound can be used to measure corneal layer thickness and study the alterations promoted by diabetes in the eye's anterior segment. Those assessments may allow early detection of DM, improving the monitoring of diabetic patients.
Collapse
Affiliation(s)
- Miguel Caixinha
- CEMMPRE, University of Coimbra, Coimbra, Portugal; Department of Physics, University of Beira Interior, Covilhã, Portugal.
| | - Pedro Oliveira
- Department of Electrical and Computer Engineering, University of Coimbra, Coimbra, Portugal
| | - Inês D Aires
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - António Francisco Ambrósio
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Ana Raquel Santiago
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Mário Santos
- CEMMPRE, University of Coimbra, Coimbra, Portugal; Department of Electrical and Computer Engineering, University of Coimbra, Coimbra, Portugal
| | - Jaime Santos
- CEMMPRE, University of Coimbra, Coimbra, Portugal; Department of Electrical and Computer Engineering, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
39
|
Deardorff PM, McKay TB, Wang S, Ghezzi CE, Cairns DM, Abbott RD, Funderburgh JL, Kenyon KR, Kaplan DL. Modeling Diabetic Corneal Neuropathy in a 3D In Vitro Cornea System. Sci Rep 2018; 8:17294. [PMID: 30470798 PMCID: PMC6251923 DOI: 10.1038/s41598-018-35917-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/31/2018] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus is a disease caused by innate or acquired insulin deficiency, resulting in altered glucose metabolism and high blood glucose levels. Chronic hyperglycemia is linked to development of several ocular pathologies affecting the anterior segment, including diabetic corneal neuropathy and keratopathy, neovascular glaucoma, edema, and cataracts leading to significant visual defects. Due to increasing disease prevalence, related medical care costs, and visual impairment resulting from diabetes, a need has arisen to devise alternative systems to study molecular mechanisms involved in disease onset and progression. In our current study, we applied a novel 3D in vitro model of the human cornea comprising of epithelial, stromal, and neuronal components cultured in silk scaffolds to study the pathological effects of hyperglycemia on development of diabetic corneal neuropathy. Specifically, exposure to sustained levels of high glucose, ranging from 35 mM to 45 mM, were applied to determine concentration-dependent effects on nerve morphology, length and density of axons, and expression of metabolic enzymes involved in glucose metabolism. By comparing these metrics to in vivo studies, we have developed a functional 3D in vitro model for diabetic corneal neuropathy as a means to investigate corneal pathophysiology resulting from prolonged exposure to hyperglycemia.
Collapse
Affiliation(s)
- Phillip M Deardorff
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Tina B McKay
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Siran Wang
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Chiara E Ghezzi
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Dana M Cairns
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Rosalyn D Abbott
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - James L Funderburgh
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Kenneth R Kenyon
- Department of Ophthalmology, Tufts New England Medical Center, Boston, MA, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
40
|
Recent advances in the applications of metabolomics in eye research. Anal Chim Acta 2018; 1037:28-40. [PMID: 30292303 DOI: 10.1016/j.aca.2018.01.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 11/21/2022]
Abstract
Metabolomics, the identification and quantitation of metabolites in a system, have been applied to identify new biomarkers or elucidate disease mechanism. In this review, we discussed the application of metabolomics in several ocular diseases and recent developments in metabolomics regarding tear fluids analysis, data acquisition and processing.
