1
|
Xiao Q, Zhang X, Chen ZL, Zou YY, Tang CF. An Evidence-Based Narrative Review of Scleral Hypoxia Theory in Myopia: From Mechanisms to Treatments. Int J Mol Sci 2025; 26:332. [PMID: 39796188 PMCID: PMC11719898 DOI: 10.3390/ijms26010332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/24/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Myopia is one of the dominant causes of visual impairment in the world. Pathological myopia could even lead to other serious eye diseases. Researchers have reached a consensus that myopia could be caused by both environmental and genetic risk factors. Exploring the pathological mechanism of myopia can provide a scientific basis for developing measures to delay the progression of myopia or even treat it. Recent advances highlight that scleral hypoxia could be an important factor in promoting myopia. In this review, we summarized the role of scleral hypoxia in the pathology of myopia and also provided interventions for myopia that target scleral hypoxia directly or indirectly. We hope this review will aid in the development of novel therapeutic strategies and drugs for myopia.
Collapse
Affiliation(s)
- Qin Xiao
- College of Physical Education, Hunan Normal University, Changsha 410012, China; (Q.X.); (X.Z.); (Z.-L.C.)
- College of Physical Education, Hunan First Normal University, Changsha 410205, China
| | - Xiang Zhang
- College of Physical Education, Hunan Normal University, Changsha 410012, China; (Q.X.); (X.Z.); (Z.-L.C.)
| | - Zhang-Lin Chen
- College of Physical Education, Hunan Normal University, Changsha 410012, China; (Q.X.); (X.Z.); (Z.-L.C.)
| | - Yun-Yi Zou
- College of Physical Education, Hunan Normal University, Changsha 410012, China; (Q.X.); (X.Z.); (Z.-L.C.)
| | - Chang-Fa Tang
- College of Physical Education, Hunan Normal University, Changsha 410012, China; (Q.X.); (X.Z.); (Z.-L.C.)
| |
Collapse
|
2
|
Xie Y, Zhang L, Chen S, Xie C, Tong J, Shen Y. The potential role of amino acids in myopia: inspiration from metabolomics. Metabolomics 2024; 21:6. [PMID: 39676079 DOI: 10.1007/s11306-024-02207-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/01/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Due to the high prevalence of myopia, there is a growing need for the identification of myopia intervention mechanisms and targets. Metabolomics has been gradually used to investigate changes in myopia tissue metabolites over the last few years, but the potential physiological and pathological roles of amino acids and their downstream metabolites discovered by metabolomics in myopia are not fully understood. AIM OF REVIEW Aim to explore the possible relationship between amino acid metabolism and the occurrence and development of myopia, we collected a total of 21 experimental studies related to myopia metabolomics. Perform pathway analysis using MetaboAnalyst online software. We have identified over 20 amino acids that may be associated with the development of myopia. Among them, 19 types of amino acids are common amino acids. We discussed their possible mechanisms affecting myopia and proposed future prospects for treating myopia. KEY SCIENTIFIC CONCEPTS OF REVIEW Our analysis results show that metabolomics research on myopia involves many important amino acids. We have collected literature and found that research on amino acid metabolism in myopia mainly focuses on downstream small molecule substances. Amino acids and their downstream metabolites affect the development of myopia by participating in important biochemical processes such as oxidative stress, glucose metabolism, and lipid metabolism. Enzymes, receptors, and cytokines that regulate amino acid metabolism may become potential targets for myopia treatment.
Collapse
Affiliation(s)
- Ying Xie
- The Department of Ophthalmology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Liyue Zhang
- The Department of Ophthalmology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Siyi Chen
- The Alfred, 55 Commercial Rd, Melbourne, VIC, Australia
| | - Chen Xie
- The Department of Ophthalmology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jianping Tong
- The Department of Ophthalmology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| | - Ye Shen
- The Department of Ophthalmology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
3
|
Du Y, Pang M, Chen H, Zhou X, Geng R, Zhang Y, Yang L, Li J, Han Y, Liu J, Zhang R, Bi H, Guo D. Inhibitory effect of Zhujing Pill on myopia progression: Mechanistic insights based on metabonomics and network pharmacology. PLoS One 2024; 19:e0312379. [PMID: 39625993 PMCID: PMC11614212 DOI: 10.1371/journal.pone.0312379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/02/2024] [Indexed: 12/06/2024] Open
Abstract
OBJECTIVES This study endeavored to uncover the mechanisms by which Zhujing pill (ZJP) slows myopia progression. METHODS We employed biometric analyses to track diopter and axial length changes in guinea pigs with negative lens-induced myopia (LIM). Through integrating metabonomics and network pharmacology, we aimed to predict the anti-myopic targets and active ingredients of ZJP. Subsequent analysis, including real-time fluorescent quantitative PCR (qPCR) and Western blotting (WB), assessed the expression levels of CHRNA7, LPCAT1, and NOS2 in retinal tissues. KEY FINDINGS Our findings demonstrate that ZJP significantly mitigates diopter increase and axial elongation in LIM guinea pigs. Metabonomic analysis revealed significant changes in 13 serum metabolites, with ZJP reversing the expression of 5 key metabolites. By integrating metabonomics with network pharmacology, we identified core targets of ZJP against myopia and constructed a compound-gene-disease-metabolite network. The expressions of LPCAT1 and CHRNA7 were found to decrease in the LIM group but increase with ZJP treatment, whereas NOS2 expression showed the opposite pattern. CONCLUSIONS This investigation provides the first evidence of ZJP's multifaceted effectiveness in managing myopia, highlighting its impact on multiple components, targets, and pathways, including the novel involvement of LPCAT1 and CHRNA7 in myopia pathogenesis.
Collapse
Affiliation(s)
- Yongle Du
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mengran Pang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haoyu Chen
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiangkun Zhou
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruyue Geng
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanan Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Linqi Yang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiawen Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yufeng Han
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinpeng Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruixue Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan, China
- Shandong Academy of Eye Disease Prevention and Therapy, Jinan, China
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Xue CC, Li H, Dong XX, Yu M, Soh ZD, Chong CCY, Jiang C, Choquet H, Zebardast N, Zekavat SM, Hysi PG, Saw SM, Fan Q, Tham YC, Pan CW, Cheng CY. Omega-3 Polyunsaturated Fatty Acids as a Protective Factor for Myopia. Am J Ophthalmol 2024; 268:368-377. [PMID: 39244001 PMCID: PMC11606739 DOI: 10.1016/j.ajo.2024.08.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
PURPOSE Animal models suggest omega-3 polyunsaturated fatty acids (PUFAs) may protect against myopia by modulating choroidal blood perfusion, but clinical evidence is scarce and mixed. We aimed to determine the causality between omega-3 PUFAs and myopia using Mendelian randomization (MR) analysis. DESIGN Two-sample MR analysis. METHODS Exposures are genetically predicted plasma levels of 18 fatty acid (FA)-related traits. Spherical equivalent refraction (SER) and axial length were used as measurements of myopia. Genome-wide association study summary data on plasma levels of 18 FA-related traits (n=115,006), refractive spherical equivalent (n=351,091), axial length (n=69,945), and choroidal thickness (n=44,823) were sourced from the UK Biobank, the Genetic Epidemiology Research on Adult Health and Aging cohort, and the Consortium for Refractive Error and Myopia Study. We used 5 MR models and considered results statistically significant if the Bonferroni-corrected P value was ≤2.78 ×10-3 in at least 3 MR models. The β represents the change in outcomes (SER in diopters; axial length in millimeters; and choroidal thickness in SD) per SD unit increase in FA levels. RESULTS At a Bonferroni-corrected significance, higher levels of omega-3 (β, 0.32-0.34), omega-3-total FA ratio (β, 0.31-0.44), docosahexaenoic acid (DHA) (β, 0.36-0.46), DHA-total FA ratio (β, 0.37-0.53), PUFA-total FA ratio (β, 0.07-1.003), and degree of unsaturation (β, 0.28-0.44) were associated with a more positive SER, suggesting a lower risk of myopia. Similar trends were observed for axial length albeit with borderline significance (P ≤ .035 in ≥2 models). Higher levels of omega-3, DHA, DHA-total FA ratio, PUFA-total FA ratio, PUFA-monounsaturated FA ratio, and degree of unsaturation were nominally associated with thicker choroidal thickness (β, 0.05-0.13; P ≤ .045 in ≥2 models). CONCLUSION Our multiple MR models suggest a protective effect of omega-3 and DHA on myopia, potentially through modulation of choroidal blood perfusion. Further randomized clinical trials are needed to confirm the effectiveness and determine the optimal dose and duration.
