1
|
Jiang L, Wang Y, He Y, Wang Y, Liu H, Chen Y, Ma J, Yin Y, Niu L. Transcranial Magnetic Stimulation Alleviates Spatial Learning and Memory Impairment by Inhibiting the Expression of SARM1 in Rats with Cerebral Ischemia-Reperfusion Injury. Neuromolecular Med 2025; 27:31. [PMID: 40293622 DOI: 10.1007/s12017-025-08856-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/20/2025] [Indexed: 04/30/2025]
Abstract
The cognitive impairment resulting from stroke is purported to be associated with impaired neuronal structure and function. Transcranial Magnetic Stimulation (TMS) modulates neuronal or cortical excitability and inhibits cellular apoptosis, thereby enhancing spatial learning and memory in middle cerebral artery occlusion/reperfusion (MCAO/R) rats. In this study, we aimed to investigate whether Sterile alpha and Toll/interleukin receptor motif-containing protein 1 (SARM1), a pivotal Toll-like receptor adaptor molecule and its related mechanisms are involved in the ameliorating effect of TMS on cognitive function post-cerebral ischemia. We evaluated hippocampal injury in MCAO/R rats after one week of treatment with 10-Hz TMS at an early stage. The effect of SARM1 was more effectively assessed through lentivirus-mediated SARM1 overexpression. Various techniques, including FJB staining, HE staining, western blot, immunofluorescence, imunohistochemistry, and transmission electron microscopy, were employed to investigate the molecular biological and morphological alterations of axons, myelin sheaths and apoptosis in the hippocampus. Ultimately, Morris Water Maze was employed to evaluate the spatial learning and memory capabilities of the rats. We observed that TMS significantly reduced the levels of SARM1, NF-κB, and Bax following MCAO/R, while elevating the levels of HSP70, Bcl-2, GAP-43, NF-200, BDNF, and MBP. Overexpression of SARM1 not only reversed the neuroprotective effects induced by TMS but also exacerbated spatial learning and memory impairments in rats. Our results demonstrate that TMS mitigates hippocampal cell apoptosis via the SARM1/HSP70/NF-κB signaling pathway, thus fostering the regeneration of hippocampal axons and myelin sheaths, as well as the improvement of spatial learning and memory.
Collapse
Affiliation(s)
- Linlin Jiang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yule Wang
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yingxi He
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Ying Wang
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Hao Liu
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yu Chen
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Jingxi Ma
- Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 401147, China
| | - Ying Yin
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Lingchuan Niu
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
2
|
Peng H, Ge Q, Xu T, He Y, Xu L, Yang Y, Wu S, He J, Si J. Repetitive transcranial magnetic stimulation frequency influences the hemodynamic responses in patients with disorders of consciousness. Neurosci Res 2025; 213:72-85. [PMID: 39922287 DOI: 10.1016/j.neures.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/20/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) emerges as a promising non-invasive neuromodulation technique for the treatment of patients with disorders of consciousness (DOC). The selection of rTMS parameters significantly influences the clinical therapeutic effects. However, the differences in spatiotemporal responsiveness of the brain under different rTMS stimulation frequencies remain unclear. In this pilot study, functional near-infrared spectroscopy (fNIRS) was used to evaluate the spatiotemporal differences in hemodynamic responses elicited by rTMS at different frequencies (1, 5, 10, 15, and 20 Hz) over left dorsolateral prefrontal cortex (F3). The results showed that the distribution patterns of the rTMS-evoked hemodynamic responses varied across different frequencies, indicating that rTMS frequency influences the hemodynamic responses in patients with DOC. Specifically, 10 Hz rTMS evoked strong positive hemodynamic responses over the frontal cortex, particularly in the right dorsolateral prefrontal cortex (R-DLPFC). Additionally, 20 Hz rTMS produced largepositive hemodynamic responses over the motor-related cortex, especially the right premotor cortex (R-PreM) and right primary sensorimotor cortex (PSMC). The current findings suggested that fNIRS can be used as a promising tool for evaluating the effects of rTMS in patients with DOC. Moreover, it provides useful guidance for the personalized design of rTMS parameters in a clinical environment.
Collapse
Affiliation(s)
- Hao Peng
- School of Instrumentation Science and Opto-electronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China
| | - Qianqian Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Tianshuai Xu
- School of Instrumentation Science and Opto-electronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China
| | - Yifang He
- School of Instrumentation Science and Opto-electronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China
| | - Long Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yi Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Sijin Wu
- School of Instrumentation Science and Opto-electronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China
| | - Jianghong He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Juanning Si
- School of Instrumentation Science and Opto-electronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China.
| |
Collapse
|
3
|
Tan X, Zhang J, Chen W, Chen T, Cui G, Liu Z, Hu R. Progress on Direct Regulation of Systemic Immunity by the Central Nervous System. World Neurosurg 2025; 196:123814. [PMID: 39983990 DOI: 10.1016/j.wneu.2025.123814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/23/2025]
Abstract
This article reviews the research progress on the direct regulation of the immune system by the central nervous system (CNS). The traditional "neuro-endocrine-immune" network model has confirmed the close connection between the CNS and the immune system. However, due to the complex mediating role of the endocrine system, its application in clinical treatment is limited. In recent years, the direct regulation of the peripheral immune system through the CNS has provided new methods for the clinical treatment of neuroimmune-related diseases. This article analyzes the changes in the peripheral immune system after CNS injury and summarizes the effects of various stimulation methods, including transcranial magnetic stimulation, transcranial electrical stimulation, deep brain stimulation, spinal cord stimulation, and vagus nerve stimulation, on the peripheral immune system. Additionally, it explores the clinical research progress and future development directions of these stimulation methods. It is proposed that these neural regulation techniques exhibit positive effects in reducing peripheral inflammation, protecting immune cells and organ functions, and improving immunosuppressive states, providing new perspectives and therapeutic potential for the treatment of immune-related diseases.
Collapse
Affiliation(s)
- Xiaotian Tan
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Junming Zhang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Weiming Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tunan Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Gaoyu Cui
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhi Liu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Rong Hu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
4
|
Gallop L, Westwood SJ, Hemmings A, Lewis Y, Campbell IC, Schmidt U. Effects of repetitive transcranial magnetic stimulation in children and young people with psychiatric disorders: a systematic review. Eur Child Adolesc Psychiatry 2025; 34:403-422. [PMID: 38809301 PMCID: PMC11868357 DOI: 10.1007/s00787-024-02475-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 05/18/2024] [Indexed: 05/30/2024]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has demonstrated benefits in adults with psychiatric disorders, but its clinical utility in children and young people (CYP) is unclear. This PRISMA systematic review used published and ongoing studies to examine the effects of rTMS on disorder-specific symptoms, mood and neurocognition in CYP with psychiatric disorders. We searched Medline via PubMed, Embase, PsychINFO via OVID, and Clinicaltrials.gov up to July 2023. Eligible studies involved multiple-session (i.e., treatment) rTMS in CYP (≤ 25 years-old) with psychiatric disorders. Two independent raters assessed the eligibility of studies and extracted data using a custom-built form. Out of 78 eligible studies (participant N = 1389), the majority (k = 54; 69%) reported an improvement in at least one outcome measure of disorder-specific core symptoms. Some studies (k = 21) examined rTMS effects on mood or neurocognition,: findings were largely positive. Overall, rTMS was well-tolerated with minimal side-effects. Of 17 ongoing or recently completed studies, many are sham-controlled RCTs with better blinding techniques and a larger estimated participant enrolment. Findings provide encouraging evidence for rTMS-related improvements in disorder-specific symptoms in CYP with different psychiatric disorders. However, in terms of both mood (for conditions other than depression) and neurocognitive outcomes, evidence is limited. Importantly, rTMS is well-tolerated and safe. Ongoing studies appear to be of improved methodological quality; however, future studies should broaden outcome measures to more comprehensively assess the effects of rTMS and develop guidance on dosage (i.e., treatment regimens).
Collapse
Affiliation(s)
- Lucy Gallop
- Centre for Research in Eating and Weight Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, PO Box 59, London, SE5 8AF, UK.
| | - Samuel J Westwood
- Department of Psychology, School of Social Science, University of Westminster, London, W1W 6UW, UK
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AB, UK
| | - Amelia Hemmings
- Centre for Research in Eating and Weight Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, PO Box 59, London, SE5 8AF, UK
| | - Yael Lewis
- Centre for Research in Eating and Weight Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, PO Box 59, London, SE5 8AF, UK
- Hadarim Eating Disorder Unit, Shalvata Mental Health Centre, Hod Hasharon, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Iain C Campbell
- Centre for Research in Eating and Weight Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, PO Box 59, London, SE5 8AF, UK
| | - Ulrike Schmidt
- Centre for Research in Eating and Weight Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, PO Box 59, London, SE5 8AF, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
5
|
Ji Y, Yang C, Pang X, Yan Y, Wu Y, Geng Z, Hu W, Hu P, Wu X, Wang K. Repetitive transcranial magnetic stimulation in Alzheimer's disease: effects on neural and synaptic rehabilitation. Neural Regen Res 2025; 20:326-342. [PMID: 38819037 PMCID: PMC11317939 DOI: 10.4103/nrr.nrr-d-23-01201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/23/2023] [Accepted: 12/13/2023] [Indexed: 06/01/2024] Open
Abstract
Alzheimer's disease is a neurodegenerative disease resulting from deficits in synaptic transmission and homeostasis. The Alzheimer's disease brain tends to be hyperexcitable and hypersynchronized, thereby causing neurodegeneration and ultimately disrupting the operational abilities in daily life, leaving patients incapacitated. Repetitive transcranial magnetic stimulation is a cost-effective, neuro-modulatory technique used for multiple neurological conditions. Over the past two decades, it has been widely used to predict cognitive decline; identify pathophysiological markers; promote neuroplasticity; and assess brain excitability, plasticity, and connectivity. It has also been applied to patients with dementia, because it can yield facilitatory effects on cognition and promote brain recovery after a neurological insult. However, its therapeutic effectiveness at the molecular and synaptic levels has not been elucidated because of a limited number of studies. This study aimed to characterize the neurobiological changes following repetitive transcranial magnetic stimulation treatment, evaluate its effects on synaptic plasticity, and identify the associated mechanisms. This review essentially focuses on changes in the pathology, amyloidogenesis, and clearance pathways, given that amyloid deposition is a major hypothesis in the pathogenesis of Alzheimer's disease. Apoptotic mechanisms associated with repetitive transcranial magnetic stimulation procedures and different pathways mediating gene transcription, which are closely related to the neural regeneration process, are also highlighted. Finally, we discuss the outcomes of animal studies in which neuroplasticity is modulated and assessed at the structural and functional levels by using repetitive transcranial magnetic stimulation, with the aim to highlight future directions for better clinical translations.
Collapse
Affiliation(s)
- Yi Ji
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Chaoyi Yang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Xuerui Pang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Yibing Yan
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Yue Wu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Zhi Geng
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Wenjie Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Panpan Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China
| | - Xingqi Wu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui Province, China
- Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
6
|
Hu ZY, Wei RM, Fei-Hu, Yu K, Fang SK, Li XY, Zhang YM, Chen GH. Neonatal maternal separation impairs cognitive function and synaptic plasticity in adult male CD-1 mice. IBRO Neurosci Rep 2024; 17:431-440. [PMID: 39629017 PMCID: PMC11612454 DOI: 10.1016/j.ibneur.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/01/2024] [Indexed: 12/06/2024] Open
Abstract
Maternal separation (MS) increases the risk of occurrence of anxiety, depression, and learning and memory impairment in offspring. However, the underlying molecular biological mechanisms remain unclear. In the current study, offspring CD-1 mice were separated from their mothers from postnatal day 4 to postnatal day 21. At 3 months of age, the male offspring were selected for the evaluation of anxiety- and depression-like behaviors and learning and memory function. Western blotting and RT-PCR were used to examine the expression levels of brain-derived neurotrophic factor, tyrosine kinase receptor B, postsynaptic density-95, and synaptophysin. Long-term potentiation (LTP) and long-term depression (LTD) were recorded at Schaffer collateral/CA1 synapses. Furthermore, basal synaptic transmission was evaluated via the recording of the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs). The results showed that adult offspring CD-1 mice displayed anxiety- and depressive-like behaviors as well as impaired spatial learning and memory abilities. Electrophysiological analysis indicated that MS impaired LTP, enhanced LTD, and reduced the frequency of mEPSCs in pyramidal neurons in the CA1 region. Our findings suggested that MS can lead to anxiety, depression, and cognitive deficits, and these effects are associated with alterations in the levels of synaptic plasticity-associated proteins, consequently, also synaptic plasticity.
Collapse
Affiliation(s)
- Zhen-Yu Hu
- The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| | - Ru-Meng Wei
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| | - Fei-Hu
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| | - Ke Yu
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| | - Shi-Kun Fang
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| | - Xue-Yan Li
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| | - Yue-Ming Zhang
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| |
Collapse
|
7
|
Tang M, Guo JJ, Guo RX, Xu SJ, Lou Q, Hu QX, Li WY, Yu JB, Yao Q, Wang QW. Progress of research and application of non-pharmacologic intervention in Alzheimer's disease. J Alzheimers Dis 2024; 102:275-294. [PMID: 39573867 DOI: 10.1177/13872877241289396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease characterized by amyloid-β (Aβ) deposition and neurofibrillary tangles formed by high phosphorylation of tau protein. At present, drug therapy is the main strategy of AD treatment, but its effects are limited to delaying or alleviating AD. Recently, non-pharmacologic intervention has attracted more attention, and more studies have confirmed that non-pharmacologic intervention in AD can improve the patient's cognitive function and quality of life. This paper summarizes the current non-pharmacologic intervention in AD, to provide useful supplementary means for AD intervention.
