1
|
Fu X, Wang S, Wu Y, Sun Y, Liu W, Xi X, Li GL, Liu K, Yuan W, Chen F, Wang H, Yang T, Liu Y, Zheng J, Shi H, Qu J, Chen X, Suo L, Huang Y, Xu X, Tang X, Li X, Xu L, Gao X, Yu L, Shu Y, Zhang W, Sun J, Yuan H, Gong S, Li W, Ma X, Zha D, Gao J, Li H, He Z, Liu GH, Pei G, Kong W, Wang H, Chai R. A biomarker framework for auditory system aging: the Aging Biomarker Consortium consensus statement. LIFE MEDICINE 2025; 4:lnaf011. [PMID: 40226444 PMCID: PMC11992615 DOI: 10.1093/lifemedi/lnaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/28/2025] [Indexed: 04/15/2025]
Abstract
Hearing is one of the most vital sensory functions in human beings and a crucial means of perceiving and acquiring information from the natural environment. The advancement of human society is closely linked to the development of language, with hearing serving as the foundation for verbal communication. As individuals age, the deterioration of the auditory system becomes a significant factor contributing to sensory impairments in the elderly. In addition to hearing loss, the aging of the auditory system is also associated with cognitive decline and psychosocial disorders, which severely impact the quality of life for older adults. Currently, there are no effective treatments or interventions available for addressing the aging of the auditory system. Therefore, identifying biomarkers of the auditory system aging is of great significance. The Aging Biomarker Consortium of China has conducted a comprehensive evaluation of aging biomarkers in the auditory system, focusing on three dimensions: morphological, functional, and humoral biomarkers. This initiative aims to establish a foundation for assessing the degree of aging in the auditory system and to promote the management of auditory health in an aging society, ultimately enhancing the auditory health of the elderly population both in China and globally.
Collapse
Affiliation(s)
- Aging Biomarker Consortium
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Xiaolong Fu
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yunhao Wu
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenwen Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan 250022, China
| | - Xin Xi
- Department of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100000, China
| | - Geng-Lin Li
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai 200433, China
| | - Ke Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital of Capital Medical University, Beijing 100050, China
| | - Wei Yuan
- Department of Otolaryngology & Head and Neck, Chongqing General Hospital, Chongqing 401147, China
| | - Fangyi Chen
- Department of Biology, South University of Science and Technology of China, Shenzhen 518000, China
| | - Hongyang Wang
- Senior Department of Otolaryngology Head and Neck Surgery, the sixth Medical Center of Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing 100853, China
| | - Tao Yang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, China
| | - Yuhe Liu
- Department of Otolaryngology, Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jialin Zheng
- Collaborative Innovation Center for Brain Science, Tongji University, Shanghai 200092, China
| | - Haibo Shi
- Department of Otolaryngology Head & Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Institute for Stem Cell and Regenerative Medicine, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaowei Chen
- Department of Otolaryngology, Peking Union Medical College Hospital, Beijing 100730, China
| | - Limin Suo
- Department of Otolaryngology, Head and Neck Surgery, the Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Yideng Huang
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xinbo Xu
- Department of Otolaryngology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xuxia Tang
- Otolaryngology Department, Zhejiang Provincial Hospital of TCM, Hangzhou 310003, China
| | - Xiaojun Li
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan 250022, China
| | - Xia Gao
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing 210008, China
| | - Lisheng Yu
- Department of Otolaryngology, Head and Neck Surgery, People’s Hospital, Peking University, Beijing 100044, China
| | - Yilai Shu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, MOE Engineering Research Center of Gene Technology, Fudan University, Shanghai 200031, China
| | - Weiqi Zhang
- China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinpeng Sun
- NHC Key Laboratory of Otorhinolaryngology, Qilu hospital and School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Huijun Yuan
- Department of Oto-Rhino-Laryngology, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Shusheng Gong
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Wenyan Li
- ENT institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
| | - Xiulan Ma
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Dingjun Zha
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710000, China
| | - Jiangang Gao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, China
| | - Huawei Li
- ENT institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
| | - Zuhong He
- Department of Otorhinolaryngology‑Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Gang Pei
- Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan 250022, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- School of medical technology, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
2
|
Kim MS, Kim TH. Anti-Aging Tests for Middle Aged Women. J Menopausal Med 2024; 30:164-169. [PMID: 39829193 PMCID: PMC11745732 DOI: 10.6118/jmm.24012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/06/2024] [Accepted: 10/19/2024] [Indexed: 01/22/2025] Open
Abstract
The interest in aging and anti-aging research has increased significantly in recent years, leading to rapid expansion in the anti-aging market. Aging is associated with gradual physiological changes and an elevated risk of age-related ailments, and is divided into three categories: usual aging, successful aging, and pathological aging. Each category is associated with distinct implications for health and well-being. Middle-aged women who experience accelerated physiological changes that are intensified by hormonal changes during menopause are particularly vulnerable to chronic diseases. The importance of anti-aging tests is increasing since they enable early identification and intervention. Telomere length, oxidative stress markers, DNA repair markers, RNA profiles, inflammatory markers, hormone levels, and epigenetic changes are some molecular parameters studied to test for aging. In addition, a thorough review of middle-aged women's anti-aging profiles also includes monitoring the vitamin D levels and assessing the effects of endocrine-disrupting substances on ovarian aging. The application of personalized medicine paradigms, utilizing various diagnostic methods, will enable accurate risk prediction and the implementation of focused therapies, ultimately promoting the extension of health span and the improvement of quality of life in middle-aged women.
Collapse
Affiliation(s)
- Min-Sun Kim
- Department of Laboratory Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Tae-Hee Kim
- Department of Obstetrics and Gynecology, Soonchunhyang University Bucheon Hospital, Bucheon, Korea.
| |
Collapse
|
3
|
Hu Y, Luo X, Chen H, Ke J, Feng M, Yuan W. MiR-204-5p regulates SIRT1 to promote the endoplasmic reticulum stress-induced apoptosis of inner ear cells in C57BL/6 mice with hearing loss. PLoS One 2024; 19:e0309892. [PMID: 39531447 PMCID: PMC11556682 DOI: 10.1371/journal.pone.0309892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 08/20/2024] [Indexed: 11/16/2024] Open
Abstract
PURPOSE This study investigated the effect of miR-204-5p-mediated silencing of SIRT1 on the development of deafness in C57BL/6 mice and the roles of miR-204-5p and SIRT1 in deafness. METHODS Auditory brainstem response recordings, H&E staining, and immunohistochemistry were used to observe changes in hearing function and cochlear tissue morphology in 2-month-old and 15-month-old C57BL/6 mice. A senescence model was induced using H2O2 in inner ear cells (HEI-OC1). Changes in HEI-OC1 cell proliferation were detected using the CCK-8 assay, whereas flow cytometry was used to detect changes in apoptosis. MiR-204-5p expression was measured via RT‒qPCR. The SIRT1 agonist RSV and a miR-204-5p inhibitor were used to study changes in ER stress (ERS), proliferation, and apoptosis in HEI-OC1 cells. Western blotting was performed to detect changes in ATF4, CHOP, SIRT1, PERK, p-PERK, Bax, and Bcl-2 protein levels. A dual-luciferase reporter gene assay was carried out to assess the ability of miR-204-5p to target SIRT1. RESULTS Relative miR-204-5p expression levels in the cochleae of aged C57BL/6 mice increased, whereas SIRT1 expression levels decreased, and miR-204-5p and SIRT1 expression levels were negatively correlated. ERS and increased 8-OHDG levels were observed in aged C57BL/6 mice. In a model of inner ear cell aging, H2O2 treatment induced increases in miR-204-5p expression and ERS-mediated apoptosis. MiR-204-5p was found to target SIRT1 and inhibit its expression. SIRT1 activation and a miR-204-5p inhibitor promoted HEI-OC1 cell proliferation and reduced apoptosis. The miR-204-5p inhibitor regulated expression of the ERS proteins PERK, ATF4, and CHOP to upregulate Bcl-2 and downregulate Bax. CONCLUSION This study identified the roles of miR-204-5p and SIRT1 in deafness in C57BL/6 mice and investigated the loss of cochlear outer hair cells and the involvement of apoptosis and ERS in deafness.
Collapse
Affiliation(s)
- Yaqin Hu
- Chongqing Medical University, Chongqing, China
- Department of Otolaryngology, Chongqing General Hospital, Chongqing, China
| | - Xiaoqin Luo
- Hospital of Traditional Chinese Medicine Affiliated to Southwest Medical University, Luzhou, China
| | - Hongjiang Chen
- Chongqing Medical University, Chongqing, China
- Department of Otolaryngology, Chongqing General Hospital, Chongqing, China
| | - Jing Ke
- Department of Otolaryngology, Chongqing General Hospital, Chongqing, China
| | - Menglong Feng
- Department of Otolaryngology, Chongqing General Hospital, Chongqing, China
| | - Wei Yuan
- Chongqing Medical University, Chongqing, China
- Department of Otolaryngology, Chongqing General Hospital, Chongqing, China
| |
Collapse
|
4
|
Jung J, Lee J, Kang H, Park K, Kim YS, Ha J, So S, Sung S, Yun JH, Jang JH, Choi SJ, Choung YH. miR-409-3p Regulates IFNG and p16 Signaling in the Human Blood of Aging-Related Hearing Loss. Cells 2024; 13:1595. [PMID: 39329776 PMCID: PMC11429563 DOI: 10.3390/cells13181595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Presbycusis, also referred to as age-related hearing loss (ARHL), is a multifaceted condition caused by the natural aging process affecting the auditory system. Genome-wide association studies (GWAS) in human populations can identify potential genes linked to ARHL. Despite this, our knowledge of the biochemical and molecular mechanisms behind the condition remains incomplete. This study aims to evaluate a potential protective tool for ARHL treatment by comparing human blood-based target gene-miRNA associations regulated in ARHL. To identify promising target genes for ARHL, we utilized an mRNA assay. To determine the role of miRNA in ARHL, we investigated the expression profile of miRNA in whole blood in ARHL patients with real-time polymerase chain reaction (RT-qPCR). A reporter gene assay was performed to confirm the regulation of candidate genes by microRNA. Through RT-qPCR validation analysis, we finally confirmed the relationship between ARHL and the role of the interferon-gamma (IFNG) gene. This gene can be regarded as an age-related gene. Through gene ontology (GO) analysis, it has been found that these genes are enriched in pathways related to apoptosis. Among them, IFNG induces an inflammatory response, apoptotic cell death, and cellular senescence. We found that miR-409-3p downregulates the expression of the IFNG in vitro. In addition, the downregulation of the IFNG by miRNA 409-3p promoted cell apoptosis and suppressed proliferation. In conclusion, our study produced gene signatures and associated microRNA regulation that could be a protective key for ARHL patients. IFNG genes and miR-409-3p should be investigated for their usefulness as a new biomarker for treatment modality.
Collapse
Affiliation(s)
- Junseo Jung
- Department of Otolaryngology-Head and Neck Surgery, Cheonan Hospital, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea; (J.J.); (J.L.); (H.K.); (K.P.)
- Department of Biomedical Science, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Jeongmin Lee
- Department of Otolaryngology-Head and Neck Surgery, Cheonan Hospital, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea; (J.J.); (J.L.); (H.K.); (K.P.)
- Department of Biomedical Science, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Hyunsook Kang
- Department of Otolaryngology-Head and Neck Surgery, Cheonan Hospital, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea; (J.J.); (J.L.); (H.K.); (K.P.)
| | - Kyeongjin Park
- Department of Otolaryngology-Head and Neck Surgery, Cheonan Hospital, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea; (J.J.); (J.L.); (H.K.); (K.P.)
| | - Young Sun Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (Y.S.K.); (J.H.); (S.S.); (J.H.J.)
| | - Jungho Ha
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (Y.S.K.); (J.H.); (S.S.); (J.H.J.)