Collapse
Affiliation(s)
- Can Can Xue
- From the Singapore Eye Research Institute, Singapore National Eye Centre (C.C.X., M.Y., Z.D.S., C.C., S.M.S., Y.-C.T., C.-Y.C.), Singapore
| | - Hengtong Li
- Centre for Innovation and Precision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore (H.L., Y.-C.T., C.-Y.C.), Singapore; Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore (H.L., Z.D.S., S.M.S., Y.-C.T., C.-Y.C.), Singapore
| | - Xing-Xuan Dong
- School of Public Health, Suzhou Medical College of Soochow University (X.-X.D., C.-W.P.), Suzhou, China
| | - Marco Yu
- From the Singapore Eye Research Institute, Singapore National Eye Centre (C.C.X., M.Y., Z.D.S., C.C., S.M.S., Y.-C.T., C.-Y.C.), Singapore
| | - Zhi Da Soh
- From the Singapore Eye Research Institute, Singapore National Eye Centre (C.C.X., M.Y., Z.D.S., C.C., S.M.S., Y.-C.T., C.-Y.C.), Singapore; Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore (H.L., Z.D.S., S.M.S., Y.-C.T., C.-Y.C.), Singapore
| | - Crystal Chun Yuen Chong
- From the Singapore Eye Research Institute, Singapore National Eye Centre (C.C.X., M.Y., Z.D.S., C.C., S.M.S., Y.-C.T., C.-Y.C.), Singapore
| | - Chen Jiang
- Division of Research, Kaiser Permanente Northern California (C.J., H.C.), Pleasanton, CA, USA
| | - Helene Choquet
- Division of Research, Kaiser Permanente Northern California (C.J., H.C.), Pleasanton, CA, USA
| | - Nazlee Zebardast
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School (N.Z., S.M.Z.), Boston, MA, USA; Program in Medical and Population Genetics, Broad institute of MiT and Harvard (N.Z., S.M.Z.), Cambridge, MA, USA
| | - Seyedeh Maryam Zekavat
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School (N.Z., S.M.Z.), Boston, MA, USA; Program in Medical and Population Genetics, Broad institute of MiT and Harvard (N.Z., S.M.Z.), Cambridge, MA, USA; Cardiovascular Research Center, Massachusetts General hospital, Harvard Medical School (S.M.Z.), Boston, MA, USA
| | - Pirro G Hysi
- King's College London, Section of Ophthalmology, School of Life Course Sciences (P.G.H.), London, United Kingdom; King's College London, Department of Twin Research and Genetic Epidemiology (P.G.H.), London, United Kingdom; University College London, GOSH Institute of Child Health (P.G.H.), London, United Kingdom
| | - Seang Mei Saw
- From the Singapore Eye Research Institute, Singapore National Eye Centre (C.C.X., M.Y., Z.D.S., C.C., S.M.S., Y.-C.T., C.-Y.C.), Singapore; Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore (H.L., Z.D.S., S.M.S., Y.-C.T., C.-Y.C.), Singapore; Saw Swee Hock School of Public Health, National University of Singapore (S.M.S.), Singapore
| | - Qiao Fan
- Centre for Quantitative Medicine, Duke-NUS Medical School (Q.F.), Singapore
| | - Yih-Chung Tham
- From the Singapore Eye Research Institute, Singapore National Eye Centre (C.C.X., M.Y., Z.D.S., C.C., S.M.S., Y.-C.T., C.-Y.C.), Singapore; Centre for Innovation and Precision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore (H.L., Y.-C.T., C.-Y.C.), Singapore; Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore (H.L., Z.D.S., S.M.S., Y.-C.T., C.-Y.C.), Singapore; Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School (Y.-C.T., C.-Y.C.), Singapore
| | - Chen-Wei Pan
- School of Public Health, Suzhou Medical College of Soochow University (X.-X.D., C.-W.P.), Suzhou, China
| | - Ching-Yu Cheng
- From the Singapore Eye Research Institute, Singapore National Eye Centre (C.C.X., M.Y., Z.D.S., C.C., S.M.S., Y.-C.T., C.-Y.C.), Singapore; Centre for Innovation and Precision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore (H.L., Y.-C.T., C.-Y.C.), Singapore; Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore (H.L., Z.D.S., S.M.S., Y.-C.T., C.-Y.C.), Singapore; Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School (Y.-C.T., C.-Y.C.), Singapore.
| |
Collapse
|
5
|
Lin X, Zheng C, Cong J, Feng Q, Yuan J, Liu S, Li H, Feng C, Dai J. Metabolic Characteristics of Sclera in Lens-Induced Myopic Guinea Pigs. Invest Ophthalmol Vis Sci 2024; 65:51. [PMID: 39585677 PMCID: PMC11605661 DOI: 10.1167/iovs.65.13.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/22/2024] [Indexed: 11/26/2024] Open
Abstract
Purpose Myopia development is closely associated with scleral tissue loss in both human and animal models. This research aimed to investigate the metabolic changes in the sclera of lens-induced myopic guinea pigs and explore the underlying mechanisms. Methods Myopia was induced in 2-week-old pigmented guinea pigs by having them wear -20-diopter lenses for 10 days, with one eye designated as the lens-induced myopic eye and the other as the control. Dual-platform untargeted metabolomics was performed using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) to analyze the metabolic changes in the sclera. Validation of amino acid levels in the sclera was conducted via targeted metabolomics. Glycine intervention was carried out in both scleral fibroblasts and the lens-induced myopia guinea pig model to evaluate its effects on COL1A1 synthesis and myopia progression. Results After 10 days of lens-induced myopia, GC-MS and LC-MS analyses identified significant changes in 29 and 85 metabolites in the myopic sclera, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the downregulation of amino acid and pyrimidine metabolism pathways was crucial in myopia development. Targeted amino acid metabolomics confirmed that multiple amino acids were significantly reduced in the myopic sclera. Glycine deficiency reduced COL1A1 levels in scleral fibroblasts, and glycine supplementation significantly increased its content. Animal studies demonstrated that glycine gavage significantly inhibited axial elongation and refractive error increase in lens-induced myopic guinea pigs, increased COL1A1 content, and reversed the reduction of ferroptosis-related proteins GPX4 and FTH1. Conclusions Several amino acids, including glycine, l-isoleucine, l-serine, and l-valine, were significantly reduced in the myopic sclera, along with a marked downregulation of amino acid and pyrimidine metabolism pathways. Glycine supplementation can increase COL1A1 content and inhibit myopia progression by reducing ferroptosis within the sclera, suggesting that glycine could serve as a potential therapeutic intervention for myopia.
