1
|
Acquarone D, Bertero A, Brancaccio M, Sorge M. Chaperone Proteins: The Rising Players in Muscle Atrophy. J Cachexia Sarcopenia Muscle 2025; 16:e13659. [PMID: 39707668 PMCID: PMC11747685 DOI: 10.1002/jcsm.13659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/18/2024] [Accepted: 10/31/2024] [Indexed: 12/23/2024] Open
Abstract
Despite significant progress in understanding the molecular aetiology of muscle atrophy, there is still a great need for new targets and drugs capable of counteracting muscle wasting. The role of an impaired proteostasis as the underlying causal mechanism of muscle atrophy is a well-established concept. From the earliest work on muscle atrophy and the identification of the first atrogenes, the hyper-activation of the proteolytic systems, such as autophagy and the ubiquitin proteasome system, has been recognized as the major driver of atrophy. However, the role of other key regulators of proteostasis, the chaperone proteins, has been largely overlooked. Chaperone proteins play a pivotal role in protein folding and in preventing the aggregation of misfolded proteins. Indeed, some chaperones, such as αB-crystallin and Hsp25, are involved in compensatory responses aimed at counteracting protein aggregation during sarcopenia. Chaperones also regulate different intracellular signalling pathways crucial for atrogene expression and the control of protein catabolism, such as the AKT and NF-kB pathways, which are regulated by Hsp70 and Hsp90. Furthermore, the downregulation of certain chaperones causes severe muscle wasting per se and experimental strategies aimed at preventing this downregulation have shown promising results in mitigating or reversing muscle atrophy. This highlights the therapeutic potential of targeting chaperones and confirms their crucial anti-atrophic functions. In this review, we summarize the most relevant data showing the modulation and the causative role of chaperone proteins in different types of skeletal muscle atrophies.
Collapse
Affiliation(s)
- Davide Acquarone
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurinItaly
| | - Alessandro Bertero
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurinItaly
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurinItaly
| | - Matteo Sorge
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurinItaly
| |
Collapse
|
2
|
Stephen A, Tune BXJ, Wu YS, Batumalaie K, Sekar M, Sarker MMR, Subramaniyan V, Fuloria NK, Fuloria S, Gopinath SCB. Withanone as an Emerging Anticancer Agent and Understanding Its Molecular Mechanisms: Experimental and Computational Evidence. Curr Cancer Drug Targets 2025; 25:574-585. [PMID: 38494932 DOI: 10.2174/0115680096290673240223043650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 03/19/2024]
Abstract
Despite decades of research and effort, treating cancer is still a challenging task. Current conventional treatments are still unsatisfactory to fully eliminate and prevent re-emergence or relapses, and targeted or personalised therapy, which are more effective in managing cancer, may be unattainable or inaccessible for some. In the past, research in natural products have yielded some of the most commonly used cancer treatment drugs known today. Hence it is possible more are awaiting to be discovered. Withanone, a common withanolide found in the Ayurvedic herb Withania somnifera, has been claimed to possess multiple benefits capable of treating cancer. This review focuses on the potential of withanone as a safe cancer treatment drug based on the pharmacokinetic profile and molecular mechanisms of actions of withanone. Through these in silico and in vitro studies discussed in this review, withanone showspotent anticancer activities and interactions with molecular targets involved in cancer progression. Furthermore, some evidences also show the selective killing property of withanone, which highlights the safety and specificity of withanone in targeting cancer cell. By compiling these evidences, this review hopes to spark interest for future research to be conducted in more extensive studies involving withanone to generate more data, especially involving in vivo experiments and toxicity evaluation of withanone.
Collapse
Affiliation(s)
- Annatasha Stephen
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Bernadette Xin Jie Tune
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Yuan Seng Wu
- Sunway Microbiome Centre, School of Medical and Life Sciences, Sunway University, Subang Jaya, 47500, Selangor, Malaysia
- Department of Medical Education, School of Medical and Life Sciences, Sunway University, Selangor, 47500, Malaysia
| | - Kalaivani Batumalaie
- Pre-University Programmes, Sunway College Johor Bahru, Jalan Austin Heights Utama, Taman Mount Austin, 81100, JohorBahru, Johor, Malaysia
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya, 47500, Malaysia
| | - Md Moklesur Rahman Sarker
- Department of Pharmacy, State University of Bangladesh, 77, Satmasjid Road, Dhanmondi, Dhaka, 1205, Bangladesh
- Health Med Science Research Network, 3/1, Block F, Lalmatia, Dhaka, 1207, Bangladesh
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Subang Jaya, Selangor, Malaysia
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144001, India
| | - Neeraj Kumar Fuloria
- Centre of Excellence for Biomaterials Engineering, Faculty of Pharmacy, AIMST University, Bedong, 08100, Kedah, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Semeling, Bedong, Kedah, 08100, Malaysia
| | - Subash C B Gopinath
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Arau, 02600, Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Kangar, 01000, Perlis, Malaysia
- Micro System Technology, Centre of Excellence, Universiti Malaysia Perlis, Pauh Campus, Arau, 02600, Malaysia
| |
Collapse
|
3
|
Wang Q, Li L, Gao X, Zhang C, Xu C, Song L, Li J, Sun X, Mao F, Wang Y. Targeting GRP75 with a Chlorpromazine Derivative Inhibits Endometrial Cancer Progression Through GRP75-IP3R-Ca 2+-AMPK Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304203. [PMID: 38342610 PMCID: PMC11022737 DOI: 10.1002/advs.202304203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 01/18/2024] [Indexed: 02/13/2024]
Abstract
Tumors often overexpress glucose-regulated proteins, and agents that interfere with the production or activity of these proteins may represent novel cancer treatments. The chlorpromazine derivative JX57 exhibits promising effects against endometrial cancer with minimal extrapyramidal side effects; however, its mechanisms of action are currently unknown. Here, glucose-regulated protein 75 kD (GRP75) is identified as a direct target of JX57 using activity-based protein profiling and loss-of-function experiments. The findings show that GRP75 is necessary for the biological activity of JX57, as JX57 exhibits moderate anticancer properties in GRP75-deficient cancer cells, both in vitro and in vivo. High GRP75 expression is correlated with poor differentiation and poor survival in patients with endometrial cancer, whereas the knockdown of GRP75 can significantly suppress tumor growth. Mechanistically, the direct binding of JX57 to GRP75 impairs the structure of the mitochondria-associated endoplasmic reticulum membrane and disrupts the endoplasmic reticulum-mitochondrial calcium homeostasis, resulting in a mitochondrial energy crisis and AMP-activated protein kinase activation. Taken together, these findings highlight GRP75 as a potential prognostic biomarker and direct therapeutic target in endometrial cancer and suggest that the chlorpromazine derivative JX57 can potentially be a new therapeutic option for endometrial cancer.
Collapse
Affiliation(s)
- Qi Wang
- Department of Gynecologic Oncologythe International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Municipal Key Clinical SpecialtyFemale Tumor Reproductive SpecialtyShanghai Key Laboratory of Embryo Original DiseaseShanghai Jiao Tong UniversityShanghai200025China
- State Key Laboratory of Bioreactor EngineeringShanghai Frontiers Science Center of Optogenetic Techniques for Cell MetabolismFrontiers Science Center for Materiobiology and Dynamic ChemistryShanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Lijuan Li
- Department of Gynecologic Oncologythe International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Municipal Key Clinical SpecialtyFemale Tumor Reproductive SpecialtyShanghai Key Laboratory of Embryo Original DiseaseShanghai Jiao Tong UniversityShanghai200025China
| | - Xiaoyan Gao
- Department of Gynecologic Oncologythe International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Municipal Key Clinical SpecialtyFemale Tumor Reproductive SpecialtyShanghai Key Laboratory of Embryo Original DiseaseShanghai Jiao Tong UniversityShanghai200025China
| | - Chunxue Zhang
- Department of Gynecologic Oncologythe International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Municipal Key Clinical SpecialtyFemale Tumor Reproductive SpecialtyShanghai Key Laboratory of Embryo Original DiseaseShanghai Jiao Tong UniversityShanghai200025China
| | - Chen Xu
- Department of Gynecologic Oncologythe International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Municipal Key Clinical SpecialtyFemale Tumor Reproductive SpecialtyShanghai Key Laboratory of Embryo Original DiseaseShanghai Jiao Tong UniversityShanghai200025China
| | - Lingyi Song
- State Key Laboratory of Bioreactor EngineeringShanghai Frontiers Science Center of Optogenetic Techniques for Cell MetabolismFrontiers Science Center for Materiobiology and Dynamic ChemistryShanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Jian Li
- State Key Laboratory of Bioreactor EngineeringShanghai Frontiers Science Center of Optogenetic Techniques for Cell MetabolismFrontiers Science Center for Materiobiology and Dynamic ChemistryShanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Xiao Sun
- Department of Gynecologic Oncologythe International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Municipal Key Clinical SpecialtyFemale Tumor Reproductive SpecialtyShanghai Key Laboratory of Embryo Original DiseaseShanghai Jiao Tong UniversityShanghai200025China
| | - Fei Mao
- State Key Laboratory of Bioreactor EngineeringShanghai Frontiers Science Center of Optogenetic Techniques for Cell MetabolismFrontiers Science Center for Materiobiology and Dynamic ChemistryShanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Yudong Wang
- Department of Gynecologic Oncologythe International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Municipal Key Clinical SpecialtyFemale Tumor Reproductive SpecialtyShanghai Key Laboratory of Embryo Original DiseaseShanghai Jiao Tong UniversityShanghai200025China
| |
Collapse
|
4
|
Nainani KC, Upadhyay V, Singh B, Sandhu KK, Kaur S, Hora R, Mishra PC. Analyzing Interaction of Rhodacyanine Inhibitor 'MKT-077' with Plasmodium falciparum HSP70s. DRUG METABOLISM AND BIOANALYSIS LETTERS 2024; 17:34-41. [PMID: 38231055 DOI: 10.2174/0118723128279697231226044406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 01/18/2024]
Abstract
INTRODUCTION MKT-077 and its derivatives are rhodacyanine inhibitors that hold potential in the treatment of cancer, neurodegenerative diseases and malaria. These allosteric drugs act by inhibiting the ATPase action of heat shock proteins of 70 kDa (HSP70). MKT-077 accumulates in the mitochondria and displays differential activity against HSP70 homologs. METHODS The four Plasmodium falciparum HSP70s (PfHSP70) are present in various subcellular locations to perform distinct functions. In the present study, we have used bioinformatics tools to understand the interaction of MKT-077 at the ADP and HEW (2-amino 4 bromopyridine) binding sites on PfHSP70s. Our molecular docking experiments predict that the mitochondrial and endoplasmic reticulum PfHSP70 homologs are likely to bind MKT-077 with higher affinities at their ADP binding sites. RESULTS Binding analysis indicates that the nature of the identified interactions is primarily hydrophobic. We have also identified specific residues of PfHSP70s that are involved in interacting with the ligand. CONCLUSION Information obtained in this study may form the foundation for the design and development of MKT-077-based drugs against malaria.
Collapse
Affiliation(s)
| | - Vipul Upadhyay
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Bikramjit Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | | | - Satinder Kaur
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Rachna Hora
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | | |
Collapse
|
5
|
Moritz MNO, Dores-Silva PR, Coto ALS, Selistre-de-Araújo HS, Leitão A, Cauvi DM, De Maio A, Carra S, Borges JC. Human HSP70-escort protein 1 (hHep1) interacts with negatively charged lipid bilayers and cell membranes. Cell Stress Chaperones 2023; 28:1001-1012. [PMID: 38001371 PMCID: PMC10746634 DOI: 10.1007/s12192-023-01394-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Human Hsp70-escort protein 1 (hHep1) is a cochaperone that assists in the function and stability of mitochondrial HSPA9. Similar to HSPA9, hHep1 is located outside the mitochondria and can interact with liposomes. In this study, we further investigated the structural and thermodynamic behavior of interactions between hHep1 and negatively charged liposomes, as well as interactions with cellular membranes. Our results showed that hHep1 interacts peripherally with liposomes formed by phosphatidylserine and cardiolipin and remains partially structured, exhibiting similar affinities for both. In addition, after being added to the cell membrane, recombinant hHep1 was incorporated by cells in a dose-dependent manner. Interestingly, the association of HSPA9 with hHep1 improved the incorporation of these proteins into the lipid bilayer. These results demonstrated that hHep1 can interact with lipids also present in the plasma membrane, indicating roles for this cochaperone outside of mitochondria.