Collapse
Affiliation(s)
- Min Tang
- Ningbo Rehabilitation Hospital, Ningbo, Zhejiang, China
| | - Jie-Jie Guo
- The First People's Hospital of Wenling, Taizhou, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Rong-Xia Guo
- School of Teacher Education, Ningbo University, Ningbo, Zhejiang, China
| | - Shu-Jun Xu
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Qiong Lou
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Qiao-Xia Hu
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Wan-Yi Li
- Ningbo Rehabilitation Hospital, Ningbo, Zhejiang, China
| | - Jing-Bo Yu
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Qi Yao
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Qin-Wen Wang
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
8
|
Wang L, Hu W, Wang H, Song Z, Lin H, Jiang J. Different stimulation targets of rTMS modulate specific triple-network and hippocampal-cortex functional connectivity. Brain Stimul 2024; 17:1256-1264. [PMID: 39515419 DOI: 10.1016/j.brs.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/21/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is widely applied to treat Alzheimer's disease (AD). Various treatment targets are currently being explored in clinical research. However, target diversity can result in considerable heterogeneity. OBJECTIVE This study aimed to investigate whether different rTMS targets can enhance cognitive domains by modulating functional connectivity (FC) of the hippocampus (HIP) and triple network, which comprises the salience network (SN), central executive network (CEN), and default mode network (DMN). METHODS We enrolled 63 patients with AD, of whom 48 and 15 underwent rTMS targeting the left dorsolateral prefrontal cortex (dlPFC) and the bilateral angular gyrus (ANG), respectively. We examined the network-level FC differences within the triple-network before and after treatment. Additionally, we utilized HIP as a seed for voxel-level analysis. We compared the similarities and differences in the effects of dlPFC and ANG rTMS. RESULTS rTMS targeting the dlPFC primarily influenced the FC of the CEN, whereas rTMS targeting the ANG primarily influenced the SN and DMN. Moreover, the right temporal lobe within the DMN exhibited reduced FC with the left HIP following both therapies. The results of least absolute shrinkage and selection operator (LASSO) analysis indicated that hippocampal-cortex FC played a dominant role in the therapeutic effect. The observed FC changes significantly correlated with improvements in multiple cognitive scales. CONCLUSION rTMS targeting different regions affected the FC of specific networks. Both stimulation targets modulate the FC of hippocampal-cortex to influence therapeutic outcomes. Classification of patients based on damaged networks can further inform subsequent treatment strategies.
Collapse
Affiliation(s)
- Luyao Wang
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Wenjing Hu
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Huanxin Wang
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Ziyan Song
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Hua Lin
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.
| | - Jiehui Jiang
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
9
|
Han S, Wang J, Zhang W, Tian X. Chronic Pain-Related Cognitive Deficits: Preclinical Insights into Molecular, Cellular, and Circuit Mechanisms. Mol Neurobiol 2024; 61:8123-8143. [PMID: 38470516 DOI: 10.1007/s12035-024-04073-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Cognitive impairment is a common comorbidity of chronic pain, significantly disrupting patients' quality of life. Despite this comorbidity being clinically recognized, the underlying neuropathological mechanisms remain unclear. Recent preclinical studies have focused on the fundamental mechanisms underlying the coexistence of chronic pain and cognitive decline. Pain chronification is accompanied by structural and functional changes in the neural substrate of cognition. Based on the developments in electrophysiology and optogenetics/chemogenetics, we summarized the relevant neural circuits involved in pain-induced cognitive impairment, as well as changes in connectivity and function in brain regions. We then present the cellular and molecular alternations related to pain-induced cognitive impairment in preclinical studies, mainly including modifications in neuronal excitability and structure, synaptic plasticity, glial cells and cytokines, neurotransmitters and other neurochemicals, and the gut-brain axis. Finally, we also discussed the potential treatment strategies and future research directions.
Collapse
Affiliation(s)
- Siyi Han
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, Hubei, China
| | - Jie Wang
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Wen Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, Hubei, China.
| | - Xuebi Tian
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, Hubei, China.
| |
Collapse
|
10
|
Qian F, He R, Du X, Wei Y, Zhou Z, Fan J, He Y. Microglia and Astrocytes Responses Contribute to Alleviating Inflammatory Damage by Repetitive Transcranial Magnetic Stimulation in Rats with Traumatic Brain Injury. Neurochem Res 2024; 49:2636-2651. [PMID: 38909329 DOI: 10.1007/s11064-024-04197-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/30/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a therapeutic strategy that shows promise in ameliorating the clinical sequelae following traumatic brain injury (TBI). These improvements are associated with neuroplastic changes in neurons and their synaptic connections. However, it has been hypothesized that rTMS may also modulate microglia and astrocytes, potentially potentiating their neuroprotective capabilities. This study aims to investigate the effects of high-frequency rTMS on microglia and astrocytes that may contribute to its neuroprotective effects. Feeney's weight-dropping method was used to establish rat models of moderate TBI. To evaluate the neuroprotective effect of high frequency rTMS on rats by observing the synaptic ultrastructure and the level of neuron apoptosis. The levels of several important inflammation-related proteins within microglia and astrocytes were assessed through immunofluorescence staining and western blot. Our findings demonstrate that injured neurons can be rescued through the modulation of microglia and astrocytes by rTMS. This modulation plays a key role in preserving the synaptic ultrastructure and inhibiting neuronal apoptosis. Among microglia, we observed that rTMS inhibited the levels of proinflammatory factors (CD16, IL-6 and TNF-α) and promoted the levels of anti-inflammatory factors (CD206, IL-10 and TNF-β). rTMS also reduced the levels of pyroptosis within microglia and pyroptosis-related proteins (NLRP3, Caspase-1, GSDMD, IL-1β and IL-18). Moreover, rTMS downregulated P75NTR expression and up-regulated IL33 expression in astrocytes. These findings suggest that regulation of microglia and astrocytes is the mechanism through which rTMS attenuates neuronal inflammatory damage after moderate TBI.
Collapse
Affiliation(s)
- FangFang Qian
- Department of Rehabilitation Medicine, Guangdong Province, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Avenue, Guangzhou, 510515, China
| | - RenHong He
- Department of Rehabilitation Medicine, Guangdong Province, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Avenue, Guangzhou, 510515, China
| | - XiaoHui Du
- Department of Rehabilitation Medicine, Guangdong Province, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Avenue, Guangzhou, 510515, China
| | - Yi Wei
- Department of Rehabilitation Medicine, Guangdong Province, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Avenue, Guangzhou, 510515, China
| | - Zhou Zhou
- Department of Rehabilitation Medicine, Guangdong Province, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Avenue, Guangzhou, 510515, China
| | - JianZhong Fan
- Department of Rehabilitation Medicine, Guangdong Province, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Avenue, Guangzhou, 510515, China.
| | - YouHua He
- Department of Comprehensive Medical Treatment Ward, Guangdong Province, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Avenue, Guangzhou, 510515, China.
| |
Collapse
|
11
|
Wang X, Li Y, Li R, Yuan L, Hua Y, Cai Y, Liu X. Low-frequency RTMS attenuates social impairment in the VPA-induced mouse model. Behav Brain Res 2024; 472:115156. [PMID: 39032867 DOI: 10.1016/j.bbr.2024.115156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interactions and repetitive behaviors. Despite its prevalence, effective treatments remain elusive. Recent studies have highlighted the importance of the balance between GABAergic and glutamatergic neuronal synaptic functions in ASD development. Repetitive transcranial magnetic stimulation (RTMS) is a painless and effective treatment allowed for use in depression and obsessive-compulsive disorder. However, its efficacy in treating autism is still under investigation. Low-frequency RTMS (LF-RTMS), which shows promise in reducing autism-like behaviors, is considered to regulate synaptic function. OBJECTIVE We observed and recorded the behaviors of mice to assess the impact of RTMS on their social interactions and repetitive activities. Subsequently, we examined GABAergic and glutamatergic neuronal markers along with synaptic marker proteins to understand the underlying changes associated with these behaviors. METHODS To evaluate behaviors associated with autism spectrum disorder (ASD), several behavioral tests were conducted, focusing on sociability, repetitive behaviors, locomotion, anxiety, and depression. Additionally, Western blot and immunofluorescence staining were employed to investigate the activity of GABAergic and glutamatergic neurons in the hippocampus, aiming to understand the synaptic mechanisms underlying these behaviors. RESULTS LF-RTMS treatment effectively relieved the social disability and normalized synaptic function in the hippocampus of ASD mice model induced by valproate (VPA). Importantly, this treatment did not lead to any adverse effects on repetitive behavior, locomotion, anxiety, or depression. CONCLUSION LF-RTMS attenuated social disability without affecting repetitive behavior, locomotion, anxiety, or depression. Changes in the expression of GABAergic and glutamatergic neuronal synaptic proteins in the hippocampus were also observed.
Collapse
Affiliation(s)
- Xinyi Wang
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210000, China
| | - Yanna Li
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210000, China
| | - Rui Li
- Department of Neurology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Linying Yuan
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210000, China
| | - Yanfan Hua
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210000, China
| | - Yulong Cai
- Department of Neurology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Xinfeng Liu
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210000, China.
| |
Collapse
|
12
|
Pecsok MK, Mordy A, Cristancho MA, Oathes D, Roalf DR. The Glutamatergic Effects of Clinical Repetitive Transcranial Magnetic Stimulation in Depressed Populations: A Preliminary Meta-Analysis of Proton Magnetic Resonance Spectroscopy Studies. Psychopathology 2024; 57:1-16. [PMID: 39004073 PMCID: PMC11724939 DOI: 10.1159/000538690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/25/2024] [Indexed: 07/16/2024]
Abstract
INTRODUCTION Repetitive transcranial magnetic stimulation (rTMS) alleviates symptoms of major depressive disorder, but its neurobiological mechanisms remain to be fully understood. Growing evidence from proton magnetic resonance spectroscopy (1HMRS) studies suggests that rTMS alters excitatory and inhibitory neurometabolites. This preliminary meta-analysis aims to quantify current trends in the literature and identify future directions for the field. METHODS Ten eligible studies that quantified Glutamate (Glu), Glu+Glutamine (Glx), or GABA before and after an rTMS intervention in depressed samples were sourced from PubMed, MEDLINE, PsychInfo, Google Scholar, and primary literature following PRISMA guidelines. Data were pooled using a random-effects model, Cohen's d effect sizes were calculated, and moderators, such as neurometabolite and 1HMRS sequence, were assessed. It was hypothesized that rTMS would increase cortical neurometabolites. RESULTS Within-subjects data from 224 cases encompassing 31 neurometabolite effects (k) were analyzed. Active rTMS in clinical responders (n = 128; k = 22) nominally increased glutamatergic neurometabolites (d = 0.15 [95% CI: -0.01, 0.30], p = 0.06). No change was found in clinical nonresponders (p = 0.8) or sham rTMS participants (p = 0.4). A significant increase was identified in Glx (p = 0.01), but not Glu (p = 0.6). Importantly, effect size across conditions were associated with the number of rTMS pulses patients received (p = 0.05), suggesting dose dependence. CONCLUSIONS Clinical rTMS is associated with a nominal, dose-dependent increase in glutamatergic neurometabolites, suggesting rTMS may induce Glu-dependent neuroplasticity and upregulate neurometabolism. More, larger scale studies adhering to established acquisition and reporting standards are needed to further elucidate the neurometabolic mechanisms of rTMS.
Collapse
Affiliation(s)
- Maggie K Pecsok
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA,
| | - Arianna Mordy
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mario A Cristancho
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Desmond Oathes
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David R Roalf
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Hananeia N, Ebner C, Galanis C, Cuntz H, Opitz A, Vlachos A, Jedlicka P. Multi-scale modelling of location- and frequency-dependent synaptic plasticity induced by transcranial magnetic stimulation in the dendrites of pyramidal neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601851. [PMID: 39005474 PMCID: PMC11244966 DOI: 10.1101/2024.07.03.601851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background Repetitive transcranial magnetic stimulation (rTMS) induces long-term changes of synapses, but the mechanisms behind these modifications are not fully understood. Although there has been progress in the development of multi-scale modeling tools, no comprehensive module for simulating rTMS-induced synaptic plasticity in biophysically realistic neurons exists.. Objective We developed a modelling framework that allows the replication and detailed prediction of long-term changes of excitatory synapses in neurons stimulated by rTMS. Methods We implemented a voltage-dependent plasticity model that has been previously established for simulating frequency-, time-, and compartment-dependent spatio-temporal changes of excitatory synapses in neuronal dendrites. The plasticity model can be incorporated into biophysical neuronal models and coupled to electrical field simulations. Results We show that the plasticity modelling framework replicates long-term potentiation (LTP)-like plasticity in hippocampal CA1 pyramidal cells evoked by 10-Hz repetitive magnetic stimulation (rMS). This plasticity was strongly distance dependent and concentrated at the proximal synapses of the neuron. We predicted a decrease in the plasticity amplitude for 5 Hz and 1 Hz protocols with decreasing frequency. Finally, we successfully modelled plasticity in distal synapses upon local electrical theta-burst stimulation (TBS) and predicted proximal and distal plasticity for rMS TBS. Notably, the rMS TBS-evoked synaptic plasticity exhibited robust facilitation by dendritic spikes and low sensitivity to inhibitory suppression. Conclusion The plasticity modelling framework enables precise simulations of LTP-like cellular effects with high spatio-temporal resolution, enhancing the efficiency of parameter screening and the development of plasticity-inducing rTMS protocols.
Collapse
Affiliation(s)
- Nicholas Hananeia
- Computer-Based Modelling in the field of 3R Animal Protection, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
- Translational Neuroscience Network Giessen, Germany
| | - Christian Ebner
- Computer-Based Modelling in the field of 3R Animal Protection, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
- Translational Neuroscience Network Giessen, Germany
- Charité · NeuroCure (NCRC), Charité Universitätsmedizin Berlin
| | - Christos Galanis
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg
- Bernstein Center Freiburg, University of Freiburg
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hermann Cuntz
- Computer-Based Modelling in the field of 3R Animal Protection, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
- Translational Neuroscience Network Giessen, Germany
- Ernst Strüngmann Institute (ESI) for Neuroscience in cooperation with the Max Planck Society, Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| | - Alexander Opitz
- Dept of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg
- Bernstein Center Freiburg, University of Freiburg
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Jedlicka
- Computer-Based Modelling in the field of 3R Animal Protection, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
- Translational Neuroscience Network Giessen, Germany
| |
Collapse
|
14
|
Li S, Xiao Z. Recent Research Progress on the Use of Transcranial Magnetic Stimulation in the Treatment of Vascular Cognitive Impairment. Neuropsychiatr Dis Treat 2024; 20:1235-1246. [PMID: 38883416 PMCID: PMC11179638 DOI: 10.2147/ndt.s467357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/01/2024] [Indexed: 06/18/2024] Open
Abstract
Vascular Cognitive Impairment (VCI) is a condition where problems with brain blood vessels lead to a decline in cognitive abilities, commonly affecting the elderly and placing a significant burden on both patients and their families. Compared to medication and surgery, Transcranial Magnetic Stimulation (TMS) is a non-invasive treatment option with fewer risks and side effects, making it particularly suitable for elderly patients. TMS not only assesses the excitability and plasticity of the cerebral cortex, but its effectiveness in treating Vascular Cognitive Impairment (VCI) and its subtypes has also been validated in numerous clinical trials worldwide. However, there is still a lack of review on the physiological mechanisms of TMS treatment for VCI and its specific clinical application parameters. Therefore, this article initially provided a brief overview of the risk factors, pathological mechanisms, and classification of VCI. Next, the article explained the potential physiological mechanisms of TMS in treating VCI, particularly its role in promoting synaptic plasticity, regulating neurotransmitter balance, and improving the function of the default mode network. Additionally, The article also summarizes the application of rTMS in treating VCI and its subtypes, VCI-related sleep disorders, and the use of TMS in follow-up studies of VCI patients, providing empirical evidence for the clinical application of TMS and rTMS technologies.