Collapse
Affiliation(s)
- Xueqi Lin
- Shanghai Institute of Infectious Disease and Biosecurity, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | - Jing Cong
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qianhong Feng
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiayue Yuan
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shichu Liu
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Li
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chenli Feng
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinhui Dai
- Shanghai Institute of Infectious Disease and Biosecurity, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Mrugacz M, Zorena K, Pony-Uram M, Lendzioszek M, Pieńczykowska K, Bryl A. Interdependence of Nutrition, Physical Activity, and Myopia. Nutrients 2024; 16:3331. [PMID: 39408299 PMCID: PMC11478443 DOI: 10.3390/nu16193331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Myopia (also known as nearsightedness), a prevalent refractive error, occurs when parallel rays of light converge in front of the retina, resulting in blurry distance vision. Recently, there has been a marked rise in myopia among the global population. The absence of effective methods of controlling the progression of this visual defect prompts the search for new preventive and therapeutic options. The impact of diet and lifestyle on the progression of myopia is still not fully understood. Therefore, our aim was to examine how these factors might affect the advancement of myopia, based on the existing literature. Methods: This manuscript was prepared through an extensive literature review conducted from June 2022 to September 2024. We searched for pertinent research articles using reputable databases, including PubMed, Scopus, and Web of Science. We included all types of publications, with a special focus on the newest ones. Results: Despite far-reaching examination, the relationship between these factors and myopia control remains inconclusive with varying degrees of evidence supporting their roles. Conclusions: However, promoting a healthy lifestyle, particularly increasing physical activity and outdoor time, is essential. Additionally, emerging research suggests that maintaining a balanced diet is important due to the potential impact of certain nutrients on myopia development. Ophthalmologists should also guide parents on the alternative correction methods beyond single vision glasses, especially for rapidly progressing cases. With the rising prevalence of myopia in children, further research is necessary.
Collapse
Affiliation(s)
- Małgorzata Mrugacz
- Department of Ophthalmology and Eye Rehabilitation, Medical University of Bialystok, 15-089 Bialystok, Poland;
| | - Katarzyna Zorena
- Department of Immunobiology and Environmental Microbiology, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Magdalena Pony-Uram
- Department of Ophthalmology, Subcarpathian Hospital in Krosno, Korczynska 57, 38-400 Krosno, Poland;
| | - Maja Lendzioszek
- Department of Ophthalmology, Voivodship Hospital in Lomza, 18-400 Lomza, Poland;
| | | | - Anna Bryl
- Department of Ophthalmology and Eye Rehabilitation, Medical University of Bialystok, 15-089 Bialystok, Poland;
| |
Collapse
|
7
|
Belete GT, Zhou L, Li KK, So PK, Do CW, Lam TC. Metabolomics studies in common multifactorial eye disorders: a review of biomarker discovery for age-related macular degeneration, glaucoma, diabetic retinopathy and myopia. Front Mol Biosci 2024; 11:1403844. [PMID: 39193222 PMCID: PMC11347317 DOI: 10.3389/fmolb.2024.1403844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Introduction Multifactorial Eye disorders are a significant public health concern and have a huge impact on quality of life. The pathophysiological mechanisms underlying these eye disorders were not completely understood since functional and low-throughput biological tests were used. By identifying biomarkers linked to eye disorders, metabolomics enables early identification, tracking of the course of the disease, and personalized treatment. Methods The electronic databases of PubMed, Scopus, PsycINFO, and Web of Science were searched for research related to Age-Related macular degeneration (AMD), glaucoma, myopia, and diabetic retinopathy (DR). The search was conducted in August 2023. The number of cases and controls, the study's design, the analytical methods used, and the results of the metabolomics analysis were all extracted. Using the QUADOMICS tool, the quality of the studies included was evaluated, and metabolic pathways were examined for distinct metabolic profiles. We used MetaboAnalyst 5.0 to undertake pathway analysis of differential metabolites. Results Metabolomics studies included in this review consisted of 36 human studies (5 Age-related macular degeneration, 10 Glaucoma, 13 Diabetic retinopathy, and 8 Myopia). The most networked metabolites in AMD include glycine and adenosine monophosphate, while methionine, lysine, alanine, glyoxylic acid, and cysteine were identified in glaucoma. Furthermore, in myopia, glycerol, glutamic acid, pyruvic acid, glycine, cysteine, and oxoglutaric acid constituted significant metabolites, while glycerol, glutamic acid, lysine, citric acid, alanine, and serotonin are highly networked metabolites in cases of diabetic retinopathy. The common top metabolic pathways significantly enriched and associated with AMD, glaucoma, DR, and myopia were arginine and proline metabolism, methionine metabolism, glycine and serine metabolism, urea cycle metabolism, and purine metabolism. Conclusion This review recapitulates potential metabolic biomarkers, networks and pathways in AMD, glaucoma, DR, and myopia, providing new clues to elucidate disease mechanisms and therapeutic targets. The emergence of advanced metabolomics techniques has significantly enhanced the capability of metabolic profiling and provides novel perspectives on the metabolism and underlying pathogenesis of these multifactorial eye conditions. The advancement of metabolomics is anticipated to foster a deeper comprehension of disease etiology, facilitate the identification of novel therapeutic targets, and usher in an era of personalized medicine in eye research.
Collapse
Affiliation(s)
- Gizachew Tilahun Belete
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Lei Zhou
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Centre for Eye and Vision Research (CEVR), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - King-Kit Li
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Pui-Kin So
- University Research Facility in Life Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Chi-Wai Do
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Centre for Eye and Vision Research (CEVR), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Research Centre for Chinese Medicine Innovation (RCMI), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Thomas Chuen Lam
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Centre for Eye and Vision Research (CEVR), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Research Centre for Chinese Medicine Innovation (RCMI), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
8
|
Jiang B, Hong N, Guo D, Shen J, Qian X, Dong F. MiR-204-5p may regulate oxidative stress in myopia. Sci Rep 2024; 14:9770. [PMID: 38684840 PMCID: PMC11059383 DOI: 10.1038/s41598-024-60688-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024] Open
Abstract
The mechanisms underlying myopia remain not fully understood. We proposed to examine the function and underlying mechanisms of miR-204-5p in myopia development. The miR-204-5p expression level was assessed in the vitreous humor (VH) of a cohort consisting of 11 patients with high myopia (HM) and 16 control patients undergoing vitrectomy. Then the functional implications of miR-204-5p in ARPE-19 cells were assessed. Thioredoxin-interacting protein (TXNIP) was found as a possible target of miR-204-5p through mRNA sequencing, and its interaction with miR-204-5p was confirmed employing luciferase assay and western blotting. Furthermore, the miR-204-5p function in regulating oxidative stress was examined by measuring reactive oxygen species (ROS) accumulation. The results indicated a significant reduction of miR-204-5p in the VH of HM patients. Overexpression of miR-204-5p suppressed cell proliferation, migration, invasion, and apoptosis in ARPE-19 cells. The direct targeting of miR-204-5p on TXNIP has been confirmed, and its downregulation mediated the miR-204-5p impacts on ARPE-19 cells. Moreover, miR-204-5p overexpression significantly reduced ROS accumulation by targeting TXNIP. Our findings revealed the possible contribution of the miR-204-5p/TXNIP axis in myopia development by regulating oxidative stress, which may provide new targets to combat this prevalent and debilitating condition.
