1
|
Vasilev V, Georgieva K, Arabadzhiyska D, Delchev S, Gerginska F, Komrakova M, Boeker KO, Schilling AF, Boaydjiev N. Ligandrol lowers endurance and negatively affects lipid and hormonal profile of male rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04028-8. [PMID: 40087185 DOI: 10.1007/s00210-025-04028-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
Selective androgen receptor modulators are currently not approved but are widely used in gyms. In the present study, the effects of ligandrol and its combination with endurance training on functional and clinically important parameters were studied in male healthy rats. Fourteen-week-old male rats were divided into four groups: two training (40 min, 5 times/week) and two non-training (5 min, 3 times/week). The velocity was 25 m/min at a track elevation of 5° for all groups. Ligandrol (0.4 mg/kg body weight, 5 times/week) was administered to one training and one non-training group and vehicle to the other groups (n = 10 per group) for 8 weeks. We conducted functional tests and examined morphometric, functional, hematological, hormonal, and clinical chemistry indicators in rats and histological and gene expression analyses in gastrocnemius muscle. Endurance training had a positive effect on all functional tests and increased vascular endothelial growth factor a (Vegf-a) gene expression. Ligandrol treatment reduced submaximal endurance, maximal oxygen consumption, concentrations of glucose, follicle-stimulating hormone, and testosterone. It increased grip strength, triglycerides, and total cholesterol concentrations and had no effect on maximal sprinting speed, maximal time to exhaustion, hematological and morphometric parameters, and gene expression of myostatin and insulin-like growth factor 1. The negative effects of ligandrol treatment outweighed its benefits in this study. Endurance training alone had favorable effects, and its combination with ligandrol did not seem to have an advantage. In the training group, ligandrol decreased Vegf-a gene expression and the size of muscle fibers type I and IIa.
Collapse
Affiliation(s)
- Veselin Vasilev
- Department of Physiology, Medical University Plovdiv, 15A V. Aprilov Blvd., Plovdiv, 4002, Bulgaria.
| | - Katerina Georgieva
- Department of Physiology, Medical University Plovdiv, 15A V. Aprilov Blvd., Plovdiv, 4002, Bulgaria
| | | | - Slavi Delchev
- Department of Anatomy, Histology, Embryology, Medical University Plovdiv, Plovdiv, Bulgaria
| | - Fanka Gerginska
- Department of Anatomy, Histology, Embryology, Medical University Plovdiv, Plovdiv, Bulgaria
| | - Marina Komrakova
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Kai O Boeker
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Arndt F Schilling
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Nikolay Boaydjiev
- Department of Physiology, Medical University Plovdiv, 15A V. Aprilov Blvd., Plovdiv, 4002, Bulgaria
- Research Institute, Medical University Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
2
|
Zhang L, Ge Y, Zhao W, Shu X, Kang L, Wang Q, Liu Y. A 4-Week Mobile App-Based Telerehabilitation Program vs Conventional In-Person Rehabilitation in Older Adults With Sarcopenia: Randomized Controlled Trial. J Med Internet Res 2025; 27:e67846. [PMID: 39854716 PMCID: PMC11806269 DOI: 10.2196/67846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/30/2024] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Sarcopenia is closely associated with a poor quality of life and mortality, and its prevention and treatment represent a critical area of research. Resistance training is an effective treatment for older adults with sarcopenia. However, they often face challenges when receiving traditional rehabilitation treatments at hospitals. OBJECTIVE We aimed to compare the effects of a digital rehabilitation program with those of traditional therapist-supervised rehabilitation training on older adults with sarcopenia. METHODS In total, 58 older adults with sarcopenia were recruited offline and randomized (1:1) into 2 groups: the telerehabilitation group (TRG, n=29, 50%) and the in-person rehabilitation group (IRG, n=29, 50%). Both groups underwent 4-week resistance training targeting 6 major muscle groups. The TRG received exercise guidance via a mobile app, while the IRG received in-person training from a therapist. Offline assessments of body composition, grip strength, and balance using the 30-Second Arm Curl Test (30SACT), 30-Second Sitting-to-Rising Test (30SSRT), quadriceps femoris extension peak torque (EPT) and extension total power (ETP), Berg Balance Scale (BBS), Timed Up-and-Go Test (TUGT), 6-Minute Walk Test (6MWT), and Instrumental Activities of Daily Living (IADL) scale, were conducted before and after the intervention. RESULTS Of the 58 patients, 51 (88%; TRG: n=24, 