Collapse
Affiliation(s)
- Milene N O Moritz
- São Carlos Institute of Chemistry, University of São Paulo - USP, P.O. Box 780, São Carlos, SP, 13560-970, Brazil
| | - Paulo R Dores-Silva
- São Carlos Institute of Chemistry, University of São Paulo - USP, P.O. Box 780, São Carlos, SP, 13560-970, Brazil
- Division of Trauma, Critical Care, Burns and Acute Care Surgery, Department of Surgery, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Amanda L S Coto
- São Carlos Institute of Chemistry, University of São Paulo - USP, P.O. Box 780, São Carlos, SP, 13560-970, Brazil
| | | | - Andrei Leitão
- São Carlos Institute of Chemistry, University of São Paulo - USP, P.O. Box 780, São Carlos, SP, 13560-970, Brazil
| | - David M Cauvi
- Division of Trauma, Critical Care, Burns and Acute Care Surgery, Department of Surgery, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Antonio De Maio
- Division of Trauma, Critical Care, Burns and Acute Care Surgery, Department of Surgery, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Serena Carra
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Júlio Cesar Borges
- São Carlos Institute of Chemistry, University of São Paulo - USP, P.O. Box 780, São Carlos, SP, 13560-970, Brazil.
| |
Collapse
|
6
|
Szelechowski M, Texier B, Prime M, Atamena D, Belenguer P. Mortalin/Hspa9 involvement and therapeutic perspective in Parkinson’s disease. Neural Regen Res 2023; 18:293-298. [PMID: 35900406 PMCID: PMC9396523 DOI: 10.4103/1673-5374.346487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
By controlling the proper folding of proteins imported into mitochondria and ensuring crosstalk between the reticulum and mitochondria to modulate intracellular calcium fluxes, Mortalin is a chaperone protein that plays crucial roles in neuronal homeostasis and activity. However, its expression and stability are strongly modified in response to cellular stresses, in particular upon altered oxidative conditions during neurodegeneration. Here, we report and discuss the abundant literature that has highlighted its contribution to the pathophysiology of Parkinson’s disease, as well as its therapeutic and prognostic potential in this still incurable pathology.
Collapse
|
7
|
Albakova Z, Mangasarova Y, Sapozhnikov A. Impaired Heat Shock Protein Expression in Activated T Cells in B-Cell Lymphoma. Biomedicines 2022; 10:2747. [PMID: 36359267 PMCID: PMC9687880 DOI: 10.3390/biomedicines10112747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 09/24/2023] Open
Abstract
Heat shock proteins (HSPs) are molecular chaperones that act in a variety of cellular processes, ensuring protein homeostasis and integrity. HSPs play critical roles in the modulation of various immune cells. However, the role of HSPs in T cell activation is largely unknown. We show that HSPs are upregulated following CD3/CD28 stimulation, suggesting that HSP expression might be regulated via TCR. We found that B-cell lymphoma (BCL) patients have dysregulated expression of intracellular and extracellular HSPs, immune checkpoints PD-1, CTLA-4, and STAT3 in CD3/CD28-activated T cells. Consistent with previous findings, we show that HSP90 inhibition downregulated CD4 and CD8 surface markers in healthy controls and BCL patients. HSP90 inhibition alone or in combination with PD-1 or CTLA-4 inhibitors differentially affected CD4+ and CD8+ T cell degranulation responses when stimulated with allogeneic DCs or CD3/CD28 in BCL patients. Additionally, we showed that HSP90 inhibition does not significantly affect intracellular PD-1 and CTLA-4 expression in CD3/CD28-activated T cells. These findings may provide the basis for the discovery of novel immunological targets for the treatment of cancer patients and improve our understanding of HSP functions in immune cells.
Collapse
Affiliation(s)
- Zarema Albakova
- Department of Biology, Lomonosov Moscow State University, Moscow 119192, Russia
- Chokan Limited Liability Partnership (LLP), Almaty 050039, Kazakhstan
| | - Yana Mangasarova
- National Medical Research Center for Hematology, Moscow 125167, Russia
| | - Alexander Sapozhnikov
- Department of Biology, Lomonosov Moscow State University, Moscow 119192, Russia
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
8
|
Millar MW, Fazal F, Rahman A. Therapeutic Targeting of NF-κB in Acute Lung Injury: A Double-Edged Sword. Cells 2022; 11:3317. [PMID: 36291185 PMCID: PMC9601210 DOI: 10.3390/cells11203317] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 01/11/2023] Open
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a devastating disease that can be caused by a variety of conditions including pneumonia, sepsis, trauma, and most recently, COVID-19. Although our understanding of the mechanisms of ALI/ARDS pathogenesis and resolution has considerably increased in recent years, the mortality rate remains unacceptably high (~40%), primarily due to the lack of effective therapies for ALI/ARDS. Dysregulated inflammation, as characterized by massive infiltration of polymorphonuclear leukocytes (PMNs) into the airspace and the associated damage of the capillary-alveolar barrier leading to pulmonary edema and hypoxemia, is a major hallmark of ALI/ARDS. Endothelial cells (ECs), the inner lining of blood vessels, are important cellular orchestrators of PMN infiltration in the lung. Nuclear factor-kappa B (NF-κB) plays an essential role in rendering the endothelium permissive for PMN adhesion and transmigration to reach the inflammatory site. Thus, targeting NF-κB in the endothelium provides an attractive approach to mitigate PMN-mediated vascular injury, not only in ALI/ARDS, but in other inflammatory diseases as well in which EC dysfunction is a major pathogenic mechanism. This review discusses the role and regulation of NF-κB in the context of EC inflammation and evaluates the potential and problems of targeting it as a therapy for ALI/ARDS.
Collapse
Affiliation(s)
| | | | - Arshad Rahman
- Department of Pediatrics (Neonatology), Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
9
|
Meidinna HN, Shefrin S, Sari AN, Zhang H, Dhanjal JK, Kaul SC, Sundar D, Wadhwa R. Identification of a new member of Mortaparib class of inhibitors that target mortalin and PARP1. Front Cell Dev Biol 2022; 10:918970. [PMID: 36172283 PMCID: PMC9510692 DOI: 10.3389/fcell.2022.918970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Mortalin, a heat shock family protein enriched in cancer cells, is known to inactivate tumor suppressor protein p53. Abrogation of mortalin-p53 interaction and reactivation of p53 has been shown to trigger growth arrest/apoptosis in cancer cells and hence, suggested to be useful in cancer therapy. In this premise, we earlier screened a chemical library to identify potential disruptors of mortalin-p53 interaction, and reported two novel synthetic small molecules (5-[1-(4-methoxyphenyl) (1,2,3,4-tetraazol-5-yl)]-4-phenylpyrimidine-2-ylamine) and (4-[(1E)-2-(2-phenylindol-3-yl)-1-azavinyl]-1,2,4-triazole) called Mortaparib and MortaparibPlus, respectively. These compounds were shown to possess anticancer activity that was mediated through targeting mortalin and PARP1 proteins, essential for cancer cell survival and proliferation. Here, we report characterization of the third compound, {4-[(4-amino-5-thiophen-2-yl-1,2,4-triazol-3-yl)sulfanylmethyl]-N-(4-methoxyphenyl)-1,3-thiazol-2-amine}, isolated in the same screening. Extensive computational and molecular analyses suggested that the new compound has the capability to interact with mortalin, p53, and PARP1. We provide evidence that this new compound, although required in high concentration as compared to the earlier two compounds (Mortaparib and MortaparibPlus) and hence called MortaparibMild, also downregulates mortalin and PARP1 expression and functions in multiple ways impeding cancer cell proliferation and migration characteristics. MortaparibMild is a novel candidate anticancer compound that warrants further experimental and clinical attention.
Collapse
Affiliation(s)
- Hazna Noor Meidinna
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | - Seyad Shefrin
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi, India
| | - Anissa Nofita Sari
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | - Huayue Zhang
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | - Jaspreet Kaur Dhanjal
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi, New Delhi, India
| | - Sunil C. Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | - Durai Sundar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi, India
- *Correspondence: Durai Sundar, ; Renu Wadhwa,
| | - Renu Wadhwa
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
- *Correspondence: Durai Sundar, ; Renu Wadhwa,
| |
Collapse
|
10
|
Inigo JR, Chandra D. The mitochondrial unfolded protein response (UPR mt): shielding against toxicity to mitochondria in cancer. J Hematol Oncol 2022; 15:98. [PMID: 35864539 PMCID: PMC9306209 DOI: 10.1186/s13045-022-01317-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/11/2022] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are essential for tumor growth and progression. However, the heavy demand for mitochondrial activity in cancer leads to increased production of mitochondrial reactive oxygen species (mtROS), accumulation of mutations in mitochondrial DNA, and development of mitochondrial dysfunction. If left unchecked, excessive mtROS can damage and unfold proteins in the mitochondria to an extent that becomes lethal to the tumor. Cellular systems have evolved to combat mtROS and alleviate mitochondrial stress through a quality control mechanism called the mitochondrial unfolded protein response (UPRmt). The UPRmt system is composed of chaperones and proteases, which promote protein folding or eliminate mitochondrial proteins damaged by mtROS, respectively. UPRmt is conserved and activated in cancer in response to mitochondrial stress to maintain mitochondrial integrity and support tumor growth. In this review, we discuss how mitochondria become dysfunctional in cancer and highlight the tumor-promoting functions of key components of the UPRmt.
Collapse
Affiliation(s)
- Joseph R Inigo
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Dhyan Chandra
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
| |
Collapse
|
11
|
Yoon AR, Wadhwa R, Kaul SC, Yun CO. Why is Mortalin a Potential Therapeutic Target for Cancer? Front Cell Dev Biol 2022; 10:914540. [PMID: 35859897 PMCID: PMC9290191 DOI: 10.3389/fcell.2022.914540] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide, accounting for nearly 10 million deaths in 2020. Therefore, cancer therapy is a priority research field to explore the biology of the disease and identify novel targets for the development of better treatment strategies. Mortalin is a member of the heat shock 70 kDa protein family. It is enriched in several types of cancer and contributes to carcinogenesis in various ways, including inactivation of the tumor suppressor p53, deregulation of apoptosis, induction of epithelial–mesenchymal transition, and enhancement of cancer stemness. It has been studied extensively as a therapeutic target for cancer treatment, and several types of anti-mortalin molecules have been discovered that effectively suppress the tumor cell growth. In this review, we 1) provide a comprehensive sketch of the role of mortalin in tumor biology; 2) discuss various anti-mortalin molecules, including natural compounds, synthetic small molecules, peptides, antibodies, and nucleic acids, that have shown potential for cancer treatment in laboratory studies; and 3) provide future perspectives in cancer treatment.
Collapse
Affiliation(s)
- A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, South Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul, South Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, South Korea
| | - Renu Wadhwa
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Sunil C Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, South Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul, South Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, South Korea
- GeneMedicine CO, Ltd, Seoul, South Korea
- *Correspondence: Chae-Ok Yun,
| |
Collapse
|
12
|
Fu X, Liu H, Liu J, DiSanto ME, Zhang X. The Role of Heat Shock Protein 70 Subfamily in the Hyperplastic Prostate: From Molecular Mechanisms to Therapeutic Opportunities. Cells 2022; 11:cells11132052. [PMID: 35805135 PMCID: PMC9266107 DOI: 10.3390/cells11132052] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 01/11/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is one of the most common causes of lower urinary tract symptoms (LUTS) in men, which is characterized by a noncancerous enlargement of the prostate. BPH troubles the vast majority of aging men worldwide; however, the pathogenetic factors of BPH have not been completely identified. The heat shock protein 70 (HSP70) subfamily, which mainly includes HSP70, glucose-regulated protein 78 (GRP78) and GRP75, plays a crucial role in maintaining cellular homeostasis. HSP70s are overexpressed in the course of BPH and involved in a variety of biological processes, such as cell survival and proliferation, cell apoptosis, epithelial/mesenchymal transition (EMT) and fibrosis, contributing to the development and progress of prostate diseases. These chaperone proteins also participate in oxidative stress, a cellular stress response that takes place under stress conditions. In addition, HSP70s can bind to the androgen receptor (AR) and act as a regulator of AR activity. This interaction of HSP70s with AR provides insight into the importance of the HSP70 chaperone family in BPH pathogenesis. In this review, we discuss the function of the HSP70 family in prostate glands and the role of HSP70s in the course of BPH. We also review the potential applications of HSP70s as biomarkers of prostate diseases for targeted therapies.