Collapse
Affiliation(s)
- Sijing Li
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
- Clinical Research Center for Immune‑Related Encephalopathy of Hunan Province (The First Affiliated Hospital), Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China
| | - Zijian Xiao
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
- Clinical Research Center for Immune‑Related Encephalopathy of Hunan Province (The First Affiliated Hospital), Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| |
Collapse
|
15
|
Yang J, Guo H, Cai A, Zheng J, Liu J, Xiao Y, Ren S, Sun D, Duan J, Zhao T, Tang J, Zhang X, Zhu R, Wang J, Wang F. Aberrant Hippocampal Development in Early-onset Mental Disorders and Promising Interventions: Evidence from a Translational Study. Neurosci Bull 2024; 40:683-694. [PMID: 38141109 PMCID: PMC11178726 DOI: 10.1007/s12264-023-01162-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/01/2023] [Indexed: 12/24/2023] Open
Abstract
Early-onset mental disorders are associated with disrupted neurodevelopmental processes during adolescence. The methylazoxymethanol acetate (MAM) animal model, in which disruption in neurodevelopmental processes is induced, mimics the abnormal neurodevelopment associated with early-onset mental disorders from an etiological perspective. We conducted longitudinal structural magnetic resonance imaging (MRI) scans during childhood, adolescence, and adulthood in MAM rats to identify specific brain regions and critical windows for intervention. Then, the effect of repetitive transcranial magnetic stimulation (rTMS) intervention on the target brain region during the critical window was investigated. In addition, the efficacy of this intervention paradigm was tested in a group of adolescent patients with early-onset mental disorders (diagnosed with major depressive disorder or bipolar disorder) to evaluate its clinical translational potential. The results demonstrated that, compared to the control group, the MAM rats exhibited significantly lower striatal volume from childhood to adulthood (all P <0.001). In contrast, the volume of the hippocampus did not show significant differences during childhood (P >0.05) but was significantly lower than the control group from adolescence to adulthood (both P <0.001). Subsequently, rTMS was applied to the occipital cortex, which is anatomically connected to the hippocampus, in the MAM models during adolescence. The MAM-rTMS group showed a significant increase in hippocampal volume compared to the MAM-sham group (P <0.01), while the volume of the striatum remained unchanged (P >0.05). In the clinical trial, adolescents with early-onset mental disorders showed a significant increase in hippocampal volume after rTMS treatment compared to baseline (P <0.01), and these volumetric changes were associated with improvement in depressive symptoms (r = - 0.524, P = 0.018). These findings highlight the potential of targeting aberrant hippocampal development during adolescence as a viable intervention for early-onset mental disorders with neurodevelopmental etiology as well as the promise of rTMS as a therapeutic approach for mitigating aberrant neurodevelopmental processes and alleviating clinical symptoms.
Collapse
Affiliation(s)
- Jingyu Yang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Huiling Guo
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
- School of Biomedical Engineering and Informatics, Nanjing, Medical University, Nanjing, 211166, China
| | - Aoling Cai
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
- School of Biomedical Engineering and Informatics, Nanjing, Medical University, Nanjing, 211166, China
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213004, China
| | - Junjie Zheng
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Juan Liu
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Yao Xiao
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Sihua Ren
- Department of Radiology, First Hospital of China Medical University, Shenyang, 110002, China
| | - Dandan Sun
- Department of Cardiac Function, The People's Hospital of China Medical University and the People's Hospital of Liaoning Province, Shenyang, 110067, China
| | - Jia Duan
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Tongtong Zhao
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Jingwei Tang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Xizhe Zhang
- School of Biomedical Engineering and Informatics, Nanjing, Medical University, Nanjing, 211166, China
| | - Rongxin Zhu
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China.
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430064, China.
- Institute of Neuroscience and Brain Diseases; Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, China.
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China.
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
16
|
Zhang Z, Ding C, Fu R, Wang J, Zhao J, Zhu H. Low-frequency rTMS modulated the excitability and high-frequency firing in hippocampal neurons of the Alzheimer's disease mouse model. Brain Res 2024; 1831:148822. [PMID: 38408558 DOI: 10.1016/j.brainres.2024.148822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/05/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
Repetitive transcranial magnetic stimulation (rTMS), a non-invasive brain stimulation technique, holds potential for applications in the treatment of Alzheimer's disease (AD). This study aims to compare the therapeutic effects of rTMS at different frequencies on Alzheimer's disease and explore the alterations in neuronal electrophysiological properties throughout this process. APP/PS1 AD mice were subjected to two rTMS treatments at 0.5 Hz and 20 Hz, followed by assessments of therapeutic outcomes through the Novel Object Recognition (NOR) and Morris Water Maze (MWM) tests. Following this, whole-cell patch-clamp techniques were used to record action potential, voltage-gated sodium channel currents, and voltage-gated potassium channel currents in dentate gyrus granule neurons. The results show that AD mice exhibit significant cognitive decline compared to normal mice, along with a pronounced reduction in neuronal excitability and ion channel activity. Both frequencies of rTMS treatment partially reversed these changes, demonstrating similar therapeutic efficacy. Furthermore, the investigation indicates that low-frequency magnetic stimulation inhibited the concentrated firing of early action potentials in AD.
Collapse
Affiliation(s)
- Ze Zhang
- School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China; Hebei Key Laboratory of Bioelectromagnetics and Neural Engineering, Tianjin 300130, China.
| | - Chong Ding
- School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China; Hebei Key Laboratory of Bioelectromagnetics and Neural Engineering, Tianjin 300130, China; State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Tianjin 300130, China.
| | - Rui Fu
- School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China; Hebei Key Laboratory of Bioelectromagnetics and Neural Engineering, Tianjin 300130, China.
| | - Jiale Wang
- School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China; Hebei Key Laboratory of Bioelectromagnetics and Neural Engineering, Tianjin 300130, China.
| | - Junqiao Zhao
- School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China; Hebei Key Laboratory of Bioelectromagnetics and Neural Engineering, Tianjin 300130, China.
| | - Haijun Zhu
- Key Laboratory of Digital Medical Engineering of Hebei Province, College of Electronic & Information Engineering, Hebei University, Baoding, Hebei 071002, China.
| |
Collapse
|
17
|
Qin T, Guo L, Wang X, Zhou G, Liu L, Zhang Z, Ding G. Repetitive transcranial magnetic stimulation ameliorates cognitive deficits in mice with radiation-induced brain injury by attenuating microglial pyroptosis and promoting neurogenesis via BDNF pathway. Cell Commun Signal 2024; 22:216. [PMID: 38570868 PMCID: PMC10988892 DOI: 10.1186/s12964-024-01591-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/23/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Radiation-induced brain injury (RIBI) is a common and severe complication during radiotherapy for head and neck tumor. Repetitive transcranial magnetic stimulation (rTMS) is a novel and non-invasive method of brain stimulation, which has been applied in various neurological diseases. rTMS has been proved to be effective for treatment of RIBI, while its mechanisms have not been well understood. METHODS RIBI mouse model was established by cranial irradiation, K252a was daily injected intraperitoneally to block BDNF pathway. Immunofluorescence staining, immunohistochemistry and western blotting were performed to examine the microglial pyroptosis and hippocampal neurogenesis. Behavioral tests were used to assess the cognitive function and emotionality of mice. Golgi staining was applied to observe the structure of dendritic spine in hippocampus. RESULTS rTMS significantly promoted hippocampal neurogenesis and mitigated neuroinflammation, with ameliorating pyroptosis in microglia, as well as downregulation of the protein expression level of NLRP3 inflammasome and key pyroptosis factor Gasdermin D (GSDMD). BDNF signaling pathway might be involved in it. After blocking BDNF pathway by K252a, a specific BDNF pathway inhibitor, the neuroprotective effect of rTMS was markedly reversed. Evaluated by behavioral tests, the cognitive dysfunction and anxiety-like behavior were found aggravated with the comparison of mice in rTMS intervention group. Moreover, the level of hippocampal neurogenesis was found to be attenuated, the pyroptosis of microglia as well as the levels of GSDMD, NLRP3 inflammasome and IL-1β were upregulated. CONCLUSION Our study indicated that rTMS notably ameliorated RIBI-induced cognitive disorders, by mitigating pyroptosis in microglia and promoting hippocampal neurogenesis via mediating BDNF pathway.
Collapse
Affiliation(s)
- Tongzhou Qin
- Department of radiation protection medicine, School of Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Ling Guo
- Department of radiation protection medicine, School of Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Xing Wang
- Department of radiation protection medicine, School of Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Guiqiang Zhou
- Department of radiation protection medicine, School of Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
- Department of occupational & environmental health, School of Public Health, Weifang Medical University, Weifang, 261021, China
| | - Liyuan Liu
- Department of radiation protection medicine, School of Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Zhaowen Zhang
- Department of radiation protection medicine, School of Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Guirong Ding
- Department of radiation protection medicine, School of Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, China.
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China.
| |
Collapse
|
18
|
Manippa V, Palmisano A, Nitsche MA, Filardi M, Vilella D, Logroscino G, Rivolta D. Cognitive and Neuropathophysiological Outcomes of Gamma-tACS in Dementia: A Systematic Review. Neuropsychol Rev 2024; 34:338-361. [PMID: 36877327 PMCID: PMC10920470 DOI: 10.1007/s11065-023-09589-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 01/23/2023] [Indexed: 03/07/2023]
Abstract
Despite the numerous pharmacological interventions targeting dementia, no disease-modifying therapy is available, and the prognosis remains unfavorable. A promising perspective involves tackling high-frequency gamma-band (> 30 Hz) oscillations involved in hippocampal-mediated memory processes, which are impaired from the early stages of typical Alzheimer's Disease (AD). Particularly, the positive effects of gamma-band entrainment on mouse models of AD have prompted researchers to translate such findings into humans using transcranial alternating current stimulation (tACS), a methodology that allows the entrainment of endogenous cortical oscillations in a frequency-specific manner. This systematic review examines the state-of-the-art on the use of gamma-tACS in Mild Cognitive Impairment (MCI) and dementia patients to shed light on its feasibility, therapeutic impact, and clinical effectiveness. A systematic search from two databases yielded 499 records resulting in 10 included studies and a total of 273 patients. The results were arranged in single-session and multi-session protocols. Most of the studies demonstrated cognitive improvement following gamma-tACS, and some studies showed promising effects of gamma-tACS on neuropathological markers, suggesting the feasibility of gamma-tACS in these patients anyhow far from the strong evidence available for mouse models. Nonetheless, the small number of studies and their wide variability in terms of aims, parameters, and measures, make it difficult to draw firm conclusions. We discuss results and methodological limitations of the studies, proposing possible solutions and future avenues to improve research on the effects of gamma-tACS on dementia.
Collapse
Affiliation(s)
- Valerio Manippa
- Department of Education, Psychology and Communication, University of Bari "Aldo Moro", Bari, Italy.
| | - Annalisa Palmisano
- Department of Education, Psychology and Communication, University of Bari "Aldo Moro", Bari, Italy
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Marco Filardi
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro" at Pia Fondazione "Cardinale G. Panico", Tricase, Lecce, Italy
- Department of Basic Medicine, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Davide Vilella
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro" at Pia Fondazione "Cardinale G. Panico", Tricase, Lecce, Italy
| | - Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro" at Pia Fondazione "Cardinale G. Panico", Tricase, Lecce, Italy
- Department of Basic Medicine, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Davide Rivolta
- Department of Education, Psychology and Communication, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
19
|
Zhang Y, Zhang Y, Chen Z, Ren P, Fu Y. Continuous high-frequency repetitive transcranial magnetic stimulation at extremely low intensity affects exploratory behavior and spatial cognition in mice. Behav Brain Res 2024; 458:114739. [PMID: 37926334 DOI: 10.1016/j.bbr.2023.114739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
High-frequency repetitive transcranial magnetic stimulation (HF-rTMS) has been shown to be effective for cognitive intervention. However, whether HF-rTMS with extremely low intensity could influence cognitive functions is still under investigation. The present study systematically investigated the effects of continuous 40 Hz and 10 Hz rTMS on cognition in young adult mice at extremely low intensity (10 mT and 1 mT) for 11 days (30 min/day). Cognitive functions were assessed using diverse behavioral tasks, including the open field, Y-maze, and Barnes maze paradigms. We found that 40 Hz rTMS significantly impaired exploratory behavior and spatial memory in both 10 mT and 1 mT conditions. In addition, 40 Hz rTMS induced remarkably different effects on exploratory behavior between 10 mT and 1mT, compared to 10 Hz stimulation. Our results indicate that extremely low intensity rTMS can significantly alter cognitive performance depending on intensity and frequency, shedding light on the understanding of the mechanism of rTMS effects.