47%; IRG: n=27, 53%) completed the trial. After 4 weeks of intervention, the mean grip strength increased from 18.10 (SD 5.56) to 19.92 (SD 5.90) kg in the TRG (P=.02) and from 18.59 (SD 5.95) to 19.59 (SD 6.11) kg in the IRG (P=.01). The 30SACT and 30SSRT scores increased from 12.48 (SD 2.68) to 14.94 (SD 3.68) times (P=.01) and from 15.16 (SD 7.23) to 16.58 (SD 8.42) times (P=.045), respectively, in the TRG and from 12.25 (SD 4.19) to 14.68 (SD 4.36) times (P=.003) and from 14.31 (SD 4.04) to 16.25 (SD 4.91) times (P=.01), respectively, in the IRG. The quadriceps femoris EPT increased from 26.19 (SD 10.26) to 35.00 (SD 13.74) Nm (P=.004) in the TRG and from 26.95 (SD 11.81) to 32.74 (SD 12.33) Nm (P=.003) in the IRG. The BBS scores significantly improved in both groups (P<.001), with the mean TRG score increasing by 3.19 (SD 2.86) points and the mean IRG score by 3.06 (SD 2.44) points. Neither group exhibited significant within-group changes on the TUGT or the 6MWT. Both groups reported significant improvements in the IADL (TRG: P=.04; IRG: P=.02). Between-group comparisons revealed no significant differences in changes in all indicators. CONCLUSIONS A 4-week remote resistance training program is effective in improving strength, balance, and the IADL in older adults with sarcopenia, with effects comparable to rehabilitation supervised by a physical therapist. Telerehabilitation may be a convenient and effective alternative for older adults with sarcopenia who have limited access to rehabilitation resources. TRIAL REGISTRATION ChiCTR 2300071648; https://www.chictr.org.cn/showprojEN.html?proj=196313.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Rehabilitation Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Ge
- Department of Rehabilitation Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wowa Zhao
- Department of Rehabilitation Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuan Shu
- Department of Rehabilitation Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Kang
- Department of Geriatric Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiumei Wang
- Department of Geriatric Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Liu
- Department of Rehabilitation Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Wang J, Jia D, Zhang Z, Wang D. Exerkines and Sarcopenia: Unveiling the Mechanism Behind Exercise-Induced Mitochondrial Homeostasis. Metabolites 2025; 15:59. [PMID: 39852400 PMCID: PMC11767263 DOI: 10.3390/metabo15010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
Background/Objectives: Sarcopenia, characterized by the progressive loss of muscle mass and strength, is linked to physical disability, metabolic dysfunction, and an increased risk of mortality. Exercise therapy is currently acknowledged as a viable approach for addressing sarcopenia. Nevertheless, the molecular mechanisms behind exercise training or physical activity remain poorly understood. The disruption of mitochondrial homeostasis is implicated in the pathogenesis of sarcopenia. Exercise training effectively delays the onset of sarcopenia by significantly maintaining mitochondrial homeostasis, including promoting mitophagy, improving mitochondrial biogenesis, balancing mitochondrial dynamics, and maintaining mitochondrial redox. Exerkines (e.g., adipokines, myokines, hepatokines, and osteokines), signaling molecules released in response to exercise training, may potentially contribute to skeletal muscle metabolism through ameliorating mitochondrial homeostasis, reducing inflammation, and regulating protein synthesis as a defense against sarcopenia. Methods: In this review, we provide a detailed summary of exercise-induced exerkines and confer their benefit, with particular focus on their impact on mitochondrial homeostasis in the context of sarcopenia. Results: Exercise induces substantial adaptations in skeletal muscle, including increased muscle mass, improved muscle regeneration and hypertrophy, elevated hormone release, and enhanced mitochondrial function. An expanding body of research highlights that exerkines have the potential to regulate processes such as mitophagy, mitochondrial biogenesis, dynamics, autophagy, and redox balance. These mechanisms contribute to the maintenance of mitochondrial homeostasis, thereby supporting skeletal muscle metabolism and mitochondrial health. Conclusions: Through a comprehensive investigation of the molecular mechanisms within mitochondria, the context reveals new insights into the potential of exerkines as key exercise-protective sensors for combating sarcopenia.
Collapse
Affiliation(s)
- Jiayin Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (D.J.)
| | - Dandan Jia
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (D.J.)
| | - Zhiwang Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (D.J.)