Collapse
|
41
|
Schwalm S, Beyer S, Frey H, Haceni R, Grammatikos G, Thomas D, Geisslinger G, Schaefer L, Huwiler A, Pfeilschifter J. Sphingosine Kinase-2 Deficiency Ameliorates Kidney Fibrosis by Up-Regulating Smad7 in a Mouse Model of Unilateral Ureteral Obstruction. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2413-2429. [DOI: 10.1016/j.ajpath.2017.06.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/10/2017] [Accepted: 06/29/2017] [Indexed: 12/31/2022]
|
42
|
Hu P, Hunt NH, Arfuso F, Shaw LC, Uddin MN, Zhu M, Devasahayam R, Adamson SJ, Benson VL, Chan-Ling T, Grant MB. Increased Indoleamine 2,3-Dioxygenase and Quinolinic Acid Expression in Microglia and Müller Cells of Diabetic Human and Rodent Retina. Invest Ophthalmol Vis Sci 2017; 58:5043-5055. [PMID: 28980000 PMCID: PMC5633007 DOI: 10.1167/iovs.17-21654] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose We investigated the relationship between inflammation, neuronal loss, and expression of indoleamine 2, 3-dioxygenase (IDO) and quinolinic acid (QUIN) in the retina of subjects with type 1 diabetes (T1D) and type 2 diabetes (T2D) and in the retina of rats with T1D. Methods Retinas from T1D (n = 7), T2D (n = 13), and 20 age-matched nondiabetic human donors and from T1D (n = 3) and control rats (n = 3) were examined using immunohistochemistry for IDO, QUIN, cluster of differentiation 39 (CD39), ionized calcium-binding adaptor molecule (Iba-1, for macrophages and microglia), Vimentin (VIM; for Müller cells), neuronal nuclei (NeuN; for neurons), and UEA1 lectin (for blood vessels). Results Based on morphologic criteria, CD39+/ionized calcium binding adaptor molecule 1(Iba-1+) resident microglia and CD39−/Iba-1+ bone marrow–derived macrophages were present at higher density in T1D (13% increase) and T2D (26% increase) human retinas when compared with controls. The density and brightness of IDO+ microglia were increased in both T1D and T2D human retinas. The intensity of QUIN+ expression on CD39+ microglia and VIM+ Müller cells was greatly increased in both human T1D and T2D retinas. T1D retinas showed a 63% loss of NeuN+ neurons and T2D retinas lost approximately 43% when compared with nondiabetic human retinas. Few QUIN+ microglia-like cells were seen in nondiabetic retinas, but the numbers increased 18-fold in T1D and 7-fold in T2D in the central retina. In T1D rat retinas, the density of IDO+ microglia increased 2.8-fold and brightness increased 2.1-fold when compared with controls. Conclusions Our findings suggest that IDO and QUIN expression in the retinas of diabetic rats and humans could contribute to the neuronal degeneration that is characteristic of diabetic retinopathy.
Collapse
Affiliation(s)
- Ping Hu
- Department of Anatomy, Bosch Institute, University of Sydney, New South Wales, Australia.,Department of Ophthalmology, the Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana, United States
| | - Nicholas H Hunt
- Department of Pathology, Bosch Institute, University of Sydney, New South Wales, Australia
| | - Frank Arfuso
- Department of Anatomy, Bosch Institute, University of Sydney, New South Wales, Australia.,Stem Cell & Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Lynn C Shaw
- Department of Ophthalmology, the Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana, United States
| | - Mohammad Nasir Uddin
- Department of Anatomy, Bosch Institute, University of Sydney, New South Wales, Australia
| | - Meidong Zhu
- Lions New South Wales Eye Bank, New South Wales Organ and Tissue Donation Service, South Eastern Sydney Local Health District, New South Wales, Australia.,Save Sight Institute, Discipline of Clinical Ophthalmology and Eye Health, University of Sydney, New South Wales, Australia
| | - Raj Devasahayam
- Lions New South Wales Eye Bank, New South Wales Organ and Tissue Donation Service, South Eastern Sydney Local Health District, New South Wales, Australia
| | - Samuel J Adamson
- Department of Anatomy, Bosch Institute, University of Sydney, New South Wales, Australia
| | - Vicky L Benson
- Department of Physiology, Faculty of Health and Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Tailoi Chan-Ling
- Department of Anatomy, Bosch Institute, University of Sydney, New South Wales, Australia
| | - Maria B Grant
- Department of Ophthalmology, the Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana, United States.,Univeristy of Alabama, Birmingham, Alabama, United States
| |
Collapse
|
43
|
Unravelling the interplay of sphingolipids and TGF-β signaling in the human corneal stroma. PLoS One 2017; 12:e0182390. [PMID: 28806736 PMCID: PMC5555661 DOI: 10.1371/journal.pone.0182390] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/17/2017] [Indexed: 11/19/2022] Open
Abstract
Purpose To delineate the role of Sphingolipids (SPLs) in the human cornea and their cross-talks with transforming growth factor beta (TGF-β) in order to develop novel, non-invasive therapies. Methods Human corneal fibroblasts (HCFs) were harvested from healthy donors, stimulated with Vitamin C to promote extracellular matrix assembly, treated with exogenous sphingosine-1-phosphate (S1P) or sphingosine kinase inhibitor 2 (SPHK I2) and isolated after 4 weeks for further analysis. Results Data showed that S1P led to a significant decrease in cellular migration where SPHK I2 just delayed it for 24h. Significant modulation of the sphingolipid pathway was also noted. Sphingosine kinase-1 (SphK1) was significantly downregulated upon exogenous stimulation with S1P at a concentration of 5μM and Sphingosine kinase-2 (SphK2) was also significantly downregulated at concentrations of 0.01μM, 0.1μM, and 5μM; whereas no effects were observed upon stimulation with SPHK I2. S1PR3 was significantly downregulated by 0.1μM and 5μM S1P and upregulated by 5μM and 10μM SPHK I2. Furthermore, both S1P and SPHK I2 regulated corneal fibrosis markers such as alpha-smooth muscle actin, collagen I, III, and V. We also investigated the interplay between two TGF-β isoforms and S1P/SPHK I2 treatments and found that TGF-β1 and TGF-β3 were both significantly upregulated with the 0.1μM S1P but were significantly downregulated with the 5μM S1P concentration. When TGF-β1 was compared directly to TGF-β3 expression, we observed that TGF-β3 was significantly downregulated compared to TGF-β1 in the 5μM concentration of S1P. No changes were observed upon SPHK I2 treatment. Conclusion Our study delineates the role of sphingolipids in the human cornea and highlights their different activities based on the cell/tissue type.