Collapse
Affiliation(s)
- Yunfan Zhang
- Medical School, Kunming University of Science & Technology, Kunming, Yunnan 650500, China
| | - Yunbin Zhang
- Medical School, Kunming University of Science & Technology, Kunming, Yunnan 650500, China
| | - Zhuangfei Chen
- Medical School, Kunming University of Science & Technology, Kunming, Yunnan 650500, China
| | - Ping Ren
- Department of Geriatric Psychiatry, Shenzhen Mental Health Center / Shenzhen Kangning Hospital, Shenzhen, Guangdong 518020, China.
| | - Yu Fu
- Medical School, Kunming University of Science & Technology, Kunming, Yunnan 650500, China.
| |
Collapse
|
20
|
Yu CL, Kao YC, Thompson T, Brunoni AR, Hsu CW, Carvalho AF, Chu CS, Tseng PT, Tu YK, Yang FC, Su KP, Cheng SL, Hsu TW, Liang CS. The association of total pulses with the efficacy of repetitive transcranial magnetic stimulation for treatment-resistant major depression: A dose-response meta-analysis. Asian J Psychiatr 2024; 92:103891. [PMID: 38183740 DOI: 10.1016/j.ajp.2023.103891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/26/2023] [Accepted: 12/20/2023] [Indexed: 01/08/2024]
Abstract
AIM This study aimed to examine dose-effects of total pulses on improvement of depressive symptoms in patients with treatment-resistant depression (TRD) receiving repetitive transcranial magnetic stimulation (rTMS) over the left dorsal lateral prefrontal cortex (DLPFC). MATERIALS AND METHODS The MEDLINE, Cochrane Central Register of Controlled Trials (CENTRAL), EMBASE, PsycINFO, and ClinicalTrial.gov databases were systematically searched. We included randomized, double-blind, placebo-controlled trials (RCT) that used rTMS over left DLPFC in patients with TRD. Excluded studies were non-TRD, non-RCTs, or combined other brain stimulation interventions. The outcome of interest was the difference between rTMS arms and sham controls in improvement of depressive symptoms in a dose-response manner. A random-effects meta-analysis and dose-response meta-analysis(DRMA) was used to examine antidepressant efficacy of rTMS and association with total pulses. RESULTS We found that rTMS over left DLPFC is superior to sham controls (reported as standardized mean difference[SMD] with 95% confidence interval: 0.77; 0.56-0.98). The best-fitting model of DRMA was bell-shaped (estimated using restricted cubic spline model; R2 =0.42), indicating that higher doses (>26,660 total pulses) were not associated with increased improvement of depressive symptoms. Stimulation frequency(R2 =0.53) and age(R2 =0.51) were significant moderators for the dose-response curve. Furthermore, 15-20 Hz rTMS was superior to 10 Hz rTMS (0.61, 0.15-1.10) when combining all doses. CONCLUSIONS Our findings suggest higher doses(total pulses) of rTMS were not always associated with increased improvement of depressive symptoms in patients with TRD, and that the dose-response relationship was moderated by stimulation frequency and age. These associations emphasize the importance of determining dosing parameters to achieve maximum efficacy.
Collapse
Affiliation(s)
- Chia-Ling Yu
- Department of Pharmacy, Chang Gung Memorial Hospital Linkou, Taipei, Taiwan
| | - Yu-Chen Kao
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Centre, Taipei, Taiwan; Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, Taipei, Taiwan
| | - Trevor Thompson
- Centre for Chronic Illness and Ageing, University of Greenwich, London, UK
| | - Andre R Brunoni
- Service of Interdisciplinary Neuromodulation, National Institute of Biomarkers in Psychiatry, Laboratory of Neurosciences (LIM-27), Departamento de Instituto de Psiquiatria, Faculdade de Medicina da University of Sao Paulo, Sao Paulo, Brazil; Departamento de Ciências Médicas, Faculdade de Medicina da University of São Paulo, São Paulo, Brazil
| | - Chih-Wei Hsu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Taiwan
| | - Andre F Carvalho
- IMPACT (Innovation in Mental and Physical Health and Clinical Treatment) Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
| | - Che-Sheng Chu
- Center for Geriatric and Gerontology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Non-invasive Neuromodulation Consortium for Mental Disorders, Society of Psychophysiology, Taipei, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ping-Tao Tseng
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan; Prospect Clinic for Otorhinolaryngology & Neurology, Kaohsiung, Taiwan; Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yu-Kang Tu
- Institute of Epidemiology & Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Fu-Chi Yang
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Centre, Taipei, Taiwan
| | - Kuan-Pin Su
- College of Medicine, China Medical University, Taichung, Taiwan; Mind-Body Interface Laboratory (MBI-Lab), China Medical University and Hospital, Taichung 404, Taiwan; An-Nan Hospital, China Medical University, Tainan 709, Taiwan
| | - Shu-Li Cheng
- Department of Nursing, Mackay Medical College, Taipei, Taiwan.
| | - Tien-Wei Hsu
- Department of Psychiatry, E-DA Dachang Hospital, I-Shou University, Kaohsiung, Taiwan; Department of Psychiatry, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan.
| | - Chih-Sung Liang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Centre, Taipei, Taiwan; Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, Taipei, Taiwan
| |
Collapse
|
21
|
Dufor T, Lohof AM, Sherrard RM. Magnetic Stimulation as a Therapeutic Approach for Brain Modulation and Repair: Underlying Molecular and Cellular Mechanisms. Int J Mol Sci 2023; 24:16456. [PMID: 38003643 PMCID: PMC10671429 DOI: 10.3390/ijms242216456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Neurological and psychiatric diseases generally have no cure, so innovative non-pharmacological treatments, including non-invasive brain stimulation, are interesting therapeutic tools as they aim to trigger intrinsic neural repair mechanisms. A common brain stimulation technique involves the application of pulsed magnetic fields to affected brain regions. However, investigations of magnetic brain stimulation are complicated by the use of many different stimulation parameters. Magnetic brain stimulation is usually divided into two poorly connected approaches: (1) clinically used high-intensity stimulation (0.5-2 Tesla, T) and (2) experimental or epidemiologically studied low-intensity stimulation (μT-mT). Human tests of both approaches are reported to have beneficial outcomes, but the underlying biology is unclear, and thus optimal stimulation parameters remain ill defined. Here, we aim to bring together what is known about the biology of magnetic brain stimulation from human, animal, and in vitro studies. We identify the common effects of different stimulation protocols; show how different types of pulsed magnetic fields interact with nervous tissue; and describe cellular mechanisms underlying their effects-from intracellular signalling cascades, through synaptic plasticity and the modulation of network activity, to long-term structural changes in neural circuits. Recent advances in magneto-biology show clear mechanisms that may explain low-intensity stimulation effects in the brain. With its large breadth of stimulation parameters, not available to high-intensity stimulation, low-intensity focal magnetic stimulation becomes a potentially powerful treatment tool for human application.
Collapse
Affiliation(s)
- Tom Dufor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Ann M. Lohof
- Sorbonne Université and CNRS, UMR8256 Biological Adaptation and Ageing, 75005 Paris, France;
| | - Rachel M. Sherrard
- Sorbonne Université and CNRS, UMR8256 Biological Adaptation and Ageing, 75005 Paris, France;
| |
Collapse
|
22
|
Anil S, Lu H, Rotter S, Vlachos A. Repetitive transcranial magnetic stimulation (rTMS) triggers dose-dependent homeostatic rewiring in recurrent neuronal networks. PLoS Comput Biol 2023; 19:e1011027. [PMID: 37956202 PMCID: PMC10681319 DOI: 10.1371/journal.pcbi.1011027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 11/27/2023] [Accepted: 10/11/2023] [Indexed: 11/15/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique used to induce neuronal plasticity in healthy individuals and patients. Designing effective and reproducible rTMS protocols poses a major challenge in the field as the underlying biomechanisms of long-term effects remain elusive. Current clinical protocol designs are often based on studies reporting rTMS-induced long-term potentiation or depression of synaptic transmission. Herein, we employed computational modeling to explore the effects of rTMS on long-term structural plasticity and changes in network connectivity. We simulated a recurrent neuronal network with homeostatic structural plasticity among excitatory neurons, and demonstrated that this mechanism was sensitive to specific parameters of the stimulation protocol (i.e., frequency, intensity, and duration of stimulation). Particularly, the feedback-inhibition initiated by network stimulation influenced the net stimulation outcome and hindered the rTMS-induced structural reorganization, highlighting the role of inhibitory networks. These findings suggest a novel mechanism for the lasting effects of rTMS, i.e., rTMS-induced homeostatic structural plasticity, and highlight the importance of network inhibition in careful protocol design, standardization, and optimization of stimulation.
Collapse
Affiliation(s)
- Swathi Anil
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Han Lu
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - Stefan Rotter
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
23
|
McNerney MW, Kraybill EP, Narayanan S, Mojabi FS, Venkataramanan V, Heath A. Memory-related hippocampal brain-derived neurotrophic factor activation pathways from repetitive transcranial magnetic stimulation in the 3xTg-AD mouse line. Exp Gerontol 2023; 183:112323. [PMID: 39351497 PMCID: PMC11441629 DOI: 10.1016/j.exger.2023.112323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Alzheimer's disease is associated with a loss of plasticity and cognitive functioning. Previous research has shown that repetitive transcranial magnetic stimulation (rTMS) boosts cortical neurotrophic factors, potentially addressing this loss. The current study aimed to expand these findings by measuring brain-derived neurotrophic factor (BDNF), its downstream hippocampal signaling molecules, and behavioral effects of rTMS on the 3xTg-AD mouse line. 3xTg-AD (n = 24) and B6 wild-type controls (n = 26), aged 12 months, were given 14 days of consecutive rTMS at 10 Hz for 10 min. Following treatment, mice underwent a battery of behavioral tests and biochemical analysis of BDNF and its downstream cascades were evaluated via Western blot and ELISA. Results showed that brain stimulation did improve performance on the Object Place Task and increased hippocampal TrkB, ERK, and PLCγ in 3xTg-AD mice with minimal effects on wild-type mice. There was no significant difference in the levels of AKT and Truncated TrkB (TrkB.T1) between treatment and sham. Thus, rTMS has the potential to provide an efficacious non-invasive therapy for the treatment of Alzheimer's disease through activation of neurotrophic factor signaling.
Collapse
Affiliation(s)
- M Windy McNerney
- Mental Illness Research Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Eric P Kraybill
- Mental Illness Research Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Sindhu Narayanan
- Medical Anthropology and Global Health, University of Washington, Seattle, WA, USA
| | - Fatemeh S Mojabi
- Mental Illness Research Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Vaibhavi Venkataramanan
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, USA
| | - Alesha Heath
- Mental Illness Research Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
24
|
Kim HJ, Kim SY, Kim GE, Jin HJ. Association between genetic polymorphisms of synaptophysin (SYP) gene and attention deficit hyperactivity disorder in Korean subjects. Genes Genomics 2023; 45:1097-1105. [PMID: 37133725 DOI: 10.1007/s13258-023-01393-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/19/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Attention deficit hyperactivity disorder (ADHD) is a common childhood neurodevelopmental disorder, and the prevalence of ADHD among Korean children has attained about 8.5%. Various genetic factors can contribute to the etiology of the disease. Synaptophysin (SYP) regulates neurotransmitter release and synaptic plasticity. According to previous studies, several genetic polymorphisms on SYP were risk factors for ADHD. OBJECTIVE We investigated the effect of the SYP gene polymorphisms (rs2293945 and rs3817678) on ADHD in Korean children. METHODS In this study, we examined the case-control study in 150 ADHD cases and 322 controls. The genotyping of SYP gene polymorphisms was performed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). RESULTS Significant associations in the genotype and genetic models of SYP rs2293945 polymorphism between girls with ADHD and control girls were found. The girls with ADHD having the C/T genotype were significantly associated with ADHD. In the dominant model of rs3817678, C/T + T/T genotypes were significantly associated with ADHD. The haplotype analyses showed significant associations from haplotypes of rs2293945 T-rs3817678 G and rs2293945 C-rs3817678 A. CONCLUSION Our results imply that the SYP rs2293945 C/T polymorphism in female participants may provide a possible effect on the genetic etiology of ADHD.
Collapse
Affiliation(s)
- Hyung Jun Kim
- Department of Biological Science, College of Science & Technology, Dankook University, 31116, Cheonan, South Korea
| | - Seong Yong Kim
- Department of Biological Science, College of Science & Technology, Dankook University, 31116, Cheonan, South Korea
| | - Ga Eun Kim
- Department of Biological Science, College of Science & Technology, Dankook University, 31116, Cheonan, South Korea
| | - Han Jun Jin
- Department of Biological Science, College of Science & Technology, Dankook University, 31116, Cheonan, South Korea.
| |
Collapse
|
25
|
Meneses-San Juan D, Lamas M, Ramírez-Rodríguez GB. Repetitive Transcranial Magnetic Stimulation Reduces Depressive-like Behaviors, Modifies Dendritic Plasticity, and Generates Global Epigenetic Changes in the Frontal Cortex and Hippocampus in a Rodent Model of Chronic Stress. Cells 2023; 12:2062. [PMID: 37626872 PMCID: PMC10453847 DOI: 10.3390/cells12162062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Depression is the most common affective disorder worldwide, accounting for 4.4% of the global population, a figure that could increase in the coming decades. In depression, there exists a reduction in the availability of dendritic spines in the frontal cortex (FC) and hippocampus (Hp). In addition, histone modification and DNA methylation are also dysregulated epigenetic mechanisms in depression. Repetitive transcranial magnetic stimulation (rTMS) is a technique that is used to treat depression. However, the epigenetic mechanisms of its therapeutic effect are still not known. Therefore, in this study, we evaluated the antidepressant effect of 5 Hz rTMS and examined its effect on dendritic remodeling, immunoreactivity of synapse proteins, histone modification, and DNA methylation in the FC and Hp in a model of chronic mild stress. Our data indicated that stress generated depressive-like behaviors and that rTMS reverses this effect, romotes the formation of dendritic spines, and favors the presynaptic connection in the FC and DG (dentate gyrus), in addition to increasing histone H3 trimethylation and DNA methylation. These results suggest that the antidepressant effect of rTMS is associated with dendritic remodeling, which is probably regulated by epigenetic mechanisms. These data are a first approximation of the impact of rTMS at the epigenetic level in the context of depression. Therefore, it is necessary to analyze in future studies as to which genes are regulated by these mechanisms, and how they are associated with the neuroplastic modifications promoted by rTMS.
Collapse
Affiliation(s)
- David Meneses-San Juan
- National Institute of Psychiatry “Ramón de la Fuente Muñiz”, Mexico City 14370, Mexico;
- Center of Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico;
| | - Mónica Lamas
- Center of Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico;
| | | |
Collapse
|
26
|
Zhou L, Jin Y, Wu D, Cun Y, Zhang C, Peng Y, Chen N, Yang X, Zhang S, Ning R, Kuang P, Wang Z, Zhang P. Current evidence, clinical applications, and future directions of transcranial magnetic stimulation as a treatment for ischemic stroke. Front Neurosci 2023; 17:1177283. [PMID: 37534033 PMCID: PMC10390744 DOI: 10.3389/fnins.2023.1177283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive brain neurostimulation technique that can be used as one of the adjunctive treatment techniques for neurological recovery after stroke. Animal studies have shown that TMS treatment of rats with middle cerebral artery occlusion (MCAO) model reduced cerebral infarct volume and improved neurological dysfunction in model rats. In addition, clinical case reports have also shown that TMS treatment has positive neuroprotective effects in stroke patients, improving a variety of post-stroke neurological deficits such as motor function, swallowing, cognitive function, speech function, central post-stroke pain, spasticity, and other post-stroke sequelae. However, even though numerous studies have shown a neuroprotective effect of TMS in stroke patients, its possible neuroprotective mechanism is not clear. Therefore, in this review, we describe the potential mechanisms of TMS to improve neurological function in terms of neurogenesis, angiogenesis, anti-inflammation, antioxidant, and anti-apoptosis, and provide insight into the current clinical application of TMS in multiple neurological dysfunctions in stroke. Finally, some of the current challenges faced by TMS are summarized and some suggestions for its future research directions are made.