Collapse
Affiliation(s)
- Xun Fu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430000, China; (X.F.); (H.L.); (J.L.)
| | - Huan Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430000, China; (X.F.); (H.L.); (J.L.)
| | - Jiang Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430000, China; (X.F.); (H.L.); (J.L.)
| | - Michael E. DiSanto
- Department of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08028, USA;
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430000, China; (X.F.); (H.L.); (J.L.)
- Correspondence:
| |
Collapse
|
13
|
Evaluation of aminopyrrolidine amide to improve chloride transport in CFTR-defective cells. Bioorg Med Chem Lett 2022; 72:128866. [PMID: 35752380 DOI: 10.1016/j.bmcl.2022.128866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 11/22/2022]
Abstract
The aminopyrrolidine amide PF-429242 is a specific inhibitor of the Site-1 Protease which is responsible for the cleavage, and thus the activation of the Activating Transcription Factor6 that down regulates many genes, during the Unfolded Protein Response. We hypothesized that PF-429242 could be used to prevent the ATF6-dependent down regulation of some genes. We chose the CFTR gene encoding the CFTR chloride channel as a model because it is down-regulated by ATF6 in Cystic Fibrosis. We evaluated the action of PF-429242 in human bronchial cells expressing the most frequent mutation of CFTR (p.Phe508del) found in patients. We observed that PF-429242 increases the synthesis of the mRNA and the protein encoded by the CFTR gene harbouring the mutation. We also observed that PF-429242 alleviates the defects of the p.Phe508del-CFTR channel in human Cystic Fibrosis cells. Our results suggest that aminopyrrolidine amide is a potential therapeutic target for Cystic Fibrosis that could also have beneficial effects in other diseases involving CFTR, such as the Chronic Obstructive Pulmonary Disease.
Collapse
|
14
|
MORTALIN-Ca 2+ axis drives innate rituximab resistance in diffuse large B-cell lymphoma. Cancer Lett 2022; 537:215678. [PMID: 35447282 DOI: 10.1016/j.canlet.2022.215678] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/28/2022] [Accepted: 04/03/2022] [Indexed: 11/21/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin's lymphoma, with the combination of rituximab and chemotherapy being the standard treatment for it. Although rituximab monotherapy has a remarkable response rate, drug resistance with unclear mechanisms and lack of effective second-line therapy limit the survival benefits of patients with lymphoma. Here, we report that MORTALIN is highly expressed and correlates with resistance to rituximab-based therapy and poor survival in patients with DLBCL. Mechanistically, gain- and loss-of-function experiments revealed that the voltage-dependent anion channel 1-binding protein, MORTALIN, regulated Ca2+ release from the endoplasmic reticulum through mitochondria-associated membrane, facilitating AP1-mediated cell proliferation and YY-1-mediated downregulation of FAS in DLBCL cells. These dual mechanisms contribute to rituximab resistance. In mouse models, genetic depletion of MORTALIN markedly increased the antitumor activity of rituximab. We shed mechanistic light on MORTALIN-Ca2+-CaMKII-AP1-mediated proliferation and MORTALIN-Ca2+-CaMKII-inhibited death receptor in DLBCL, leading to rituximab resistance, and propose MORTALIN as a novel target for the treatment of DLBCL.
Collapse
|
15
|
Bahr T, Katuri J, Liang T, Bai Y. Mitochondrial chaperones in human health and disease. Free Radic Biol Med 2022; 179:363-374. [PMID: 34780988 PMCID: PMC8893670 DOI: 10.1016/j.freeradbiomed.2021.11.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 02/03/2023]
Abstract
Molecular chaperones are a family of proteins that maintain cellular protein homeostasis through non-covalent peptide folding and quality control mechanisms. The chaperone proteins found within mitochondria play significant protective roles in mitochondrial biogenesis, quality control, and stress response mechanisms. Defective mitochondrial chaperones have been implicated in aging, neurodegeneration, and cancer. In this review, we focus on the two most prominent mitochondrial chaperones: mtHsp60 and mtHsp70. These proteins demonstrate different cellular localization patterns, interact with different targets, and have different functional activities. We discuss the structure and function of these prominent mitochondrial chaperone proteins and give an update on newly discovered regulatory mechanisms and disease implications.
Collapse
Affiliation(s)
- Tyler Bahr
- Department of Cell Systems & Anatomy University of Texas Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Joshua Katuri
- Department of Cell Systems & Anatomy University of Texas Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Ting Liang
- Department of Cell Systems & Anatomy University of Texas Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Yidong Bai
- Department of Cell Systems & Anatomy University of Texas Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA.
| |
Collapse
|
16
|
Maio N, Rouault TA. Mammalian iron sulfur cluster biogenesis: From assembly to delivery to recipient proteins with a focus on novel targets of the chaperone and co‐chaperone proteins. IUBMB Life 2022; 74:684-704. [PMID: 35080107 PMCID: PMC10118776 DOI: 10.1002/iub.2593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/05/2021] [Accepted: 12/23/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Nunziata Maio
- Molecular Medicine Branch Eunice Kennedy Shriver National Institute of Child Health and Human Development Bethesda Maryland USA
| | - Tracey A. Rouault
- Molecular Medicine Branch Eunice Kennedy Shriver National Institute of Child Health and Human Development Bethesda Maryland USA
| |
Collapse
|
17
|
Albakova Z, Mangasarova Y, Albakov A, Gorenkova L. HSP70 and HSP90 in Cancer: Cytosolic, Endoplasmic Reticulum and Mitochondrial Chaperones of Tumorigenesis. Front Oncol 2022; 12:829520. [PMID: 35127545 PMCID: PMC8814359 DOI: 10.3389/fonc.2022.829520] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022] Open
Abstract
HSP70 and HSP90 are two powerful chaperone machineries involved in survival and proliferation of tumor cells. Residing in various cellular compartments, HSP70 and HSP90 perform specific functions. Concurrently, HSP70 and HSP90 homologs may also translocate from their primary site under various stress conditions. Herein, we address the current literature on the role of HSP70 and HSP90 chaperone networks in cancer. The goal is to provide a comprehensive review on the functions of cytosolic, mitochondrial and endoplasmic reticulum HSP70 and HSP90 homologs in cancer. Given that high expression of HSP70 and HSP90 enhances tumor development and associates with tumor aggressiveness, further understanding of HSP70 and HSP90 chaperone networks may provide clues for the discoveries of novel anti-cancer therapies.
Collapse
Affiliation(s)
- Zarema Albakova
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
- *Correspondence: Zarema Albakova,
| | | | | | | |
Collapse
|
18
|
Haeussler S, Conradt B. Methods to Study the Mitochondrial Unfolded Protein Response (UPR mt) in Caenorhabditis elegans. Methods Mol Biol 2022; 2378:249-259. [PMID: 34985705 DOI: 10.1007/978-1-0716-1732-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The nematode Caenorhabditis elegans is a powerful model to study cellular stress responses. Due to its transparency and ease of genetic manipulation, C. elegans is especially suitable for fluorescence microscopy. As a result, studies of C. elegans using different fluorescent reporters have led to the discovery of key players of cellular stress response pathways, including the mitochondrial unfolded protein response (UPRmt). UPRmt is a protective retrograde signaling pathway that ensures mitochondrial homeostasis. The nuclear genes hsp-6 and hsp-60 encode mitochondrial chaperones and are highly expressed upon UPRmt induction. The transcriptional reporters of these genes, hsp-6::gfp and hsp-60::gfp, have been instrumental for monitoring this pathway in live animals. Additional tools for studying UPRmt include fusion proteins of ATFS-1 and DVE-1, ATFS-1::GFP and DVE-1::GFP, key players of the UPRmt pathway. In this protocol, we discuss advantages and limitations of currently available methods and reporters, and we provide detailed instructions on how to image and quantify reporter expression.
Collapse
Affiliation(s)
- Simon Haeussler
- Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Barbara Conradt
- Research Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, UK.
| |
Collapse
|
19
|
In Silico Assessment and Molecular Docking Studies of Some Phyto-Triterpenoid for Potential Disruption of Mortalin-p53 Interaction. Processes (Basel) 2021. [DOI: 10.3390/pr9111983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human hepatocellular carcinoma (HCC), the most common type of liver cancer, represents the second most common cause of death from cancer worldwide. The high toxicity and side effects of some cancer chemotherapy drugs increase the demand for new anti-cancer drugs from natural products. Mortalin/mtHsp70, a stress response protein, has been reported to contribute to the process of carcinogenesis in several ways, including the inhibition of the transcriptional activation of p53. This study conducted a molecular docking study of 41 phyto triterpenes originated from Vietnamese plants for potential Mortalin inhibition activity. Nine compounds were considered as promising inhibitors based on the analysis of binding affinity and drug-like and pharmacokinetic properties.
Collapse
|
20
|
Wu B, Ye Y, Xie S, Li Y, Sun X, Lv M, Yang L, Cui N, Chen Q, Jensen LD, Cui D, Huang G, Zuo J, Zhang S, Liu W, Yang Y. Megakaryocytes Mediate Hyperglycemia-Induced Tumor Metastasis. Cancer Res 2021; 81:5506-5522. [PMID: 34535458 DOI: 10.1158/0008-5472.can-21-1180] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/19/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022]
Abstract
High blood glucose has long been established as a risk factor for tumor metastasis, yet the molecular mechanisms underlying this association have not been elucidated. Here we describe that hyperglycemia promotes tumor metastasis via increased platelet activity. Administration of glucose, but not fructose, reprogrammed the metabolism of megakaryocytes to indirectly prime platelets into a prometastatic phenotype with increased adherence to tumor cells. In megakaryocytes, a glucose metabolism-related gene array identified the mitochondrial molecular chaperone glucose-regulated protein 75 (GRP75) as a trigger for platelet activation and aggregation by stimulating the Ca2+-PKCα pathway. Genetic depletion of Glut1 in megakaryocytes blocked MYC-induced GRP75 expression. Pharmacologic blockade of platelet GRP75 compromised tumor-induced platelet activation and reduced metastasis. Moreover, in a pilot clinical study, drinking a 5% glucose solution elevated platelet GRP75 expression and activated platelets in healthy volunteers. Platelets from these volunteers promoted tumor metastasis in a platelet-adoptive transfer mouse model. Together, under hyperglycemic conditions, MYC-induced upregulation of GRP75 in megakaryocytes increases platelet activation via the Ca2+-PKCα pathway to promote cancer metastasis, providing a potential new therapeutic target for preventing metastasis. SIGNIFICANCE: This study provides mechanistic insights into a glucose-megakaryocyte-platelet axis that promotes metastasis and proposes an antimetastatic therapeutic approach by targeting the mitochondrial protein GRP75.
Collapse
Affiliation(s)
- Biying Wu
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ying Ye
- Department of Oral Implantology, School and Hospital of Stomatology, Tongji University; Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Sisi Xie
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yintao Li
- Phase I Clinical Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Xiaoting Sun
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengyuan Lv
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ling Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Nan Cui
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qiying Chen
- Department of Cardiology, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Lasse D Jensen
- Department of Medicine, Health and Caring Science, Division of Diagnostics and Specialist Medicine, Unit of Cardiovascular Medicine, Linköping University, Linköping, Sweden
| | - Dongmei Cui
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Affiliated Shenzhen Eye Hospital of Jinan University, Shenzhen, China
| | - Guichun Huang
- Medical Oncology Department of Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ji Zuo
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shaochong Zhang
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Affiliated Shenzhen Eye Hospital of Jinan University, Shenzhen, China
| | - Wen Liu
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
21
|
Hirth CG, Vasconcelos GR, da Cunha MDPSS, Leite CHB, Dornelas CA. Immunoexpression of HSPA9 and CUL2 in prostatic tissue and adenocarcinoma. Ann Diagn Pathol 2021; 56:151843. [PMID: 34717191 DOI: 10.1016/j.anndiagpath.2021.151843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 01/13/2023]
Abstract
CUL2 plays a crucial role in proteolysis by preserving the balance between normal growth and uncontrolled proliferation. HSPA9 safeguards the integrity of protein interactions and supports cellular homeostasis. In carcinomas, HSPA9 and CUL2 appear to protect neoplastic cells from internal and external damage. In prostate tumors they are apparently associated with increased risk of unfavorable outcomes, but information remains scarce. In this study we evaluated CUL2 and HSPA9 expression in neoplastic and non-neoplastic prostate tissue and Gleason pattern 3 and 4 adenocarcinoma to identify associations with ISUP prognostic groups and postoperative disease progression. The records of 636 radical prostatectomy patients were reviewed retrospectively and microarrays were mounted with paraffin-embedded adenocarcinoma and non-neoplastic tissue. We evaluated the ability of HSPA9 and CUL2 to predict postoperative PSA outcomes, response to adjuvant/salvage therapy and systemic disease. HSPA9 and CUL2 were diffusely expressed. HSPA9 expression was associated with increased risk of high-grade adenocarcinoma, while HSPA9 and CUL2 were associated with biochemical failure after salvage therapy. In conclusion, HSPA9 and CUL2 were highly expressed in prostate tissue, especially in neoplastic cells. HSPA9 and CUL2-positive Gleason pattern 3 adenocarcinoma was more likely to be associated with Gleason pattern 4 or 5, while HSPA9 and CUL2-positive Gleason pattern 4 adenocarcinoma was less likely to belong to ISUP groups 1 and 2. Staining for HSPA9 and CUL2 can help identify patients at increased risk of recurrence after salvage therapy.