| | - Dan Wang
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
4
|
Traoré M, Noviello C, Vergnol A, Gentil C, Halliez M, Saillard L, Gelin M, Forand A, Lemaitre M, Guesmia Z, Cadot B, Caldas de Almeida Araujo E, Marty B, Mougenot N, Messéant J, Strochlic L, Sadoine J, Slimani L, Jolly A, De la Grange P, Hogrel JY, Pietri-Rouxel F, Falcone S. GDF5 as a rejuvenating treatment for age-related neuromuscular failure. Brain 2024; 147:3834-3848. [PMID: 38584513 DOI: 10.1093/brain/awae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/08/2024] [Accepted: 03/23/2024] [Indexed: 04/09/2024] Open
Abstract
Sarcopenia involves a progressive loss of skeletal muscle force, quality and mass during ageing, which results in increased inability and death; however, no cure has been established thus far. Growth differentiation factor 5 (GDF5) has been described to modulate muscle mass maintenance in various contexts. For our proof of concept, we overexpressed GDF5 by AAV vector injection in tibialis anterior muscle of adult aged (20 months) mice and performed molecular and functional analysis of skeletal muscle. We analysed human vastus lateralis muscle biopsies from adult young (21-42 years) and aged (77-80 years) donors, quantifying the molecular markers modified by GDF5 overexpression in mouse muscle. We validated the major effects of GDF5 overexpression using human immortalized myotubes and Schwann cells. We established a preclinical study by treating chronically (for 4 months) aged mice using recombinant GDF5 protein (rGDF5) in systemic administration and evaluated the long-term effect of this treatment on muscle mass and function. Here, we demonstrated that GDF5 overexpression in the old tibialis anterior muscle promoted an increase of 16.5% of muscle weight (P = 0.0471) associated with a higher percentage of 5000-6000 µm2 large fibres (P = 0.0211), without the induction of muscle regeneration. Muscle mass gain was associated with an amelioration of 26.8% of rate of force generation (P = 0.0330) and better neuromuscular connectivity (P = 0.0098). Moreover, GDF5 overexpression preserved neuromuscular junction morphology (38.5% of nerve terminal area increase, P < 0.0001) and stimulated the expression of reinnervation-related genes, in particular markers of Schwann cells (fold-change 3.19 for S100b gene expression, P = 0.0101). To characterize the molecular events induced by GDF5 overexpression during ageing, we performed a genome-wide transcriptomic analysis of treated muscles and showed that this factor leads to a 'rejuvenating' transcriptomic signature in aged mice, as 42% of the transcripts dysregulated by ageing reverted to youthful expression levels upon GDF5 overexpression (P < 0.05). Towards a preclinical approach, we performed a long-term systemic treatment using rGDF5 and showed its effectiveness in counteracting age-related muscle wasting, improving muscle function (17.8% of absolute maximal force increase, P = 0.0079), ensuring neuromuscular connectivity and preventing neuromuscular junction degeneration (7.96% of AchR area increase, P = 0.0125). In addition, in human muscle biopsies, we found the same age-related alterations than those observed in mice and improved by GDF5 and reproduced its major effects on human cells, suggesting this treatment as efficient in humans. Overall, these data provide a foundation to examine the curative potential of GDF5 drug in clinical trials for sarcopenia and, eventually, other neuromuscular diseases.
Collapse
Affiliation(s)
- Massiré Traoré
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Chiara Noviello
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Amélie Vergnol
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Christel Gentil
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Marius Halliez
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Lucile Saillard
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Maxime Gelin
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Anne Forand
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
- Inovarion, F-75005 Paris, France
| | - Mégane Lemaitre
- Sorbonne Université, INSERM UMS28, Phénotypage du Petit Animal, 75013 Paris, France
| | - Zoheir Guesmia
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Bruno Cadot
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | | | - Benjamin Marty
- Institut de Myologie, CEA, Laboratoire d'imagerie et de spectroscopie par RMN, F-75013 Paris, France
| | - Nathalie Mougenot
- Sorbonne Université, INSERM UMS28, Phénotypage du Petit Animal, 75013 Paris, France
| | - Julien Messéant
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Laure Strochlic
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Jeremy Sadoine
- Université de Paris, Plateforme d'Imagerie du Vivant (PIV), F-92120 Montrouge, France
| | - Lofti Slimani
- Université de Paris, Plateforme d'Imagerie du Vivant (PIV), F-92120 Montrouge, France
| | - Ariane Jolly
- GenoSplice, Paris Biotech Santé, F-75014 Paris, France
| | | | - Jean-Yves Hogrel
- Institut de Myologie, Laboratoire de physiologie et d'évaluation neuromusculaire, F-75013 Paris, France
| | - France Pietri-Rouxel
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Sestina Falcone
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| |
Collapse
|
5
|
Wang C, Liu X, Hu X, Wu T, Duan R. Therapeutic targeting of GDF11 in muscle atrophy: Insights and strategies. Int J Biol Macromol 2024; 279:135321. [PMID: 39236952 DOI: 10.1016/j.ijbiomac.2024.135321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/29/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
The exploration of novel therapeutic avenues for skeletal muscle atrophy is imperative due to its significant health impact. Recent studies have spotlighted growth differentiation factor 11 (GDF11), a TGFβ superfamily member, for its rejuvenating role in reversing age-related tissue dysfunction. This review synthesizes current findings on GDF11, elucidating its distinct biological functions and the ongoing debates regarding its efficacy in muscle homeostasis. By addressing discrepancies in current research outcomes and its ambiguous role due to its homological identity to myostatin, a negative regulator of muscle mass, this review aims to clarify the role of GDF11 in muscle homeostasis and its potential as a therapeutic target for muscle atrophy. Through a thorough examination of GDF11's mechanisms and effects, this review provides insights that could pave the way for innovative treatments for muscle atrophy, emphasizing the need and strategies to boost endogenous GDF11 levels for therapeutic potential.