Collapse
Affiliation(s)
- Li Zhou
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yaju Jin
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Danli Wu
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yongdan Cun
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Chengcai Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yicheng Peng
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Na Chen
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Xichen Yang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Simei Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Rong Ning
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Peng Kuang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Zuhong Wang
- Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Pengyue Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
27
|
Arendash G, Cao C. Transcranial Electromagnetic Wave Treatment: A Fountain of Healthy Longevity? Int J Mol Sci 2023; 24:ijms24119652. [PMID: 37298603 DOI: 10.3390/ijms24119652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Most diseases of older age have as their common denominator a dysfunctional immune system, wherein a low, chronic level of inflammation is present due to an imbalance of pro-inflammatory cytokines over anti-inflammatory cytokines that develops during aging ("inflamm-aging"). A gerotherapeutic that can restore the immune balance to that shared by young/middle-aged adults and many centenarians could reduce the risk of those age-related diseases and increase healthy longevity. In this perspectives paper, we discuss potential longevity interventions that are being evaluated and compare them to a novel gerotherapeutic currently being evaluated in humans-Transcranial Electromagnetic Wave Treatment (TEMT). TEMT is provided non-invasively and safety through a novel bioengineered medical device-the MemorEM-that allows for near complete mobility during in-home treatments. Daily TEMT to mild/moderate Alzheimer's Disease (AD) patients over a 2-month period rebalanced 11 of 12 cytokines in blood back to that of normal aged adults. A very similar TEMT-induced rebalancing of cytokines occurred in the CSF/brain for essentially all seven measurable cytokines. Overall inflammation in both blood and brain was dramatically reduced by TEMT over a 14-27 month period, as measured by C-Reactive Protein. In these same AD patients, a reversal of cognitive impairment was observed at 2 months into treatment, while cognitive decline was stopped over a 2½ year period of TEMT. Since most age-related diseases have the commonality of immune imbalance, it is reasonable to postulate that TEMT could rebalance the immune system in many age-related diseases as it appears to do in AD. We propose that TEMT has the potential to reduce the risk/severity of age-related diseases by rejuvenating the immune system to a younger age, resulting in reduced brain/body inflammation and a substantial increase in healthy longevity.
Collapse
Affiliation(s)
- Gary Arendash
- NeuroEM Therapeutics, Inc., 501 E. Kennedy Blvd., Suite 650, Tampa, FL 33602, USA
| | - Chuanhai Cao
- Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
- MegaNano Biotech, 3802 Spectrum Blvd., Suite 122, Tampa, FL 33612, USA
| |
Collapse
|
28
|
Zeljkovic Jovanovic M, Stanojevic J, Stevanovic I, Stekic A, Bolland SJ, Jasnic N, Ninkovic M, Zaric Kontic M, Ilic TV, Rodger J, Nedeljkovic N, Dragic M. Intermittent Theta Burst Stimulation Improves Motor and Behavioral Dysfunction through Modulation of NMDA Receptor Subunit Composition in Experimental Model of Parkinson's Disease. Cells 2023; 12:1525. [PMID: 37296646 PMCID: PMC10252812 DOI: 10.3390/cells12111525] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 06/12/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder characterized by the progressive degeneration of the dopaminergic system, leading to a variety of motor and nonmotor symptoms. The currently available symptomatic therapy loses efficacy over time, indicating the need for new therapeutic approaches. Repetitive transcranial magnetic stimulation (rTMS) has emerged as one of the potential candidates for PD therapy. Intermittent theta burst stimulation (iTBS), an excitatory protocol of rTMS, has been shown to be beneficial in several animal models of neurodegeneration, including PD. The aim of this study was to investigate the effects of prolonged iTBS on motor performance and behavior and the possible association with changes in the NMDAR subunit composition in the 6-hydroxydopamine (6-OHDA)-induced experimental model of PD. Two-month-old male Wistar rats were divided into four groups: controls, 6-OHDA rats, 6-OHDA + iTBS protocol (two times/day/three weeks) and the sham group. The therapeutic effect of iTBS was evaluated by examining motor coordination, balance, spontaneous forelimb use, exploratory behavior, anxiety-like, depressive/anhedonic-like behavior and short-term memory, histopathological changes and changes at the molecular level. We demonstrated the positive effects of iTBS at both motor and behavioral levels. In addition, the beneficial effects were reflected in reduced degeneration of dopaminergic neurons and a subsequent increase in the level of DA in the caudoputamen. Finally, iTBS altered protein expression and NMDAR subunit composition, suggesting a sustained effect. Applied early in the disease course, the iTBS protocol may be a promising candidate for early-stage PD therapy, affecting motor and nonmotor deficits.
Collapse
Affiliation(s)
- Milica Zeljkovic Jovanovic
- Laboratory for Neurobiology, Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Jelena Stanojevic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia
| | - Ivana Stevanovic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | - Andjela Stekic
- Laboratory for Neurobiology, Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Samuel J. Bolland
- School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia
| | - Nebojsa Jasnic
- Department for Comparative Physiology and Ecophysiology, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Milica Ninkovic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | - Marina Zaric Kontic
- Department of Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Tihomir V. Ilic
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | - Jennifer Rodger
- School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia
| | - Nadezda Nedeljkovic
- Laboratory for Neurobiology, Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Milorad Dragic
- Laboratory for Neurobiology, Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
29
|
Liu Y, Liu X, Sun P, Li J, Nie M, Gong J, He A, Zhao M, Yang C, Wang Z. rTMS treatment for abrogating intracerebral hemorrhage-induced brain parenchymal metabolite clearance dysfunction in male mice by regulating intracranial lymphatic drainage. Brain Behav 2023:e3062. [PMID: 37161559 DOI: 10.1002/brb3.3062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND The discovery of the glymphatic system and meningeal lymphatic vessels challenged the traditional view regarding the lack of a lymphatic system in the central nervous system. It is now known that the intracranial lymphatic system plays an important role in fluid transport, macromolecule uptake, and immune cell trafficking. Studies have also shown that the function of the intracranial lymphatic system is significantly associated with neurological diseases; for example, an impaired intracranial lymphatic system can lead to Tau deposition and an increased lymphocyte count in the brain tissue of mice with subarachnoid hemorrhage. METHODS In this study, we assessed the changes in the intracranial lymphatic system after intracerebral hemorrhage and the regulatory effects of repeated transcranial magnetic stimulation on the glymphatic system and meningeal lymphatic vessels in an intracerebral hemorrhage (ICH) model of male mice. Experimental mice were divided into three groups: Sham, ICH, and ICH + repeated transcranial magnetic stimulation (rTMS). Three days after ICH, mice in the ICH+rTMS group were subjected to rTMS daily for 7 days. Thereafter, the function of the intracranial lymphatic system, clearance of RITC-dextran and FITC-dextran, and neurological functions were evaluated. RESULTS Compared with the Sham group, the ICH group had an impaired glymphatic system. Importantly, rTMS treatment could improve intracranial lymphatic system function as well as behavioral functions and enhance the clearance of parenchymal RITC-dextran and FITC-dextran after ICH. CONCLUSION Our results indicate that rTMS can abrogate ICH-induced brain parenchymal metabolite clearance dysfunction by regulating intracranial lymphatic drainage.
Collapse
Affiliation(s)
- Yuheng Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Xuanhui Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Pengju Sun
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurosurgery, Fuyang People's Hospital, Fuyang, China
| | - Jing Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Meng Nie
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Junjie Gong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Anqi He
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Mingyu Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Chen Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Zengguang Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
30
|
Anil S, Lu H, Rotter S, Vlachos A. Repetitive transcranial magnetic stimulation (rTMS) triggers dose-dependent homeostatic rewiring in recurrent neuronal networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533396. [PMID: 36993387 PMCID: PMC10055183 DOI: 10.1101/2023.03.20.533396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique used to induce neuronal plasticity in healthy individuals and patients. Designing effective and reproducible rTMS protocols poses a major challenge in the field as the underlying biomechanisms remain elusive. Current clinical protocol designs are often based on studies reporting rTMS-induced long-term potentiation or depression of synaptic transmission. Herein, we employed computational modeling to explore the effects of rTMS on long-term structural plasticity and changes in network connectivity. We simulated a recurrent neuronal network with homeostatic structural plasticity between excitatory neurons, and demonstrated that this mechanism was sensitive to specific parameters of the stimulation protocol (i.e., frequency, intensity, and duration of stimulation). The feedback-inhibition initiated by network stimulation influenced the net stimulation outcome and hindered the rTMS-induced homeostatic structural plasticity, highlighting the role of inhibitory networks. These findings suggest a novel mechanism for the lasting effects of rTMS, i.e., rTMS-induced homeostatic structural plasticity, and highlight the importance of network inhibition in careful protocol design, standardization, and optimization of stimulation.
Collapse
Affiliation(s)
- Swathi Anil
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Han Lu
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - Stefan Rotter
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
31
|
Zheng J, Zhang W, Liu L, Hung Yap MK. Low frequency repetitive transcranial magnetic stimulation promotes plasticity of the visual cortex in adult amblyopic rats. Front Neurosci 2023; 17:1109735. [PMID: 36743805 PMCID: PMC9892759 DOI: 10.3389/fnins.2023.1109735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
The decline of visual plasticity restricts the recovery of visual functions in adult amblyopia. Repetitive transcranial magnetic stimulation (rTMS) has been shown to be effective in treating adult amblyopia. However, the underlying mechanisms of rTMS on visual cortex plasticity remain unclear. In this study, we found that low-frequency rTMS reinstated the amplitude of visual evoked potentials, but did not influence the impaired depth perception of amblyopic rats. Furthermore, the expression of synaptic plasticity genes and the number of dendritic spines were significantly higher in amblyopic rats which received rTMS when compared with amblyopic rats which received sham stimulation, with reduced level of inhibition and perineuronal nets in visual cortex, as observed via molecular and histological investigations. The results provide further evidence that rTMS enhances functional recovery and visual plasticity in an adult amblyopic animal model.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| | - Wenqiu Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| | - Longqian Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| | | |
Collapse
|
32
|
Huang W, Chen Q, Liu J, Liu L, Tang J, Zou M, Zeng T, Li H, Jiang Q, Jiang Q. Transcranial Magnetic Stimulation in Disorders of Consciousness: An Update and Perspectives. Aging Dis 2022:AD.2022.1114. [PMID: 37163434 PMCID: PMC10389824 DOI: 10.14336/ad.2022.1114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/14/2022] [Indexed: 05/12/2023] Open
Abstract
Disorders of consciousness (DOC) is a state in which consciousness is affected by brain injuries, leading to dysfunction in vigilance, awareness, and behavior. DOC encompasses coma, vegetative state, and minimally conscious state based on neurobehavioral function. Currently, DOC is one of the most common neurological disorders with a rapidly increasing incidence worldwide. Therefore, DOC not only impacts the lives of individuals and their families but is also becoming a serious public health threat. Repetitive transcranial magnetic stimulation (rTMS) can stimulate electrical activity using a pulsed magnetic field in the brain, with great value in the treatment of chronic pain, neurological diseases, and mental illnesses. However, the clinical application of rTMS in patients with DOC is debatable. Herein, we report the recent main findings of the clinical therapeutics of rTMS for DOC, including its efficacy and possible mechanisms. In addition, we discuss the potential key parameters (timing, location, frequency, strength, and secession of rTMS applications) that affect the therapeutic efficiency of rTMS in patients with DOC. This review may help develop clinical guidelines for the therapeutic application of rTMS in DOC.
Collapse
Affiliation(s)
| | | | - Jun Liu
- Department of Neurosurgery, Ganzhou People's Hospital, Jiangxi, China
| | - Lin Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Jiangxi, China
| | - Jianhong Tang
- Laboratory Animal Engineering Research Center of Ganzhou, Gannan Medical University, Jiangxi, China
| | - Mingang Zou
- Department of Neurosurgery, Ganzhou People's Hospital, Jiangxi, China
| | - Tianxiang Zeng
- Department of Neurosurgery, Ganzhou People's Hospital, Jiangxi, China
| | - Huichen Li
- Department of Neurosurgery, Ganzhou People's Hospital, Jiangxi, China
| | - Qing Jiang
- Department of Neurosurgery, Ganzhou People's Hospital, Jiangxi, China
| | - QiuHua Jiang
- Department of Neurosurgery, Ganzhou People's Hospital, Jiangxi, China
| |
Collapse
|
33
|
Wu C, Yang L, Feng S, Zhu L, Yang L, Liu TCY, Duan R. Therapeutic non-invasive brain treatments in Alzheimer's disease: recent advances and challenges. Inflamm Regen 2022; 42:31. [PMID: 36184623 PMCID: PMC9527145 DOI: 10.1186/s41232-022-00216-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/13/2022] [Indexed: 11/10/2022] Open
Abstract
Alzheimer's disease (AD) is one of the major neurodegenerative diseases and the most common form of dementia. Characterized by the loss of learning, memory, problem-solving, language, and other thinking abilities, AD exerts a detrimental effect on both patients' and families' quality of life. Although there have been significant advances in understanding the mechanism underlying the pathogenesis and progression of AD, there is no cure for AD. The failure of numerous molecular targeted pharmacologic clinical trials leads to an emerging research shift toward non-invasive therapies, especially multiple targeted non-invasive treatments. In this paper, we reviewed the advances of the most widely studied non-invasive therapies, including photobiomodulation (PBM), transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and exercise therapy. Firstly, we reviewed the pathological changes of AD and the challenges for AD studies. We then introduced these non-invasive therapies and discussed the factors that may affect the effects of these therapies. Additionally, we review the effects of these therapies and the possible mechanisms underlying these effects. Finally, we summarized the challenges of the non-invasive treatments in future AD studies and clinical applications. We concluded that it would be critical to understand the exact underlying mechanisms and find the optimal treatment parameters to improve the translational value of these non-invasive therapies. Moreover, the combined use of non-invasive treatments is also a promising research direction for future studies and sheds light on the future treatment or prevention of AD.
Collapse
Affiliation(s)
- Chongyun Wu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luoman Yang
- Department of Anesthesiology, Peking University Third Hospital (PUTH), Beijing, 100083, China
| | - Shu Feng
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Ling Zhu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luodan Yang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA.