- Department of Medical Sciences, Graduate School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (S.S.); (J.H.Y.)
| | - Seongjun So
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (Y.S.K.); (J.H.); (S.S.); (J.H.J.)
| | - Siung Sung
- Department of Medical Sciences, Graduate School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (S.S.); (J.H.Y.)
| | - Jeong Hyeon Yun
- Department of Medical Sciences, Graduate School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (S.S.); (J.H.Y.)
| | - Jeong Hun Jang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (Y.S.K.); (J.H.); (S.S.); (J.H.J.)
| | - Seong Jun Choi
- Department of Otolaryngology-Head and Neck Surgery, Cheonan Hospital, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea; (J.J.); (J.L.); (H.K.); (K.P.)
| | - Yun-Hoon Choung
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (Y.S.K.); (J.H.); (S.S.); (J.H.J.)
- Department of Medical Sciences, Graduate School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (S.S.); (J.H.Y.)
| |
Collapse
|
5
|
Zhu K, Wang T, Li S, Liu Z, Zhan Y, Zhang Q. NcRNA: key and potential in hearing loss. Front Neurosci 2024; 17:1333131. [PMID: 38298898 PMCID: PMC10827912 DOI: 10.3389/fnins.2023.1333131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/18/2023] [Indexed: 02/02/2024] Open
Abstract
Hearing loss has an extremely high prevalence worldwide and brings incredible economic and social burdens. Mechanisms such as epigenetics are profoundly involved in the initiation and progression of hearing loss and potentially yield definite strategies for hearing loss treatment. Non-coding genes occupy 97% of the human genome, and their transcripts, non-coding RNAs (ncRNAs), are widely participated in regulating various physiological and pathological situations. NcRNAs, mainly including micro-RNAs (miRNAs), long-stranded non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are involved in the regulation of cell metabolism and cell death by modulating gene expression and protein-protein interactions, thus impacting the occurrence and prognosis of hearing loss. This review provides a detailed overview of ncRNAs, especially miRNAs and lncRNAs, in the pathogenesis of hearing loss. We also discuss the shortcomings and issues that need to be addressed in the study of hearing loss ncRNAs in the hope of providing viable therapeutic strategies for the precise treatment of hearing loss.
Collapse
Affiliation(s)
- Keyu Zhu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Wang
- Department of Medical Ultrasound, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Sicheng Li
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zeming Liu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Zhan
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Ionescu CM, Jones MA, Wagle SR, Kovacevic B, Foster T, Mikov M, Mooranian A, Al-Salami H. Bile Acid Application in Cell-Targeting for Molecular Receptors in Relation to Hearing: A Comprehensive Review. Curr Drug Targets 2024; 25:158-170. [PMID: 38192136 DOI: 10.2174/0113894501278292231223035733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/26/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024]
Abstract
Bile acids play important roles in the human body, and changes in their pool can be used as markers for various liver pathologies. In addition to their functional effects in modulating inflammatory responses and cellular survivability, the unconjugated or conjugated, secondary, or primary nature of bile acids accounts for their various ligand effects. The common hydrophilic bile acids have been used successfully as local treatment to resolve drug-induced cell damage or to ameliorate hearing loss. From various literature references, bile acids show concentration and tissue-dependent effects. Some hydrophobic bile acids act as ligands modulating vitamin D receptors, muscarinic receptors, and calcium-activated potassium channels, important proteins in the inner ear system. Currently, there are limited resources investigating the therapeutic effects of bile acid on hearing loss and little to no information on detecting bile acids in the remote ear system, let alone baseline bile acid levels and their prevalence in healthy and disease conditions. This review presents both hydrophilic and hydrophobic human bile acids and their tissue-specific effects in modulating cellular integrity, thus considering the possible effects and extended therapeutic applicability of bile acids to the inner ear tissue.
Collapse
Affiliation(s)
- Corina M Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Melissa A Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Susbin R Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- School of Pharmacy, University of Otago, Dunedin, Otago, New Zealand
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Medical School, University of Western Australia, Perth 6009, Western Australia, Australia
| |
Collapse
|
7
|
Zhang L, Guo J, Liu Y, Sun S, Liu B, Yang Q, Tao J, Tian XL, Pu J, Hong H, Wang M, Chen HZ, Ren J, Wang X, Liang Z, Wang Y, Huang K, Zhang W, Qu J, Ju Z, Liu GH, Pei G, Li J, Zhang C. A framework of biomarkers for vascular aging: a consensus statement by the Aging Biomarker Consortium. LIFE MEDICINE 2023; 2:lnad033. [PMID: 40040784 PMCID: PMC11879419 DOI: 10.1093/lifemedi/lnad033] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/25/2023] [Indexed: 03/06/2025]
Abstract
Aging of the vasculature, which is integral to the functioning of literally all human organs, serves as a fundamental physiological basis for age-related alterations as well as a shared etiological mechanism for various chronic diseases prevalent in the elderly population. China, home to the world's largest aging population, faces an escalating challenge in addressing the prevention and management of these age-related conditions. To meet this challenge, the Aging Biomarker Consortium of China has developed an expert consensus on biomarkers of vascular aging (VA) by synthesizing literature and insights from scientists and clinicians. This consensus provides a comprehensive assessment of biomarkers associated with VA and presents a systemic framework to classify them into three dimensions: functional, structural, and humoral. Within each dimension, the expert panel recommends the most clinically relevant VA biomarkers. For the functional domain, biomarkers reflecting vascular stiffness and endothelial function are highlighted. The structural dimension encompasses metrics for vascular structure, microvascular structure, and distribution. Additionally, proinflammatory factors are emphasized as biomarkers with the humoral dimension. The aim of this expert consensus is to establish a foundation for assessing the extent of VA and conducting research related to VA, with the ultimate goal of improving the vascular health of the elderly in China and globally.
Collapse
Affiliation(s)
| | - Le Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
| | - Yuehong Liu
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Shimin Sun
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena 07743, Germany
| | - Baohua Liu
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518055, China
| | - Qi Yang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jun Tao
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun-Yat-sen University, Guangzhou 510080, China
| | - Xiao-Li Tian
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Jun Pu
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai 200127, China
| | - Huashan Hong
- Department of Geriatrics, Fujian Key Laboratory of Vascular Aging, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Miao Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Clinical Pharmacology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Hou-Zao Chen
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Xiaoming Wang
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, Xi’an 710032, China
| | - Zhen Liang
- Shenzhen People’s Hospital, Shenzhen 518020, China
| | - Yuan Wang
- Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou 510632, China
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Gang Pei
- Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
8
|
Wang H, Lin H, Kang W, Huang L, Gong S, Zhang T, Huang X, He F, Ye Y, Tang Y, Jia H, Yang H. miR-34a/DRP-1-mediated mitophagy participated in cisplatin-induced ototoxicity via increasing oxidative stress. BMC Pharmacol Toxicol 2023; 24:16. [PMID: 36882858 PMCID: PMC9993635 DOI: 10.1186/s40360-023-00654-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
PURPOSE Cisplatin is a widely used and effective chemotherapeutic agent for most solid malignant tumors. However, cisplatin-induced ototoxicity is a common adverse effect that limits the therapeutic efficacy of tumors in the clinic. To date, the specific mechanism of ototoxicity has not been fully elucidated, and the management of cisplatin-induced ototoxicity is also an urgent challenge. Recently, some authors believed that miR34a and mitophagy played a role in age-related and drug-induced hearing loss. Our study aimed to explore the involvement of miR-34a/DRP-1-mediated mitophagy in cisplatin-induced ototoxicity. METHODS In this study, C57BL/6 mice and HEI-OC1 cells were treated with cisplatin. MiR-34a and DRP-1 levels were analyzed by qRT‒PCR and western blotting, and mitochondrial function was assessed via oxidative stress, JC-1 and ATP content. Subsequently, we detected DRP-1 levels and observed mitochondrial function by modulating miR-34a expression in HEI-OC1 cells to determine the effect of miR-34a on DRP-1-mediated mitophagy. RESULTS MiR-34a expression increased and DRP-1 levels decreased in C57BL/6 mice and HEI-OC1 cells treated with cisplatin, and mitochondrial dysfunction was involved in this process. Furthermore, the miR-34a mimic decreased DRP-1 expression, enhanced cisplatin-induced ototoxicity and aggravated mitochondrial dysfunction. We further verified that the miR-34a inhibitor increased DRP-1 expression, partially protected against cisplatin-induced ototoxicity and improved mitochondrial function. CONCLUSION MiR-34a/DRP-1-mediated mitophagy was related to cisplatin-induced ototoxicity and might be a novel target for investigating the treatment and protection of cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Haiyan Wang
- Department of Otolaryngology, the First Affiliated Hospital of Jinan University, No.613, West Huangpu Avenue, Guangzhou, 510630, China
| | - Hanqing Lin
- Department of Otolaryngology, the First Affiliated Hospital of Jinan University, No.613, West Huangpu Avenue, Guangzhou, 510630, China
| | - Weibiao Kang
- Department of Otolaryngology, the 2nd hospital, Medical College, Shantou University, Shantou, Guangdong, China
| | - Lingfei Huang
- Department of Otolaryngology, the First Affiliated Hospital of Jinan University, No.613, West Huangpu Avenue, Guangzhou, 510630, China
| | - Sisi Gong
- Department of Otolaryngology, the First Affiliated Hospital of Jinan University, No.613, West Huangpu Avenue, Guangzhou, 510630, China
| | - Tao Zhang
- Department of Otolaryngology, the First Affiliated Hospital of Jinan University, No.613, West Huangpu Avenue, Guangzhou, 510630, China
| | - Xiaotong Huang
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 West Yan Jiang Road, Guangzhou, 510120, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Feinan He
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 West Yan Jiang Road, Guangzhou, 510120, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yongyi Ye
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| | - Yiyang Tang
- Department of Otolaryngology, the First Affiliated Hospital of Jinan University, No.613, West Huangpu Avenue, Guangzhou, 510630, China
| | - Haiying Jia
- Department of Otolaryngology, the First Affiliated Hospital of Jinan University, No.613, West Huangpu Avenue, Guangzhou, 510630, China.
| | - Haidi Yang
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 West Yan Jiang Road, Guangzhou, 510120, China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China. .,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
9
|
He W, Wu F, Xiong H, Zeng J, Gao Y, Cai Z, Pang J, Zheng Y. Promoting TFEB nuclear localization with curcumin analog C1 attenuates sensory hair cell injury and delays age-related hearing loss in C57BL/6 mice. Neurotoxicology 2023; 95:218-231. [PMID: 36792013 DOI: 10.1016/j.neuro.2023.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/16/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Sensory hair cell (HC) injuries, especially outer hair cell (OHC) loss, are well-documented to be the primary pathology of age-related hearing loss (AHL). Recent studies have demonstrated that autophagy plays an important role in HC injury in the inner ear. In our previous works, a decline in autophagy levels and HC loss were found to occur simultaneously in the inner ears of aged C57BL/6 mice, and the administration of rapamycin promoted autophagy levels, which reduced OHC loss and delayed AHL, but the underlying mechanism of autophagy in AHL has not been well elucidated. Transcription factor EB (TFEB), an autophagy regulator and the downstream target of mammalian target of rapamycin (mTOR), is involved in the pathological development of neurodegenerative disease. This study would address the link between autophagy and TFEB in aged C57BL/6 mouse cochleae and clarify the effect of the TFEB activator curcumin analog C1 (C1) in aged cochleae. Decreased TFEB nuclear localization (p = 0.0371) and autophagy dysfunction (p = 0.0273) were observed in the cochleae of aged C57BL/6 mice that exhibited AHL, HCs loss and HCs senescence. Treatment with C1 promoted TFEB nuclear localization and restored autophagy, subsequently alleviating HC injury and delaying AHL. The protective effect of C1 on HEI-OC1 cells against autophagy disorder and aging induced by D-galactose was abolished by chloroquine, which is one of the commonly used autophagy inhibitors. Overall, our results demonstrated that the capacity to perform autophagy is mediated by the nuclear localization of TFEB in aged C57BL/6 mouse cochleae. C1 promotes the nuclear localization of TFEB, subsequently alleviating HC injury and delaying AHL by restoring the impaired autophagy function. TFEB may serve as a new therapeutic target for AHL treatment.