Collapse
Affiliation(s)
- Carlos Gustavo Hirth
- Department of Pathology and Forensic Medicine, Postgraduate Program in Medical-Surgical Sciences of the Department of Surgery of the Federal University of Ceará, Hospital Haroldo Juaçaba, Ceará Cancer Institute, Fortaleza, Ceará, Brazil.
| | | | | | | | - Conceição Aparecida Dornelas
- Department of Pathology and Forensic Medicine and Department of Surgery, Postgraduate Program in Medical-Surgical Sciences of the Department of Surgery of the Federal University of Ceará, Brazil
| |
Collapse
|
22
|
Shkedi A, Adkisson M, Schroeder A, Eckalbar WL, Kuo SY, Neckers L, Gestwicki JE. Inhibitor Combinations Reveal Wiring of the Proteostasis Network in Prostate Cancer Cells. J Med Chem 2021; 64:14809-14821. [PMID: 34606726 PMCID: PMC8806517 DOI: 10.1021/acs.jmedchem.1c01342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The protein homeostasis (proteostasis) network is composed of multiple pathways that work together to balance protein folding, stability, and turnover. Cancer cells are particularly reliant on this network; however, it is hypothesized that inhibition of one node might lead to compensation. To better understand these connections, we dosed 22Rv1 prostate cancer cells with inhibitors of four proteostasis targets (Hsp70, Hsp90, proteasome, and p97), either alone or in binary combinations, and measured the effects on cell growth. The results reveal a series of additive, synergistic, and antagonistic relationships, including strong synergy between inhibitors of p97 and the proteasome and striking antagonism between inhibitors of Hsp90 and the proteasome. Based on RNA-seq, these relationships are associated, in part, with activation of stress pathways. Together, these results suggest that cocktails of proteostasis inhibitors might be a powerful way of treating some cancers, although antagonism that blunts the efficacy of both molecules is also possible.
Collapse
Affiliation(s)
- Arielle Shkedi
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco CA 94158
| | - Michael Adkisson
- Functional Genomics Core, University of California San Francisco, San Francisco, CA 94158
| | - Andrew Schroeder
- Functional Genomics Core, University of California San Francisco, San Francisco, CA 94158
| | - Walter L Eckalbar
- Functional Genomics Core, University of California San Francisco, San Francisco, CA 94158
| | - Szu-Yu Kuo
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco CA 94158
| | - Leonard Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Jason E. Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco CA 94158
| |
Collapse
|
23
|
Friedlander JE, Shen N, Zeng A, Korm S, Feng H. Failure to Guard: Mitochondrial Protein Quality Control in Cancer. Int J Mol Sci 2021; 22:ijms22158306. [PMID: 34361072 PMCID: PMC8348654 DOI: 10.3390/ijms22158306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are energetic and dynamic organelles with a crucial role in bioenergetics, metabolism, and signaling. Mitochondrial proteins, encoded by both nuclear and mitochondrial DNA, must be properly regulated to ensure proteostasis. Mitochondrial protein quality control (MPQC) serves as a critical surveillance system, employing different pathways and regulators as cellular guardians to ensure mitochondrial protein quality and quantity. In this review, we describe key pathways and players in MPQC, such as mitochondrial protein translocation-associated degradation, mitochondrial stress responses, chaperones, and proteases, and how they work together to safeguard mitochondrial health and integrity. Deregulated MPQC leads to proteotoxicity and dysfunctional mitochondria, which contributes to numerous human diseases, including cancer. We discuss how alterations in MPQC components are linked to tumorigenesis, whether they act as drivers, suppressors, or both. Finally, we summarize recent advances that seek to target these alterations for the development of anti-cancer drugs.
Collapse
Affiliation(s)
- Joseph E. Friedlander
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
| | - Ning Shen
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
- Department of Medicine, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Aozhuo Zeng
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
| | - Sovannarith Korm
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
| | - Hui Feng
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
- Department of Medicine, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA 02118, USA
- Correspondence: ; Tel.: +1-617-358-4688; Fax: +1-617-358-1599
| |
Collapse
|
24
|
Yang Y, Jin M, Dai Y, Shan W, Chen S, Cai R, Yang H, Tang L, Li L. Involvement and Targeted Intervention of Mortalin-Regulated Proteome Phosphorylated-Modification in Hepatocellular Carcinoma. Front Oncol 2021; 11:687871. [PMID: 34395254 PMCID: PMC8358780 DOI: 10.3389/fonc.2021.687871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES To reveal the mechanisms of the effects of mortalin in hepatocellular carcinoma (HCC) and to identify potential novel chemical inhibitors of mortalin. MATERIALS AND METHODS For the experiments, three HCC cell lines (HepG2 cells, Hep3B cells, and sorafenib-resistant HuH7 cells) and xenografted nude mice were used. For the clinical analysis, cohorts of 126 patients with HCC and 34 patients with advanced recurrent HCC receiving sorafenib therapy were examined. RESULTS Mortalin regulated the phosphorylation-modification of cancer-associated proteins and also regulated angiogenesis-related secretome to cause angiogenesis and sorafenib resistance in HCC cells. Two molecular mechanisms were identified. In one, via phosphatidylinositol 3-kinase (PI3K)/Akt signaling, mortalin regulated nuclear factor (NF)-κB and then activated vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor (VEGFR)2 and granulocyte-macrophage colony-stimulating factor (GM-CSF), leading to neovascularization. In the other, mortalin regulated PI3K/Akt/β-catenin and then regulated Bcl-XL and Bcl-2, leading to the antiapoptosis effect of HCC. Treatment of the sorafenib-resistant xenografts with sorafenib in combination with mortalin knockdown facilitated the sorafenib-mediated inhibition of tumor growth and angiogenesis and increased apoptosis. Mortalin was a potential risk factor for HCC, predicting poor prognosis and sorafenib resistance. Finally, we showed that caffeic acid (C9H8O4) could bind to and induce the ubiquitination-mediated degradation of mortalin, which in turn blocked the abovementioned signaling pathways, leading to the inhibition of angiogenesis and the reversal of sorafenib resistance. CONCLUSIONS Mortalin, which regulates the phosphorylation of cancer-associated proteins, caused angiogenesis and sorafenib resistance, and was a competitive risk factor for HCC. Caffeic acid can therefore be considered a novel chemical inhibitor that targets the action of mortalin and a potential treatment for HCC.
Collapse
Affiliation(s)
- Ye Yang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ming Jin
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yi Dai
- Department of General Surgery, The Affiliated Changzhou No. 2 Hospital of Nanjing Medical University, Changzhou, China
| | - Wenqi Shan
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shuai Chen
- Department of General Surgery, The Affiliated Changzhou No. 2 Hospital of Nanjing Medical University, Changzhou, China
| | - Rong Cai
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haojun Yang
- Department of General Surgery, The Affiliated Changzhou No. 2 Hospital of Nanjing Medical University, Changzhou, China
| | - Liming Tang
- Department of General Surgery, The Affiliated Changzhou No. 2 Hospital of Nanjing Medical University, Changzhou, China
| | - Lei Li
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
25
|
Mitochondrial HSP70 Chaperone System-The Influence of Post-Translational Modifications and Involvement in Human Diseases. Int J Mol Sci 2021; 22:ijms22158077. [PMID: 34360841 PMCID: PMC8347752 DOI: 10.3390/ijms22158077] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 01/25/2023] Open
Abstract
Since their discovery, heat shock proteins (HSPs) have been identified in all domains of life, which demonstrates their importance and conserved functional role in maintaining protein homeostasis. Mitochondria possess several members of the major HSP sub-families that perform essential tasks for keeping the organelle in a fully functional and healthy state. In humans, the mitochondrial HSP70 chaperone system comprises a central molecular chaperone, mtHSP70 or mortalin (HSPA9), which is actively involved in stabilizing and importing nuclear gene products and in refolding mitochondrial precursor proteins, and three co-chaperones (HSP70-escort protein 1-HEP1, tumorous imaginal disc protein 1-TID-1, and Gro-P like protein E-GRPE), which regulate and accelerate its protein folding functions. In this review, we summarize the roles of mitochondrial molecular chaperones with particular focus on the human mtHsp70 and its co-chaperones, whose deregulated expression, mutations, and post-translational modifications are often considered to be the main cause of neurological disorders, genetic diseases, and malignant growth.
Collapse
|
26
|
Critical Role of Mortalin/GRP75 in Endothelial Cell Dysfunction Associated with Acute Lung Injury. Shock 2021; 54:245-255. [PMID: 31490354 DOI: 10.1097/shk.0000000000001445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mortalin/GRP75 (glucose regulated protein 75), a member of heat shock protein 70 family of chaperones, is involved in several cellular processes including proliferation and signaling, and plays a pivotal role in cancer and neurodegenerative disorders. In this study, we sought to determine the role of mortalin/GRP75 in mediating vascular inflammation and permeability linked to the pathogenesis of acute lung injury (ALI). In an aerosolized bacterial lipopolysaccharide inhalation mouse model of ALI, we found that administration of mortalin/GRP75 inhibitor mean kinetic temperature-077, both prophylactically and therapeutically, protected against polymorphonuclear leukocytes influx into alveolar airspaces, microvascular leakage, and expression of pro-inflammatory mediators such as interleukin-1β, E-selectin, and tumor necrosis factor TNFα. Consistent with this, thrombin-induced inflammation in cultured human endothelial cells (EC) was also protected upon before and after treatment with mean kinetic temperature-077. Similar to pharmacological inhibition of mortalin/GRP75, siRNA-mediated depletion of mortalin/GRP75 also blocked thrombin-induced expression of proinflammatory mediators such as intercellular adhesion molecule-1 and vascular adhesion molecule-1. Mechanistic analysis in EC revealed that inactivation of mortalin/GRP75 interfered with the binding of the liberated NF-κB to the DNA, thereby leading to inhibition of downstream expression of adhesion molecules, cytokines, and chemokines. Importantly, thrombin-induced Ca signaling and EC permeability were also prevented upon mortalin/GRP75 inactivation/depletion. Thus, this study provides evidence for a novel role of mortalin/GRP75 in mediating EC inflammation and permeability associated with ALI.
Collapse
|
27
|
Mutant p53 L194F Harboring Luminal-A Breast Cancer Cells Are Refractory to Apoptosis and Cell Cycle Arrest in Response to Mortaparib Plus, a Multimodal Small Molecule Inhibitor. Cancers (Basel) 2021; 13:cancers13123043. [PMID: 34207240 PMCID: PMC8234533 DOI: 10.3390/cancers13123043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/03/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Tumor suppressor protein p53 is a master regulator that inhibits the process of oncogenesis by induction of cell senescence/cell cycle arrest/apoptosis during normal and stressed states of cells. It is functionally inactivated in the majority of cancers. Mortalin, a member of the Hsp70 family of proteins, enriched in cancer cells, is known to cause cytoplasmic sequestration and inactivation of the p53’s transcriptional activation function. Inhibition of mortalin–p53 interaction and reactivation of p53 functions by natural and synthetic drugs has emerged as a possible cancer therapeutic strategy. We recently reported a novel multimodal small molecule, named MortaparibPlus, that inhibited mortalin–p53 interaction and caused reactivation of p53 function in colorectal cancer cells. Here, we report its effect on breast cancer cells with wildtype (MCF-7) or mutant (T47D) p53 status. Abstract We previously performed a drug screening to identify a potential inhibitor of mortalin–p53 interaction. In four rounds of screenings based on the shift in mortalin immunostaining pattern from perinuclear to pan-cytoplasmic and nuclear enrichment of p53, we had identified MortaparibPlus (4-[(1E)-2-(2-phenylindol-3-yl)-1-azavinyl]-1,2,4-triazole) as a novel synthetic small molecule. In order to validate its activity and mechanism of action, we recruited Luminal-A breast cancer cells, MCF-7 (p53wild type) and T47D (p53L194F) and performed extensive biochemical and immunocytochemical analyses. Molecular analyses revealed that MortaparibPlus is capable of abrogating mortalin–p53 interaction in both MCF-7 and T47D cells. Intriguingly, upregulation of transcriptional activation function of p53 (as marked by upregulation of the p53 effector gene—p21WAF1—responsible for cell cycle arrest and apoptosis) was recorded only in MortaparibPlus-treated MCF-7 cells. On the other hand, MortaparibPlus-treated T47D cells exhibited hyperactivation of PARP1 (accumulation of PAR polymer and decrease in ATP levels) as a possible non-p53 tumor suppression program. However, these cells did not show full signs of either apoptosis or PAR-Thanatos. Molecular analyses attributed such a response to the inability of MortaparibPlus to disrupt the AIF–mortalin complexes; hence, AIF did not translocate to the nucleus to induce chromatinolysis and DNA degradation. These data suggested that the cancer cells possessing enriched levels of such complexes may not respond to MortaparibPlus. Taken together, we report the multimodal anticancer potential of MortaparibPlus that warrants further attention in laboratory and clinical studies.