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Timon Cheng-Yi Liu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Rui Duan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
34
|
Exposure to static magnetic field facilitates selective attention and neuroplasticity in rats. Brain Res Bull 2022; 189:111-120. [PMID: 35987295 DOI: 10.1016/j.brainresbull.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/06/2022] [Accepted: 08/14/2022] [Indexed: 11/21/2022]
Abstract
Static magnetic fields (SMF) have neuroprotective and behavioral effects in rats, however, little is known about the effects of SMF on cognition, motor function and the underlying neurochemical mechanisms. In this study, we focused on the effects of short-term (5~10d) and long-term (13~38d) SMF exposure on selective attention and motor coordination of rats, as well as associated alterations in expression level of neuroplasticity-related structural proteins and cryptochrome (CRY1) protein in the cortex, striatum and ventral midbrain. The results showed that 6 d SMF exposure significantly enhanced selective attention without affecting locomotor activity in open field. All SMF exposures non-significantly enhanced motor coordination (Rotarod test). Neurochemical analysis demonstrated that 5d SMF exposure increased the expression of cortical and striatal CRY1 and synapsin-1 (SYN1), striatal total synapsins (SYN), and synaptophysin (SYP), growth associated protein-43 (GAP43) and post-synaptic density protein-95 (PSD95) in the ventral midbrain. Exposure to SMF for 14d increased PSD95 level in the ventral midbrain while longer SMF exposure elevated the levels of PSD95 in the cortex, SYN and SYN1 in all the examined brain areas. The increased expression of cortical and striatal CRY1and SYN1 correlated with the short-lasting effect of SMF on improving selective attention. Collectively, SMF's effect on selective attention attenuated following longer exposure to SMF whereas its effects on neuroplasticity-related structural biomarkers were time- and brain area-dependent, with some protein levels increasing with longer time exposure. These findings suggest a potential use of SMF for treatment of neurological diseases in which selective attention or neuroplasticity is impaired.
Collapse
|
35
|
Wu Q, Xu X, Zhai C, Zhao Z, Dai W, Wang T, Shen Y. High-frequency repetitive transcranial magnetic stimulation improves spatial episodic learning and memory performance by regulating brain plasticity in healthy rats. Front Neurosci 2022; 16:974940. [PMID: 35992904 PMCID: PMC9389218 DOI: 10.3389/fnins.2022.974940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
Background Repetitive transcranial magnetic stimulation (rTMS) is an effective way to stimulate changes in structural and functional plasticity, which is a part of learning and memory. However, to our knowledge, rTMS-induced specific activity and neural plasticity in different brain regions that affect cognition are not fully understood; nor are its mechanisms. Therefore, we aimed to investigate rTMS-induced cognition-related neural plasticity changes and their mechanisms in different brain regions. Methods A total of 30 healthy adult rats were randomly divided into the control group and the rTMS group (n = 15 rats per group). The rats in the control and the rTMS group received either 4 weeks of sham or high-frequency rTMS (HF-rTMS) over the prefrontal cortex (PFC). Cognitive function was detected by Morris water maze. Functional imaging was acquired by resting-state functional magnetic resonance imaging (rs-fMRI) before and after rTMS. The protein expressions of BDNF, TrkB, p-Akt, Akt, NR1, NR2A, and NR2B in the PFC, hippocampus, and primary motor cortex (M1) were detected by Western blot following rTMS. Results After 4 weeks of rTMS, the cognitive ability of healthy rats who underwent rTMS showed a small but significant behavioral improvement in spatial episodic learning and memory performance. Compared with the pre-rTMS or the control group, rats in the rTMS group showed increased regional homogeneity (ReHo) in multiple brain regions in the interoceptive/default mode network (DMN) and cortico-striatal-thalamic network, specifically the bilateral PFC, bilateral hippocampus, and the left M1. Western blot analyses showed that rTMS led to a significant increase in the expressions of N-methyl-D-aspartic acid (NMDA) receptors, including NR1, NR2A, and NR2B in the PFC, hippocampus, and M1, as well as an upregulation of BDNF, TrkB, and p-Akt in these three brain regions. In addition, the expression of NR1 in these three brain regions correlated with rTMS-induced cognitive improvement. Conclusion Overall, these data suggested that HF-rTMS can enhance cognitive performance through modulation of NMDA receptor-dependent brain plasticity.
Collapse
Affiliation(s)
- Qi Wu
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Rehabilitation, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Xingjun Xu
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chenyuan Zhai
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiyong Zhao
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Wenjun Dai
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tong Wang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Tong Wang,
| | - Ying Shen
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Ying Shen,
| |
Collapse
|
36
|
5 Hz of repetitive transcranial magnetic stimulation improves cognition and induces modifications in hippocampal neurogenesis in adult female Swiss Webster mice. Brain Res Bull 2022; 186:91-105. [PMID: 35688304 DOI: 10.1016/j.brainresbull.2022.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/23/2022] [Accepted: 06/03/2022] [Indexed: 11/22/2022]
Abstract
Adult hippocampal neurogenesis is regulated by several stimuli to promote the creation of a reserve that may facilitate coping with environmental challenges. In this regard, repetitive transcranial magnetic stimulation (rTMS), a neuromodulation therapy, came to our attention because in clinical studies it reverts behavioral and cognitive alterations related to changes in brain plasticity. Some preclinical studies emphasize the need to understand the underlying mechanism of rTMS to induce behavioral modifications. In this study, we investigated the effects of rTMS on cognition, neurogenic-associated modifications, and neuronal activation in the hippocampus of female Swiss Webster mice. We applied 5 Hz of rTMS twice a day for 14 days. Three days later, mice were exposed to the behavioral battery. Then, brains were collected and immunostained for Ki67-positive cells, doublecortin-positive (DCX+)-cells, calbindin, c-Fos and FosB/Delta-FosB in the dentate gyrus. Also, we analyzed mossy fibers and CA3 with calbindin immunostaining. Mice exposed to rTMS exhibited cognitive improvement, an increased number of proliferative cells, DCX cells, DCX cells with complex dendrite morphology, c-Fos and immunoreactivity of FosB/Delta-FosB in the granular cell layer. The volume of the granular cell layer, mossy fibers and CA3 in rTMS mice also increased. Interestingly, cognitive improvement correlated with DCX cells with complex dendrite morphology. Also, those DCX cells and calbindin immunoreactivity correlated with c-Fos in the granular cell layer. Our results suggest that 5 Hz of rTMS applied twice a day modify cell proliferation, doublecortin cells, mossy fibers and enhance cognitive behavior in healthy female Swiss Webster mice.
Collapse
|
37
|
Repetitive transcranial magnetic stimulation (rTMS) for multiple neurological conditions in rodent animal models: A systematic review. Neurochem Int 2022; 157:105356. [DOI: 10.1016/j.neuint.2022.105356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/31/2022] [Accepted: 04/28/2022] [Indexed: 12/09/2022]
|
38
|
Clark KB. Smart Device-Driven Corticolimbic Plasticity in Cognitive-Emotional Restructuring of Space-Related Neuropsychiatric Disease and Injury. Life (Basel) 2022; 12:236. [PMID: 35207523 PMCID: PMC8875345 DOI: 10.3390/life12020236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
Escalating government and commercial efforts to plan and deploy viable manned near-to-deep solar system exploration and habitation over the coming decades now drives next-generation space medicine innovations. The application of cutting-edge precision medicine, such as brain stimulation techniques, provides powerful clinical and field/flight situation methods to selectively control vagal tone and neuroendocrine-modulated corticolimbic plasticity, which is affected by prolonged cosmic radiation exposure, social isolation or crowding, and weightlessness in constricted operational non-terran locales. Earth-based clinical research demonstrates that brain stimulation approaches may be combined with novel psychotherapeutic integrated memory structure rationales for the corrective reconsolidation of arousing or emotional experiences, autobiographical memories, semantic schema, and other cognitive structures to enhance neuropsychiatric patient outcomes. Such smart cotherapies or countermeasures, which exploit natural, pharmaceutical, and minimally invasive neuroprosthesis-driven nervous system activity, may optimize the cognitive-emotional restructuring of astronauts suffering from space-related neuropsychiatric disease and injury, including mood, affect, and anxiety symptoms of any potential severity and pathophysiology. An appreciation of improved neuropsychiatric healthcare through the merging of new or rediscovered smart theragnostic medical technologies, capable of rendering personalized neuroplasticity training and managed psychotherapeutic treatment protocols, will reveal deeper insights into the illness states experienced by astronauts. Future work in this area should emphasize the ethical role of telemedicine and/or digital clinicians to advance the (semi)autonomous, technology-assisted medical prophylaxis, diagnosis, treatment, monitoring, and compliance of astronauts for elevated health, safety, and performance in remote extreme space and extraterrestrial environments.
Collapse
Affiliation(s)
- Kevin B. Clark
- Felidae Conservation Fund, Mill Valley, CA 94941, USA;
- Cures Within Reach, Chicago, IL 60602, USA
- Domain and Campus Champions Program, NSF Extreme Science and Engineering Discovery Environment (XSEDE), National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Multi-Omics and Systems Biology Analysis Working Group, NASA GeneLab, NASA Ames Research Center, Mountain View, CA 94035, USA
- SETI Institute, Mountain View, CA 94043, USA
- NASA NfoLD, NASA Astrobiology Program, NASA Ames Research Center, Mountain View, CA 94035, USA
- Universities Space Research Association, Columbia, MD 21046, USA
- Expert Network, Penn Center for Innovation, University of Pennsylvania, Philadelphia, PA 19104, USA
- Peace Innovation Institute, The Hague 2511, Netherlands and Stanford University, Palo Alto, CA 94305, USA
- Shared Interest Group for Natural and Artificial Intelligence (sigNAI), Max Planck Alumni Association, 14057 Berlin, Germany
- Nanotechnology and Biometrics Councils, Institute for Electrical and Electronics Engineers (IEEE), New York, NY 10016-5997, USA
| |
Collapse
|
39
|
McNerney MW, Heath A, Narayanan S, Yesavage J. Repetitive Transcranial Magnetic Stimulation Improves Brain-Derived Neurotrophic Factor and Cholinergic Signaling in the 3xTgAD Mouse Model of Alzheimer’s Disease. J Alzheimers Dis 2022; 86:499-507. [PMID: 35068462 PMCID: PMC9028616 DOI: 10.3233/jad-215361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background: Alzheimer’s disease (AD) is a debilitating disorder involving the loss of plasticity and cholinergic neurons in the cortex. Pharmaceutical treatments are limited in their efficacy, but brain stimulation is emerging as a treatment for diseases of cognition. More research is needed to determine the biochemical mechanisms and treatment efficacy of this technique. Objective: We aimed to determine if forebrain repetitive transcranial magnetic stimulation can improve cortical BDNF gene expression and cholinergic signaling in the 3xTgAD mouse model of AD. Methods: Both B6 wild type mice and 3xTgAD mice aged 12 months were given daily treatment sessions for 14 days or twice weekly for 6 weeks. Following treatment, brain tissue was extracted for immunological stains for plaque load, as well as biochemical analysis for BDNF gene expression and cholinergic signaling via acetylcholinesterase and choline acetyltransferase ELISA assays. Results: For the 3xTgAD mice, both 14 days and 6 weeks treatment regimens resulted in an increase in BDNF gene expression relative to sham treatment, with a larger increase in the 6-week group. Acetylcholinesterase activity also increased for both treatments in 3xTgAD mice. The B6 mice only had an increase in BDNF gene expression for the 6-week group. Conclusion: Brain stimulation is a possible non-invasive and nonpharmaceutical treatment option for AD as it improves both plasticity markers and cholinergic signaling in an AD mouse model.
Collapse
Affiliation(s)
- M. Windy McNerney
- Mental Illness Research Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Alesha Heath
- Mental Illness Research Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sindhu Narayanan
- Medical Anthropology and Global Health, University of Washington, Seattle, WA, USA
| | - Jerome Yesavage
- Mental Illness Research Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
40
|
Li J, Cui L, Li H. Optimal parameter determination of repetitive transcranial magnetic stimulation for treating treatment-resistant depression: A network meta-analysis of randomized controlled trials. Front Psychiatry 2022; 13:1038312. [PMID: 36532172 PMCID: PMC9751374 DOI: 10.3389/fpsyt.2022.1038312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Many studies have shown the efficacy of repetitive transcranial magnetic stimulation (rTMS) in treatment-resistant depression (TRD). However, the choice of different parameters has been a challenging issue. METHODS PubMed, Cochrane, and Embase databases were searched for relevant studies until June 20, 2022. The treatment efficacy was evaluated by the relative risk (RR) using the pairwise test for response and remission rates. Subgroup and sensitivity analyses were conducted to explore the primary outcome differences and to assess the reliability of the results. RESULTS Thirty-seven trials comprising 2120 participants with TRD were included. The more efficacious interventions compared to sham controls included high-frequency left followed by low-frequency right sup-threshold (HFL-LFR-sup-rTMS, RR = 5.29, 95% CI: 1.24-22.50), high-frequency left sup-threshold (HFL-sup-rTMS, RR = 2.97, 95% CI: 1.74-5.05), low-frequency right sup-threshold (LFR-sup-rTMS, RR = 2.72, 95% CI: 1.50-4.90), low-frequency right followed by high-frequency left sup-threshold (LFR-HFL-sup-rTMS, RR = 2.71, 95% CI: 1.62-4.53), and high-frequency left sub-threshold (HFL-sub-rTMS, RR = 1.91, 95% CI: 1.18-3.10) rTMS. The estimated relative ranking of treatments suggested that HFL-LFR-sup-rTMS (84.4%) might be the most efficacious among all rTMS strategies. No treatments showed a lower acceptability than the sham control. LIMITATIONS Subgroup analysis was not conducted to compare the efficacy of rTMS treatment between bipolar and unipolar depression, and small-study effects possibly introduced bias. CONCLUSION Treatment with HFL-LFR-sup-rTMS, HFL-sup-rTMS, LFR-sup-rTMS, LFR-HFL-sup-rTMS, or HFL-sub-rTMS is more efficacious than the sham control. HFL-LFR-sup-rTMS and HFL-sup-rTMS may be the two best among the most efficacious rTMS treatments. SYSTEMATIC REVIEW REGISTRATION [https://www.crd.york.ac.uk/PROSPERO], identifier [CRD42022334481].