Collapse
Affiliation(s)
- Wuhui He
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fan Wu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Xiong
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Junbo Zeng
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Yiming Gao
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ziyi Cai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiaqi Pang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Yiqing Zheng
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
10
|
Finding the balance: The elusive mechanisms underlying auditory hair cell mitochondrial biogenesis and mitophagy. Hear Res 2023; 428:108664. [PMID: 36566644 DOI: 10.1016/j.heares.2022.108664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 11/23/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
In all cell types, mitochondrial biogenesis is balanced with mitophagy to maintain a healthy mitochondrial pool that sustains specific energetic demands. Cell types that have a higher energetic burden, such as skeletal muscle cells and cardiomyocytes, will subsequently develop high mitochondrial volumes. In these cells, calcium influx during activity triggers cascades leading to activation of the co-transcriptional regulation factor PGC-1α, a master regulator of mitochondrial biogenesis, in a well-defined pathway. Despite the advantages in ATP production, high mitochondrial volumes might prove to be perilous, as it increases exposure to reactive oxygen species produced during oxidative phosphorylation. Mechanosensory hair cells are highly metabolically active cells, with high total mitochondrial volumes to meet that demand. However, the mechanisms leading to expansion and maintenance of the hair cell mitochondrial pool are not well defined. Calcium influx during mechanotransduction and synaptic transmission regulate hair cell mitochondria, leading to a possibility that similar to skeletal muscle and cardiomyocytes, intracellular calcium underlies the expansion of the hair cell mitochondrial volume. This review briefly summarizes the potential mechanisms underlying mitochondrial biogenesis in other cell types and in hair cells. We propose that hair cell mitochondrial biogenesis is primarily product of cellular differentiation rather than calcium influx, and that the hair cell high mitochondrial volume renders them more susceptible to reactive oxygen species increased by calcium flux than other cell types.
Collapse
|
11
|
Zhao T, Tian G. Potential therapeutic role of SIRT1 in age- related hearing loss. Front Mol Neurosci 2022; 15:984292. [PMID: 36204138 PMCID: PMC9530142 DOI: 10.3389/fnmol.2022.984292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/30/2022] [Indexed: 01/11/2023] Open
Abstract
Age-related hearing loss (ARHL) is a major public health burden worldwide that profoundly affects the daily life of elderly people. Silent information regulator 1 (SIRT1 or Sirtuin1), known as a regulator of the cell cycle, the balance of oxidation/antioxidant and mitochondrial function, has been proven to have anti-aging and life-extending effects, and its possible connection with ARHL has received increasing attention in recent years. This paper provides an overview of research on the connection between SIRT1 and ARHL. Topics cover both the functions of SIRT1 and its important role in ARHL. This review concludes with a look at possible research directions for ARHL in the future.
Collapse
Affiliation(s)
- Tingting Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Guangyong Tian
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| |
Collapse
|
12
|
Ding L, Wang J. MiR-106a facilitates the sensorineural hearing loss induced by oxidative stress by targeting connexin-43. Bioengineered 2022; 13:14080-14093. [PMID: 35730503 PMCID: PMC9342191 DOI: 10.1080/21655979.2022.2071021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Sensorineural hearing loss (SNHL) is a common clinical side effect resulted from the overusing of aminoglycoside antibacterial drugs, such as gentamicin. Oxidative stress is recently evidenced to be an important inducer for SNHL, which is reported to be associated with the knockdown of connexin-43. MiR-106a is recently found as a regulator of connexin-43. The present study aims to investigate whether miR-106a is a vital mediator in the development of SNHL. Firstly, upregulated miR-106a was observed in the peripheral blood sample of SNHL patients. Glucose oxidase (GO) was utilized to induce oxidative injury in isolated rat cochlear marginal cells (MCs), followed by introducing the miR-106a inhibitor. We found that the declined proliferation ability, increased apoptosis, and activated oxidative stress in GO-stimulated MCs were dramatically abolished by the miR-106a inhibitor, accompanied by the upregulation of connexin-43. The targeting correlation between miR-106a and connexin-43 was predicted and confirmed by the dual luciferase gene reporter assay. Furthermore, the regulatory effect of miR-106a inhibitor against the proliferation, apoptosis, and oxidative stress in GO-treated MCs were dramatically abolished by the knockdown of connexin-43. Gentamicin was utilized to establish the SNHL model in rats, followed by the treatments of antagomir-106a and antagomir-106a combined with carbenoxolone, an inhibitor of connexin-43. The alleviated pathological state, reduced apoptosis, and ameliorated oxidative stress in cochlea tissues were observed in antagomir-106a treated SNHL rats, which were dramatically reversed by the co-administration of carbenoxolone. Collectively, miR-106a facilitated the SNHL induced by oxidative stress via targeting connexin-43.
Collapse
Affiliation(s)
- Lei Ding
- ENT Department, Beijing University of Chinese Medicine Subsidiary Dongfang Hospital, Beijing, China
| | - Jiaxi Wang
- ENT Department, Beijing University of Chinese Medicine Subsidiary Dongfang Hospital, Beijing, China
| |
Collapse
|
13
|
Mahshid SS, Higazi AM, Ogier JM, Dabdoub A. Extracellular Biomarkers of Inner Ear Disease and Their Potential for Point-of-Care Diagnostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104033. [PMID: 34957708 PMCID: PMC8948604 DOI: 10.1002/advs.202104033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/09/2021] [Indexed: 06/14/2023]
Abstract
Rapid diagnostic testing has become a mainstay of patient care, using easily obtained samples such as blood or urine to facilitate sample analysis at the point-of-care. These tests rely on the detection of disease or organ-specific biomarkers that have been well characterized for a particular disorder. Currently, there is no rapid diagnostic test for hearing loss, which is one of the most prevalent sensory disorders in the world. In this review, potential biomarkers for inner ear-related disorders, their detection, and quantification in bodily fluids are described. The authors discuss lesion-specific changes in cell-free deoxyribonucleic acids (DNAs), micro-ribonucleic acids (microRNAs), proteins, and metabolites, in addition to recent biosensor advances that may facilitate rapid and precise detection of these molecules. Ultimately, these biomarkers may be used to provide accurate diagnostics regarding the site of damage in the inner ear, providing practical information for individualized therapy and assessment of treatment efficacy in the future.
Collapse
Affiliation(s)
- Sahar Sadat Mahshid
- Biological SciencesSunnybrook Research InstituteSunnybrook Health Sciences CentreTorontoONM4N 3M5Canada
| | - Aliaa Monir Higazi
- Biological SciencesSunnybrook Research InstituteSunnybrook Health Sciences CentreTorontoONM4N 3M5Canada
- Department of Clinical and Chemical PathologyMinia UniversityMinia61519Egypt
| | - Jacqueline Michelle Ogier
- Biological SciencesSunnybrook Research InstituteSunnybrook Health Sciences CentreTorontoONM4N 3M5Canada
| | - Alain Dabdoub
- Biological SciencesSunnybrook Research InstituteSunnybrook Health Sciences CentreTorontoONM4N 3M5Canada
- Department of Otolaryngology–Head & Neck SurgeryUniversity of TorontoTorontoONM5G 2C4Canada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONM5S 1A8Canada
| |
Collapse
|
14
|
Guo L, Cao W, Niu Y, He S, Chai R, Yang J. Autophagy Regulates the Survival of Hair Cells and Spiral Ganglion Neurons in Cases of Noise, Ototoxic Drug, and Age-Induced Sensorineural Hearing Loss. Front Cell Neurosci 2021; 15:760422. [PMID: 34720884 PMCID: PMC8548757 DOI: 10.3389/fncel.2021.760422] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022] Open
Abstract
Inner ear hair cells (HCs) and spiral ganglion neurons (SGNs) are the core components of the auditory system. However, they are vulnerable to genetic defects, noise exposure, ototoxic drugs and aging, and loss or damage of HCs and SGNs results in permanent hearing loss due to their limited capacity for spontaneous regeneration in mammals. Many efforts have been made to combat hearing loss including cochlear implants, HC regeneration, gene therapy, and antioxidant drugs. Here we review the role of autophagy in sensorineural hearing loss and the potential targets related to autophagy for the treatment of hearing loss.
Collapse
Affiliation(s)
- Lingna Guo
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.,Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Cao
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuguang Niu
- Department of Ambulatory Medicine, The First Medical Center of PLA General Hospital, Beijing, China
| | - Shuangba He
- Department of Otolaryngology Head and Neck Surgery, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Jianming Yang
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
15
|
Paplou V, Schubert NMA, Pyott SJ. Age-Related Changes in the Cochlea and Vestibule: Shared Patterns and Processes. Front Neurosci 2021; 15:680856. [PMID: 34539328 PMCID: PMC8446668 DOI: 10.3389/fnins.2021.680856] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/20/2021] [Indexed: 12/16/2022] Open
Abstract
Both age-related hearing loss (ARHL) and age-related loss in vestibular function (ARVL) are prevalent conditions with deleterious consequences on the health and quality of life. Age-related changes in the inner ear are key contributors to both conditions. The auditory and vestibular systems rely on a shared sensory organ - the inner ear - and, like other sensory organs, the inner ear is susceptible to the effects of aging. Despite involvement of the same sensory structure, ARHL and ARVL are often considered separately. Insight essential for the development of improved diagnostics and treatments for both ARHL and ARVL can be gained by careful examination of their shared and unique pathophysiology in the auditory and vestibular end organs of the inner ear. To this end, this review begins by comparing the prevalence patterns of ARHL and ARVL. Next, the normal and age-related changes in the structure and function of the auditory and vestibular end organs are compared. Then, the contributions of various molecular mechanisms, notably inflammaging, oxidative stress, and genetic factors, are evaluated as possible common culprits that interrelate pathophysiology in the cochlea and vestibular end organs as part of ARHL and ARVL. A careful comparison of these changes reveals that the patterns of pathophysiology show similarities but also differences both between the cochlea and vestibular end organs and among the vestibular end organs. Future progress will depend on the development and application of new research strategies and the integrated investigation of ARHL and ARVL using both clinical and animal models.