Collapse
|
28
|
Samimi A, Khodayar MJ, Alidadi H, Khodadi E. The Dual Role of ROS in Hematological Malignancies: Stem Cell Protection and Cancer Cell Metastasis. Stem Cell Rev Rep 2021; 16:262-275. [PMID: 31912368 DOI: 10.1007/s12015-019-09949-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND OBJECTIVE Reactive oxygen species (ROS) play crucial role in hematopoiesis, regulation of differentiation, self-renewal, and the balance between quiescence and proliferation of hematopoietic stem cells (HSCs). The HSCs are a small population of undifferentiated cells that reside in the bone marrow (BM) and can undergo self-renewal by giving rise to mature cells. METHODS Relevant literature was identified through a PubMed search (2000-2019) of English-language papers using the following terms: reactive oxygen species, hematopoietic stem cell, leukemic stem cell, leukemia and chemotherapy. RESULTS HSCs are very sensitive to high levels of ROS and increased production of ROS have been attributed to HSC aging. HSC aging induced by both cell intrinsic and extrinsic factors is linked to impaired HSC self-renewal and regeneration. In addition, the elevated ROS levels might even trigger differentiation of Leukemic stem cells (LSCs) and ROS may be involved in the initiation and progression of hematological malignancies, such as leukemia. CONCLUSION Targeting genes involved in ROS in LSCs and HSCs are increasingly being used as a critical target for therapeutic interventions. Appropriate concentration of ROS may be an optimal therapeutic target for treatment of leukemia during chemotherapy, but still more studies are required to better understanding of the of ROS role in blood disorders.
Collapse
Affiliation(s)
- Azin Samimi
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Legal Medicine Organization, Legal Medicine Research Center, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hadis Alidadi
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elahe Khodadi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
29
|
Dores-Silva PR, Kiraly VTR, Moritz MNDO, Serrão VHB, Dos Passos PMS, Spagnol V, Teixeira FR, Gava LM, Cauvi DM, Ramos CHI, De Maio A, Borges JC. New insights on human Hsp70-escort protein 1: Chaperone activity, interaction with liposomes, cellular localizations and HSPA's self-assemblies remodeling. Int J Biol Macromol 2021; 182:772-784. [PMID: 33857516 DOI: 10.1016/j.ijbiomac.2021.04.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 11/24/2022]
Abstract
The 70 kDa heat shock proteins (Hsp70) are prone to self-assembly under thermal stress conditions, forming supramolecular assemblies (SMA), what may have detrimental consequences for cellular viability. In mitochondria, the cochaperone Hsp70-escort protein 1 (Hep1) maintains mitochondrial Hsp70 (mtHsp70) in a soluble and functional state, contributing to preserving proteostasis. Here we investigated the interaction between human Hep1 (hHep1) and HSPA9 (human mtHsp70) or HSPA1A (Hsp70-1A) in monomeric and thermic SMA states to unveil further information about the involved mechanisms. hHep1 was capable of blocking the formation of HSPA SMAs under a thermic treatment and stimulated HSPA ATPase activity in both monomeric and preformed SMA. The interaction of hHep1 with both monomeric and SMA HSPAs displayed a stoichiometric ratio close to 1, suggesting that hHep1 has access to most protomers within the SMA. Interestingly, hHep1 remodeled HSPA9 and HSPA1A SMAs into smaller forms. Furthermore, hHep1 was detected in the mitochondria and nucleus of cells transfected with the respective coding DNA and interacted with liposomes resembling mitochondrial membranes. Altogether, these new features reinforce that hHep1 act as a "chaperone for a chaperone", which may play a critical role in cellular proteostasis.
Collapse
Affiliation(s)
- Paulo Roberto Dores-Silva
- Sao Carlos Institute of Chemistry, University of Sao Paulo, Sao Carlos, SP, Brazil; Department of Surgery, School of Medicine, University of California, San Diego, La Jolla, USA
| | | | | | | | | | - Valentine Spagnol
- Department of Genetics and Evolution, Federal University of Sao Carlos, SP, Brazil
| | | | | | - David Mario Cauvi
- Department of Surgery, School of Medicine, University of California, San Diego, La Jolla, USA
| | | | - Antonio De Maio
- Department of Surgery, School of Medicine, University of California, San Diego, La Jolla, USA; Center for Investigations of Health and Education Disparities, University of California, San Diego, La Jolla, USA; Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, USA
| | - Júlio César Borges
- Sao Carlos Institute of Chemistry, University of Sao Paulo, Sao Carlos, SP, Brazil.
| |
Collapse
|
30
|
Albakova Z, Mangasarova Y, Sapozhnikov A. Heat Shock Proteins in Lymphoma Immunotherapy. Front Immunol 2021; 12:660085. [PMID: 33815422 PMCID: PMC8012763 DOI: 10.3389/fimmu.2021.660085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy harnessing the host immune system for tumor destruction revolutionized oncology research and advanced treatment strategies for lymphoma patients. Lymphoma is a heterogeneous group of cancer, where the central roles in pathogenesis play immune evasion and dysregulation of multiple signaling pathways. Immunotherapy-based approaches such as engineered T cells (CAR T), immune checkpoint modulators and NK cell-based therapies are now in the frontline of lymphoma research. Even though emerging immunotherapies showed promising results in treating lymphoma patients, low efficacy and on-target/off-tumor toxicity are of a major concern. To address that issue it is suggested to look into the emerging role of heat shock proteins. Heat shock proteins (HSPs) showed to be highly expressed in lymphoma cells. HSPs are known for their abilities to modulate immune responses and inhibit apoptosis, which made their successful entry into cancer clinical trials. Here, we explore the role of HSPs in Hodgkin and Non-Hodgkin lymphoma and their involvement in CAR T therapy, checkpoint blockade and NK cell- based therapies. Understanding the role of HSPs in lymphoma pathogenesis and the ways how HSPs may enhance anti-tumor responses, may help in the development of more effective, specific and safe immunotherapy.
Collapse
Affiliation(s)
- Zarema Albakova
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | | | - Alexander Sapozhnikov
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| |
Collapse
|
31
|
Pan Y, Abdureyim M, Yao Q, Li X. Analysis of Differentially Expressed Genes in Endothelial Cells Following Tumor Cell Adhesion, and the Role of PRKAA2 and miR-124-3p. Front Cell Dev Biol 2021; 9:604038. [PMID: 33681194 PMCID: PMC7933219 DOI: 10.3389/fcell.2021.604038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/19/2021] [Indexed: 01/25/2023] Open
Abstract
Tumor cell adhesion to the endothelium is one pattern of tumor-endothelium interaction and a key step during tumor metastasis. Endothelium integrity is an important barrier to prevent tumor invasion and metastasis. Changes in endothelial cells (ECs) due to tumor cell adhesion provide important signaling mechanisms for the angiogenesis and metastasis of tumor cells. However, the changes happened in endothelial cells when tumor-endothelium interactions are still unclear. In this study, we used Affymetrix Gene Chip Human Transcriptome Array 2.0. and quantitative real-time PCR (qPCR) to clarify the detailed gene alteration in endothelial cells adhered by prostate tumor cells PC-3M. A total of 504 differentially expressed mRNAs and 444 lncRNAs were obtained through chip data analysis. Gene Ontology (GO) function analysis showed that differentially expressed genes (DEGs) mainly mediated gland development and DNA replication at the biological level; at the cell component level, they were mainly involved in the mitochondrial inner membrane; and at the molecular function level, DEGs were mainly enriched in ATPase activity and catalytic activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) signal pathway analysis showed that the DEGs mainly regulated pathways in cancer, cell cycle, pyrimidine metabolism, and the mTOR signaling pathway. Then, we constructed a protein-protein interaction functional network and mRNA-lncRNA interaction network using Cytoscape v3.7.2. to identify core genes, mRNAs, and lncRNAs. The miRNAs targeted by the core mRNA PRKAA2 were predicted using databases (miRDB, RNA22, and Targetscan). The qPCR results showed that miR-124-3p, the predicted target miRNA of PRKAA2, was significantly downregulated in endothelial cells adhered by PC-3M. With a dual luciferase reporter assay, the binding of miR-124-3p with PRKAA2 3'UTR was confirmed. Additionally, by using the knockdown lentiviral vectors of miR-124-3p to downregulate the miR-124-3p expression level in endothelial cells, we found that the expression level of PRKAA2 increased accordingly. Taken together, the adhesion of tumor cells had a significant effect on mRNAs and lncRNAs in the endothelial cells, in which PRKAA2 is a notable changed molecule and miR-124-3p could regulate its expression and function in endothelial cells.
Collapse
Affiliation(s)
- Yan Pan
- Department of Pharmacology, Health Science Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Marhaba Abdureyim
- Department of Pharmacology, Health Science Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qing Yao
- Department of Biochemistry and Molecular Biology, Ningxia Medical University, Yinchuan, China
| | - Xuejun Li
- Department of Pharmacology, Health Science Center, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
32
|
Di Giuseppe F, Carluccio M, Zuccarini M, Giuliani P, Ricci-Vitiani L, Pallini R, De Sanctis P, Di Pietro R, Ciccarelli R, Angelucci S. Proteomic Characterization of Two Extracellular Vesicle Subtypes Isolated from Human Glioblastoma Stem Cell Secretome by Sequential Centrifugal Ultrafiltration. Biomedicines 2021; 9:146. [PMID: 33546239 PMCID: PMC7913340 DOI: 10.3390/biomedicines9020146] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 02/05/2023] Open
Abstract
Extracellular vesicles (EVs) released from tumor cells are actively investigated, since molecules therein contained and likely transferred to neighboring cells, supplying them with oncogenic information/functions, may represent cancer biomarkers and/or druggable targets. Here, we characterized by a proteomic point of view two EV subtypes isolated by sequential centrifugal ultrafiltration technique from culture medium of glioblastoma (GBM)-derived stem-like cells (GSCs) obtained from surgical specimens of human GBM, the most aggressive and lethal primary brain tumor. Electron microscopy and western blot analysis distinguished them into microvesicles (MVs) and exosomes (Exos). Two-dimensional electrophoresis followed by MALDI TOF analysis allowed us to identify, besides a common pool, sets of proteins specific for each EV subtypes with peculiar differences in their molecular/biological functions. Such a diversity was confirmed by identification of some top proteins selected in MVs and Exos. They were mainly chaperone or metabolic enzymes in MVs, whereas, in Exos, molecules are involved in cell-matrix adhesion, cell migration/aggressiveness, and chemotherapy resistance. These proteins, identified by EVs from primary GSCs and not GBM cell lines, could be regarded as new possible prognostic markers/druggable targets of the human tumor, although data need to be confirmed in EVs isolated from a greater GSC number.
Collapse
Affiliation(s)
- Fabrizio Di Giuseppe
- Department of Innovative Technologies in Medicine and Dentistry, ‘G. d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy;
- Center for Advanced Studies and Technology (CAST), ‘G. d’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy; (M.C.); (M.Z.); (P.G.); (P.D.S.); (R.D.P.); (R.C.)