Collapse
Affiliation(s)
- Bo Jiang
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Shangcheng District, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Nan Hong
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Shangcheng District, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Dongyu Guo
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Shangcheng District, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Jianqin Shen
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Shangcheng District, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Xilin Qian
- Department of Clinical Medicine, Capital Medical University, Beijing, China
| | - Feng Dong
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Shangcheng District, Hangzhou, 310003, Zhejiang, People's Republic of China.
| |
Collapse
|
9
|
Mérida S, Návea A, Desco C, Celda B, Pardo-Tendero M, Morales-Tatay JM, Bosch-Morell F. Glutathione and a Pool of Metabolites Partly Related to Oxidative Stress Are Associated with Low and High Myopia in an Altered Bioenergetic Environment. Antioxidants (Basel) 2024; 13:539. [PMID: 38790644 PMCID: PMC11117864 DOI: 10.3390/antiox13050539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Oxidative stress forms part of the molecular basis contributing to the development and manifestation of myopia, a refractive error with associated pathology that is increasingly prevalent worldwide and that subsequently leads to an upsurge in degenerative visual impairment due to conditions that are especially associated with high myopia. The purpose of our study was to examine the interrelation of potential oxidative-stress-related metabolites found in the aqueous humor of high-myopic, low-myopic, and non-myopic patients within a clinical study. We conducted a cross-sectional study, selecting two sets of patients undergoing cataract surgery. The first set, which was used to analyze metabolites through an NMR assay, comprised 116 patients. A total of 59 metabolites were assigned and quantified. The PLS-DA score plot clearly showed a separation with minimal overlap between the HM and control samples. The PLS-DA model allowed us to determine 31 major metabolite differences in the aqueous humor of the study groups. Complementary statistical analysis of the data allowed us to determine six metabolites that presented significant differences among the experimental groups (p < 005). A significant number of these metabolites were discovered to have a direct or indirect connection to oxidative stress linked with conditions of myopic eyes. Notably, we identified metabolites associated with bioenergetic pathways and metabolites that have undergone methylation, along with choline and its derivatives. The second set consisted of 73 patients who underwent a glutathione assay. Here, we showed significant variations in both reduced and oxidized glutathione in aqueous humor among all patient groups (p < 0.01) for the first time. Axial length, refractive status, and complete ophthalmologic examination were also recorded, and interrelations among metabolic and clinical parameters were evaluated.
Collapse
Affiliation(s)
- Salvador Mérida
- Department of Biomedical Sciences, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, 46115 Valencia, Spain; (S.M.); (C.D.)
| | - Amparo Návea
- Instituto de la Retina y Enfermedades Oculares, 46005 Valencia, Spain;
| | - Carmen Desco
- Department of Biomedical Sciences, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, 46115 Valencia, Spain; (S.M.); (C.D.)
- Instituto de la Retina y Enfermedades Oculares, 46005 Valencia, Spain;
- FOM, Fundación de Oftalmología Médica de la Comunidad Valenciana, 46015 Valencia, Spain
| | - Bernardo Celda
- Physical Chemistry Department, University of Valencia, 46100 Valencia, Spain;
| | - Mercedes Pardo-Tendero
- Department of Pathology, Medicine and Odontology Faculty, University of Valencia, 46010 Valencia, Spain;
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - José Manuel Morales-Tatay
- Department of Pathology, Medicine and Odontology Faculty, University of Valencia, 46010 Valencia, Spain;
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Francisco Bosch-Morell
- Department of Biomedical Sciences, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, 46115 Valencia, Spain; (S.M.); (C.D.)
| |
Collapse
|
10
|
Liang C, Li F, Gu C, Xie L, Yan W, Wang X, Shi R, Linghu S, Liu T. Metabolomic profiling of ocular tissues in rabbit myopia: Uncovering differential metabolites and pathways. Exp Eye Res 2024; 240:109796. [PMID: 38244883 DOI: 10.1016/j.exer.2024.109796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/22/2024]
Abstract
To investigate the metabolic difference among tissue layers of the rabbits' eye during the development of myopia using metabolomic techniques and explore any metabolic links or cascades within the ocular wall. Ultra Performance Liquid Chromatography - Mass Spectrometry (UPLC-MS) was utilized for untargeted metabolite screening (UMS) to identify the significant differential metabolites produced between myopia (MY) and control (CT) (horizontal). Subsequently, we compared those key metabolites among tissues (Sclera, Choroid, Retina) of MY for distribution and variation (longitudinal). A total of 6285 metabolites were detected in the three tissues. The differential metabolites were screened and the metabolic pathways of these metabolites in each myopic tissue were labeled, including tryptophan and its metabolites, pyruvate, taurine, caffeine metabolites, as well as neurotransmitters like glutamate and dopamine. Our study suggests that multiple metabolic pathways or different metabolites under the same pathway, might act on different parts of the eyeball and contribute to the occurrence and development of myopia by affecting the energy supply to the ocular tissues, preventing antioxidant stress, affecting scleral collagen synthesis, and regulating various neurotransmitters mutually.
Collapse
Affiliation(s)
- Chengpeng Liang
- Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou Province, China.
| | - Fayuan Li
- Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Chengqi Gu
- Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Ling Xie
- Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Wen Yan
- Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Xiaoye Wang
- Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Rong Shi
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Shaorong Linghu
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Taixiang Liu
- Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou Province, China; Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, China.
| |
Collapse
|
11
|
Wu W, Song Y, Sun M, Li Y, Xu Y, Xu M, Yang Y, Li S, Zhang F. Corneal metabolic biomarkers for moderate and high myopia in human. Exp Eye Res 2023; 237:109689. [PMID: 37871883 DOI: 10.1016/j.exer.2023.109689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
This study aimed to identify the corneal metabolic biomarkers for moderate and high myopia in human. We enrolled 221 eyes from 221 subjects with myopia to perform the femtosecond laser small incision lenticule extraction (SMILE) surgery. Among these, 71 eyes of 71 subjects were enrolled in the low myopic group, 75 eyes of 75 subjects in the moderate myopic group and 75 eyes of 75 subjects in the high myopic group. The untargeted metabolomics analysis was performed to analyze the corneal tissues extracted during the SMILE surgery using an ultra-high-performance liquid chromatography (UHPLC) coupled to a quadrupole time-of-flight (Q-TOF) mass spectrometry (MS). The one-way analysis of variance (ANOVA) was used to identify the different metabolites among the three myopic groups, the orthogonal partial least-squares discriminant analysis (OPLS-DA) model was used to reveal the different metabolites between moderate myopia and low myopia, and between high myopia and low myopia. The Venn gram was used to find the overlapped metabolites of the three datasets of the different metabolites. The stepwise multiple linear regression analysis was used to determine the metabolic molecules associated with manifest refractive spherical equivalents (MRSE). The Receiver Operating Characteristics (ROC) analysis was performed to reveal the corneal biomarkers for moderate and high myopia. The hub biomarker was further selected by the networks among different metabolites created by the Cytoscape software. A total of 1594 metabolites were identified in myopic corneas. 321 metabolites were different among the three myopic groups, 106 metabolites were different between high myopic corneas and low myopic corneas, 104 metabolites were different between moderate myopic corneas and low myopic corneas, and 30 metabolic molecules overlapped among the three datasets. The multivariate linear regression analysis revealed the myopic degree was significantly influenced by the corneal levels of azelaic acid, arginine-proline (Arg-Pro), 1-stearoyl-2-myristoyl-sn-glycero-3-phosphocholine, and hypoxanthine. The ROC curve analysis showed that azelaic acid, Arg-Pro and hypoxanthine were effective in discriminating low myopia from moderate to high myopia with the area under the curve (AUC) values as 0.982, 0.991 and 0.982 for azelaic acid, Arg-Pro and hypoxanthine respectively. The network analysis suggested that Arg-Pro had the maximum connections among these three biomarkers. Thus, this study identified azelaic acid, Arg-Pro and hypoxanthine as corneal biomarkers to discriminate low myopia from moderate to high myopia, with Arg-Pro serving as the hub biomarker for moderate and high myopia.