Collapse
Affiliation(s)
- Vasiliki Paplou
- Department of Otorhinolaryngology and Head/Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Nick M A Schubert
- Department of Otorhinolaryngology and Head/Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Research School of Behavioural and Cognitive Neurosciences, Graduate School of Medical Sciences, University of Groningen, Groningen, Netherlands
| | - Sonja J Pyott
- Department of Otorhinolaryngology and Head/Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Research School of Behavioural and Cognitive Neurosciences, Graduate School of Medical Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
16
|
Shew M, Wichova H, Warnecke A, Lenarz T, Staecker H. Evaluating Neurotrophin Signaling Using MicroRNA Perilymph Profiling in Cochlear Implant Patients With and Without Residual Hearing. Otol Neurotol 2021; 42:e1125-e1133. [PMID: 33973949 DOI: 10.1097/mao.0000000000003182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
HYPOTHESIS MicroRNAs predicted to regulate neurotrophin signaling can be found in human perilymph. BACKGROUND Animal and human temporal bone studies suggest that spiral ganglion health can affect cochlear implant (CI) outcomes. Neurotrophins have been identified as a key factor in the maintenance of spiral ganglion health. Changes in miRNAs may regulate neurotrophin signaling and may reflect neurotrophin expression levels. METHODS Perilymph sampling was carried out in 18 patients undergoing cochlear implantation or stapedotomy. Expression of miRNAs in perilymph was evaluated using an Agilent miRNA gene chip. Using ingenuity pathway analysis (IPA) software, miRNAs targeting neurotrophin signaling pathway genes present in a cochlear cDNA library were annotated. Expression levels of miRNAs in perilymph were correlated to the patients' preoperative pure-tone average. RESULTS Expression of mRNAs coding for neurotrophins and their receptors were identified in tissue obtained from normal human cochlea during skull base surgery. We identified miRNAs predicted to regulate these signaling cascades, including miR-1207-5p, miR-4651, miR-103-3p, miR-100-5p, miR-221-3p, miR-200-3p. There was a correlation between poor preoperative hearing and lower expression of miR-1207 (predicted to regulate NTR3) and miR-4651 (predicted to regulate NTR2). Additionally, miR-3960, miR-4481, and miR-675 showed significant differences in expression level when comparing mild and profound hearing loss patients. CONCLUSIONS Expression of some miRNAs that are predicted to regulate neurotrophin signaling in the perilymph of cochlear implant patients vary with the patient's level of residual hearing. These miRNAs may serve as biomarkers for changes in neurotrophin signaling.
Collapse
Affiliation(s)
- Matthew Shew
- Department of Otolaryngology Head and Neck Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Helena Wichova
- Department of Otolaryngology Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas
| | - Athanasia Warnecke
- Department of Otolaryngology, Medizinische Hochschule Hannover, Hannover
- Cluster of Excellence "Hearing4all" of the German Research Foundation (EXC 1077), Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Medizinische Hochschule Hannover, Hannover
- Cluster of Excellence "Hearing4all" of the German Research Foundation (EXC 1077), Germany
| | - Hinrich Staecker
- Department of Otolaryngology Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas
| |
Collapse
|
17
|
Pi C, Ma C, Wang H, Sun H, Yu X, Gao X, Yang Y, Sun Y, Zhang H, Shi Y, Li Y, Li Y, He X. MiR-34a suppression targets Nampt to ameliorate bone marrow mesenchymal stem cell senescence by regulating NAD +-Sirt1 pathway. Stem Cell Res Ther 2021; 12:271. [PMID: 33957971 PMCID: PMC8101138 DOI: 10.1186/s13287-021-02339-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Expansion-mediated replicative senescence and age-related natural senescence have adverse effects on mesenchymal stem cell (MSC) regenerative capability and functionality, thus severely impairing the extensive applications of MSC-based therapies. Emerging evidences suggest that microRNA-34a (miR-34a) has been implicated in the process of MSC senescence; however, the molecular mechanisms with regard to how miR-34a influencing MSC senescence remain largely undetermined. METHODS MiR-34a expression in MSCs was evaluated utilizing RT-qPCR. The functional effects of miR-34a exerting on MSC senescence were investigated via gene manipulation. Relevant gene and protein expression levels were analyzed by RT-qPCR and western blot. Luciferase reporter assays were applied to confirm that Nampt is a direct target of miR-34a. The underlying regulatory mechanism of miR-34a targeting Nampt in MSC senescence was further explored by measuring intracellular NAD+ content, NAD+/NADH ratio and Sirt1 activity. RESULTS In contrast to Nampt expression, miR-34a expression incremented in senescent MSCs. MiR-34a overexpression in young MSCs resulted in senescence-associated characteristics as displayed by senescence-like morphology, prolonged cell proliferation, declined osteogenic differentiation potency, heightened senescence-associated-β-galactosidase activity, and upregulated expression levels of the senescence-associated factors. Conversely, miR-34a suppression in replicative senescent and natural senescent MSCs contributed to diminished senescence-related phenotypic features. We identified Nampt as a direct target gene of miR-34a. In addition, miR-34a repletion resulted in prominent reductions in Nampt expression levels, NAD+ content, NAD+/NADH ratio, and Sirt1 activity, whereas anti-miR-34a treatment exerted the opposite effects. Furthermore, miR-34a-mediated MSC senescence was evidently rescued following the co-treatment with Nampt overexpression. CONCLUSION This study identifies a significant role of miR-34a playing in MSC replicative senescence and natural senescence via targeting Nampt and further mediating by NAD+-Sirt1 pathway, carrying great implications for optimal strategies for MSC therapeutic applications.
Collapse
Affiliation(s)
- Chenchen Pi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, Jilin Province, People's Republic of China.,The First Hospital, and Institute of Immunology, Jilin University, Changchun, 130021, China
| | - Cao Ma
- Department of Pathology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Huan Wang
- Department of Pathology, The First Affiliated Hospital, Henan University of Chinese Medicine, Henan, 450000, China
| | - Hui Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, Jilin Province, People's Republic of China
| | - Xiao Yu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, Jilin Province, People's Republic of China
| | - Xingyu Gao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, Jilin Province, People's Republic of China
| | - Yue Yang
- Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Yanan Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, Jilin Province, People's Republic of China
| | - Haiying Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, Jilin Province, People's Republic of China
| | - Yingai Shi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, Jilin Province, People's Republic of China
| | - Yan Li
- Division of Orthopedics and Biotechnology, Department for Clinical Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, Jilin Province, People's Republic of China
| | - Xu He
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, Jilin Province, People's Republic of China.
| |
Collapse
|
18
|
Rackova L, Mach M, Brnoliakova Z. An update in toxicology of ageing. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 84:103611. [PMID: 33581363 DOI: 10.1016/j.etap.2021.103611] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/17/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
The field of ageing research has been rapidly advancing in recent decades and it had provided insight into the complexity of ageing phenomenon. However, as the organism-environment interaction appears to significantly affect the organismal pace of ageing, the systematic approach for gerontogenic risk assessment of environmental factors has yet to be established. This puts demand on development of effective biomarker of ageing, as a relevant tool to quantify effects of gerontogenic exposures, contingent on multidisciplinary research approach. Here we review the current knowledge regarding the main endogenous gerontogenic pathways involved in acceleration of ageing through environmental exposures. These include inflammatory and oxidative stress-triggered processes, dysregulation of maintenance of cellular anabolism and catabolism and loss of protein homeostasis. The most effective biomarkers showing specificity and relevancy to ageing phenotypes are summarized, as well. The crucial part of this review was dedicated to the comprehensive overview of environmental gerontogens including various types of radiation, certain types of pesticides, heavy metals, drugs and addictive substances, unhealthy dietary patterns, and sedentary life as well as psychosocial stress. The reported effects in vitro and in vivo of both recognized and potential gerontogens are described with respect to the up-to-date knowledge in geroscience. Finally, hormetic and ageing decelerating effects of environmental factors are briefly discussed, as well.
Collapse
Affiliation(s)
- Lucia Rackova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia.
| | - Mojmir Mach
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia
| | - Zuzana Brnoliakova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia
| |
Collapse
|
19
|
Ye R, Sun L, Peng J, Wu A, Chen X, Wen L, Bai C, Chen G. Design, Synthesis, and Biological Evaluation of Dexamethasone-Salvianolic Acid B Conjugates and Nanodrug Delivery against Cisplatin-Induced Hearing Loss. J Med Chem 2021; 64:3115-3130. [PMID: 33666428 DOI: 10.1021/acs.jmedchem.0c01916] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cisplatin (CDDP) is an extensively used chemotherapeutic agent but has a high incidence of severe ototoxicity. Although a few molecules have entered clinical trials, none have been approved to prevent or treat CDDP-induced hearing loss by the Food and Drug Administration. In this study, an amphiphilic drug-drug conjugate was synthesized by covalently linking dexamethasone (DEX) and salvianolic acid B (SAL) through an ester or amide bond. The conjugates could self-assemble into nanoparticles (NPs) with ultrahigh drug loading capacity and favorable stability. Compared with DEX, SAL, or their physical mixture at the same concentrations, both conjugates and NPs showed enhanced otoprotection in vitro and in vivo. More importantly, the conjugates and NPs almost completely restored hearing in a guinea pig model with good biocompatibility. Immunohistochemical analyses suggested that conjugates and NPs activated the glucocorticoid receptor, which may work as one of the major mechanisms for their protective effects.
Collapse
Affiliation(s)
- Ruiqin Ye
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lifang Sun
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jinghui Peng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Aixin Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaozhu Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lu Wen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chuan Bai
- Institute of Human Virology, Sun Yat-sen University, Guangzhou 510080, China
| | - Gang Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
20
|
Shew M, Wichova H, Bur A, Koestler DC, St Peter M, Warnecke A, Staecker H. MicroRNA Profiling as a Methodology to Diagnose Ménière's Disease: Potential Application of Machine Learning. Otolaryngol Head Neck Surg 2021; 164:399-406. [PMID: 32663060 DOI: 10.1177/0194599820940649] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Diagnosis and treatment of Ménière's disease remains a significant challenge because of our inability to understand what is occurring on a molecular level. MicroRNA (miRNA) perilymph profiling is a safe methodology and may serve as a "liquid biopsy" equivalent. We used machine learning (ML) to evaluate miRNA expression profiles of various inner ear pathologies to predict diagnosis of Ménière's disease. STUDY DESIGN Prospective cohort study. SETTING Tertiary academic hospital. SUBJECTS AND METHODS Perilymph was collected during labyrinthectomy (Ménière's disease, n = 5), stapedotomy (otosclerosis, n = 5), and cochlear implantation (sensorineural hearing loss [SNHL], n = 9). miRNA was isolated and analyzed with the Affymetrix miRNA 4.0 array. Various ML classification models were evaluated with an 80/20 train/test split and cross-validation. Permutation feature importance was performed to understand miRNAs that were critical to the classification models. RESULTS In terms of miRNA profiles for conductive hearing loss versus Ménière's, 4 models were able to differentiate and identify the 2 disease classes with 100% accuracy. The top-performing models used the same miRNAs in their decision classification model but with different weighted values. All candidate models for SNHL versus Ménière's performed significantly worse, with the best models achieving 66% accuracy. Ménière's models showed unique features distinct from SNHL. CONCLUSIONS We can use ML to build Ménière's-specific prediction models using miRNA profile alone. However, ML models were less accurate in predicting SNHL from Ménière's, likely from overlap of miRNA biomarkers. The power of this technique is that it identifies biomarkers without knowledge of the pathophysiology, potentially leading to identification of novel biomarkers and diagnostic tests.