Collapse
Affiliation(s)
- Chuanzhi Wang
- Lab of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Xiaocao Liu
- Lab of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Xilong Hu
- Lab of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Tao Wu
- Lab of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Rui Duan
- Lab of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
6
|
Ghobadi H, Attarzadeh Hosseini SR, Rashidlamir A, Mohammad Rahimi GR. Anabolic myokine responses and muscular performance following 8 weeks of autoregulated compared to linear resistance exercise in recreationally active males. Hormones (Athens) 2024; 23:487-496. [PMID: 38472648 DOI: 10.1007/s42000-024-00544-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND To date, no studies, to our knowledge, have compared the efficacy of autoregulated periodized and linear resistance exercises on anabolic myokines and muscular performance among recreationally active individuals. This study aimed to compare the effects of an 8-week autoregulated periodized resistance exercise (APRE) program with a linear resistance exercise (LRE) program on insulin-like growth factor-1 (IGF-1), follistatin (FST), myostatin (MST), body composition, muscular strength, and power in recreationally active males. METHODS Thirty males were randomly assigned to either the APRE group (n = 15) or the LRE group (n = 15). Participants completed training three times a week for 8 weeks. The outcome measures included serum IGF-1, FST, MST, muscular strength (isometric knee extension and handgrip), power (vertical jump), lean body mass, and fat mass. RESULTS IGF-1 circulating levels increased over time following APRE (34%) and with no significant change following LRE (~-1%). There were no significant differences over time or between groups for FST or MST. Muscular strength (knee extension [21.5 vs. ~16%] and handgrip [right: 31 vs. 25%; left: 31.7 vs. 28.8%]) and power (~ 33 vs. ~26%) significantly increased to a greater extent following APRE compared to LRE. Interestingly, the results revealed that lean body mass increased over time only after APRE (~ 3%), but not LRE. CONCLUSION These findings suggest that APRE may be more effective than LRE in increasing muscular strength, power, and lean body mass, as well as circulating IGF-1 levels, in recreationally active males. The observed differences may be attributed to the increased training volume associated with APRE. However, further research is needed to directly assess muscle protein synthesis.
Collapse
Affiliation(s)
- Hamid Ghobadi
- Department of Exercise Physiology, Faculty of Sport Sciences, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 9177948974, Iran
| | - Seyyed Reza Attarzadeh Hosseini
- Department of Exercise Physiology, Faculty of Sport Sciences, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 9177948974, Iran.
| | - Amir Rashidlamir
- Department of Exercise Physiology, Faculty of Sport Sciences, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 9177948974, Iran
| | - Gholam Rasul Mohammad Rahimi
- Department of Exercise Physiology, Faculty of Sport Sciences, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 9177948974, Iran
| |
Collapse
|
7
|
Bagheri R, Karimi Z, Camera DM, Scott D, Bashirzad MZ, Sadeghi R, Kargarfard M, Dutheil F. Association between changes in lean mass, muscle strength, endurance, and power following resistance or concurrent training with differing high protein diets in resistance-trained young males. Front Nutr 2024; 11:1439037. [PMID: 39206316 PMCID: PMC11349518 DOI: 10.3389/fnut.2024.1439037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Background We assessed the relationship of changes in upper and lower body lean mass with muscle strength, endurance and power responses following two high protein diets (1.6 or 3.2 g.kg-1.d-1) during 16 weeks of either concurrent training (CT) or resistance training (RT) in resistance-trained young males. Methods Forty-eight resistance-trained young males (age: 26 ± 6 yr., body mass index: 25.6 ± 2.9 kg.m-2) performed 16 weeks (four sessions·wk.-1) of CT or RT with either 1.6 g.kg-1.d-1 protein (CT + 1.6; n = 12; RT + 1.6; n = 12) or 3.2 g.kg-1.d-1 protein (CT + 3.2; n = 12; RT + 3.2; n = 12). Relationships between upper (left arm + right arm + trunk lean mass) and lower body (left leg + right leg lean mass) lean mass changes with changes in muscle performance were assessed using Pearson's correlation coefficients. Results For upper body, non-significant weak positive relationships were observed between change in upper body lean mass and change in pull-up (r = 0.183, p = 0.234), absolute chest press strength (r = 0.159, p = 0.302), chest press endurance (r = 0.041, p = 0.792), and relative chest press strength (r = 0.097, p = 0.529) while non-significant weak negative relationships were observed for changes in absolute upper body power (r = -0.236, p = 0.123) and relative upper body power (r = -0.203, p = 0.185). For lower body, non-significant weak positive relationships were observed between the change in lower body lean mass with change in vertical jump (r = 0.145, p = 0.346), absolute lower body power (r = 0.109, p = 0.480), absolute leg press strength (r = 0.073, p = 0.638), leg press endurance (r < 0.001, p = 0.998), relative leg press strength (r = 0.089, p = 0.564), and relative lower body power (r = 0.150, p = 0.332). Conclusion Changes in muscle strength, endurance and power adaptation responses following 16 weeks of either CT or RT with different high protein intakes were not associated with changes in lean mass in resistance-trained young males. These findings indicate that muscle hypertrophy has a small, or negligible, contributory role in promoting functional adaptations with RT or CT, at least over a 16-week period.