Collapse
Affiliation(s)
- Jinbiao Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Liqian Cui
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Hao Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| |
Collapse
|
41
|
Heath AM, Brewer M, Yesavage J, McNerney MW. Improved object recognition memory using post-encoding repetitive transcranial magnetic stimulation. Brain Stimul 2022; 15:78-86. [PMID: 34785386 PMCID: PMC10612530 DOI: 10.1016/j.brs.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Brain stimulation is known to affect canonical pathways and proteins involved in memory. However, there are conflicting results on the ability of brain stimulation to improve to memory, which may be due to variations in timing of stimulation. HYPOTHESIS We hypothesized that repetitive transcranial magnetic stimulation (rTMS) given following a learning task and within the time period before retrieval could help improve memory. METHODS We implanted male B6129SF2/J mice (n = 32) with a cranial attachment to secure the rTMS coil so that the mice could be given consistent stimulation to the frontal area whilst freely moving. Mice then underwent the object recognition test sampling phase and given treatment +3, +24, +48 h following the test. Treatment consisted of 10 min 10 Hz rTMS stimulation (TMS, n = 10), sham treatment (SHAM, n = 11) or a control group which did not do the behavior test or receive rTMS (CONTROL n = 11). At +72 h mice were tested for their exploration of the novel vs familiar object. RESULTS At 72-h's, only the mice which received rTMS had greater exploration of the novel object than the familiar object. We further show that promoting synaptic GluR2 and maintaining synaptic connections in the perirhinal cortex and hippocampal CA1 are important for this effect. In addition, we found evidence that these changes were linked to CAMKII and CREB pathways in hippocampal neurons. CONCLUSION By linking the known biological effects of rTMS to memory pathways we provide evidence that rTMS is effective in improving memory when given during the consolidation and maintenance phases.
Collapse
Affiliation(s)
- A M Heath
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA; Department of Veterans Affairs, Sierra-Pacific Mental Illness Research Educational and Clinical Center, Palo Alto, CA, 94304, USA.
| | - M Brewer
- Stanford University, Stanford, CA, 94305, USA
| | - J Yesavage
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA; Department of Veterans Affairs, Sierra-Pacific Mental Illness Research Educational and Clinical Center, Palo Alto, CA, 94304, USA
| | - M W McNerney
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA; Department of Veterans Affairs, Sierra-Pacific Mental Illness Research Educational and Clinical Center, Palo Alto, CA, 94304, USA
| |
Collapse
|
42
|
Li H, Ma J, Zhang J, Shi WY, Mei HN, Xing Y. Repetitive Transcranial Magnetic Stimulation (rTMS) Modulates Thyroid Hormones Level and Cognition in the Recovery Stage of Stroke Patients with Cognitive Dysfunction. Med Sci Monit 2021; 27:e931914. [PMID: 34686649 PMCID: PMC8549488 DOI: 10.12659/msm.931914] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background This single-center study aimed to investigate the effects of repetitive transcranial magnetic stimulation (rTMS) on modulation of thyroid hormone levels and cognition in the recovery stage of patients with cognitive dysfunction following stroke. Material/Methods Seventy post-stroke patients who had cognitive impairment were randomly assigned to either the rTMS group or the control (sham) group. Both groups were administered basic treatment, with the rTMS group receiving rTMS (1 Hz, 90% MT, 1000 pulse/20 min, once a day for 5 days, for a total of 20 times), the stimulation site was the contralateral dorsolateral prefrontal cortex (DLPFC), and the sham group receiving sham stimulation which had the same stimulation parameters and site, except that the coil plane was placed perpendicular to the surface of the scalp. Cognitive function assessment and thyroid function tests were performed before and after 4 weeks of treatment. Results Serum levels of triiodothyronine (T3), free triiodothyronine (FT3), and thyroid stimulating hormone (TSH) showed a positive correlation with Montreal Cognitive Assessment (MoCA) scale score of stroke patients in the recovery phase. The post-treatment change in the scores of MoCA and Modified Barthel Index (MBI) and scores of 3 cognitive domains (visuospatial function, memory, and attention), as well as serum T3, FT3, and TSH levels, were improved more significantly in the rTMS group, and T3 and FT3 levels significantly affected the MoCA scores within the reference range. Conclusions Serum T3, FT3, and TSH levels of stroke patients in the recovery phase were positively correlated with MoCA score. rTMS increased T3, FT3, and TSH levels and also improved MoCA and MBI of patients in the recovery phase of stroke.
Collapse
Affiliation(s)
- Hong Li
- Department of Rehabilitation Medicine, Shijiazhuang People's Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Jiang Ma
- Department of Rehabilitation Medicine, Shijiazhuang People's Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Jun Zhang
- School of Nursing and Rehabilitation, North China University of Science and Technology, Tangshan, Hebei, China (mainland)
| | - Wan-Ying Shi
- Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Hao-Nan Mei
- School of Nursing and Rehabilitation, North China University of Science and Technology, Tangshan, Hebei, China (mainland)
| | - Yan Xing
- Department of Rehabilitation Medicine, Shijiazhuang People's Hospital, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
43
|
Wang T, Guo Z, Du Y, Xiong M, Yang Z, Ren L, He L, Jiang Y, McClure MA, Mu Q. Effects of Noninvasive Brain Stimulation (NIBS) on Cognitive Impairment in Mild Cognitive Impairment and Alzheimer Disease: A Meta-analysis. Alzheimer Dis Assoc Disord 2021; 35:278-288. [PMID: 34432674 DOI: 10.1097/wad.0000000000000464] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 06/05/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The purpose of this meta-analysis was to evaluate the beneficial effects and optimal stimulation protocol of noninvasive brain stimulation (NIBS) including repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) on patients with mild cognitive impairment and Alzheimer disease. MATERIALS AND METHODS PubMed, Web of Science, Embase, and the Cochrane Library were searched until March 2020. The cognitive outcomes were extracted and the standardized mean difference with 95% confidence interval was calculated. RESULTS Twenty-eight studies were included. The result of NIBS showed significant effect on global cognition (P<0.05). Low-frequency rTMS over right dorsolateral prefrontal cortex (DLPFC), high-frequency rTMS (HF-rTMS) over left DLPFC, and the tDCS over left DLPFC and temporal lobe can significantly improve the memory function (P<0.05). HF-rTMS over left, right, or bilateral DLPFC can significantly improve the language function (P<0.05). Both HF-rTMS and tDCS over left DLPFC can obviously improve the executive function (P<0.05). Multiple sessions of rTMS with 80% to 100% intensity and anode tDCS with 2 mA current density are more suitable for all these functions. CONCLUSIONS NIBS has a beneficial effect on cognitive performance in both mild cognitive impairment and Alzheimer disease patients. Distinct optimal stimulation parameters were observed for different cognitive functions.
Collapse
Affiliation(s)
- Tao Wang
- Department of Medical Imaging and Institute of Rehabilitation and Imaging of Brain Function, The Second Clinical Medical College of North Sichuan Medical College Nanchong Central Hospital
| | - Zhiwei Guo
- Department of Medical Imaging and Institute of Rehabilitation and Imaging of Brain Function, The Second Clinical Medical College of North Sichuan Medical College Nanchong Central Hospital
| | - Yonghui Du
- Department of Medical Imaging and Institute of Rehabilitation and Imaging of Brain Function, The Second Clinical Medical College of North Sichuan Medical College Nanchong Central Hospital
- The Clinical Medical College of Southwest Medical University, Luzhou
| | - Ming Xiong
- Department of Radiology, Yingshan Country People's Hospital
| | - Zhengcong Yang
- Department of Radiology, Nanbu Country People's Hospital
| | - Long Ren
- Department of Radiology, Nanchong Fifth People's Hospital, Nanchong
| | - Lin He
- Department of Medical Imaging and Institute of Rehabilitation and Imaging of Brain Function, The Second Clinical Medical College of North Sichuan Medical College Nanchong Central Hospital
| | - Yi Jiang
- Department of Medical Imaging and Institute of Rehabilitation and Imaging of Brain Function, The Second Clinical Medical College of North Sichuan Medical College Nanchong Central Hospital
| | - Morgan A McClure
- Department of Medical Imaging and Institute of Rehabilitation and Imaging of Brain Function, The Second Clinical Medical College of North Sichuan Medical College Nanchong Central Hospital
| | - Qiwen Mu
- Department of Medical Imaging and Institute of Rehabilitation and Imaging of Brain Function, The Second Clinical Medical College of North Sichuan Medical College Nanchong Central Hospital
- Department of Radiology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
44
|
Antczak J, Rusin G, Słowik A. Transcranial Magnetic Stimulation as a Diagnostic and Therapeutic Tool in Various Types of Dementia. J Clin Med 2021; 10:jcm10132875. [PMID: 34203558 PMCID: PMC8267667 DOI: 10.3390/jcm10132875] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 02/03/2023] Open
Abstract
Dementia is recognized as a healthcare and social burden and remains challenging in terms of proper diagnosis and treatment. Transcranial magnetic stimulation (TMS) is a diagnostic and therapeutic tool in various neurological diseases that noninvasively investigates cortical excitability and connectivity and can induce brain plasticity. This article reviews findings on TMS in common dementia types as well as therapeutic results. Alzheimer’s disease (AD) is characterized by increased cortical excitability and reduced cortical inhibition, especially as mediated by cholinergic neurons and as documented by impairment of short latency inhibition (SAI). In vascular dementia, excitability is also increased. SAI may have various outcomes, which probably reflects its frequent overlap with AD. Dementia with Lewy bodies (DLB) is associated with SAI decrease. Motor cortical excitability is usually normal, reflecting the lack of corticospinal tract involvement. DLB and other dementia types are also characterized by impairment of short interval intracortical inhibition. In frontotemporal dementia, cortical excitability is increased, but SAI is normal. Repetitive transcranial magnetic stimulation has the potential to improve cognitive function. It has been extensively studied in AD, showing promising results after multisite stimulation. TMS with electroencephalography recording opens new possibilities for improving diagnostic accuracy; however, more studies are needed to support the existing data.
Collapse
|
45
|
Lin Y, Jin J, Lv R, Luo Y, Dai W, Li W, Tang Y, Wang Y, Ye X, Lin WJ. Repetitive transcranial magnetic stimulation increases the brain's drainage efficiency in a mouse model of Alzheimer's disease. Acta Neuropathol Commun 2021; 9:102. [PMID: 34078467 PMCID: PMC8170932 DOI: 10.1186/s40478-021-01198-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/07/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with high prevalence rate among the elderly population. A large number of clinical studies have suggested repetitive transcranial magnetic stimulation (rTMS) as a promising non-invasive treatment for patients with mild to moderate AD. However, the underlying cellular and molecular mechanisms remain largely uninvestigated. In the current study, we examined the effect of high frequency rTMS treatment on the cognitive functions and pathological changes in the brains of 4- to 5-month old 5xFAD mice, an early pathological stage with pronounced amyloidopathy and cognitive deficit. Our results showed that rTMS treatment effectively prevented the decline of long-term memories of the 5xFAD mice for novel objects and locations. Importantly, rTMS treatment significantly increased the drainage efficiency of brain clearance pathways, including the glymphatic system in brain parenchyma and the meningeal lymphatics, in the 5xFAD mouse model. Significant reduction of Aβ deposits, suppression of microglia and astrocyte activation, and prevention of decline of neuronal activity as indicated by the elevated c-FOS expression, were observed in the prefrontal cortex and hippocampus of the rTMS-treated 5xFAD mice. Collectively, these findings provide a novel mechanistic insight of rTMS in regulating brain drainage system and β-amyloid clearance in the 5xFAD mouse model, and suggest the potential use of the clearance rate of contrast tracer in cerebrospinal fluid as a prognostic biomarker for the effectiveness of rTMS treatment in AD patients.
Collapse
Affiliation(s)
- Yangyang Lin
- Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian Jin
- Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangzhou Sport University, Guangzhou, China
| | - Rongke Lv
- Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangzhou Sport University, Guangzhou, China
| | - Yuan Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weiping Dai
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
| | - Wenchang Li
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yamei Tang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuling Wang
- Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaojing Ye
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
| | - Wei-Jye Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
46
|
Liu J, Liu B, Yuan P, Cheng L, Sun H, Gui J, Pan Y, Huang D, Chen H, Jiang L. Role of PKA/CREB/BDNF signaling in PM2.5-induced neurodevelopmental damage to the hippocampal neurons of rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112005. [PMID: 33640725 DOI: 10.1016/j.ecoenv.2021.112005] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 05/20/2023]
Abstract
Exposure to fine particulate matter (PM2.5) is implicated in neurodevelopmental disorders including cognitive decline, attention-deficit/hyperactivity disorder, and autism spectrum disorder. However, the specific molecular mechanisms by which PM2.5 impacts neurodevelopment are poorly understood. Accordingly, in the present study, the role of protein kinase A (PKA)/cAMP response element binding protein (CREB)/brain-derived neurotrophic factor (BDNF) signaling in PM2.5-induced neurodevelopmental damage was investigated using primary cultured hippocampal neurons. When hippocampal neurons cultured for 3 days in vitro (DIV3) were exposed to PM2.5 for 24 h and 96 h, neuronal viability decreased by 18.8% and 32.7% respectively, percentage of TUNEL-positive neurons increased by 78.5% and 64.0% separately, caspase-9 expression increased, lower postsynaptic density and shorter active zones were observed by transmission electron microscopy, expression of synapse-related proteins including postsynaptic density-95 (PSD95), growth associated protein-43 (GAP43), and synaptophysin (SYP) were decreased, and the phosphorylation levels of PKA, CREB, and BDNF expression also decreased. However, the PM2.5-induced neuronal damage could be ameliorated or aggravated to varying degrees by up- or down-regulation of the PKA/CREB/BDNF signaling pathway, respectively. Our results indicate that PM2.5 exposure exerts neurodevelopmental toxicity as indicated by lower viability, apoptosis, and synaptic damage in primary cultured hippocampal neurons, and that the PKA/CREB/BDNF pathways could play a vital role in PM2.5-mediated neurodevelopmental toxicity.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136# Zhongshan 2nd Road, Chongqing 400014, China
| | - Benke Liu
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136# Zhongshan 2nd Road, Chongqing 400014, China
| | - Ping Yuan
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136# Zhongshan 2nd Road, Chongqing 400014, China
| | - Li Cheng
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136# Zhongshan 2nd Road, Chongqing 400014, China
| | - Hong Sun
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136# Zhongshan 2nd Road, Chongqing 400014, China
| | - Jianxiong Gui
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136# Zhongshan 2nd Road, Chongqing 400014, China
| | - Yanan Pan
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136# Zhongshan 2nd Road, Chongqing 400014, China
| | - Dishu Huang
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136# Zhongshan 2nd Road, Chongqing 400014, China
| | - Hengsheng Chen
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136# Zhongshan 2nd Road, Chongqing 400014, China
| | - Li Jiang
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136# Zhongshan 2nd Road, Chongqing 400014, China.
| |
Collapse
|
47
|
Lewis YD, Gallop L, Campbell IC, Schmidt U. Effects of non-invasive brain stimulation in children and young people with psychiatric disorders: a protocol for a systematic review. Syst Rev 2021; 10:76. [PMID: 33706788 PMCID: PMC7953615 DOI: 10.1186/s13643-021-01627-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/02/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Most psychiatric disorders have their onset in childhood or adolescence, and if not fully treated have the potential for causing life-long psycho-social and physical sequelae. Effective psychotherapeutic and medication treatments exist, but a significant proportion of children and young people do not make a full recovery. Thus, novel, safe, brain-based alternatives or adjuncts to conventional treatments are needed. Repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are non-invasive brain stimulation (NIBS) techniques which have shown clinical benefits in adult psychiatric conditions. However, in children and young people their efficacy is not well established. The objective of this study will be to systematically evaluate the evidence on clinical effects of NIBS in children and young people with psychiatric disorders, assessing disorder-specific symptoms, mood and neurocognitive functions. METHODS We designed and registered a study protocol for a systematic review. We will include randomised and non-randomised controlled trials and observational studies (e.g. cohort, case-control, case series) assessing the effects of NIBS in children and young people (aged ≤ 24 years old) for psychiatric disorders. The primary outcome will be reduction of disorder-specific symptoms. Secondary outcomes will include effects on mood and cognition. A comprehensive search from database inception onwards will be conducted in MEDLINE, EMBASE and PsycINFO. Grey literature will be identified through searching multiple clinical trial registries. Two reviewers will independently screen all citations, full-text articles and abstract data. The methodological quality of the studies will be appraised using appropriate tools. We will provide a narrative synthesis of the evidence and according to heterogeneity will conduct an appropriate meta-analysis. Additional analyses will be conducted to explore the potential sources of heterogeneity. DISCUSSION This systematic review will provide a broad and comprehensive evaluation of the evidence on clinical effects of NIBS in children and young people with psychiatric disorders. Our findings will be reported according to the PRISMA guidelines and will be of interest to multiple audiences (including patients, researchers, healthcare professionals and policy-makers). Results will be published in a peer-reviewed journal. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42019158957.