Collapse
Affiliation(s)
- Matthew Shew
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Helena Wichova
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Kansas, Kansas City, Kansas, USA
| | - Andres Bur
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Kansas, Kansas City, Kansas, USA
| | - Devin C Koestler
- Department of Biostatistics, School of Medicine, University of Kansas, Kansas City, Kansas, USA
| | | | - Athanasia Warnecke
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
| | - Hinrich Staecker
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Kansas, Kansas City, Kansas, USA
| |
Collapse
|
21
|
Gentile G, Paciello F, Zorzi V, Spampinato AG, Guarnaccia M, Crispino G, Tettey-Matey A, Scavizzi F, Raspa M, Fetoni AR, Cavallaro S, Mammano F. miRNA and mRNA Profiling Links Connexin Deficiency to Deafness via Early Oxidative Damage in the Mouse Stria Vascularis. Front Cell Dev Biol 2021; 8:616878. [PMID: 33569381 PMCID: PMC7868390 DOI: 10.3389/fcell.2020.616878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
Pathogenic mutations in the non-syndromic hearing loss and deafness 1 (DFNB1) locus are the primary cause of monogenic inheritance for prelingual hearing loss. To unravel molecular pathways involved in etiopathology and look for early degeneration biomarkers, we used a system biology approach to analyze Cx30−/− mice at an early cochlear post-natal developmental stage. These mice are a DFNB1 mouse model with severely reduced expression levels of two connexins in the inner ear, Cx30, and Cx26. Integrated analysis of miRNA and mRNA expression profiles in the cochleae of Cx30−/− mice at post-natal day 5 revealed the overexpression of five miRNAs (miR-34c, miR-29b, miR-29c, miR-141, and miR-181a) linked to apoptosis, oxidative stress, and cochlear degeneration, which have Sirt1 as a common target of transcriptional and/or post-transcriptional regulation. In young adult Cx30−/− mice (3 months of age), these alterations culminated with blood barrier disruption in the Stria vascularis (SV), which is known to have the highest aerobic metabolic rate of all cochlear structures and whose microvascular alterations contribute to age-related degeneration and progressive decline of auditory function. Our experimental validation of selected targets links hearing acquisition failure in Cx30−/− mice, early oxidative stress, and metabolic dysregulation to the activation of the Sirt1–p53 axis. This is the first integrated analysis of miRNA and mRNA in the cochlea of the Cx30−/− mouse model, providing evidence that connexin downregulation determines a miRNA-mediated response which leads to chronic exhaustion of cochlear antioxidant defense mechanisms and consequent SV dysfunction. Our analyses support the notion that connexin dysfunction intervenes early on during development, causing vascular damage later on in life. This study identifies also early miRNA-mediated biomarkers of hearing impairment, either inherited or age related.
Collapse
Affiliation(s)
- Giulia Gentile
- Department of Biomedical Sciences, National Research Council (CNR) Institute for Biomedical Research and Innovation, Catania, Italy
| | - Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Veronica Zorzi
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy.,Department of Biomedical Sciences, National Research Council (CNR) Institute of Biochemistry and Cell Biology, Rome, Italy
| | - Antonio Gianmaria Spampinato
- Department of Biomedical Sciences, National Research Council (CNR) Institute for Biomedical Research and Innovation, Catania, Italy.,Department of Mathematics and Computer Science, University of Catania, Catania, Italy
| | - Maria Guarnaccia
- Department of Biomedical Sciences, National Research Council (CNR) Institute for Biomedical Research and Innovation, Catania, Italy
| | - Giulia Crispino
- Department of Biomedical Sciences, National Research Council (CNR) Institute of Biochemistry and Cell Biology, Rome, Italy
| | - Abraham Tettey-Matey
- Department of Biomedical Sciences, National Research Council (CNR) Institute of Biochemistry and Cell Biology, Rome, Italy
| | - Ferdinando Scavizzi
- Department of Biomedical Sciences, National Research Council (CNR) Institute of Biochemistry and Cell Biology, Rome, Italy
| | - Marcello Raspa
- Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Anna Rita Fetoni
- Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy.,Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sebastiano Cavallaro
- Department of Biomedical Sciences, National Research Council (CNR) Institute for Biomedical Research and Innovation, Catania, Italy
| | - Fabio Mammano
- Department of Biomedical Sciences, National Research Council (CNR) Institute of Biochemistry and Cell Biology, Rome, Italy.,Department of Physics and Astronomy "G. Galilei", University of Padua, Padua, Italy
| |
Collapse
|
22
|
Peng T, Peng JJ, Miao GY, Tan ZQ, Liu B, Zhou E. miR‑125/CDK2 axis in cochlear progenitor cell proliferation. Mol Med Rep 2020; 23:102. [PMID: 33300064 PMCID: PMC7723065 DOI: 10.3892/mmr.2020.11741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/16/2020] [Indexed: 12/25/2022] Open
Abstract
Hearing loss ranks fourth among the principal causes of disability worldwide, and manipulation of progenitor cells may be a key strategy for hair cell regeneration. The present study investigated the role and mechanism of miR‑125 on the proliferation of cochlear progenitor cells (CPCs). CPCs were isolated from the cochleae of neonatal rats, and their morphology was observed. Furthermore, the differentiation ability of CPCs was determined by assessing the expression of 5‑bromodeoxyuridine (BrdU), nestin and myosin VII by immunofluorescence. The expression levels of miR‑125 and cyclin‑dependent kinase 2 (CDK2) as well as the cell proliferation of CPCs were assessed. In addition, following gain‑ and loss‑of‑function assays, the cell cycle was examined by flow cytometry, and the expression levels of miR‑125, CDK2, proliferating cell nuclear antigen (PCNA) and nestin were determined by reverse transcription‑quantitative PCR and western blotting. The binding sites between miR‑125 and CDK2 were predicted by TargetScan and identified by the dual luciferase reporter assay. The results demonstrated that different types of progenitor spheres were observed from CPCs with positive expression of BrdU, nestin and myosin VII. Following in vitro incubation for 2, 4 and 7 days, the spheres were enlarged, and CPC proliferation gradually increased and reached a plateau after further incubation for 3 days. Furthermore, the expression levels of nestin and PCNA in CPCs increased and then decreased during in vitro incubation for 2, 4 and 7 days. Following this incubation, the expression levels of miR‑125 in CPCs decreased; thereafter, its expression increased, and the expression pattern was different from that of CDK2. In addition, miR‑125 overexpression in CPCs decreased the expression of CDK2 and the number of cells in the S phase. Different expression patterns were found in CPCs in response to the miR‑125 knockdown. In addition, miR‑125 directly targeted CDK2. Simultaneous knockdown of miR‑125 and CDK2 enhanced CPC proliferation compared with CDK2 knockdown alone. Taken together, the findings from the present study suggested that miR‑125 may inhibit CPC proliferation by downregulating CDK2. The present study may provide a novel therapeutic direction for treatment of hearing loss.
Collapse
Affiliation(s)
- Tao Peng
- Department of Otolaryngology and Head and Neck Surgery, Hunan Provincial People's Hospital, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410007, P.R. China
| | - Jing-Jing Peng
- Department of Obstetrics and Gynecology, Changsha Maternal and Child Health Care Hospital, Changsha, Hunan 410005, P.R. China
| | - Gang-Yong Miao
- Department of Otolaryngology and Head and Neck Surgery, Hunan Provincial People's Hospital, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410007, P.R. China
| | - Zhi-Qiang Tan
- Department of Otolaryngology and Head and Neck Surgery, Hunan Provincial People's Hospital, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410007, P.R. China
| | - Bin Liu
- Department of Otolaryngology and Head and Neck Surgery, Hunan Provincial People's Hospital, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410007, P.R. China
| | - En Zhou
- Department of Otolaryngology and Head and Neck Surgery, Hunan Provincial People's Hospital, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410007, P.R. China
| |
Collapse
|
23
|
Forouzanfar F, Asgharzade S. MicroRNAs in Noise-Induced Hearing Loss and their Regulation by Oxidative Stress and Inflammation. Curr Drug Targets 2020; 21:1216-1224. [PMID: 32538724 DOI: 10.2174/1389450121666200615145552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/20/2022]
Abstract
Noise exposure (NE) has been recognized as one of the causes of sensorineural hearing loss (SNHL), which can bring about irreversible damage to sensory hair cells in the cochlea, through the launch of oxidative stress pathways and inflammation. Accordingly, determining the molecular mechanism involved in regulating hair cell apoptosis via NE is essential to prevent hair cell damage. However, the role of microRNAs (miRNAs) in the degeneration of sensory cells of the cochlea during NE has not been so far uncovered. Thus, the main purpose of this study was to demonstrate the regulatory role of miRNAs in the oxidative stress pathway and inflammation induced by NE. In this respect, articles related to noise-induced hearing loss (NIHL), oxidative stress, inflammation, and miRNA from various databases of Directory of Open Access Journals (DOAJ), Google Scholar, PubMed; Library, Information Science & Technology Abstracts (LISTA), and Web of Science were searched and retrieved. The findings revealed that several studies had suggested that up-regulation of miR-1229-5p, miR-451a, 185-5p, 186 and down-regulation of miRNA-96/182/183 and miR-30b were involved in oxidative stress and inflammation which could be used as biomarkers for NIHL. There was also a close relationship between NIHL and miRNAs, but further research is required to prove a causal association between miRNA alterations and NE, and also to determine miRNAs as biomarkers indicating responses to NE.
Collapse
Affiliation(s)
- Fatemeh Forouzanfar
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samira Asgharzade
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
24
|
Marozzo R, Pegoraro V, Dipietro L, Ralli M, Angelini C, Di Stadio A. Can miR-34a be suitable for monitoring sensorineural hearing loss in patients with mitochondrial disease? A case series. Int J Neurosci 2020; 130:1272-1277. [PMID: 32079439 DOI: 10.1080/00207454.2020.1731505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purpose: We aimed at evaluating the feasibility of using MicroRNA (miR)-34a and miR-29b to detect inner ear damage in patients with mitochondrial disease (MD) and sensorineural hearing loss (SNHL).Material and Methods: Three patients with MD and SNHL and seven healthy control subjects were included in this case series. MD patients underwent pure tone audiometry (PTA), distortion product otoacoustic emission (DPOAE) and auditory brain response tests to investigate the specific cochlear and retrocochlear functions; control patients underwent PTA. MiR-34a and miR-29b were extracted from blood in all subjects included in the study. The expression of miR-34a and miR-29b in MD patients and healthy controls were statistically compared, then the expression of these two miRs was compared with DPOAE values.Results: In MD patients, miR-34a was significantly up-regulated compared to healthy controls; miR-34a and DPOAEs were negatively correlated. Conversely, miR-29b was up-regulated only in the youngest patient who suffered from the mildest forms of MD and SNHL, and negatively correlated with DPOAEs.Conclusion: In MD patients, miR-34a and miR-29b might be a marker of inner ear damage and early damage, respectively. Additional studies on larger samples are necessary to confirm these preliminary results.
Collapse
Affiliation(s)
| | | | | | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome,Rome,Italy
| | | | - Arianna Di Stadio
- Otolaryngology Department, University of Perugia, Perugia, Italy.,Neuroinflammation Laboratory, UCL Queen Square Neurology, London, UK
| |
Collapse
|
25
|
Cheng C, Wang Y, Guo L, Lu X, Zhu W, Muhammad W, Zhang L, Lu L, Gao J, Tang M, Chen F, Gao X, Li H, Chai R. Age-related transcriptome changes in Sox2+ supporting cells in the mouse cochlea. Stem Cell Res Ther 2019; 10:365. [PMID: 31791390 PMCID: PMC6889721 DOI: 10.1186/s13287-019-1437-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/29/2019] [Accepted: 10/01/2019] [Indexed: 12/17/2022] Open
Abstract
Background Inner ear supporting cells (SCs) in the neonatal mouse cochlea are a potential source for hair cell (HC) regeneration, but several studies have shown that the regeneration ability of SCs decreases dramatically as mice age and that lost HCs cannot be regenerated in adult mice. To better understand how SCs might be better used to regenerate HCs, it is important to understand how the gene expression profile changes in SCs at different ages. Methods Here, we used Sox2GFP/+ mice to isolate the Sox2+ SCs at postnatal day (P)3, P7, P14, and P30 via flow cytometry. Next, we used RNA-seq to determine the transcriptome expression profiles of P3, P7, P14, and P30 SCs. To further analyze the relationships between these age-related and differentially expressed genes in Sox2+ SCs, we performed gene ontology (GO) analysis. Results Consistent with previous reports, we also found that the proliferation and HC regeneration ability of isolated Sox2+ SCs significantly decreased as mice aged. We identified numerous genes that are enriched and differentially expressed in Sox2+ SCs at four different postnatal ages, including cell cycle genes, signaling pathway genes, and transcription factors that might be involved in regulating the proliferation and HC differentiation ability of SCs. We thus present a set of genes that might regulate the proliferation and HC regeneration ability of SCs, and these might serve as potential new therapeutic targets for HC regeneration. Conclusions In our research, we found several genes that might play an important role in regulating the proliferation and HC regeneration ability of SCs. These datasets are expected to serve as a resource to provide potential new therapeutic targets for regulating the ability of SCs to regenerate HCs in postnatal mammals.