- Stem TeCh Group, Via L Polacchi 13, 66100 Chieti, Italy
| | - Marzia Carluccio
- Center for Advanced Studies and Technology (CAST), ‘G. d’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy; (M.C.); (M.Z.); (P.G.); (P.D.S.); (R.D.P.); (R.C.)
- Stem TeCh Group, Via L Polacchi 13, 66100 Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, ‘G. d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy
| | - Mariachiara Zuccarini
- Center for Advanced Studies and Technology (CAST), ‘G. d’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy; (M.C.); (M.Z.); (P.G.); (P.D.S.); (R.D.P.); (R.C.)
- Department of Medical, Oral and Biotechnological Sciences, ‘G. d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy
| | - Patricia Giuliani
- Center for Advanced Studies and Technology (CAST), ‘G. d’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy; (M.C.); (M.Z.); (P.G.); (P.D.S.); (R.D.P.); (R.C.)
- Department of Medical, Oral and Biotechnological Sciences, ‘G. d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Via Regina Elena 299, 00161 Rome, Italy;
| | - Roberto Pallini
- Institute of Neurosurgery, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168 Rome, Italy;
| | - Paolo De Sanctis
- Center for Advanced Studies and Technology (CAST), ‘G. d’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy; (M.C.); (M.Z.); (P.G.); (P.D.S.); (R.D.P.); (R.C.)
- Department of Medicine and Ageing Sciences, ‘G. d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy
| | - Roberta Di Pietro
- Center for Advanced Studies and Technology (CAST), ‘G. d’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy; (M.C.); (M.Z.); (P.G.); (P.D.S.); (R.D.P.); (R.C.)
- Stem TeCh Group, Via L Polacchi 13, 66100 Chieti, Italy
- Department of Medicine and Ageing Sciences, ‘G. d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy
| | - Renata Ciccarelli
- Center for Advanced Studies and Technology (CAST), ‘G. d’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy; (M.C.); (M.Z.); (P.G.); (P.D.S.); (R.D.P.); (R.C.)
- Stem TeCh Group, Via L Polacchi 13, 66100 Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, ‘G. d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy
| | - Stefania Angelucci
- Department of Innovative Technologies in Medicine and Dentistry, ‘G. d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy;
- Center for Advanced Studies and Technology (CAST), ‘G. d’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy; (M.C.); (M.Z.); (P.G.); (P.D.S.); (R.D.P.); (R.C.)
- Stem TeCh Group, Via L Polacchi 13, 66100 Chieti, Italy
| |
Collapse
|
33
|
Garg S, Huifu H, Kumari A, Sundar D, Kaul SC, Wadhwa R. Induction of Senescence in Cancer Cells by a Novel Combination of Cucurbitacin B and Withanone: Molecular Mechanism and Therapeutic Potential. J Gerontol A Biol Sci Med Sci 2021; 75:1031-1041. [PMID: 31112603 DOI: 10.1093/gerona/glz077] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Indexed: 01/08/2023] Open
Abstract
Cancer, an uncontrolled proliferation syndrome, is treated with synthetic chemotherapeutic drugs that are associated with severe adverse effects. Development and application of new natural compounds is warranted to deal with the exponentially increasing incidence of cancer worldwide. Keeping selective toxicity to cancer cells as a priority criterion, we developed a combination of Cucurbitacin B and Withanone, and analyzed its anticancer potential using non-small cell lung cancer cells. We demonstrate that the selective cytotoxicity of the combination, called CucWi-N, to cancer cells is mediated by induction of cellular senescence that was characterized by decrease in Lamin A/C, CDK2, CDK4, Cyclin D, Cyclin E, phosphorylated RB, mortalin and increase in p53 and CARF proteins. It compromised cancer cell migration that was mediated by decrease in mortalin, hnRNP-K, vascular endothelial growth factor, matrix metalloproteinase 2, and fibronectin. We provide in silico, molecular dynamics and experimental data to support that CucWi-N (i) possesses high capability to target mortalin-p53 interaction and hnRNP-K proteins, (ii) triggers replicative senescence and inhibits metastatic potential of the cancer cells, and (iii) inhibits tumor progression and metastasis in vivo. We propose that CucWi-N is a potential natural anticancer drug that warrants further mechanistic and clinical studies.
Collapse
Affiliation(s)
- Sukant Garg
- DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba.,Tsukuba Life Science Innovation, School of Integrative and Global Majors, University of Tsukuba, Japan
| | - He Huifu
- DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Japan
| | - Anjani Kumari
- Department of Biochemical Engineering and Biotechnology, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Indian Institute of Technology (IIT)-Delhi, Delhi, India
| | - Durai Sundar
- Department of Biochemical Engineering and Biotechnology, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Indian Institute of Technology (IIT)-Delhi, Delhi, India
| | - Sunil C Kaul
- DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba
| | - Renu Wadhwa
- DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba.,Tsukuba Life Science Innovation, School of Integrative and Global Majors, University of Tsukuba, Japan
| |
Collapse
|
34
|
Mortalin depletion induces MEK/ERK-dependent and ANT/CypD-mediated death in vemurafenib-resistant B-Raf V600E melanoma cells. Cancer Lett 2021; 502:25-33. [PMID: 33440231 DOI: 10.1016/j.canlet.2020.12.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/18/2020] [Accepted: 12/26/2020] [Indexed: 01/07/2023]
Abstract
Therapy resistance to a selective B-Raf inhibitor (BRAFi) poses a challenge in treating patients with BRAF-mutant melanomas. Here, we report that RNA interference of mortalin (HSPA9/GRP75), a mitochondrial molecular chaperone often upregulated and mislocalized in melanoma, can effectively induce death of vemurafenib-resistant progenies of human B-RafV600E melanoma cell lines, A375 and Colo-829. Mortalin depletion induced death of vemurafenib-resistant cells at similar efficacy as observed in vemurafenib-naïve parental cells. This lethality was correlated with perturbed mitochondrial permeability and was attenuated by knockdown of adenine nucleotide translocase (ANT) and cyclophilin D (CypD), the key regulators of mitochondrial permeability. Chemical inhibition of MEK1/2 and ERK1/2 also suppressed mortalin depletion-induced death and mitochondrial permeability in these cells. These data suggest that mortalin and MEK/ERK regulate an ANT/CypD-associated mitochondrial death mechanism(s) in B-RafV600E melanoma cells and that this regulation is conserved even after these cells develop BRAFi resistance. We also show that doxycycline-induced mortalin depletion can effectively suppress the xenografts of vemurafenib-resistant A375 progeny in athymic nude mice. These findings suggest that mortalin has potential as a candidate therapeutic target for BRAFi-resistant BRAF-mutant tumors.
Collapse
|
35
|
Florke Gee RR, Chen H, Lee AK, Daly CA, Wilander BA, Fon Tacer K, Potts PR. Emerging roles of the MAGE protein family in stress response pathways. J Biol Chem 2020; 295:16121-16155. [PMID: 32921631 PMCID: PMC7681028 DOI: 10.1074/jbc.rev120.008029] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/08/2020] [Indexed: 12/21/2022] Open
Abstract
The melanoma antigen (MAGE) proteins all contain a MAGE homology domain. MAGE genes are conserved in all eukaryotes and have expanded from a single gene in lower eukaryotes to ∼40 genes in humans and mice. Whereas some MAGEs are ubiquitously expressed in tissues, others are expressed in only germ cells with aberrant reactivation in multiple cancers. Much of the initial research on MAGEs focused on exploiting their antigenicity and restricted expression pattern to target them with cancer immunotherapy. Beyond their potential clinical application and role in tumorigenesis, recent studies have shown that MAGE proteins regulate diverse cellular and developmental pathways, implicating them in many diseases besides cancer, including lung, renal, and neurodevelopmental disorders. At the molecular level, many MAGEs bind to E3 RING ubiquitin ligases and, thus, regulate their substrate specificity, ligase activity, and subcellular localization. On a broader scale, the MAGE genes likely expanded in eutherian mammals to protect the germline from environmental stress and aid in stress adaptation, and this stress tolerance may explain why many cancers aberrantly express MAGEs Here, we present an updated, comprehensive review on the MAGE family that highlights general characteristics, emphasizes recent comparative studies in mice, and describes the diverse functions exerted by individual MAGEs.
Collapse
Affiliation(s)
- Rebecca R Florke Gee
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Helen Chen
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Anna K Lee
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Christina A Daly
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Benjamin A Wilander
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Klementina Fon Tacer
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; School of Veterinary Medicine, Texas Tech University, Amarillo, Texas, USA.
| | - Patrick Ryan Potts
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
36
|
Mitochondrial Translocation of DJ-1 Is Mediated by Grp75: Implication in Cardioprotection of Resveratrol Against Hypoxia/Reoxygenation-Induced Oxidative Stress. J Cardiovasc Pharmacol 2020; 75:305-313. [PMID: 32040033 DOI: 10.1097/fjc.0000000000000805] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Resveratrol (Res) was recently reported to ameliorate hypoxia/reoxygenation (H/R)-caused oxidative stress in H9c2 cardiomyocytes through promoting the mitochondrial translocation of DJ-1 protein and subsequently preserving the activity of mitochondrial complex I. However, it is noteworthy that DJ-1 possesses no mitochondria-targeting sequence. Therefore, how Res induces DJ-1 mitochondrial translocation is an important and interesting question for further exploration. Glucose-regulated protein 75 (Grp75), whose N-terminus contains a 51-amino acid long mitochondrial-targeting signal peptide, is a cytoprotective chaperone that partakes in mitochondrial import of several proteins. Here, the contribution of Grp75 to mitochondrial import of DJ-1 by Res was investigated in a cellular model of H/R. Our results showed that Res upregulated the expression of DJ-1 protein, enhanced the interaction of DJ-1 and Grp75, and promoted DJ-1 translocation to mitochondria from cytosol in H9c2 cardiomyocytes undergoing H/R. Importantly, knockdown of Grp75 markedly reduced the interaction of DJ-1 with Grp75 and subsequent DJ-1 mitochondrial translocation induced by Res. Furthermore, Res pretreatment promoted the association of DJ-1 with ND1 and NDUFA4 subunits of complex I, preserved the activity of complex I, decreased mitochondria-derived reactive oxygen species production, and eventually ameliorated H/R-caused oxidative stress damage. Intriguingly, these effects were largely prevented also by small interfering RNA targeting Grp75. Overall, these results suggested that Grp75 interacts with DJ-1 to facilitate its translocation from cytosol to mitochondria, which is required for Res-mediated preservation of mitochondria complex I and cardioprotection from H/R-caused oxidative stress injury.
Collapse
|
37
|
Jubran R, Saar-Ray M, Wawruszak A, Ziporen L, Donin N, Bairey O, Fishelson Z. Mortalin peptides exert antitumor activities and act as adjuvants to antibody-mediated complement-dependent cytotoxicity. Int J Oncol 2020; 57:1013-1026. [PMID: 32700755 DOI: 10.3892/ijo.2020.5101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/09/2020] [Indexed: 11/06/2022] Open
Abstract
Cancer cells have developed numerous strategies to maintain their proliferative capacity and to withstand different kinds of stress. The mitochondrial stress‑70 protein named glucose regulated protein 75 (GRP75), also known as mortalin, is an intriguing cancer pro‑survival factor. It is constitutively expressed in normal tissues but is upregulated in many tumors, and was shown to be a cancer prognostic biomarker. Mortalin is an inhibitor of complement‑dependent cytotoxicity (CDC) and may therefore protect cells from antibody‑based immunotherapy. To target mortalin for cancer therapy, our laboratory designed several mortalin mimetic peptides with sequences predicted to be involved in mortalin binding to its client proteins. The peptides were synthesized with a C‑terminal transactivator of transcription sequence. By using cell death methodologies, the mechanism of action of the mortalin mimetic peptides on cancer cells was studied. Two peptides in particular, Mot‑P2 and Mot‑P7, were found to be highly toxic to lymphoma and ovarian, breast and prostate carcinoma cells. The analysis of their mode of action revealed that they may induce, within minutes, plasma membrane perturbations and mitochondrial stress. Furthermore, Mot‑P2 and Mot‑P7 activated necrotic cell death, leading to plasma membrane perforation, mitochondrial inner membrane depolarization and decrease in ATP level. In addition, Mot‑P7, but not Mot‑P2, required extracellular calcium ions to fully mediate cell death and was partially inhibited by plasma membrane cholesterol. At sub‑toxic concentrations, the two peptides moderately inhibited cancer cell proliferation and blocked cell cycle at G2/M. Both peptides may bind intracellularly to mortalin and/or a mortalin‑binding protein, hence knocking down mortalin expression reduced cell death. Combining treatment with Mot‑P2 or Mot‑P7 and CDC resulted in increased cell death. This study identified highly cytotoxic mortalin mimetic peptides that may be used as monotherapy or combined with complement‑activating antibody therapy to target mortalin for precision cancer therapy.