Collapse
|
44
|
Priyadarsini S, Rowsey TG, Ma JX, Karamichos D. Unravelling the stromal-nerve interactions in the human diabetic cornea. Exp Eye Res 2017; 164:22-30. [PMID: 28827027 DOI: 10.1016/j.exer.2017.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/14/2017] [Accepted: 08/02/2017] [Indexed: 01/18/2023]
Abstract
Corneal defects due to diabetes mellitus (DM) may cause severe vision impairments. Current studies focus on the corneal epithelium and nerve defects neglecting the corneal stroma. The aim of this study was to develop a 3D in vitro model to examine the interactions between corneal stroma and nerves in the context of DM. Primary human corneal stromal fibroblasts isolated from healthy (HCFs), Type 1 (T1DM) and Type 2 (T2DM) patients were stimulated with stable ascorbic acid to secrete and assemble an extracellular matrix (ECM). Human neuronal cells were then seeded on top and differentiated to create the 3D co-cultures. Our data revealed successful co-culture of stromal fibroblasts and neuronal cells with large elongated neuron extensions. T2DM showed significant upregulation of Collagen III and IGF1 when compared to T1DM. Interestingly, upon nerve addition, those markers returned to HCF levels. Neuronal markers were also differentially modulated with T2DM co-cultures expressing high levels of βIII tubulin where T1DM co-cultures expressed Substance P. . Overall, our unique 3D co-culture model provides us with a tool that can be utilized for both molecular and therapeutic studies for diabetic keratopathy.
Collapse
Affiliation(s)
- Shrestha Priyadarsini
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Tyler G Rowsey
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Jian-Xing Ma
- Department of Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Dimitrios Karamichos
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
45
|
Zhou HY, Cao Y, Wu J, Zhang WS. Role of corneal collagen fibrils in corneal disorders and related pathological conditions. Int J Ophthalmol 2017; 10:803-811. [PMID: 28546941 DOI: 10.18240/ijo.2017.05.24] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/23/2017] [Indexed: 01/24/2023] Open
Abstract
The cornea is a soft tissue located at the front of the eye with the principal function of transmitting and refracting light rays to precisely sense visual information. Corneal shape, refraction, and stromal stiffness are to a large part determined by corneal fibrils, the arrangements of which define the corneal cells and their functional behaviour. However, the modality and alignment of native corneal collagen lamellae are altered in various corneal pathological states such as infection, injury, keratoconus, corneal scar formation, and keratoprosthesis. Furthermore, corneal recuperation after corneal pathological change is dependent on the balance of corneal collagen degradation and contraction. A thorough understanding of the characteristics of corneal collagen is thus necessary to develop viable therapies using the outcome of strategies using engineered corneas. In this review, we discuss the composition and distribution of corneal collagens as well as their degradation and contraction, and address the current status of corneal tissue engineering and the progress of corneal cross-linking.
Collapse
Affiliation(s)
- Hong-Yan Zhou
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Yan Cao
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Jie Wu
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Wen-Song Zhang
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| |
Collapse
|
46
|
Rampler E, Coman C, Hermann G, Sickmann A, Ahrends R, Koellensperger G. LILY-lipidome isotope labeling of yeast: in vivo synthesis of 13C labeled reference lipids for quantification by mass spectrometry. Analyst 2017; 142:1891-1899. [PMID: 28475182 DOI: 10.1039/c7an00107j] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Quantification is an essential task in comprehensive lipidomics studies challenged by the high number of lipids, their chemical diversity and their dynamic range of the lipidome. In this work, we introduce lipidome isotope labeling of yeast (LILY) in order to produce (non-radioactive) isotopically labeled eukaryotic lipid standards in yeast for normalization and quantification in mass spectrometric assays. More specifically, LILY is a fast and efficient in vivo labeling strategy in Pichia pastoris for the production of 13C labeled lipid library further paving the way to comprehensive compound-specific internal standardization in quantitative mass spectrometry based assays. More than 200 lipid species (from PA, PC, PE, PG, PI, PS, LysoGP, CL, DAG, TAG, DMPE, Cer, HexCer, IPC, MIPC) were obtained from yeast extracts with an excellent 13C enrichment >99.5%, as determined by complementary high resolution mass spectrometry based shotgun and high resolution LC-MS/MS analysis. In a first proof of principle study we tested the relative and absolute quantification capabilities of the 13C enriched lipids obtained by LILY using a parallel reaction monitoring based LC-MS approach. In relative quantification it could be shown that compound specific internal standardization was essential for the accuracy extending the linear dynamic range to four orders of magnitude. Excellent analytical figures of merit were observed for absolute quantification for a selected panel of 5 investigated glycerophospholipids (e.g. LOQs around 5 fmol absolute; typical concentrations ranging between 1 to 10 nmol per 108 yeast cell starting material; RSDs <10% (N = 4)).