Collapse
Affiliation(s)
- Cheng Cheng
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, China.,Research Institute of Otolaryngology, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Yunfeng Wang
- Shanghai Fenyang Vision & Audition Center, Shanghai, China.,ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China
| | - Luo Guo
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China
| | - Xiaoling Lu
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China
| | - Weijie Zhu
- MOE Key Laboratory for Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Co-Innovation Center of Neuroregeneration, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Waqas Muhammad
- MOE Key Laboratory for Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Co-Innovation Center of Neuroregeneration, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.,Department of Biotechnology, Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal Campus, Karachi, Pakistan
| | - Liyan Zhang
- MOE Key Laboratory for Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Co-Innovation Center of Neuroregeneration, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Ling Lu
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Junyan Gao
- Jiangsu Rehabilitation Research Center for Hearing and Speech Impairment, Nanjing, 210004, Jiangsu, China
| | - Mingliang Tang
- MOE Key Laboratory for Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Co-Innovation Center of Neuroregeneration, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Fangyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Xia Gao
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, China.
| | - Huawei Li
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China.
| | - Renjie Chai
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China. .,MOE Key Laboratory for Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Co-Innovation Center of Neuroregeneration, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China. .,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China. .,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
26
|
Early phase trials of novel hearing therapeutics: Avenues and opportunities. Hear Res 2019; 380:175-186. [DOI: 10.1016/j.heares.2019.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 06/27/2019] [Accepted: 07/03/2019] [Indexed: 11/19/2022]
|
27
|
Pang J, Xiong H, Ou Y, Yang H, Xu Y, Chen S, Lai L, Ye Y, Su Z, Lin H, Huang Q, Xu X, Zheng Y. SIRT1 protects cochlear hair cell and delays age-related hearing loss via autophagy. Neurobiol Aging 2019; 80:127-137. [PMID: 31170533 DOI: 10.1016/j.neurobiolaging.2019.04.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/29/2019] [Accepted: 04/04/2019] [Indexed: 12/16/2022]
Abstract
Age-related hearing loss (AHL) is typically caused by the irreversible death of hair cells (HCs). Autophagy is a constitutive pathway to strengthen cell survival under normal or stress condition. Our previous work suggested that impaired autophagy played an important role in the development of AHL in C57BL/6 mice, although the underlying mechanism of autophagy in AHL still needs to be investigated. SIRT1 as an important regulator involves in AHL and is also a regulator of autophagy. Thus, we hypothesized that the modulation between SIRT1 and autophagy contribute to HC death and the progressive hearing dysfunction in aging. In the auditory cell line HEI-OC1, SIRT1 modulated autophagosome induction because of SIRT1 deacetylating a core autophagy protein ATG9A. The deacetylation of ATG9A not only affects the autophagosome membrane formation but also acts as a sensor of endoplasmic reticulum (ER) stress inducing autophagy. Moreover, the silencing of SIRT1 facilitated cell death via autophagy inhibition, whereas SIRT1 and autophagy activation reversed the SIRT1 inhibition media cell death. Notably, resveratrol, the first natural agonist of SIRT1, altered the organ of Corti autophagy impairment of the 12-month-old C57BL/6 mice and delayed AHL. The activation of SIRT1 modulates the deacetylation status of ATG9A, which acts as a sensor of ER stress, providing a novel perspective in elucidating the link between ER stress and autophagy in aging. Because SIRT1 activation restores autophagy with reduced HC death and hearing loss, it could be used as a strategy to delay AHL.
Collapse
Affiliation(s)
- Jiaqi Pang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hao Xiong
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China; Department of Hearing and Speech Science, Xinhua College, Sun Yat-sen University, Guangzhou, China
| | - Yongkang Ou
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China; Department of Hearing and Speech Science, Xinhua College, Sun Yat-sen University, Guangzhou, China
| | - Haidi Yang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China; Department of Hearing and Speech Science, Xinhua College, Sun Yat-sen University, Guangzhou, China
| | - Yaodong Xu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Suijun Chen
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China; Department of Hearing and Speech Science, Xinhua College, Sun Yat-sen University, Guangzhou, China
| | - Lan Lai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yongyi Ye
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou China; School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Zhongwu Su
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Hanqing Lin
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Qiuhong Huang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China; Department of Hearing and Speech Science, Xinhua College, Sun Yat-sen University, Guangzhou, China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Yiqing Zheng
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China; Department of Hearing and Speech Science, Xinhua College, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
28
|
Abstract
OBJECTIVE This review summarises the current literature on the role of microRNAs in presbyacusis (age-related hearing loss) and sudden sensorineural hearing loss. METHODS Medline, PubMed, Web of Science and Embase databases were searched for primary English-language studies, published between 2000 and 2017, which investigated the role of microRNAs in the pathogenesis of presbyacusis or sudden sensorineural hearing loss. Quality of evidence was assessed using the National Institutes of Health quality assessment tool. RESULTS Nine of 207 identified articles, 6 of good quality, satisfied the review's inclusion criteria. In presbyacusis, microRNAs in pro-apoptotic and autophagy pathways are upregulated, while microRNAs in proliferative and differentiation pathways are downregulated. Evidence for microRNAs having an aetiological role in sudden hearing loss is limited. CONCLUSION A shift in microRNA expression, leading to reduced cellular activity and impaired inner-ear homeostasis, may contribute to the pathogenesis of presbyacusis.
Collapse
|
29
|
Shew M, New J, Wichova H, Koestler DC, Staecker H. Using Machine Learning to Predict Sensorineural Hearing Loss Based on Perilymph Micro RNA Expression Profile. Sci Rep 2019; 9:3393. [PMID: 30833669 PMCID: PMC6399453 DOI: 10.1038/s41598-019-40192-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/07/2019] [Indexed: 02/06/2023] Open
Abstract
Hearing loss (HL) is the most common neurodegenerative disease worldwide. Despite its prevalence, clinical testing does not yield a cell or molecular based identification of the underlying etiology of hearing loss making development of pharmacological or molecular treatments challenging. A key to improving the diagnosis of inner ear disorders is the development of reliable biomarkers for different inner ear diseases. Analysis of microRNAs (miRNA) in tissue and body fluid samples has gained significant momentum as a diagnostic tool for a wide variety of diseases. In previous work, we have shown that miRNA profiling in inner ear perilymph is feasible and may demonstrate distinctive miRNA expression profiles unique to different diseases. A first step in developing miRNAs as biomarkers for inner ear disease is linking patterns of miRNA expression in perilymph to clinically available metrics. Using machine learning (ML), we demonstrate we can build disease specific algorithms that predict the presence of sensorineural hearing loss using only miRNA expression profiles. This methodology not only affords the opportunity to understand what is occurring on a molecular level, but may offer an approach to diagnosing patients with active inner ear disease.
Collapse
Affiliation(s)
- Matthew Shew
- University of Kansas School of Medicine, Department of Otolaryngology-Head and Neck Surgery, Kansas City, KS, USA.
| | - Jacob New
- University of Kansas School of Medicine, Kansas City, KS, USA
| | - Helena Wichova
- University of Kansas School of Medicine, Department of Otolaryngology-Head and Neck Surgery, Kansas City, KS, USA
| | - Devin C Koestler
- University of Kansas School of Medicine, Department of Biostatistics, Kansas City, KS, USA
| | - Hinrich Staecker
- University of Kansas School of Medicine, Department of Otolaryngology-Head and Neck Surgery, Kansas City, KS, USA
| |
Collapse
|
30
|
Pang J, Xiong H, Zhan T, Cheng G, Jia H, Ye Y, Su Z, Chen H, Lin H, Lai L, Ou Y, Xu Y, Chen S, Huang Q, Liang M, Cai Y, Zhang X, Xu X, Zheng Y, Yang H. Sirtuin 1 and Autophagy Attenuate Cisplatin-Induced Hair Cell Death in the Mouse Cochlea and Zebrafish Lateral Line. Front Cell Neurosci 2019; 12:515. [PMID: 30692914 PMCID: PMC6339946 DOI: 10.3389/fncel.2018.00515] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022] Open
Abstract
Cisplatin-induced ototoxicity is one of the major adverse effects in cisplatin chemotherapy, and hearing protective approaches are unavailable in clinical practice. Recent work unveiled a critical role of autophagy in cell survival in various types of hearing loss. Since the excessive activation of autophagy can contribute to apoptotic cell death, whether the activation of autophagy increases or decreases the rate of cell death in CDDP ototoxicity is still being debated. In this study, we showed that CDDP induced activation of autophagy in the auditory cell HEI-OC1 at the early stage. We then used rapamycin, an autophagy activator, to increase the autophagy activity, and found that the cell death significantly decreased after CDDP injury. In contrast, treatment with the autophagy inhibitor 3-methyladenine (3-MA) significantly increased cell death. In accordance with in vitro results, rapamycin alleviated CDDP-induced death of hair cells in zebrafish lateral line and cochlear hair cells in mice. Notably, we found that CDDP-induced increase of Sirtuin 1 (SIRT1) in the HEI-OC1 cells modulated the autophagy function. The specific SIRT1 activator SRT1720 could successfully protect against CDDP-induced cell loss in HEI-OC1 cells, zebrafish lateral line, and mice cochlea. These findings suggest that SIRT1 and autophagy activation can be suggested as potential therapeutic strategies for the treatment of CDDP-induced ototoxicity.
Collapse
Affiliation(s)
- Jiaqi Pang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Xiong
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| | - Ting Zhan
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gui Cheng
- Department of Otolaryngology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Haiying Jia
- Department of Otolaryngology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yongyi Ye
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhongwu Su
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongyu Chen
- Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| | - Hanqing Lin
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lan Lai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yongkang Ou
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| | - Yaodong Xu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| | - Suijun Chen
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| | - Qiuhong Huang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| | - Maojin Liang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| | - Yuexin Cai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| | - Xueyuan Zhang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yiqing Zheng
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| | - Haidi Yang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
31
|
Chua CEL, Tang BL. miR-34a in Neurophysiology and Neuropathology. J Mol Neurosci 2018; 67:235-246. [DOI: 10.1007/s12031-018-1231-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/22/2018] [Indexed: 12/28/2022]
|
32
|
Cosar E, Mamillapalli R, Moridi I, Duleba A, Taylor HS. Serum MicroRNA Biomarkers Regulated by Simvastatin in a Primate Model of Endometriosis. Reprod Sci 2018; 26:1343-1350. [PMID: 29587611 DOI: 10.1177/1933719118765971] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Endometriosis is a chronic inflammatory and estrogen-dependent disease that causes pain and infertility in reproductive-aged women. Due to the delay in diagnosis, there is a pressing need for accurate biomarkers. Detection of serum noncoding RNA molecules such as microRNAs (miRNAs) shows promise as a noninvasive diagnostic strategy; we previously identified miRNAs that are highly sensitive and specific biomarkers for the disease. In this study, we investigate the expression of these miRNAs in a nonhuman primate model of endometriosis. As part of a pilot study evaluating simvastatin for the treatment of endometriosis, the disease was induced in 16 baboons by induction laparoscopy and the animals were divided into 2 groups. One group was treated with simvastatin for 90 days, while the second group received vehicle only. Endometriosis was evaluated after 3 months by laparoscopy. Serum samples were analyzed for 9 circulating miRNAs using quantitative real time-polymerase chain reaction, focusing on the miRNAs we found to be dysregulated in human endometriosis. In the simvastatin-treated endometriosis group, levels of miR-150-5p and miR-451a were decreased, while miR-3613-5p levels were increased compared to the untreated endometriosis group. The changes in circulating miRNA expression patterns parallel our previous results in human patients and show that specific miRNAs correlate with endometriosis severity and reverted toward control expression levels after simvastatin treatment. This is the first report showing serum miRNA expression normalized in response to endometriosis treatment, supporting the potential for this class of biomarkers to be used both to diagnose endometriosis and to monitor its progression and response to therapy.