Collapse
Affiliation(s)
- Reza Bagheri
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
| | - Zohreh Karimi
- Department of Physical Education and Sport Sciences, Islamic Azad University of Central Tehran Branch, Tehran, Iran
| | - Donny M. Camera
- Department of Health and Biostatistics, Swinburne University, Melbourne, VIC, Australia
| | - David Scott
- Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, VIC, Australia
- School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | | | - Ramin Sadeghi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Kargarfard
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
| | - Fred Dutheil
- Université Clermont Auvergne, CNRS, LaPSCo, Physiological and Psychosocial Stress, CHU Clermont-Ferrand, University Hospital of Clermont-Ferrand, Preventive and Occupational Medicine, Witty Fit, Clermont-Ferrand, France
| |
Collapse
|
8
|
Chen ZT, Weng ZX, Lin JD, Meng ZX. Myokines: metabolic regulation in obesity and type 2 diabetes. LIFE METABOLISM 2024; 3:loae006. [PMID: 39872377 PMCID: PMC11749576 DOI: 10.1093/lifemeta/loae006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 01/30/2025]
Abstract
Skeletal muscle plays a vital role in the regulation of systemic metabolism, partly through its secretion of endocrine factors which are collectively known as myokines. Altered myokine levels are associated with metabolic diseases, such as type 2 diabetes (T2D). The significance of interorgan crosstalk, particularly through myokines, has emerged as a fundamental aspect of nutrient and energy homeostasis. However, a comprehensive understanding of myokine biology in the setting of obesity and T2D remains a major challenge. In this review, we discuss the regulation and biological functions of key myokines that have been extensively studied during the past two decades, namely interleukin 6 (IL-6), irisin, myostatin (MSTN), growth differentiation factor 11 (GDF11), fibroblast growth factor 21 (FGF21), apelin, brain-derived neurotrophic factor (BDNF), meteorin-like (Metrnl), secreted protein acidic and rich in cysteine (SPARC), β-aminoisobutyric acid (BAIBA), Musclin, and Dickkopf 3 (Dkk3). Related to these, we detail the role of exercise in myokine expression and secretion together with their contributions to metabolic physiology and disease. Despite significant advancements in myokine research, many myokines remain challenging to measure accurately and investigate thoroughly. Hence, new research techniques and detection methods should be developed and rigorously tested. Therefore, developing a comprehensive perspective on myokine biology is crucial, as this will likely offer new insights into the pathophysiological mechanisms underlying obesity and T2D and may reveal novel targets for therapeutic interventions.
Collapse
Affiliation(s)
- Zhi-Tian Chen
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang University-University of Edinburgh Institute (ZJE), School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China
| | - Zhi-Xuan Weng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiandie D Lin
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Zhuo-Xian Meng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, Hangzhou, Zhejiang 310006, China
| |
Collapse
|
9
|
Rezaei S, Eslami R, Tartibian B. The effects of TRX suspension training on sarcopenic biomarkers and functional abilities in elderlies with sarcopenia: a controlled clinical trial. BMC Sports Sci Med Rehabil 2024; 16:58. [PMID: 38409184 PMCID: PMC10898163 DOI: 10.1186/s13102-024-00849-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Sarcopenia is an age-related progressive loss of muscle mass and strength that can be modulated by resistance training. This study aimed to investigate the effects of TRX Suspension Training (TST) on serum levels of neuromuscular and growth factors and functional indices in elderly men with sarcopenia, an age-related condition characterized by progressive muscle mass and strength loss. METHODS Nineteen sarcopenic elderly men (age = 74.87 ± 4.58 years) were randomly assigned into two groups, the TST group (n = 10) and the control group (n = 9). Serum concentrations of regulatory muscle markers, anthropometric and body composition indices, and functional tests were evaluated at baseline and after 8 weeks. The training protocol consisted of eight weeks of TRX exercises, with three weekly sessions. RESULTS After 8 weeks of training, growth factors such as Follistatin (FST) (P = 0.001), 22 kDa C-terminal agrin fragment (CAF) (P = 0.031), and growth differentiation factor 15 (GDF15) (P = 0.049) increased significantly in the training group in comparison to the control group and Myostatin (MSTN) (P = 0.002) had a significant decrease. However, there was no significant difference in ASMM/m2 (P = 0.527), SMM/m2 (P = 0.621), or Body fat mass (P = 0.433) within or between groups. In addition, the TRX Suspension Training had a significant effect on the functional tests and improved gait speed (P = 0.037), chair stand (P = 0.016), and TUG (P = 0.016) as well as Handgrip strength (P = 0.035). CONCLUSION Our findings highlight the efficacy of TRX Suspension Training in enhancing the serum levels of muscle growth factors and functional capacities among elderly individuals with sarcopenia. Therefore, considering the ongoing COVID-19 pandemic, this protocol can prove beneficial for this demographic group. TRIAL REGISTRY Iranian Registry of Clinical Trials identifier: IRCT20230727058944N1, prospectively registered 20-09-2023, https://en.irct.ir/trial/71635.