Collapse
Affiliation(s)
- Evelyn Rampler
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 38, 1090 Vienna, Austria. and Vienna Metabolomics Center (VIME), University of Vienna, Althanstraße 14, 1090 Vienna, Austria and Chemistry Meets Microbiolgy, Althanstraße 14, 1090 Vienna, Austria
| | - Cristina Coman
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | - Gerrit Hermann
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 38, 1090 Vienna, Austria. and ISOtopic Solutions, Währingerstr. 38, 1090 Vienna, Austria
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany and College of Physical Sciences, University of Aberdeen, Department of Chemistry, AB24 3UE Aberdeen, UK and Medizinische Fakultät, Medizinische Proteom-Center (MCP), Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Robert Ahrends
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | - Gunda Koellensperger
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 38, 1090 Vienna, Austria. and Vienna Metabolomics Center (VIME), University of Vienna, Althanstraße 14, 1090 Vienna, Austria and Chemistry Meets Microbiolgy, Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|
47
|
Diabetic complications in the cornea. Vision Res 2017; 139:138-152. [PMID: 28404521 DOI: 10.1016/j.visres.2017.03.002] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 12/15/2022]
Abstract
Diabetic corneal alterations, such as delayed epithelial wound healing, edema, recurrent erosions, neuropathy/loss of sensitivity, and tear film changes are frequent but underdiagnosed complications of both type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus. The disease affects corneal epithelium, corneal nerves, tear film, and to a lesser extent, endothelium, and also conjunctiva. These abnormalities may appear or become exacerbated following trauma, as well as various surgeries including retinal, cataract or refractive. The focus of the review is on mechanisms of diabetic corneal abnormalities, available animal, tissue and organ culture models, and emerging treatments. Changes of basement membrane structure and wound healing rates, the role of various proteinases, advanced glycation end products (AGEs), abnormal growth and motility factors (including opioid, epidermal, and hepatocyte growth factors) are analyzed. Experimental therapeutics under development, including topical naltrexone, insulin, inhibitors of aldose reductase, and AGEs, as well as emerging gene and cell therapies are discussed in detail.
Collapse
|
48
|
Priyadarsini S, Nicholas SE, Karamichos D. 3D Stacked Construct: A Novel Substitute for Corneal Tissue Engineering. Methods Mol Biol 2017; 1697:173-180. [PMID: 28451994 DOI: 10.1007/7651_2017_23] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Corneal trauma/injury often results in serious complications including permanent vision loss or loss of visual acuity which demands corneal transplantations or treatment with allogenic graft tissues. There is currently a huge shortage of donor tissue worldwide and the need for human corneal equivalents increases annually. In order to meet such demand the current clinical approach of treating corneal injuries is limited and involves synthetic and allogenic materials which have various shortcomings when it comes to actual transplantations. In this study we introduce the newly developed, next generation of our previously established 3D self-assembled constructs, where multiple constructs are grown and stacked on top of each other without any other artificial product. This new technology brings our 3D in vitro model closer to what is seen in vivo and provides a solid foundation for future studies on corneal biology.Lipids are known for playing a vital role during metabolism and diseased state of various tissues and Sphingolipids are one such class of lipids which are involved in various cellular mechanisms and signaling processes. The impacts of Sphingolipids that have been documented in several human diseases often involve inflammation, neovascularization, tumorigenesis, and diabetes, but these conditions are not yet thoroughly studied. There is very little information about the exact role of Sphingolipids in the human cornea and future studies aiming at dissecting the mechanisms and pathways involved in order to develop novel therapies. We believe that our novel 3D stacked model can be used to delineate the role of Sphingolipids in the human cornea and provide new insights for understanding and treating various human corneal diseases.
Collapse
Affiliation(s)
- Shrestha Priyadarsini
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Sarah E Nicholas
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Dimitrios Karamichos
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|