Collapse
Affiliation(s)
- Ritta Jubran
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Moran Saar-Ray
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin 20-093, Poland
| | - Lea Ziporen
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Natalie Donin
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Osnat Bairey
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center - Beilinson Hospital, Petach Tikva 49100, and the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Zvi Fishelson
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
38
|
Mortalin/HSPA9 targeting selectively induces KRAS tumor cell death by perturbing mitochondrial membrane permeability. Oncogene 2020; 39:4257-4270. [PMID: 32291414 PMCID: PMC7244387 DOI: 10.1038/s41388-020-1285-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023]
Abstract
The mitochondrial HSP70 chaperone mortalin (HSPA9/GRP75) is often upregulated and mislocalized in MEK/ERK-deregulated tumors. Here, we show that mortalin depletion can selectively induce death of immortalized normal fibroblasts IMR90E1A when combined with K-RasG12V expression, but not with wild type K-Ras expression, and that K-RasG12V-driven MEK/ERK activity is necessary for this lethality. This cell death was attenuated by knockdown or inhibition of adenine nucleotide translocase (ANT), cyclophilin D (CypD), or mitochondrial Ca2+ uniporter (MCU), which implicates a mitochondria-originated death mechanism. Indeed, mortalin depletion increased mitochondrial membrane permeability and induced cell death in KRAS-mutated human pancreatic ductal adenocarcinoma (PDAC) and colon cancer lines, which were attenuated by knockdown or inhibition of ANT, CypD, or MCU, and occurred independently of TP53 and p21CIP1. Intriguingly, JG-98, an advanced MKT-077 derivative, phenocopied the lethal effects of mortalin depletion in K-RasG12V-expressing IMR90E1A and KRAS-mutated tumor cell lines in vitro. Moreover, JG-231, a JG-98 analog with improved microsomal stability effectively suppressed the xenograft of MIA PaCa-2, a K-RasG12C-expressing human PDAC line, in athymic nude mice. These data demonstrate that oncogenic KRAS activity sensitizes cells to the effects of mortalin depletion, suggesting that mortalin has potential as a selective therapeutic target for KRAS-mutated tumors.
Collapse
|
39
|
Wu PK, Hong SK, Chen W, Becker AE, Gundry RL, Lin CW, Shao H, Gestwicki JE, Park JI. Mortalin (HSPA9) facilitates BRAF-mutant tumor cell survival by suppressing ANT3-mediated mitochondrial membrane permeability. Sci Signal 2020; 13:13/622/eaay1478. [PMID: 32156782 DOI: 10.1126/scisignal.aay1478] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mortalin [also known as heat shock protein family A (HSP70) member 9 (HSPA9) or glucose-regulated protein 75 (GRP75)] is a mitochondrial molecular chaperone that is often up-regulated and mislocalized in tumors with abnormal activation of the kinases MEK and ERK. Here, we found that mortalin depletion was selectively lethal to tumor and immortalized normal cells expressing the mutant kinase B-RafV600E or the chimeric protein ΔRaf-1:ER and that MEK-ERK-sensitive regulation of the peptide-binding domain in mortalin was critical to cell survival or death. Proteomics screening identified adenine nucleotide translocase 3 (ANT3) as a previously unknown mortalin substrate and cell survival/death effector. Mechanistically, increased MEK-ERK signaling activity and mortalin function converged opposingly on the regulation of mitochondrial permeability. Specifically, whereas MEK-ERK activity increased mitochondrial permeability by promoting the interaction between ANT3 and the peptidyl-prolyl isomerase cyclophilin D (CypD), mortalin decreased mitochondrial permeability by inhibiting this interaction. Hence, mortalin depletion increased mitochondrial permeability in MEK-ERK-deregulated cells to an extent that triggered cell death. HSP70 inhibitor derivatives that effectively inhibited mortalin suppressed the proliferation of B-RafV600E tumor cells in culture and in vivo, including their B-Raf inhibitor-resistant progenies. These findings suggest that targeting mortalin has potential as a selective therapeutic strategy in B-Raf-mutant or MEK-ERK-driven tumors.
Collapse
Affiliation(s)
- Pui-Kei Wu
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Seung-Keun Hong
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Wenjing Chen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Andrew E Becker
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Rebekah L Gundry
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Center for Biomedical Mass Spectrometry Research, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Chien-Wei Lin
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Hao Shao
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jong-In Park
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
40
|
Kiraly VTR, Dores-Silva PR, Serrão VHB, Cauvi DM, De Maio A, Borges JC. Thermal aggregates of human mortalin and Hsp70-1A behave as supramolecular assemblies. Int J Biol Macromol 2020; 146:320-331. [PMID: 31899237 PMCID: PMC7024674 DOI: 10.1016/j.ijbiomac.2019.12.236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 12/12/2022]
Abstract
The Hsp70 family of heat shock proteins plays a critical function in maintaining cellular homeostasis within various subcellular compartments. The human mitochondrial Hsp70 (HSPA9) has been associated with cellular death, senescence, cancer and neurodegenerative diseases, which is the rational for the name mortalin. It is well documented that mortalin, such as other Hsp70s, is prone to self-aggregation, which is related to mitochondria biogenesis failure. Here, we investigated the assembly, structure and function of thermic aggregates/oligomers of recombinant human mortalin and Hsp70-1A (HSPA1A). Summarily, both Hsp70 thermic aggregates have characteristics of supramolecular assemblies. They display characteristic organized structures and partial ATPase activity, despite their nanometric size. Indeed, we observed that the interaction of these aggregates/oligomers with liposomes is similar to monomeric Hsp70s and, finally, they were non-toxic over neuroblastoma cells. These findings revealed that high molecular mass oligomers of mortalin and Hsp70-1A preserved some of the fundamental functions of these proteins.
Collapse
Affiliation(s)
- Vanessa T R Kiraly
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil
| | - Paulo R Dores-Silva
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil; Department of Surgery, School of Medicine University of California, La Jolla, USA
| | - Vitor H B Serrão
- Department Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - David M Cauvi
- Department of Surgery, School of Medicine University of California, La Jolla, USA
| | - Antonio De Maio
- Department of Surgery, School of Medicine University of California, La Jolla, USA; Center for Investigations of Health and Education Disparities, University of California, San Diego, La Jolla, USA; Department of Neurosciences, School of Medicine, University of California, La Jolla, USA
| | - Júlio C Borges
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil.
| |
Collapse
|
41
|
Dhamad AE, Greene E, Sales M, Nguyen P, Beer L, Liyanage R, Dridi S. 75-kDa glucose-regulated protein (GRP75) is a novel molecular signature for heat stress response in avian species. Am J Physiol Cell Physiol 2020; 318:C289-C303. [DOI: 10.1152/ajpcell.00334.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Glucose-regulated protein 75 (GRP75) was first characterized in mammals as a heat shock protein-70 (HSP70) family stress chaperone based on its sequence homology. Extensive studies in mammals showed that GRP75 is induced by various stressors such as glucose deprivation, oxidative stress, and hypoxia, although it remained unresponsive to the heat shock. Such investigations are scarce in avian (nonmammalian) species. We here identified chicken GRP75 by using immunoprecipitation assay integrated with LC-MS/MS, and found that its amino acid sequence is conserved with high homology (52.5%) to the HSP70 family. Bioinformatics and 3D-structure prediction indicate that, like most HSPs, chicken GRP75 has two principal domains (the NH2-terminal ATPase and COOH-terminal region). Immunofluorescence staining shows that GRP75 is localized predominantly in the avian myoblast and hepatocyte mitochondria. Heat stress exposure upregulates GRP75 expression in a species-, genotype-, and tissue-specific manner. Overexpression of GRP75 reduces avian cell viability, and blockade of GRP75 by its small molecular inhibitor MKT-077 rescues avian cell viability during heat stress. Taken together, this is the first evidence showing that chicken GRP75, unlike its mammalian ortholog, is responsive to heat shock and plays a key role in cell survival/death pathways. Since modern avian species have high metabolic rates and are sensitive to high environmental temperature, GRP75 could open new vistas in mechanistic understanding of heat stress responses and thermotolerance in avian species.
Collapse
Affiliation(s)
- Ahmed Edan Dhamad
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas
| | - Elizabeth Greene
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas
| | - Marites Sales
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas
| | - Phuong Nguyen
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas
| | - Lesleigh Beer
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas
| | - Rohana Liyanage
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
42
|
Jo DS, Park SJ, Kim AK, Park NY, Kim JB, Bae JE, Park HJ, Shin JH, Chang JW, Kim PK, Jung YK, Koh JY, Choe SK, Lee KS, Cho DH. Loss of HSPA9 induces peroxisomal degradation by increasing pexophagy. Autophagy 2020; 16:1989-2003. [PMID: 31964216 DOI: 10.1080/15548627.2020.1712812] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Quality control of peroxisomes is essential for cellular homeostasis. However, the mechanism underlying pexophagy is largely unknown. In this study, we identified HSPA9 as a novel pexophagy regulator. Downregulation of HSPA9 increased macroautophagy/autophagy but decreased the number of peroxisomes in vitro and in vivo. The loss of peroxisomes by HSPA9 depletion was attenuated in SQSTM1-deficient cells. In HSPA9-deficient cells, the level of peroxisomal reactive oxygen species (ROS) increased, while inhibition of ROS blocked pexophagy in HeLa and SH-SY5Y cells. Importantly, reconstitution of HSPA9 mutants found in Parkinson disease failed to rescue the loss of peroxisomes, whereas reconstitution with wild type inhibited pexophagy in HSPA9-depleted cells. Knockdown of Hsc70-5 decreased peroxisomes in Drosophila, and the HSPA9 mutants failed to rescue the loss of peroxisomes in Hsc70-5-depleted flies. Taken together, our findings suggest that the loss of HSPA9 enhances peroxisomal degradation by pexophagy.
Collapse
Affiliation(s)
- Doo Sin Jo
- School of Life Sciences, Kyungpook National University , Daegu, Republic of Korea
| | - So Jung Park
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge , Cambridge, UK
| | - Ae-Kyeong Kim
- Metabolism & Neurophysiology Research Group, Korea Research Institute of Bioscience and Biotechnology , Daejeon, Republic of Korea
| | - Na Yeon Park
- School of Life Sciences, Kyungpook National University , Daegu, Republic of Korea
| | - Joon Bum Kim
- School of Life Sciences, Kyungpook National University , Daegu, Republic of Korea
| | - Ji-Eun Bae
- School of Life Sciences, Kyungpook National University , Daegu, Republic of Korea
| | - Hyun Jun Park
- School of Life Sciences, Kyungpook National University , Daegu, Republic of Korea
| | - Ji Hyun Shin
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge , Cambridge, UK
| | - Jong Wook Chang
- Cell and Regenerative Medicine Institute, Samsung Medical Center , Seoul, Republic of Korea
| | - Peter K Kim
- Department of Biochemistry, University of Toronto , Toronto, ON, Canada
| | - Yong-Keun Jung
- School of Biological Sciences, Seoul National University , Seoul, Republic of Korea
| | - Jae-Young Koh
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Republic of Korea
| | - Seong-Kyu Choe
- Department of Microbiology, Wonkwang University School of Medicine , Iksan, Jeonbuk, Republic of Korea
| | - Kyu-Sun Lee
- Metabolism & Neurophysiology Research Group, Korea Research Institute of Bioscience and Biotechnology , Daejeon, Republic of Korea
| | - Dong-Hyung Cho
- School of Life Sciences, Kyungpook National University , Daegu, Republic of Korea
| |
Collapse
|
43
|
Picard B, Gagaoua M. Meta-proteomics for the discovery of protein biomarkers of beef tenderness: An overview of integrated studies. Food Res Int 2020; 127:108739. [DOI: 10.1016/j.foodres.2019.108739] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/29/2019] [Accepted: 10/02/2019] [Indexed: 01/14/2023]
|
44
|
Molecular Mechanism Underlying Hypoxic Preconditioning-Promoted Mitochondrial Translocation of DJ-1 in Hypoxia/Reoxygenation H9c2 Cells. Molecules 2019; 25:molecules25010071. [PMID: 31878239 PMCID: PMC6983240 DOI: 10.3390/molecules25010071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 01/06/2023] Open
Abstract
DJ-1 was recently reported to be involved in the cardioprotection of hypoxic preconditioning (HPC) against hypoxia/reoxygenation (H/R)-induced oxidative stress damage, by preserving mitochondrial complex I activity and, subsequently, inhibiting mitochondrial reactive oxygen species (ROS) generation. However, the molecular mechanism by which HPC enables mitochondrial translocation of DJ-1, which has no mitochondria-targeting sequence, to preserve mitochondrial complex I, is largely unknown. In this study, co-immunoprecipitation data showed that DJ-1 was associated with glucose-regulated protein 75 (Grp75), and this association was significantly enhanced after HPC. Immunofluorescence imaging and Western blot analysis showed that HPC substantially enhanced the translocation of DJ-1 from cytosol to mitochondria in H9c2 cells subjected to H/R, which was mimicked by DJ-1 overexpression induced by pFlag-DJ-1 transfection. Importantly, knockdown of Grp75 markedly reduced the mitochondrial translocation of DJ-1 induced by HPC and pFlag-DJ-1 transfection. Moreover, HPC promoted the association of DJ-1 with mitochondrial complex I subunits ND1 and NDUFA4, improved complex I activity, and inhibited mitochondria-derived ROS production and subsequent oxidative stress damage after H/R, which was also mimicked by pFlag-DJ-1 transfection. Intriguingly, these effects of HPC and pFlag-DJ-1 transfection were also prevented by Grp75 knockdown. In conclusion, these results indicated that HPC promotes the translocation of DJ-1 from cytosol to mitochondria in a Grp75-dependent manner and Grp75 is required for DJ-1-mediated protection of HPC on H/R-induced mitochondrial complex I defect and subsequent oxidative stress damage.