Collapse
Affiliation(s)
- Sohrab Rezaei
- Exercise Physiology Department, Faculty of Sport Science, Allameh Tabataba'i University, Tehran, Iran
| | - Rasoul Eslami
- Exercise Physiology Department, Faculty of Sport Science, Allameh Tabataba'i University, Tehran, Iran.
| | - Bakhtyar Tartibian
- Exercise Physiology Department, Faculty of Sport Science, Allameh Tabataba'i University, Tehran, Iran
| |
Collapse
|
10
|
Canli U, Aldhahi MI. The physiological and physical benefits of two types of concurrent training: a randomized controlled trial. BMC Sports Sci Med Rehabil 2024; 16:8. [PMID: 38169423 PMCID: PMC10762810 DOI: 10.1186/s13102-023-00798-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND It is widely acknowledged that aerobic exercise and strength training are crucial components of most workout programs. However, there is no consensus as to whether the effectiveness of exercises is affected by the sequence in which they are performed. Therefore, the overarching aim of the study was to understand the optimal order of two types of concurrent training program for 13 weeks by comparing the effectiveness of the training on body composition, predicated maximal oxygen uptake (VO2max), dynamic respiratory parameters and muscle strength in healthy middle-aged people. METHODS Thirty-three middle-aged individuals, who were categorized as moderately active based on their responses to International Physical Activity Questionnaires, underwent random allocation. The participants were randomly assigned into two groups: the Strength Training followed by Aerobic Training group (SAG, n = 16) and the Aerobic Training followed by Strength Training group (ASG, n = 17). Body composition, aerobic endurance, respiratory parameters, and upper and lower strength were assessed at baseline and after (post-test) a 13-week intervention. The chi-square test and the independent t-test were used to compare sociodemographic variables between the groups. A 2 × 2 analysis of variance (ANOVA) with repeated measures (group x measurement) was conducted. The study was retrospectively registered on clinicaltrials.gov in May of 2023 (clinicaltials.gov identifier: NCT05862415; in 04/25/2023). RESULTS Findings showed no significant differences between the group in the VO2max, FVC or FEV1 (F = 1.122, 0.028, 0.06, 2.483; p > 0.05, respectively). Intragroup analysis revealed changes in PEF compared to baseline in the ASG (F = 5.895; p < 0.05). Increases were observed in all strength parameters for both training programs. CONCLUSIONS The concurrent training effect on muscle composition, oxygen consumption and muscle strength specifically 1RM, in middle-aged individuals are equivocal, regardless of the exercise order. The results indicate that both exercise sequences can elicit similar benefits in terms of cardiovascular fitness, muscular strength, and endurance. This lack of difference suggests that the order of exercise does not play a significant role in determining the effectiveness of the workout or the subsequent physiological adaptations. CLINICALTIALS. GOV IDENTIFIER NCT05862415. Date of registration: 04/25/2023.
Collapse
Affiliation(s)
- Umut Canli
- Sports Science Faculty, Tekirdag Namik Kemal University, Tekirdag, Turkey
| | - Monira I Aldhahi
- Department of Rehabilitation Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University (PNU), P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
| |
Collapse
|
11
|
Chen YC, Chen WC, Liu CW, Huang WY, Lu IC, Lin CW, Huang RY, Chen JS, Huang CH. Is moderate resistance training adequate for older adults with sarcopenia? A systematic review and network meta-analysis of RCTs. Eur Rev Aging Phys Act 2023; 20:22. [PMID: 38030985 PMCID: PMC10687931 DOI: 10.1186/s11556-023-00333-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Resistance training (RT) and nutritional supplementation are recommended for the management of sarcopenia in older adults. However, optimal RT intensity for the treatment of sarcopenia has not been well investigated. METHODS This network meta-analysis aims to determine the comparative effectiveness of interventions for sarcopenia, taking RT intensity into consideration. RT intensity was classified into light-to-moderate intensity RT(LMRT), moderate intensity RT(MRT), and moderate-to-vigorous intensity RT(MVRT) based on percentage of one repetition maximum (%1RM) and/or rating of perceived exertion. RESULTS A total of 50 RCTs (N = 4,085) were included after screening 3,485 articles. The results confirmed that RT with or without nutrition was positively associated with improved measures of muscle strength and physical performance. Regarding RT intensity, LMRT only demonstrated positive effects on hand grip (aerobic training + LMRT + nutrition: mean difference [MD] = 2.88; 95% credential intervals [CrI] = 0.43,5.32). MRT provided benefits on improvement in the 30-s chair stand test (repetitions) (MRT: MD = 2.98, 95% CrI = 0.35,5.59), timed up and go test (MRT: MD = -1.74, 95% CrI: = -3.34,-0.56), hand grip (MRT: MD = 2.44; 95% CrI = 0.03,5.70), and leg press (MRT: MD = 8.36; 95% CrI = 1.87,13.4). MVRT also improved chair stand test repetitions (MVRT: MD = 5.64, 95% CrI = 0.14,11.4), gait speed (MVRT + nutrition: MD = 0.21, 95% CrI = 0.003,0.48), appendicular skeletal muscle index (MVRT + nutrition: MD = 0.25, 95% CrI = 0.01,0.5), and leg press (MVRT: MD = 14.7, 95% CrI: 5.96,22.4; MVRT + nutrition: MD = 17.8, 95% CrI: 7.55,28.6). CONCLUSION MVRT had greater benefits on muscle mass, lower extremity strength, and physical performance compared to MRT. Increasing RT intensity may be recommended for sarcopenic older adults.