Collapse
Affiliation(s)
- Wenjing Wu
- Beijing Tongren Eye Center, Beijing Tongren Hospital of Capital Medical University, No. 1, Dongjiaomin Lane, Dongcheng District, Beijing, 100730, China
| | - Yanzheng Song
- Beijing Tongren Eye Center, Beijing Tongren Hospital of Capital Medical University, No. 1, Dongjiaomin Lane, Dongcheng District, Beijing, 100730, China
| | - Mingshen Sun
- Beijing Tongren Eye Center, Beijing Tongren Hospital of Capital Medical University, No. 1, Dongjiaomin Lane, Dongcheng District, Beijing, 100730, China
| | - Yu Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital of Capital Medical University, No. 1, Dongjiaomin Lane, Dongcheng District, Beijing, 100730, China
| | - Yushan Xu
- Beijing Tongren Eye Center, Beijing Tongren Hospital of Capital Medical University, No. 1, Dongjiaomin Lane, Dongcheng District, Beijing, 100730, China
| | - Mengyao Xu
- Beijing Tongren Eye Center, Beijing Tongren Hospital of Capital Medical University, No. 1, Dongjiaomin Lane, Dongcheng District, Beijing, 100730, China
| | - Yuxin Yang
- Beijing Tongren Eye Center, Beijing Tongren Hospital of Capital Medical University, No. 1, Dongjiaomin Lane, Dongcheng District, Beijing, 100730, China
| | - Shiming Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital of Capital Medical University, No. 1, Dongjiaomin Lane, Dongcheng District, Beijing, 100730, China
| | - Fengju Zhang
- Beijing Tongren Eye Center, Beijing Tongren Hospital of Capital Medical University, No. 1, Dongjiaomin Lane, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
12
|
Tang YP, Zhang XB, Hu ZX, Lin K, Lin Z, Chen TY, Wu RH, Chi ZL. Vitreous metabolomic signatures of pathological myopia with complications. Eye (Lond) 2023; 37:2987-2993. [PMID: 36841867 PMCID: PMC10516974 DOI: 10.1038/s41433-023-02457-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/17/2023] [Accepted: 02/15/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Pathological myopia (PM) is closely associated with blinding ocular morbidities. Identifying biomarkers can provide clues on pathogeneses. This study aimed to identify metabolic biomarkers and underlying mechanisms in the vitreous humour (VH) of PM patients with complications. METHODS VH samples were collected from 39 PM patients with rhegmatogenous retinal detachment (RRD) (n = 23) or macular hole (MH)/myopic retinoschisis (MRS) (n = 16) and 23 controls (MH with axial length < 26 mm) who underwent surgical treatment. VH metabolomic profiles were investigated using ultra-performance liquid chromatography‒mass spectrometry. The area under the receiver operating characteristic curve (AUC) was computed to identify potential biomarkers for PM diagnosis. RESULTS Bioinformatics analysis identified nineteen and four metabolites altered in positive and negative modes, respectively, and these metabolites were involved in tryptophan metabolism. Receiver operating characteristic analysis showed that seventeen metabolites (AUC > 0.6) in the positive mode and uric acid in the negative mode represent potential biomarkers for PM with complications (AUC = 0.894). Pairwise and pathway analyses among the RRD-PM, MH/MRS-PM and control groups showed that tryptophan metabolism and uric acid were closely correlated with PM. Altered metabolites and pathways in our study were characterized by increased oxidative stress and altered energy metabolism. These results contribute to a better understanding of myopia progression with or without related complications. CONCLUSIONS Our study provides metabolomic signatures and related immunopathological features in the VH of PM patients, revealing new insight into the prevention and treatment of PM and related complications.
Collapse
Affiliation(s)
- Yong-Ping Tang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiao-Bo Zhang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhi-Xiang Hu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ke Lin
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhong Lin
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Tian-Yu Chen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Rong-Han Wu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Zai-Long Chi
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
13
|
Wei P, Han G, He M, Wang Y. Retinal Neurotransmitter Alteration in Response to Dopamine D2 Receptor Antagonist from Myopic Guinea Pigs. ACS Chem Neurosci 2023; 14:3357-3367. [PMID: 37647579 DOI: 10.1021/acschemneuro.3c00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
This study aimed to investigate the changes in retinal neurotransmitters and the role of the dopamine D2 receptor (D2R) pathway in regulating the myopic refractive state. Tricolor guinea pigs were randomly divided into two groups: the normal control group (NC) and the form-deprivation myopia group (FDM). Animals in the FDM group had their right eye covered with a balloon for 4 weeks. These two groups were further divided into two subgroups based on intravitreal injection with D2R antagonist sulpiride once a week for 3 weeks (NC, NC-Sul, FDM, and FDM-Sul groups). Ultrahigh-performance liquid chromatography-tandem mass spectrometry was used to quantitatively detect the changes in 17 retinal neurotransmitters. Compared to the NC group, the concentrations of dopamine (DA) and γ-aminobutyric acid (GABA) decreased, while those of glutamate (Glu), 3-methoxytyramine (3-MT), and glycine increased, accompanied by an increase in myopic refraction and axial length (AL) in the FDM group. In the FDM-Sul group, glycine and DA levels were upregulated, whereas 3-MT and Glu levels were downregulated, accompanied by a decrease in myopic refraction and AL. The ratio of Glu to GABA (RGG) represents the balance between excitatory and inhibitory neurotransmitters. Notably, RGG changes occurred with corresponding AL changes, which increased in the FDM group and decreased in the FDM-Sul group. Decreased retinal DA concentration, with an increase in Glu, may be involved in the myopia progression. D2R antagonists might effectively slow myopia progression by increasing retinal DA, regulating Glu concentration to match GABA, and maintaining the balance between excitatory and inhibitory neurotransmitters.