Collapse
Affiliation(s)
- Yael D Lewis
- Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, PO59, London, SE5 8AF, UK.,Hadarim Eating Disorder Unit, Shalvata Mental Health Centre, Hod Hasharon, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Lucy Gallop
- Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, PO59, London, SE5 8AF, UK
| | - Iain C Campbell
- Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, PO59, London, SE5 8AF, UK
| | - Ulrike Schmidt
- Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, PO59, London, SE5 8AF, UK. .,South London and Maudsley NHS Foundation Trust, London, UK.
| |
Collapse
|
48
|
Velioglu HA, Hanoglu L, Bayraktaroglu Z, Toprak G, Guler EM, Bektay MY, Mutlu-Burnaz O, Yulug B. Left lateral parietal rTMS improves cognition and modulates resting brain connectivity in patients with Alzheimer's disease: Possible role of BDNF and oxidative stress. Neurobiol Learn Mem 2021; 180:107410. [PMID: 33610772 DOI: 10.1016/j.nlm.2021.107410] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/11/2021] [Accepted: 02/14/2021] [Indexed: 12/22/2022]
Abstract
Repetitive Transcranial Magnetic Stimulation (rTMS) is a non-invasive neuromodulation technique which is increasingly used for cognitive impairment in Alzheimer's Disease (AD). Although rTMS has been shown to modify Brain-Derived Neurotrophic Factor (BDNF) and oxidative stress levels in many neurological and psychiatric diseases, there is still no study evaluating the relationship between memory performance, BDNF, oxidative stress, and resting brain connectivity following rTMS in Alzheimer's patients. Furthermore, there are increasing clinical data showing that the stimulation of strategic brain regions may lead to more robust improvements in memory functions compared to conventional rTMS. In this study, we aimed to evaluate the possible disease-modifying effects of rTMS on the lateral parietal cortex in AD patients who have the highest connectivity with the hippocampus. To fill the mentioned research gaps, we have evaluated the relationships between resting-state Functional Magnetic Resonance Imaging (fMRI), cognitive scores, blood BDNF levels, and total oxidative/antioxidant status to explain the therapeutic and potential disease-modifying effects of rTMS which has been applied at 20 Hz frequencies for two weeks. Our results showed significantly increased visual recognition memory functions and clock drawing test scores which were associated with elevated peripheral BDNF levels, and decreased oxidant status after two weeks of left lateral parietal TMS stimulation. Clinically our findings suggest that the left parietal region targeted rTMS application leads to significant improvement in familiarity-based cognition associated with the network connections between the left parietal region and the hippocampus.
Collapse
Affiliation(s)
- Halil Aziz Velioglu
- Istanbul Medipol University, Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Istanbul, Turkey
| | - Lutfu Hanoglu
- Istanbul Medipol University, Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Istanbul, Turkey; Istanbul Medipol University School of Medicine, Department of Neurology, Istanbul, Turkey
| | - Zubeyir Bayraktaroglu
- Istanbul Medipol University, Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Istanbul, Turkey; Istanbul Medipol University, International School of Medicine Department of Physiology, Istanbul, Turkey
| | - Guven Toprak
- Istanbul Medipol University, Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Istanbul, Turkey
| | - Eray Metin Guler
- University of Health Sciences Hamidiye School of Medicine, Department of Medical Biochemistry, Istanbul, Turkey; University of Health Sciences, Haydarpasa Numune Health Application and Research Center, Department of Medical Biochemistry, Istanbul, Turkey
| | - Muhammed Yunus Bektay
- Bezmialem Vakif University School of Pharmacy, Department of Clinical Pharmacy, Istanbul, Turkey; Marmara University School of Pharmacy, Department of Clinical Pharmacy, Istanbul, Turkey
| | - Ozlem Mutlu-Burnaz
- Istanbul Medipol University, Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Istanbul, Turkey
| | - Burak Yulug
- Alanya Alaaddin Keykubat University School of Medicine, Department of Neurology, Alanya/Antalya, Turkey.
| |
Collapse
|
49
|
Rossi S, Antal A, Bestmann S, Bikson M, Brewer C, Brockmöller J, Carpenter LL, Cincotta M, Chen R, Daskalakis JD, Di Lazzaro V, Fox MD, George MS, Gilbert D, Kimiskidis VK, Koch G, Ilmoniemi RJ, Lefaucheur JP, Leocani L, Lisanby SH, Miniussi C, Padberg F, Pascual-Leone A, Paulus W, Peterchev AV, Quartarone A, Rotenberg A, Rothwell J, Rossini PM, Santarnecchi E, Shafi MM, Siebner HR, Ugawa Y, Wassermann EM, Zangen A, Ziemann U, Hallett M. Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines. Clin Neurophysiol 2021; 132:269-306. [PMID: 33243615 PMCID: PMC9094636 DOI: 10.1016/j.clinph.2020.10.003] [Citation(s) in RCA: 675] [Impact Index Per Article: 168.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
This article is based on a consensus conference, promoted and supported by the International Federation of Clinical Neurophysiology (IFCN), which took place in Siena (Italy) in October 2018. The meeting intended to update the ten-year-old safety guidelines for the application of transcranial magnetic stimulation (TMS) in research and clinical settings (Rossi et al., 2009). Therefore, only emerging and new issues are covered in detail, leaving still valid the 2009 recommendations regarding the description of conventional or patterned TMS protocols, the screening of subjects/patients, the need of neurophysiological monitoring for new protocols, the utilization of reference thresholds of stimulation, the managing of seizures and the list of minor side effects. New issues discussed in detail from the meeting up to April 2020 are safety issues of recently developed stimulation devices and pulse configurations; duties and responsibility of device makers; novel scenarios of TMS applications such as in the neuroimaging context or imaging-guided and robot-guided TMS; TMS interleaved with transcranial electrical stimulation; safety during paired associative stimulation interventions; and risks of using TMS to induce therapeutic seizures (magnetic seizure therapy). An update on the possible induction of seizures, theoretically the most serious risk of TMS, is provided. It has become apparent that such a risk is low, even in patients taking drugs acting on the central nervous system, at least with the use of traditional stimulation parameters and focal coils for which large data sets are available. Finally, new operational guidelines are provided for safety in planning future trials based on traditional and patterned TMS protocols, as well as a summary of the minimal training requirements for operators, and a note on ethics of neuroenhancement.
Collapse
Affiliation(s)
- Simone Rossi
- Department of Scienze Mediche, Chirurgiche e Neuroscienze, Unit of Neurology and Clinical Neurophysiology, Brain Investigation and Neuromodulation Lab (SI-BIN Lab), University of Siena, Italy.
| | - Andrea Antal
- Department of Clinical Neurophysiology, University Medical Center, Georg-August University of Goettingen, Germany; Institue of Medical Psychology, Otto-Guericke University Magdeburg, Germany
| | - Sven Bestmann
- Department of Movement and Clinical Neurosciences, UCL Queen Square Institute of Neurology, London, UK and Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Carmen Brewer
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jürgen Brockmöller
- Department of Clinical Pharmacology, University Medical Center, Georg-August University of Goettingen, Germany
| | - Linda L Carpenter
- Butler Hospital, Brown University Department of Psychiatry and Human Behavior, Providence, RI, USA
| | - Massimo Cincotta
- Unit of Neurology of Florence - Central Tuscany Local Health Authority, Florence, Italy
| | - Robert Chen
- Krembil Research Institute and Division of Neurology, Department of Medicine, University of Toronto, Canada
| | - Jeff D Daskalakis
- Center for Addiction and Mental Health (CAMH), University of Toronto, Canada
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico, Roma, Italy
| | - Michael D Fox
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Mark S George
- Medical University of South Carolina, Charleston, SC, USA
| | - Donald Gilbert
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Vasilios K Kimiskidis
- Laboratory of Clinical Neurophysiology, Aristotle University of Thessaloniki, AHEPA University Hospital, Greece
| | | | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering (NBE), Aalto University School of Science, Aalto, Finland
| | - Jean Pascal Lefaucheur
- EA 4391, ENT Team, Faculty of Medicine, Paris Est Creteil University (UPEC), Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, Assistance Publique Hôpitaux de Paris, (APHP), Créteil, France
| | - Letizia Leocani
- Department of Neurology, Institute of Experimental Neurology (INSPE), IRCCS-San Raffaele Hospital, Vita-Salute San Raffaele University, Milano, Italy
| | - Sarah H Lisanby
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD, USA; Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Carlo Miniussi
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Center for Memory Health, Hebrew SeniorLife, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Guttmann Brain Health Institut, Institut Guttmann, Universitat Autonoma Barcelona, Spain
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center, Georg-August University of Goettingen, Germany
| | - Angel V Peterchev
- Departments of Psychiatry & Behavioral Sciences, Biomedical Engineering, Electrical & Computer Engineering, and Neurosurgery, Duke University, Durham, NC, USA
| | - Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Alexander Rotenberg
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - John Rothwell
- Department of Movement and Clinical Neurosciences, UCL Queen Square Institute of Neurology, London, UK and Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Paolo M Rossini
- Department of Neuroscience and Rehabilitation, IRCCS San Raffaele-Pisana, Roma, Italy
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Mouhsin M Shafi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yoshikatzu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Eric M Wassermann
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Abraham Zangen
- Zlotowski Center of Neuroscience, Ben Gurion University, Beer Sheva, Israel
| | - Ulf Ziemann
- Department of Neurology & Stroke, and Hertie-Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
50
|
Kindred JH, Wonsetler EC, Charalambous CC, Srivastava S, Marebwa BK, Bonilha L, Kautz SA, Bowden MG. Individualized Responses to Ipsilesional High-Frequency and Contralesional Low-Frequency rTMS in Chronic Stroke: A Pilot Study to Support the Individualization of Neuromodulation for Rehabilitation. Front Hum Neurosci 2020; 14:578127. [PMID: 33328932 PMCID: PMC7717949 DOI: 10.3389/fnhum.2020.578127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/21/2020] [Indexed: 12/31/2022] Open
Abstract
Background: In this pilot study, we examined the effects of ipsilesional high-frequency rTMS (iHF-rTMS) and contralesional low-frequency rTMS (cLF-rTMS) applied via a double-cone coil on neurophysiological and gait variables in patients with chronic stroke. Objective/Hypothesis: To determine the group and individual level effects of two types of stimulation to better individualize neuromodulation for rehabilitation. Methods: Using a randomized, within-subject, double-blind, sham-controlled trial with 14 chronic stroke participants iHF-rTMS and cLF-rTMS were applied via a double-cone coil to the tibialis anterior cortical representation. Neurophysiological and gait variables were compared pre-post rTMS. Results: A small effect of cLF-rTMS indicated increased MEP amplitudes (Cohen’s D; cLF-rTMS, d = −0.30). Group-level analysis via RMANOVA showed no significant group effects of stimulation (P > 0.099). However, secondary analyses of individual data showed a high degree of response variability to rTMS. Individual percent changes in resting motor threshold and normalized MEP latency correlated with changes in gait propulsive forces and walking speed (iHF-rTMS, nLAT:Pp, R = 0.632 P = 0.015; cLF-rTMS, rMT:SSWS, R = −0.557, P = 0.039; rMT:Pp, R = 0.718, P = 0.004). Conclusions: Changes in propulsive forces and walking speed were seen in some individuals that showed neurophysiological changes in response to rTMS. The neurological consequences of stroke are heterogeneous making a “one type fits all” approach to neuromodulation for rehabilitation unlikely. This pilot study suggests that an individual’s unique response to rTMS should be considered before the application/selection of neuromodulatory therapies. Before neuromodulatory therapies can be incorporated into standard clinical practice, additional work is needed to identify biomarkers of response and how best to prescribe neuromodulation for rehabilitation for post-stroke gait.
Collapse
Affiliation(s)
- John Harvey Kindred
- Department of Research and Development, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, United States.,Division of Physical Therapy, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Elizabeth Carr Wonsetler
- Department of Public Health and Community Medicine, School of Medicine, Tufts University, Boston, MA, United States
| | - Charalambos Costas Charalambous
- Department of Basic and Clinical Sciences, Medical School, University of Nicosia, Nicosia, Cyprus.,Center for Neuroscience and Integrative Brain Research (CENIBRE), Medical School, University of Nicosia, Nicosia, Cyprus
| | - Shraddha Srivastava
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Barbara Khalibinzwa Marebwa
- Department of Neurology, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Leonardo Bonilha
- Department of Neurology, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Steven A Kautz
- Department of Research and Development, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, United States.,Division of Physical Therapy, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States.,Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Mark G Bowden
- Department of Research and Development, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, United States.,Division of Physical Therapy, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States.,Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|