Collapse
Affiliation(s)
- Yu Chang Chen
- Department of Family Medicine and Community Medicine, E-Da Hospital, I-Shou University, No. 1, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung City, 82445, Taiwan
| | - Wang-Chun Chen
- Department of Pharmacy, E-Da Hospital, I-Shou University, No. 1, Yida Rd., Jiaosu Village, Yanchao District, Kaohsiung City, 82445, Taiwan
- Department of Chemical Engineering and Institute of Biotechnology and Chemical Engineering, I-Shou University, No.8, Yida Rd., Jiaosu Village, Yanchao District, Kaohsiung City, 82445, Taiwan
| | - Chia-Wei Liu
- Department of Family Medicine and Community Medicine, E-Da Hospital, I-Shou University, No. 1, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung City, 82445, Taiwan
| | - Wei-Yu Huang
- Department of Family Medicine and Community Medicine, E-Da Hospital, I-Shou University, No. 1, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung City, 82445, Taiwan
| | - ICheng Lu
- Department of Family Medicine and Community Medicine, E-Da Hospital, I-Shou University, No. 1, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung City, 82445, Taiwan
- School of Medicine for International Students, College of Medicine, I-Shou University, No. 8, Yida Rd., Jiaosu Village, Yanchao District, Kaohsiung City, 82445, Taiwan
| | - Chi Wei Lin
- Department of Family Medicine and Community Medicine, E-Da Hospital, I-Shou University, No. 1, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung City, 82445, Taiwan
- School of Medicine for International Students, College of Medicine, I-Shou University, No. 8, Yida Rd., Jiaosu Village, Yanchao District, Kaohsiung City, 82445, Taiwan
| | - Ru Yi Huang
- Department of Family Medicine and Community Medicine, E-Da Hospital, I-Shou University, No. 1, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung City, 82445, Taiwan
- School of Medicine for International Students, College of Medicine, I-Shou University, No. 8, Yida Rd., Jiaosu Village, Yanchao District, Kaohsiung City, 82445, Taiwan
- Data Science Degree Program, National Taiwan University and Academia sinica, No.1, Section 4, Roosevelt Rd, Da'an District, Taipei City, 10617, Taiwan (R.O.C.)
| | - Jung Sheng Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, No. 1, Yida Rd., Jiaosu Village, Yanchao District, Kaohsiung City, 82445, Taiwan
| | - Chi Hsien Huang
- Department of Family Medicine and Community Medicine, E-Da Hospital, I-Shou University, No. 1, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung City, 82445, Taiwan.
- School of Medicine for International Students, College of Medicine, I-Shou University, No. 8, Yida Rd., Jiaosu Village, Yanchao District, Kaohsiung City, 82445, Taiwan.
| |
Collapse
|
12
|
Roberts MD, McCarthy JJ, Hornberger TA, Phillips SM, Mackey AL, Nader GA, Boppart MD, Kavazis AN, Reidy PT, Ogasawara R, Libardi CA, Ugrinowitsch C, Booth FW, Esser KA. Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions. Physiol Rev 2023; 103:2679-2757. [PMID: 37382939 PMCID: PMC10625844 DOI: 10.1152/physrev.00039.2022] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of "work-induced hypertrophy" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved. This review first provides a historical account of how mechanistic research into skeletal muscle hypertrophy has progressed. A comprehensive list of mechanisms associated with skeletal muscle hypertrophy is then outlined, and areas of disagreement involving these mechanisms are presented. Finally, future research directions involving many of the discussed mechanisms are proposed.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gustavo A Nader
- Department of Kinesiology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Andreas N Kavazis
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Paul T Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Riki Ogasawara
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Cleiton A Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Karyn A Esser
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
13
|
Ahmadi Hekmatikar A, Nelson A, Petersen A. Highlighting the idea of exerkines in the management of cancer patients with cachexia: novel insights and a critical review. BMC Cancer 2023; 23:889. [PMID: 37730552 PMCID: PMC10512651 DOI: 10.1186/s12885-023-11391-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Exerkines are all peptides, metabolites, and nucleic acids released into the bloodstream during and after physical exercise. Exerkines liberated from skeletal muscle (myokines), the heart (cardiokines), liver (hepatokines), white adipose tissue (adipokines), brown adipose tissue (batokines), and neurons (neurokines) may benefit health and wellbeing. Cancer-related cachexia is a highly prevalent disorder characterized by weight loss with specific skeletal muscle and adipose tissue loss. Many studies have sought to provide exercise strategies for managing cachexia, focusing on musculoskeletal tissue changes. Therefore, understanding the responses of musculoskeletal and other tissue exerkines to acute and chronic exercise may provide novel insight and recommendations for physical training to counteract cancer-related cachexia. METHODS For the purpose of conducting this study review, we made efforts to gather relevant studies and thoroughly discuss them to create a comprehensive overview. To achieve this, we conducted searches using appropriate keywords in various databases. Studies that were deemed irrelevant to the current research, not available in English, or lacking full-text access were excluded. Nevertheless, it is important to acknowledge the limited amount of research conducted in this specific field. RESULTS In order to obtain a comprehensive understanding of the findings, we prioritized human studies in order to obtain results that closely align with the scope of the present study. However, in instances where human studies were limited or additional analysis was required to draw more robust conclusions, we also incorporated animal studies. Finally, 295 studies, discussed in this review. CONCLUSION Our understanding of the underlying physiological mechanisms related to the significance of investigating exerkines in cancer cachexia is currently quite basic. Nonetheless, this demonstrated that resistance and aerobic exercise can contribute to the reduction and control of the disease in individuals with cancer cachexia, as well as in survivors, by inducing changes in exerkines.