Collapse
Affiliation(s)
- Emine Cosar
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Irene Moridi
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Antoni Duleba
- Division of Reproductive Endocrinology and Infertility, Department of Reproductive Medicine, University of California, San Diego, CA, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
33
|
Miguel V, Cui JY, Daimiel L, Espinosa-Díez C, Fernández-Hernando C, Kavanagh TJ, Lamas S. The Role of MicroRNAs in Environmental Risk Factors, Noise-Induced Hearing Loss, and Mental Stress. Antioxid Redox Signal 2018; 28:773-796. [PMID: 28562070 PMCID: PMC5911706 DOI: 10.1089/ars.2017.7175] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE MicroRNAs (miRNAs) are important regulators of gene expression and define part of the epigenetic signature. Their influence on every realm of biomedicine is established and progressively increasing. The impact of environment on human health is enormous. Among environmental risk factors impinging on quality of life are those of chemical nature (toxic chemicals, heavy metals, pollutants, and pesticides) as well as those related to everyday life such as exposure to noise or mental and psychosocial stress. Recent Advances: This review elaborates on the relationship between miRNAs and these environmental risk factors. CRITICAL ISSUES The most relevant facts underlying the role of miRNAs in the response to these environmental stressors, including redox regulatory changes and oxidative stress, are highlighted and discussed. In the cases wherein miRNA mutations are relevant for this response, the pertinent literature is also reviewed. FUTURE DIRECTIONS We conclude that, even though in some cases important advances have been made regarding close correlations between specific miRNAs and biological responses to environmental risk factors, a need for prospective large-cohort studies is likely necessary to establish causative roles. Antioxid. Redox Signal. 28, 773-796.
Collapse
Affiliation(s)
- Verónica Miguel
- 1 Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) , Madrid, Spain
| | - Julia Yue Cui
- 2 Department of Environmental and Occupational Health Sciences, University of Washington , Seattle, Washington
| | - Lidia Daimiel
- 3 Instituto Madrileño de Estudios Avanzados-Alimentación (IMDEA-Food) , Madrid, Spain
| | - Cristina Espinosa-Díez
- 4 Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University , Portland, Oregon
| | | | - Terrance J Kavanagh
- 2 Department of Environmental and Occupational Health Sciences, University of Washington , Seattle, Washington
| | - Santiago Lamas
- 1 Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) , Madrid, Spain
| |
Collapse
|
34
|
Di Stadio A, Pegoraro V, Giaretta L, Dipietro L, Marozzo R, Angelini C. Hearing impairment in MELAS: new prospective in clinical use of microRNA, a systematic review. Orphanet J Rare Dis 2018; 13:35. [PMID: 29466997 PMCID: PMC5822652 DOI: 10.1186/s13023-018-0770-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/24/2018] [Indexed: 11/10/2022] Open
Abstract
AIM To evaluate the feasibility of microRNAs (miR) in clinical use to fill in the gap of current methodology commonly used to test hearing impairment in MELAS patients. MATERIAL AND METHOD A literature review was performed using the following keywords, i.e., MELAS, Hearing Loss, Hearing Impairment, Temporal Bone, Otoacustic Emission (OTOAE), Auditory Brain Response (ABR), and microRNA. We reviewed the literature and focused on the aspect of the temporal bone, the results of electrophysiological tests in human clinical studies, and the use of miR for detecting lesions in the cochlea in patients with MELAS. RESULTS In patients with MELAS, Spiral Ganglions (SG), stria vascularis (SV), and hair cells are damaged, and these damages affect in different ways various structures of the temporal bone. The function of these cells is typically investigated using OTOAE and ABR, but in patients with MELAS these tests provide inconsistent results, since OTOAE response is absent and ABR is normal. The normal ABR responses are unexpected given the SG loss in the temporal bone. Recent studies in humans and animals have shown that miRs, and in particular miRs 34a, 29b, 76, 96, and 431, can detect damage in the cells of the cochlea with high sensitivity. Studies that focus on the temporal bone aspects have reported that miRs increase is correlated with the death of specific cells of the inner ear. MiR - 9/9* was identified as a biomarker of human brain damage, miRs levels increase might be related to damage in the central auditory pathways and these increased levels could identify the damage with higher sensitivity and several months before than electrophysiological testing. CONCLUSION We suggest that due to their accuracy and sensitivity, miRs might help monitor the progression of SNHL in patients with MELAS.
Collapse
Affiliation(s)
| | | | - Laura Giaretta
- San Camillo Hospital IRCCS, Via Alberoni, 70, Venice, Italy
| | | | | | | |
Collapse
|
35
|
Hu W, Wu J, Jiang W, Tang J. MicroRNAs and Presbycusis. Aging Dis 2018; 9:133-142. [PMID: 29392088 PMCID: PMC5772851 DOI: 10.14336/ad.2017.0119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/19/2017] [Indexed: 12/19/2022] Open
Abstract
Presbycusis (age-related hearing loss) is the most universal sensory degenerative disease in elderly people caused by the degeneration of cochlear cells. Non-coding microRNAs (miRNAs) play a fundamental role in gene regulation in almost every multicellular organism, and control the aging processes. It has been identified that various miRNAs are up- or down-regulated during mammalian aging processes in tissue-specific manners. Most miRNAs bind to specific sites on their target messenger-RNAs (mRNAs) and decrease their expression. Germline mutation may lead to dysregulation of potential miRNAs expression, causing progressive hair cell degeneration and age-related hearing loss. Therapeutic innovations could emerge from a better understanding of diverse function of miRNAs in presbycusis. This review summarizes the relationship between miRNAs and presbycusis, and presents novel miRNAs-targeted strategies against presbycusis.
Collapse
Affiliation(s)
- Weiming Hu
- 1Department of Otolaryngology-Head and Neck Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Junwu Wu
- 2Department of Otolaryngology-Head and Neck Surgery, Yiwu traditional Chinese Medicine Hospital, Yiwu 322000, China.,3Department of Otolaryngology-Head and Neck Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
| | - Wenjing Jiang
- 1Department of Otolaryngology-Head and Neck Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Jianguo Tang
- 3Department of Otolaryngology-Head and Neck Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
36
|
Li Q, Peng X, Huang H, Li J, Wang F, Wang J. RNA sequencing uncovers the key microRNAs potentially contributing to sudden sensorineural hearing loss. Medicine (Baltimore) 2017; 96:e8837. [PMID: 29381991 PMCID: PMC5708990 DOI: 10.1097/md.0000000000008837] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This study aimed to identify miRNAs that may contribute to the pathogenesis of sudden sensorineural hearing loss (SSNHL) by RNA-seq (RNA-sequencing).RNA was extracted from SSNHL patients and healthy volunteers, respectively. Sequencing was performed on HiSeq4000 platform. After filtering, clean reads were mapped to the human reference genome hg19. Differential expression analysis of miRNAs between the SSNHL samples and the normal samples was performed using DEseq to identify differentially expressed microRNAs (DEMs). The target genes of the DEMs were predicted using the online tool miRWalk, which were then mapped to DAVID (https://david.ncifcrf.gov/) for functional annotation based on GO database and for pathway enrichment analysis based on KEGG. Finally, a miRNA-target-protein-protein interaction (PPIs) network was constructed using the DEMs and their target genes with interaction.Differential expression analysis reveals 24 DEMs between the SSNHL group and control group. A total of 1083 target genes were predicted. GO functional annotation analysis reveals that the target genes in the top 10 terms are mainly related to the development of salivary glands, neurotransmission, dendritic development, and other processes. KEGG pathway enrichment analysis reveals that the target genes were functionally enriched in pathways arachidonic acid metabolism, complement and coagulation cascades, linoleic acid metabolism, and MAPK signaling pathway. In the miRNA-target-PPI network, hsa-miR-34a/548n/15a/143/23a/210/1255a/18b/ /1180/99b had the most target genes; genes YWHAG, GSK3B, CDC42, NR3C1, LCK, UNC119, SIN3A, and NFKB2, interact with most other genes among all the predicted target genes.Hsa-miR-34a/15a/23a/210/18b/548n/143 is likely to have a role in the pathogenesis of SSNHL.
Collapse
|
37
|
Pang J, Xiong H, Lin P, Lai L, Yang H, Liu Y, Huang Q, Chen S, Ye Y, Sun Y, Zheng Y. Activation of miR-34a impairs autophagic flux and promotes cochlear cell death via repressing ATG9A: implications for age-related hearing loss. Cell Death Dis 2017; 8:e3079. [PMID: 28981097 PMCID: PMC5680584 DOI: 10.1038/cddis.2017.462] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 07/27/2017] [Accepted: 08/02/2017] [Indexed: 12/12/2022]
Abstract
Age-related hearing loss is a major unresolved public health problem. We have previously elucidated that the activation of cochlear miR-34a is correlated with age-related hearing loss in C57BL/6 mice. A growing body of evidence points that aberrant autophagy promotes cell death during the development of multiple age-related diseases. The aim of this study was to investigate the role of miR-34a-involved disorder of autophagy in the pathogenesis of age-related hearing loss. Our results showed that miR-34a expression was markedly upregulated in the aging cochlea accompanied with impairment of autophagic flux. In the inner ear HEI-OC1 cell line, miR-34a overexpression resulted in an accumulation of phagophores and impaired autophagosome-lysosome fusion, and led to cell death subsequently. Notably, autophagy-related protein 9A (ATG9A), an autophagy protein, was significantly decreased after miR-34a overexpression. Knockdown of ATG9A inhibited autophagy flux, which is similar to the effects of miR-34a overexpression. Moreover, ursodeoxycholic acid significantly rescued miR-34a-induced HEI-OC1 cell death by restoring autophagy activity. Collectively, these findings increase our understanding of the biological effects of miR-34a in the development of age-related hearing loss and highlight miR-34a as a promising therapeutic target for its treatment.
Collapse
Affiliation(s)
- Jiaqi Pang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Xiong
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peiliang Lin
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Lan Lai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haidi Yang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Yimin Liu
- Guangzhou Occupational Disease Prevention and Treatment Center, Guangzhou, China
| | - Qiuhong Huang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Suijun Chen
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Yongyi Ye
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yingfeng Sun
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Yiqing Zheng
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
38
|
Huang Q, Zheng Y, Ou Y, Xiong H, Yang H, Zhang Z, Chen S, Ye Y. miR-34a/Bcl-2 signaling pathway contributes to age-related hearing loss by modulating hair cell apoptosis. Neurosci Lett 2017; 661:51-56. [PMID: 28756190 DOI: 10.1016/j.neulet.2017.07.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 11/18/2022]
Abstract
MicroRNAs, such as miR-34, have been reported to influence age-related diseases. In this study, we explored the role of the miR-34a/Bcl-2 signaling pathway in age-related hearing loss (AHL). Using an AHL mouse model (C57BL/6), we found that the expression of miR-34a in the cochlea increased with age, whereas expression of Bcl-2 decreased. Increasing the amount of a miR-34a mimetic in a mouse auditory cell line (HEI-OC1) inhibited Bcl-2, leading to enhanced apoptosis; in contrast, miR-34a inhibition produced the opposite effect. Our results support a link between age-related cochlear hair cell apoptosis and miR-34a/Bcl-2 signaling. The latter may thus serve as a potential target for AHL therapy.