Collapse
Affiliation(s)
- Pinghui Wei
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin 300020, PR China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, PR China
- Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin 300020, China
| | - Guoge Han
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin 300020, PR China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, PR China
- Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin 300020, China
| | - Meiqin He
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300192, PR China
| | - Yan Wang
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin 300020, PR China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, PR China
- Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin 300020, China
| |
Collapse
|
14
|
Hou XW, Wang Y, Ke C, Pan CW. Metabolomics facilitates the discovery of metabolic profiles and pathways for myopia: A systematic review. Eye (Lond) 2023; 37:670-677. [PMID: 35322213 PMCID: PMC9998863 DOI: 10.1038/s41433-022-02019-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/16/2022] [Accepted: 03/09/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Myopia is one of the major eye disorders and the global burden is increasing rapidly. Our purpose is to systematically summarize potential metabolic biomarkers and pathways in myopia to facilitate the understanding of disease mechanisms as well as the discovery of novel therapeutic measures. METHODS Myopia-related metabolomics studies were searched in electronic databases of PubMed and Web of Science until June 2021. Information regarding clinical and demographic characteristics of included studies and metabolomics findings were extracted. Myopia-related metabolic pathways were analysed for differential metabolic profiles, and the quality of included studies was assessed based on the QUADOMICS tool. Pathway analyses of differential metabolites were performed using bioinformatics tools and online software such as the Metaboanalyst 5.0. RESULTS The myopia-related metabolomics studies included in this study consisted of seven human and two animal studies. The results of the study quality assessment showed that studies were all phase I studies and all met the evaluation criteria of 70% or more. The myopia-control serum study identified 23 differential metabolites with the Sphingolipid metabolism pathway beings enriched. The high myopia-cataract aqueous humour study identified 40 differential metabolites with the Arginine biosynthesis pathway being enriched. The high myopia-control serum study identified 43 differential metabolites and 4 pathways were significantly associated with metabolites including Citrate cycle; Alanine, aspartate and glutamate metabolism; Glyoxylate and dicarboxylate metabolism; Biosynthesis of unsaturated fatty acids (all P value < 0.05). CONCLUSIONS This study summarizes potential metabolic biomarkers and pathways in myopia, providing new clues to elucidate disease mechanisms.
Collapse
Affiliation(s)
- Xiao-Wen Hou
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Ying Wang
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Chaofu Ke
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Chen-Wei Pan
- School of Public Health, Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
15
|
New insight of metabolomics in ocular diseases in the context of 3P medicine. EPMA J 2023; 14:53-71. [PMID: 36866159 PMCID: PMC9971428 DOI: 10.1007/s13167-023-00313-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/09/2023] [Indexed: 02/19/2023]
Abstract
Metabolomics refers to the high-through untargeted or targeted screening of metabolites in biofluids, cells, and tissues. Metabolome reflects the functional states of cells and organs of an individual, influenced by genes, RNA, proteins, and environment. Metabolomic analyses help to understand the interaction between metabolism and phenotype and reveal biomarkers for diseases. Advanced ocular diseases can lead to vision loss and blindness, reducing patients' quality of life and aggravating socio-economic burden. Contextually, the transition from reactive medicine to the predictive, preventive, and personalized (PPPM / 3P) medicine is needed. Clinicians and researchers dedicate a lot of efforts to explore effective ways for disease prevention, biomarkers for disease prediction, and personalized treatments, by taking advantages of metabolomics. In this way, metabolomics has great clinical utility in the primary and secondary care. In this review, we summarized much progress achieved by applying metabolomics to ocular diseases and pointed out potential biomarkers and metabolic pathways involved to promote 3P medicine approach in healthcare.
Collapse
|
16
|
Zhou Z, Li S, Yang Q, Yang X, Liu Y, Hao K, Xu S, Zhao N, Zheng P. Association of n-3 polyunsaturated fatty acid intakes with juvenile myopia: A cross-sectional study based on the NHANES database. Front Pediatr 2023; 11:1122773. [PMID: 37138572 PMCID: PMC10150007 DOI: 10.3389/fped.2023.1122773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Aim Inflammation is involved in the development of myopia. n-3 polyunsaturated fatty acids (n-3 PUFAs) have vasodilating and anti-inflammatory effects, which may be involved in controlling myopia. It is of great significance to explore the relationship between n-3 PUFA intakes and juvenile myopia in order to control and alleviate myopia among teenagers through dietary intervention. Methods Sociodemographic data, information of nutrient intakes, cotinine, PUFAs, and eye refractive status of 1,128 juveniles were extracted from the National Health and Nutrition Examination Survey (NHANES) database in this cross-sectional study. PUFAs contained total polyunsaturated fatty acid (TPFAs), alpha-linolenic acid, octadecatetraenoic acid, eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA). Covariates were screened by comparison among groups of normal vision, low myopia, and high myopia. The association between n-3 PUFA intakes and the risk of juvenile myopia was evaluated using univariate and multivariate logistic regression analyses with odds ratios (ORs) and 95% confidence intervals (CIs). Results Among the juveniles, 788 (70.68%) had normal vision, 299 (25.80%) had low myopia, and 41 (3.52%) had high myopia. There were significant differences in average EPA and DHA intakes among the three groups, and mean DPA and DHA intakes in the normal vision group were lower than those in the low myopia group (P < 0.05). After adjustment for age, gender, TPFAs, and cotinine, a high dietary intake of EPA (≥11 mg/1,000 kcal) in juveniles seemed to be associated with the risk of high myopia (OR = 0.39, 95% CI: 0.18-0.85), while no significant associations were identified between n-3 PUFA intakes and the risk of low myopia. Conclusion A high dietary intake of EPA may be associated with a decreased risk of high myopia among juveniles. A further prospective study is needed to validate this observation.
Collapse
|
17
|
Wei X, Jia X, Liu R, Zhang S, Liu S, An J, Zhou L, Zhang Y, Mo Y, Li X. Metabolic pathway analysis of hyperuricaemia patients with hyperlipidaemia based on high-throughput mass spectrometry: a case‒control study. Lipids Health Dis 2022; 21:151. [PMID: 36585694 PMCID: PMC9805114 DOI: 10.1186/s12944-022-01765-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/25/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Both hyperuricaemia and hyperlipidaemia are common metabolic diseases that are closely related to each other, and both are independent risk factors for the development of a variety of diseases. HUA combined with hyperlipidaemia increases the risk of nonalcoholic fatty liver disease and coronary heart disease. This study aimed to investigate the relationship between HUA and hyperlipidaemia and study the metabolic pathway changes in patients with HUA associated with hyperlipidaemia using metabolomics. METHODS This was a case‒control study. The prevalence of hyperlipidaemia in HUA patients in the physical examination population of Tianjin Union Medical Centre in 2018 was investigated. Metabolomics analysis was performed on 308 HUA patients and 100 normal controls using Orbitrap mass spectrometry. A further metabolomics study of 30 asymptomatic HUA patients, 30 HUA patients with hyperlipidaemia, and 30 age-and sex-matched healthy controls was conducted. Differential metabolites were obtained from the three groups by orthogonal partial least-squares discrimination analysis, and relevant metabolic pathways changes were analysed using MetaboAnalyst 5.0 software. RESULTS The prevalence of hyperlipidaemia in HUA patients was 69.3%. Metabolomic analysis found that compared with the control group, 33 differential metabolites, including arachidonic acid, alanine, aspartate, phenylalanine and tyrosine, were identified in asymptomatic HUA patients. Pathway analysis showed that these changes were mainly related to 3 metabolic pathways, including the alanine, aspartate and glutamate metabolism pathway. Thirty-eight differential metabolites, including linoleic acid, serine, glutamate, and tyrosine, were identified in HUA patients with hyperlipidaemia. Pathway analysis showed that they were mainly related to 7 metabolic pathways, including the linoleic acid metabolism pathway, phenylalanine, tyrosine and tryptophan biosynthesis pathway, and glycine, serine and threonine metabolism pathway. CONCLUSIONS Compared to the general population, the HUA population had a higher incidence of hyperlipidaemia. HUA can cause hyperlipidaemia. by affecting the metabolic pathways of linoleic acid metabolism and alanine, aspartate and glutamate metabolism. Fatty liver is closely associated with changes in the biosynthesis pathway of pahenylalanine, tyrosine, and tryptophan in HUA patients with hyperlipidaemia. Changes in the glycine, serine and threonine metabolism pathway in HUA patients with hyperlipidaemia may lead to chronic kidney disease.