Collapse
|
45
|
Li Z, Liu Y, Zhang H, Pu Z, Wu X, Li P. Effect of fosinopril on the renal cortex protein expression profile of Otsuka Long-Evans Tokushima Fatty rats. Exp Ther Med 2019; 19:172-182. [PMID: 31853288 PMCID: PMC6909786 DOI: 10.3892/etm.2019.8188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 08/23/2019] [Indexed: 12/21/2022] Open
Abstract
Angiotensin-converting enzyme inhibitors (ACEIs) can reduce urinary protein excretion and postpone the deterioration of renal function. However, the mechanisms of renal protection are not yet fully understood. To investigate the mechanisms of ACEIs in the treatment of diabetic nephropathy (DN), the present study determined the effects of the ACEI fosinopril (FP) on the profiling of renal cortex protein expression in Otsuka Long-Evans Tokushima Fatty (OLETF) rats using Long-Evans Tokushima Otsuka (LETO) rats as controls. Urinary protein levels at 24 h were examined using the Broadford method. PAS staining was performed to observe renal histopathological changes. The kidney cortices of OLETF, FP-treated OLETF and LETO rats were examined using soluble and insoluble high-resolution subproteomic analysis methodology at age of 36 and 56 weeks. Differentiated proteins were further confirmed using western blotting analysis. The results demonstrated that FP significantly decreased the glomerulosclerosis index and reduced the 24 h urinary protein excretion of OLETF rats. Additionally, 17 proteins significantly changed following FP-treatment. Amongst these proteins, the abundances of the stress-response protein heat shock protein family A member 9 and the antioxidant glutathione peroxidase 3 were particularly increased. These results indicated that FP ameliorated diabetic renal injuries by inhibiting oxidative stress. In conclusion, the differentially expressed proteins may improve our understanding of the mechanism of ACEIs in the OLETF rats.
Collapse
Affiliation(s)
- Zhiguo Li
- Department of Medical Research Center, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Yeqiang Liu
- Department of Endocrinology, Kailuan General Hospital, Tangshan, Hebei 063000, P.R. China
| | - Haojun Zhang
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Zhijie Pu
- Graduate School, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Xuejing Wu
- Graduate School, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Ping Li
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| |
Collapse
|
46
|
Xu M, Zhang Y, Cui M, Wang X, Lin Z. Mortalin contributes to colorectal cancer by promoting proliferation and epithelial-mesenchymal transition. IUBMB Life 2019; 72:771-781. [PMID: 31647608 DOI: 10.1002/iub.2176] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/14/2019] [Indexed: 12/24/2022]
Abstract
This study focused on the expression of mortalin in colorectal cancer (CRC). Mortalin activated the Wnt/β-catenin pathway to accelerate cell proliferation and the epithelial-mesenchymal transition (EMT) program. Data from online databases displayed that the expression of mortalin was high in CRC, which was further validated using clinical specimens. Meanwhile, high mortalin expression was positively associated with a poor overall survival rate. Suppression of mortalin inhibited CRC cell proliferation as evaluated by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT), colony formation, and immunofluorescence staining assays. In addition, depletion of mortalin inhibited CRC cell EMT progression and deactivated the Wnt/β-catenin pathway. Altogether, mortalin is highly expressed in CRC and may indicate a poor prognosis. Mortalin accelerated CRC progression by stimulating cell proliferation and the EMT program. This study may provide a potential clinical therapeutic target for CRC.
Collapse
Affiliation(s)
- Ming Xu
- Department of Pathology, Cancer Research Center, Yanbian University Medical College, Yanji, China
| | - Yuan Zhang
- Department of Pathology, Cancer Research Center, Yanbian University Medical College, Yanji, China
| | - Minghua Cui
- Department of Pathology, Cancer Research Center, Yanbian University Medical College, Yanji, China.,Key Laboratory of the Science and Technology, Yanbian University, Department of Jilin Province, Yanji, China
| | - Xinyue Wang
- Department of Pathology, Cancer Research Center, Yanbian University Medical College, Yanji, China
| | - Zhenhua Lin
- Department of Pathology, Cancer Research Center, Yanbian University Medical College, Yanji, China.,Key Laboratory of the Science and Technology, Yanbian University, Department of Jilin Province, Yanji, China
| |
Collapse
|
47
|
Mortalin restricts porcine epidemic diarrhea virus entry by downregulating clathrin-mediated endocytosis. Vet Microbiol 2019; 239:108455. [PMID: 31767073 DOI: 10.1016/j.vetmic.2019.108455] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/01/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022]
Abstract
Clathrin-mediated endocytosis is a mechanism used for the invasion of cells by a variety of viruses. Mortalin protein is involved in a variety of cellular functions and plays a role in viral infection. In this study, we found that mortalin significantly inhibited the replication of porcine epidemic diarrhea virus (PEDV) through restricting virus entry. Mechanistically, a biochemical interaction between the carboxyl terminus of mortalin and clathrin heavy chain (CLTC) was been found, and mortalin could induce CLTC degradation through the proteasomal pathway, thereby inhibiting the clathrin-mediated endocytosis of PEDV into host cells. In addition, artificial changes in mortalin expression affected the cell entry of transferrin, further confirming the above results. Finally, we confirmed that this host-mounted antiviral mechanism was broadly applicable to other viruses, such as vesicular stomatitis virus (VSV), rotavirus (RV), and transmissible gastroenteritis virus (TGEV), which use the same clathrin-mediated endocytic to entry. These results reveal a new function of mortalin in inhibiting endocytosis, and provide a novel strategy for treating PEDV infections.
Collapse
|
48
|
Hoter A, Naim HY. Heat Shock Proteins and Ovarian Cancer: Important Roles and Therapeutic Opportunities. Cancers (Basel) 2019; 11:E1389. [PMID: 31540420 PMCID: PMC6769485 DOI: 10.3390/cancers11091389] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022] Open
Abstract
Ovarian cancer is a serious cause of death in gynecological oncology. Delayed diagnosis and poor survival rates associated with late stages of the disease are major obstacles against treatment efforts. Heat shock proteins (HSPs) are stress responsive molecules known to be crucial in many cancer types including ovarian cancer. Clusterin (CLU), a unique chaperone protein with analogous oncogenic criteria to HSPs, has also been proven to confer resistance to anti-cancer drugs. Indeed, these chaperone molecules have been implicated in diagnosis, prognosis, metastasis and aggressiveness of various cancers. However, relative to other cancers, there is limited body of knowledge about the molecular roles of these chaperones in ovarian cancer. In the current review, we shed light on the diverse roles of HSPs as well as related chaperone proteins like CLU in the pathogenesis of ovarian cancer and elucidate their potential as effective drug targets.
Collapse
Affiliation(s)
- Abdullah Hoter
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| |
Collapse
|
49
|
Garg S, Wu C, Ohmiya Y, Kaul SC, Wadhwa R. Express ELISA for detection of mortalin. Biotechniques 2019; 67:166-171. [PMID: 31502469 DOI: 10.2144/btn-2018-0158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Mortalin is a widely studied stress chaperone that plays a significant role in diseases such as cancer, diabetes mellitus, liver cirrhosis, neurodegeneration and generalized aging. Based on these, the level of mortalin expression has been predicted to be an important and valuable diagnostic and prognostic marker. Conventional methods of protein analyses, such as Western blotting, immunohistochemistry or ELISA with antibodies provide specific, sensitive and useful outcomes. However, they are limited by lengthy and time-consuming protocols. Here, we present an upgrade to the existing ELISA techniques. We have prepared a conjugate of anti-mortalin antibody and luciferase enzyme that can be recruited for rapid (∼3 h) and quantitative detection of mortalin expression in a given biological sample.
Collapse
Affiliation(s)
- Sukant Garg
- DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan.,School of Integrative & Global Majors, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Chun Wu
- DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan
| | - Yoshihiro Ohmiya
- DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan
| | - Sunil C Kaul
- DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan
| | - Renu Wadhwa
- DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan.,School of Integrative & Global Majors, University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|
50
|
Cheng W, Zhang B, Zikeliyar M, Wang J, Jian H, Wu K, Zhang Y, Ding J. Elevated Mortalin correlates with poor outcome in hepatocellular carcinoma. Ann Diagn Pathol 2019; 42:59-63. [PMID: 31310900 DOI: 10.1016/j.anndiagpath.2019.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/17/2019] [Accepted: 06/26/2019] [Indexed: 01/19/2023]
Abstract
Although several lines of evidence existed suggesting that Mortalin was linked with survival in malignant tumors; it has been barely described regarding the prognostic involvement of its expression in hepatocellular carcinoma (HCC). Herein, to understand the prognostic meaning of Mortalin expression, Immunohistochemistry was undertaken to observe the immunohistochemical characteristics of Mortalin on HCC tissue microarray consisting of 90 cases of HCC and its paired normal control dots, followed by detailed statistical analysis with the accompanying clinicopathological variables available, including gender, age, tumor size, differentiation, cirrhosis, vascular invasion, clinical stage, T classification and intrahepatic metastases. Meanwhile, Kaplan-Meier survival curve was plotted to analyze the prognostic difference for patients with high and low expression of Mortalin. It was exhibited that Mortalin was over-expressed in HCC tissues relative to paired normal control and elevated Mortalin significantly correlated with vascular invasion, clinical stage and intrahepatic metastasis. Kaplan-Meier survival analysis revealed that Mortalin was remarkably associated with overall survival and disease-free survival. Multivariate Cox regression analysis showed that expression of Mortalin was an independent prognostic factor in HCC. Collectively, the data we provided here support the prognostic prediction value of Mortalin in HCC.
Collapse
Affiliation(s)
- Wei Cheng
- Department of Hematologic and Oncology, the Center Hospital of Karamay City, Karamay 834000, Xinjiang, China
| | - Bin Zhang
- Department of Hematologic and Oncology, the Center Hospital of Karamay City, Karamay 834000, Xinjiang, China
| | - Mulager Zikeliyar
- Department of Hematologic and Oncology, the Center Hospital of Karamay City, Karamay 834000, Xinjiang, China
| | - Junqiao Wang
- Department of Hematologic and Oncology, the Center Hospital of Karamay City, Karamay 834000, Xinjiang, China
| | - Huiling Jian
- Department of Hematologic and Oncology, the Center Hospital of Karamay City, Karamay 834000, Xinjiang, China
| | - Kexiong Wu
- Department of Hematologic and Oncology, the Center Hospital of Karamay City, Karamay 834000, Xinjiang, China
| | - Yizhi Zhang
- Department of Hematologic and Oncology, the Center Hospital of Karamay City, Karamay 834000, Xinjiang, China
| | - Jinhui Ding
- Department of General Surgery, the Center Hospital of Karamay City, Karamay 834000, Xinjiang, China.
| |
Collapse
|