Collapse
Affiliation(s)
- Qiuhong Huang
- Department of Otolaryngology-HNS, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen university, 107 Yanjiang West Rd, Guangzhou 510120, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, China
| | - Yiqing Zheng
- Department of Otolaryngology-HNS, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen university, 107 Yanjiang West Rd, Guangzhou 510120, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, China.
| | - Yongkang Ou
- Department of Otolaryngology-HNS, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen university, 107 Yanjiang West Rd, Guangzhou 510120, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, China
| | - Hao Xiong
- Department of Otolaryngology-HNS, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen university, 107 Yanjiang West Rd, Guangzhou 510120, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, China
| | - Haidi Yang
- Department of Otolaryngology-HNS, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen university, 107 Yanjiang West Rd, Guangzhou 510120, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, China
| | - Zhigang Zhang
- Department of Otolaryngology-HNS, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen university, 107 Yanjiang West Rd, Guangzhou 510120, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, China
| | - Suijun Chen
- Department of Otolaryngology-HNS, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen university, 107 Yanjiang West Rd, Guangzhou 510120, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, China
| | - Yongyi Ye
- Department of Otolaryngology-HNS, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen university, 107 Yanjiang West Rd, Guangzhou 510120, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, China
| |
Collapse
|
39
|
Abstract
Individuals of the same age may not age at the same rate. Quantitative biomarkers of aging are valuable tools to measure physiological age, assess the extent of ‘healthy aging’, and potentially predict health span and life span for an individual. Given the complex nature of the aging process, the biomarkers of aging are multilayered and multifaceted. Here, we review the phenotypic and molecular biomarkers of aging. Identifying and using biomarkers of aging to improve human health, prevent age-associated diseases, and extend healthy life span are now facilitated by the fast-growing capacity of multilevel cross-sectional and longitudinal data acquisition, storage, and analysis, particularly for data related to general human populations. Combined with artificial intelligence and machine learning techniques, reliable panels of biomarkers of aging will have tremendous potential to improve human health in aging societies.
Collapse
Affiliation(s)
- Xian Xia
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Weiyang Chen
- School of Information, Qilu University of Technology, Jinan, China
| | - Joseph McDermott
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing-Dong Jackie Han
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
40
|
Micó V, Berninches L, Tapia J, Daimiel L. NutrimiRAging: Micromanaging Nutrient Sensing Pathways through Nutrition to Promote Healthy Aging. Int J Mol Sci 2017; 18:E915. [PMID: 28445443 PMCID: PMC5454828 DOI: 10.3390/ijms18050915] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/10/2017] [Accepted: 04/24/2017] [Indexed: 01/09/2023] Open
Abstract
Current sociodemographic predictions point to a demographic shift in developed and developing countries that will result in an unprecedented increase of the elderly population. This will be accompanied by an increase in age-related conditions that will strongly impair human health and quality of life. For this reason, aging is a major concern worldwide. Healthy aging depends on a combination of individual genetic factors and external environmental factors. Diet has been proved to be a powerful tool to modulate aging and caloric restriction has emerged as a valuable intervention in this regard. However, many questions about how a controlled caloric restriction intervention affects aging-related processes are still unanswered. Nutrient sensing pathways become deregulated with age and lose effectiveness with age. These pathways are a link between diet and aging. Thus, fully understanding this link is a mandatory step before bringing caloric restriction into practice. MicroRNAs have emerged as important regulators of cellular functions and can be modified by diet. Some microRNAs target genes encoding proteins and enzymes belonging to the nutrient sensing pathways and, therefore, may play key roles in the modulation of the aging process. In this review, we aimed to show the relationship between diet, nutrient sensing pathways and microRNAs in the context of aging.
Collapse
Affiliation(s)
- Víctor Micó
- Nutritional Genomics of Cardiovascular Disease and Obesity Fundation IMDEA Food, CEI UAM + CSIC, 28049 Madrid, Spain.
| | - Laura Berninches
- Nutritional Genomics of Cardiovascular Disease and Obesity Fundation IMDEA Food, CEI UAM + CSIC, 28049 Madrid, Spain.
| | - Javier Tapia
- Nutritional Genomics of Cardiovascular Disease and Obesity Fundation IMDEA Food, CEI UAM + CSIC, 28049 Madrid, Spain.
| | - Lidia Daimiel
- Nutritional Genomics of Cardiovascular Disease and Obesity Fundation IMDEA Food, CEI UAM + CSIC, 28049 Madrid, Spain.
- Department of Nutrition and Bromatology, CEU San Pablo University, Boadilla del Monte, 28668 Madrid, Spain.
| |
Collapse
|
41
|
Mahmoudian-Sani MR, Mehri-Ghahfarrokhi A, Ahmadinejad F, Hashemzadeh-Chaleshtori M, Saidijam M, Jami MS. MicroRNAs: effective elements in ear-related diseases and hearing loss. Eur Arch Otorhinolaryngol 2017; 274:2373-2380. [PMID: 28224282 DOI: 10.1007/s00405-017-4470-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/17/2017] [Indexed: 12/13/2022]
Abstract
miRNAs are important factors for post-transcriptional process that controls gene expression at mRNA level. Various biological processes, including growth and differentiation, are regulated by miRNAs. miRNAs have been demonstrated to play an essential role in development and progression of hearing loss. Nowadays, miRNAs are known as critical factors involved in different physiological, biological, and pathological processes, such as gene expression, progressive sensorineural hearing loss, age-related hearing loss, noise-induced hearing loss, cholesteatoma, schwannomas, and inner ear inflammation. The miR-183 family (miR-183, miR-96 and miR-182) is expressed abundantly in some types of sensory cells in inner ear specially mechanosensory hair cells that exhibit a great expression level of this family. The plasma levels of miR-24-3p, miR-16-5p, miR-185-5p, and miR-451a were upregulated during noise exposures, and increased levels of miR-21 have been found in vestibular schwannomas and human cholesteatoma. In addition, upregulation of pro-apoptotic miRNAs and downregulation of miRNAs which promote differentiation and proliferation in age-related degeneration of the organ of Corti may potentially serve as a helpful biomarker for the early detection of age-related hearing loss. This knowledge represents miRNAs as promising diagnostic and therapeutic tools in the near future.
Collapse
Affiliation(s)
- Mohammad-Reza Mahmoudian-Sani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Fereshteh Ahmadinejad
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad-Saeid Jami
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
42
|
Kumar S, Vijayan M, Bhatti JS, Reddy PH. MicroRNAs as Peripheral Biomarkers in Aging and Age-Related Diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 146:47-94. [PMID: 28253991 DOI: 10.1016/bs.pmbts.2016.12.013] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are found in the circulatory biofluids considering the important molecules for biomarker study in aging and age-related diseases. Blood or blood components (serum/plasma) are primary sources of circulatory miRNAs and can release these in cell-free form either bound with some protein components or encapsulated with microvesicle particles, called exosomes. miRNAs are quite stable in the peripheral circulation and can be detected by high-throughput techniques like qRT-PCR, microarray, and sequencing. Intracellular miRNAs could modulate mRNA activity through target-specific binding and play a crucial role in intercellular communications. At a pathological level, changes in cellular homeostasis lead to the modulation of molecular function of cells; as a result, miRNA expression is deregulated. Deregulated miRNAs came out from cells and frequently circulate in extracellular body fluids as part of various human diseases. Most common aging-associated diseases are cardiovascular disease, cancer, arthritis, dementia, cataract, osteoporosis, diabetes, hypertension, and neurodegenerative diseases such as Alzheimer's disease, Huntington's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Variation in the miRNA signature in a diseased peripheral circulatory system opens up a new avenue in the field of biomarker discovery. Here, we measure the biomarker potential of circulatory miRNAs in aging and various aging-related pathologies. However, further more confirmatory researches are needed to elaborate these findings at the translation level.
Collapse
Affiliation(s)
- S Kumar
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States.
| | - M Vijayan
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - J S Bhatti
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India
| | - P H Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
43
|
The role of Efr3a in age-related hearing loss. Neuroscience 2016; 341:1-8. [PMID: 27867060 DOI: 10.1016/j.neuroscience.2016.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/20/2016] [Accepted: 11/09/2016] [Indexed: 11/22/2022]
Abstract
Efr3a has been found to be involved in the functional maintenance and structural degeneration of sensory and motor nervous tissues. Our previous data have suggested that Efr3a may be associated with the initiation of the degeneration of spiral ganglion neurons (SGNs). In this study, we used Efr3a knockdown (Efr3a KD) and Efr3a overexpression (Efr3a OE) mice to determine the role of Efr3a in age-related hearing loss. Measurements of hearing thresholds showed that Efr3a had little or no influence on the hearing threshold at all frequencies in adult mice, whereas in an early stage of senescence, Efr3a reduction resulted in better hearing function, especially at 10 and 12months of age. No significant differences were observed in hair cell loss among the three groups until 14months. The number of surviving hair cells in the OE mice was lower than that in the KD mice. As indicated by the density of SGNs in the upper basal turn, the Efr3a OE mice displayed earlier and more severe degeneration than the KD mice. In addition, the p-Akt levels in the cochlear spiral ganglions were higher in adult Efr3a KD mice than in WT and OE mice, although there was no difference in Akt expression among the three groups. Our study suggests that down-regulation of Efr3a might improve hearing function and alleviate the degeneration of SGNs in an early stage of senescence, probably via enhancing the basal expression of activated Akt.
Collapse
|
44
|
Falah M, Houshmand M, Najafi M, Balali M, Mahmoudian S, Asghari A, Emamdjomeh H, Farhadi M. The potential role for use of mitochondrial DNA copy number as predictive biomarker in presbycusis. Ther Clin Risk Manag 2016; 12:1573-1578. [PMID: 27799778 PMCID: PMC5077262 DOI: 10.2147/tcrm.s117491] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVES Age-related hearing impairment, or presbycusis, is the most common communication disorder and neurodegenerative disease in the elderly. Its prevalence is expected to increase, due to the trend of growth of the elderly population. The current diagnostic test for detection of presbycusis is implemented after there has been a change in hearing sensitivity. Identification of a pre-diagnostic biomarker would raise the possibility of preserving hearing sensitivity before damage occurs. Mitochondrial dysfunction, including the production of reactive oxygen species and induction of expression of apoptotic genes, participates in the progression of presbycusis. Mitochondrial DNA sequence variation has a critical role in presbycusis. However, the nature of the relationship between mitochondrial DNA copy number, an important biomarker in many other diseases, and presbycusis is undetermined. METHODS Fifty-four subjects with presbycusis and 29 healthy controls were selected after ear, nose, throat examination and pure-tone audiometry. DNA was extracted from peripheral blood samples. The copy number of mitochondrial DNA relative to the nuclear genome was measured by quantitative real-time polymerase chain reaction. RESULTS Subjects with presbycusis had a lower median mitochondrial DNA copy number than healthy subjects and the difference was statistically significant (P=0.007). Mitochondrial DNA copy number was also significantly associated with degree of hearing impairment (P=0.025) and audiogram configuration (P=0.022). CONCLUSION The findings of this study suggest that lower mitochondrial DNA copy number is responsible for presbycusis through alteration of mitochondrial function. Moreover, the significant association of mitochondrial DNA copy number in peripheral blood samples with the degree of hearing impairment and audiogram configuration has potential for use as a standard test for presbycusis, providing the possibility of the development of an easy-to-use biomarker for the early detection of this condition.
Collapse
Affiliation(s)
- Masoumeh Falah
- ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Biochemistry Department, Iran University of Medical Sciences, Tehran, Iran
| | - Massoud Houshmand
- Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad Najafi
- Cellular and Molecular Research Center, Biochemistry Department, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Balali
- ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences, Tehran, Iran
| | - Saeid Mahmoudian
- ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences, Tehran, Iran
| | - Alimohamad Asghari
- Skull base research center, Iran University of Medical Sciences, Tehran, Iran
| | - Hessamaldin Emamdjomeh
- ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Farhadi
- ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|