Collapse
Affiliation(s)
- Xue Wei
- Tianjin Union Medical Center, Tianjin Medical University, Tianjin, 300070 China
| | - Xiaodong Jia
- Tianjin Union Medical Center, Tianjin Medical University, Tianjin, 300070 China
| | - Rui Liu
- Tianjin Union Medical Centre, Tianjin, 300121 China
| | - Sha Zhang
- Tianjin Union Medical Center, Tianjin Medical University, Tianjin, 300070 China
| | - Shixuan Liu
- Tianjin Yunjian Medical Technology Co., Ltd., Tianjin, China
| | - Jing An
- Tianjin Yunjian Medical Technology Co., Ltd., Tianjin, China
| | - Lei Zhou
- Tianjin Yunjian Medical Technology Co., Ltd., Tianjin, China
| | - Yushi Zhang
- Tianjin Yunjian Medical Technology Co., Ltd., Tianjin, China
| | - Yuanning Mo
- Tianjin Yunjian Medical Technology Co., Ltd., Tianjin, China
| | - Xiao Li
- Tianjin Yunjian Medical Technology Co., Ltd., Tianjin, China
| |
Collapse
|
18
|
Yuan T, Zou H. Effects of air pollution on myopia: an update on clinical evidence and biological mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70674-70685. [PMID: 36031679 PMCID: PMC9515022 DOI: 10.1007/s11356-022-22764-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/24/2022] [Indexed: 05/06/2023]
Abstract
Myopia is one of the most common forms of refractive eye disease and considered as a worldwide pandemic experienced by half of the global population by 2050. During the past several decades, myopia has become a leading cause of visual impairment, whereas several factors are believed to be associated with its occurrence and development. In terms of environmental factors, air pollution has gained more attention in recent years, as exposure to ambient air pollution seems to increase peripheral hyperopia defocus, affect the dopamine pathways, and cause retinal ischemia. In this review, we highlight epidemiological evidence and potential biological mechanisms that may link exposure to air pollutants to myopia. A thorough understanding of these mechanisms is a key for establishing and implementing targeting strategies. Regulatory efforts to control air pollution through effective policies and limit individual exposure to preventable risks are required in reducing this global public health burden.
Collapse
Affiliation(s)
- Tianyi Yuan
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haidong Zou
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Eye Diseases Prevention & Treatment Center, Shanghai Eye Hospital, Shanghai, China.
- National Clinical Research Center for Eye Diseases, Shanghai, China.
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China.
| |
Collapse
|
19
|
Hou XW, Wang Y, Wu Q, Ke C, Pan CW. A review of study designs and data analyses in metabolomics studies in myopia. Anal Biochem 2022; 655:114850. [PMID: 35970413 DOI: 10.1016/j.ab.2022.114850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/15/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022]
Abstract
Metabolomics analyzes the entire range of small molecule metabolites in biological systems to reveal the response signals that are transmitted from "genetics and environment", which could help us understand complex phenotypes of diseases. Metabolomics has been successfully applied to the study of eye diseases including age-related macular degeneration, glaucoma, and diabetic retinopathy. In this review, we summarize the findings of myopic metabolomics and discuss them from a design and analysis perspective. Finally, we provide new ideas for the future development of myopia metabolomics research based on the broader ocular metabolomics study.
Collapse
Affiliation(s)
- Xiao-Wen Hou
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Ying Wang
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Qian Wu
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Chaofu Ke
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Chen-Wei Pan
- School of Public Health, Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
20
|
Balakrishnan P, Ajayan S, Mukkudakkattu S, Nechiyil K, Nambi N. Review of unique ophthalmic formulations in Vaidya Manorama: A traditional Kerala Ayurveda literature. J Ayurveda Integr Med 2022; 13:100576. [PMID: 35661934 PMCID: PMC9168494 DOI: 10.1016/j.jaim.2022.100576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022] Open
Abstract
Vaidya Manorama is a folklore Kerala Ayurveda literature that encompasses time- tested low-budget formulations that can be prepared from easily available resources. Ayurveda Ophthalmology has been described in Chapter twenty-eight of the literature. Many unique formulations like eating firefly (khadyota), preparing ghee from fresh-water shellfish (tadaka-shuktika), Kadali phala (a special type of banana) bidalaka, dropping of juice of palasha (Butea monosperma) into eyes for various clinical conditions are described. We review the unique ophthalmology formulations in this chapter to bring them to limelight. Few herbo-mineral formulations are also described for which toxicity and safety studies are warranted. All these handy formulations may help clinicians in day-to-day practice or may be a lead for novel research.
Collapse
Affiliation(s)
- Praveen Balakrishnan
- Research Officer (Ayurveda), Regional Ayurveda Research Institute (CCRAS), Thiruvananthapuram, India.
| | - S Ajayan
- Professor and Head, Department of Dravyaguna, Ashtangam Ayurveda Vidhyapeetam, Vavanoor, India
| | | | - Kavya Nechiyil
- Assistant Physician, Nechiyil Ayurveda Vaidyashala, Karalmanna, India
| | - Narayanan Nambi
- Director - Academy, SNA Oushadhashala, Moospet Road, Thrissur, India
| |
Collapse
|
21
|
Dietary ω-3 polyunsaturated fatty acids are protective for myopia. Proc Natl Acad Sci U S A 2021; 118:2104689118. [PMID: 34675076 DOI: 10.1073/pnas.2104689118] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2021] [Indexed: 01/03/2023] Open
Abstract
Myopia is a leading cause of visual impairment and blindness worldwide. However, a safe and accessible approach for myopia control and prevention is currently unavailable. Here, we investigated the therapeutic effect of dietary supplements of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) on myopia progression in animal models and on decreases in choroidal blood perfusion (ChBP) caused by near work, a risk factor for myopia in young adults. We demonstrated that daily gavage of ω-3 PUFAs (300 mg docosahexaenoic acid [DHA] plus 60 mg eicosapentaenoic acid [EPA]) significantly attenuated the development of form deprivation myopia in guinea pigs and mice, as well as of lens-induced myopia in guinea pigs. Peribulbar injections of DHA also inhibited myopia progression in form-deprived guinea pigs. The suppression of myopia in guinea pigs was accompanied by inhibition of the "ChBP reduction-scleral hypoxia cascade." Additionally, treatment with DHA or EPA antagonized hypoxia-induced myofibroblast transdifferentiation in cultured human scleral fibroblasts. In human subjects, oral administration of ω-3 PUFAs partially alleviated the near-work-induced decreases in ChBP. Therefore, evidence from these animal and human studies suggests ω-3 PUFAs are potential and readily available candidates for myopia control.
Collapse
|
22
|
Hussain A, Gopalakrishnan A, Muthuvel B, Hussaindeen JR, Narayanasamy A, Sivaraman V. Young adults with myopia have lower concentrations of neuromodulators-dopamine and melatonin in serum and tear. Exp Eye Res 2021; 209:108684. [PMID: 34175263 DOI: 10.1016/j.exer.2021.108684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 11/24/2022]
Abstract
The purpose of this experimental case-control study was to explore the association between myopia and concentration of dopamine and melatonin in serum and tear fluid among young myopic adults, compared to age matched non-myopic controls. Healthy myopic adults with Spherical equivalent refraction (SER) of ≤ -0.50 D to -6.00 D and emmetropic adults were included in the study. All participants underwent comprehensive eye examination and ocular biometric measures that included-axial length and corneal radii. Insomnia symptom questionnaire (ISQ) was used to screen the symptoms associated with the diagnostic criteria for primary insomnia. Morning serum and tear concentration of dopamine and melatonin were collected and was quantified using High performance liquid chromatography. A total number of 40 participants, 21 myopes and 19 controls, with a median (IQR) age of myopes 24 [21-34] years and controls 24 [20-29] years were studied. The Median [IQR] of SER was -2.00[-6.25-(-0.50)] D and 0 [(-0.50)-0.25] D for myopes and controls respectively. Myopes were found to have significantly lower concentration of serum dopamine (Median [IQR]) 190 [50-342] ng/mL compared to controls (Median [IQR]) 411 [84-717] ng/mL (U = 88, p < 0.002). Likewise, myopes showed significantly lower serum melatonin concentration of 40 [20-169] ng/mL compared to controls 203 [22-539] ng/mL (U = 88.50, p < 0.001). Myopes exhibited lower concentration of tear dopamine 101 [8-188] ng/mL compared to controls 136 [25-451] ng/mL (U = 103, p < 0.05). Likewise, myopes showed significantly lower tear melatonin concentration 6 [2-18] ng/mL compared to controls 9 [2-23] ng/mL (U = 104, p < 0.05). Both serum dopamine (r = 0.419, p < 0.05) and melatonin (r = 0.323, p < 0.05) showed significant positive association with increase in spherical equivalent refraction (SER). The observed changes in the decreased concentration of Dopamine and Melatonin among young adult myopes and its association with refraction indicates the role of altered circadian rhythm in the human myopia mechanism.
Collapse
Affiliation(s)
- Azfira Hussain
- Myopia Clinic, Sankara Nethralaya, Unit of Medical Research Foundation, Chennai, India
| | - Aparna Gopalakrishnan
- Myopia Clinic, Sankara Nethralaya, Unit of Medical Research Foundation, Chennai, India; Faculty of Health, School of Medicine, Deakin University, Australia
| | - Bharathselvi Muthuvel
- R.S.Mehta Jain Department of Biochemistry and Cell Biology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | | | - Angayarkanni Narayanasamy
- R.S.Mehta Jain Department of Biochemistry and Cell Biology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | - Viswanathan Sivaraman
- Myopia Clinic, Sankara Nethralaya, Unit of Medical Research Foundation, Chennai, India.
| |
Collapse
|
23
|
Bosch-Morell F, García-Gen E, Mérida S, Penadés M, Desco C, Navea A. Lipid Peroxidation in Subretinal Fluid: Some Light on the Prognosis Factors. Biomolecules 2021; 11:biom11040514. [PMID: 33808427 PMCID: PMC8065644 DOI: 10.3390/biom11040514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 12/27/2022] Open
Abstract
The aim of this study was to identify a relation between the clinical characteristics and differences in lipid peroxidation in the subretinal fluid (SRF) of rhegmatogenous retinal detached patients by malondialdehyde (MDA) quantification. We collected 65 SRF samples from consecutive patients during scleral buckling surgery in rhegmatogenous retinal detachment (RRD) eyes. In addition to a complete ophthalmic evaluation, we studied the refractive status, evolution time, and the number of detached retinal quadrants to establish the extension of RRD. We studied the clinical aspects and oxidative stress and compared the characteristics among groups. We found that neither the evolution time of RRD nor the patients’ age correlated with the MDA concentration in the SRF. The MDA and the protein content of the SRF increased in the patients with high myopia and with more extended RRD. Our results suggest that oxidative imbalance was important in more extended retinal detachment (RD) and in myopic eyes and should be taken into account in the managing of these cases.
Collapse
Affiliation(s)
- Francisco Bosch-Morell
- Departamento Ciencias Biomédicas, Biomedical Research Institute, Universidad Cardenal Herrera-CEU, CEU Universities, Av. Seminario s/n, 46113 Valencia, Spain; (F.B.-M.); (E.G.-G.); (S.M.); (M.P.); (C.D.)
- Thematic Cooperative Health Network for Research in Ophthalmology (Oftared), Carlos III Health Institute, 28220 Madrid, Spain
| | - Enrique García-Gen
- Departamento Ciencias Biomédicas, Biomedical Research Institute, Universidad Cardenal Herrera-CEU, CEU Universities, Av. Seminario s/n, 46113 Valencia, Spain; (F.B.-M.); (E.G.-G.); (S.M.); (M.P.); (C.D.)
| | - Salvador Mérida
- Departamento Ciencias Biomédicas, Biomedical Research Institute, Universidad Cardenal Herrera-CEU, CEU Universities, Av. Seminario s/n, 46113 Valencia, Spain; (F.B.-M.); (E.G.-G.); (S.M.); (M.P.); (C.D.)
- Thematic Cooperative Health Network for Research in Ophthalmology (Oftared), Carlos III Health Institute, 28220 Madrid, Spain
| | - Mariola Penadés
- Departamento Ciencias Biomédicas, Biomedical Research Institute, Universidad Cardenal Herrera-CEU, CEU Universities, Av. Seminario s/n, 46113 Valencia, Spain; (F.B.-M.); (E.G.-G.); (S.M.); (M.P.); (C.D.)
- Thematic Cooperative Health Network for Research in Ophthalmology (Oftared), Carlos III Health Institute, 28220 Madrid, Spain
- FISABIO Oftalmología Médica, Retina Unit Pío Baroja 12, 46015 Valencia, Spain
| | - Carmen Desco
- Departamento Ciencias Biomédicas, Biomedical Research Institute, Universidad Cardenal Herrera-CEU, CEU Universities, Av. Seminario s/n, 46113 Valencia, Spain; (F.B.-M.); (E.G.-G.); (S.M.); (M.P.); (C.D.)
- Thematic Cooperative Health Network for Research in Ophthalmology (Oftared), Carlos III Health Institute, 28220 Madrid, Spain
- FISABIO Oftalmología Médica, Retina Unit Pío Baroja 12, 46015 Valencia, Spain
| | - Amparo Navea
- Thematic Cooperative Health Network for Research in Ophthalmology (Oftared), Carlos III Health Institute, 28220 Madrid, Spain
- Correspondence:
| |
Collapse
|
24
|
Abstract
Myopia is a globally emerging issue, with multiple medical and socio-economic burdens and no well-established causal treatment thus far. A better insight into altered biochemical pathways and underlying pathogenesis might facilitate early diagnosis and treatment of myopia, ultimately leading to the development of more effective preventive and therapeutic measures. In this review, we summarize current data about the metabolomics and proteomics of myopia in humans and present various experimental approaches and animal models, along with their strengths and weaknesses. We also discuss the potential applicability of these findings to medical practice and suggest directions for future research.
Collapse
|