Collapse
Affiliation(s)
- Amirhossein Ahmadi Hekmatikar
- Department of Physical Education & Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran, 14117-13116, Iran
| | - André Nelson
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Aaron Petersen
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.
| |
Collapse
|
14
|
Tarabeih N, Kalinkovich A, Shalata A, Higla O, Livshits G. Pro-Inflammatory Biomarkers Combined with Body Composition Display a Strong Association with Knee Osteoarthritis in a Community-Based Study. Biomolecules 2023; 13:1315. [PMID: 37759715 PMCID: PMC10527309 DOI: 10.3390/biom13091315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Knee osteoarthritis (KOA) is one of the most common progressive, age-dependent chronic degenerative joint diseases. KOA often develops as a result of a gradual articular cartilage loss caused by its wear and tear. Numerous studies suggest that the degradation of the knee joint involves inflammatory components. This process is also associated with body composition, particularly being overweight and muscle mass loss. The present study aimed to search for novel circulating KOA inflammatory biomarkers, taking into account body composition characteristics. To this aim, we recruited 98 patients diagnosed and radiologically confirmed with KOA and 519 healthy controls from the Arab community in Israel. A panel of soluble molecules, related to inflammatory, metabolic, and musculoskeletal disorders, was measured by ELISA in plasma samples, while several body composition parameters were assessed with bioimpedance analysis. Statistical analysis, including multivariable logistic regression, revealed a number of the factors significantly associated with KOA, independently of age and sex. The most significant independent associations [OR (95% CI)] were fat body mass/body weight index-1.56 (1.20-2.02), systemic immune-inflammation index-4.03 (2.23-7.27), circulating vaspin levels-1.39 (1.15-1.68), follistatin/FSTL1 ratio-1.32 (1.02-1.70), and activin A/FSTL1 ratio-1.33 (1.01-1.75). Further clinical studies are warranted to confirm the relevance of these KOA-associated biological factors. Hereafter, they could serve as reliable biomarkers for KOA in the general human population.
Collapse
Affiliation(s)
- Nader Tarabeih
- Department of Morphological Studies, Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel;
| | - Adel Shalata
- The Simon Winter Institute for Human Genetics, Bnai Zion Medical Center, The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa 32000, Israel;
| | - Orabi Higla
- Orthopedics Clinic, Clalit, Migdal HaMeah, Tel-Aviv 6203854, Israel;
| | - Gregory Livshits
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel;
| |
Collapse
|
15
|
Shefflette A, Patel N, Caruso J. Mitigating Sarcopenia with Diet and Exercise. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6652. [PMID: 37681791 PMCID: PMC10487983 DOI: 10.3390/ijerph20176652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/22/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
Sarcopenia is the loss of muscle mass and function from aging, inactivity, or disuse. It is a comorbidity to numerous conditions that exacerbates their severity and adversely impacts activities of daily living. While sarcopenia now receives more attention from the medical community, people with sarcopenia as a comorbidity nevertheless still sometimes receives less attention than other presenting diseases or conditions. Inevitable doctors' visits or hospital stays for those with sarcopenia as a comorbidity have far higher healthcare costs than those without this condition, which imposes a greater financial burden on the medical insurance and healthcare industries. This review offers information and guidance on this topic. Treatments for sarcopenia include dietary, exercise, and pharmacological interventions. Yet, the latter treatment is only recommended in extreme cases as it may evoke numerous side effects and has little support in the scientific literature. Currently, a more holistic approach, with an emphasis on lifestyle modification, to reduce the likelihood of sarcopenia is examined. The current review discusses dietary and exercise interventions to limit the occurrence and severity of sarcopenia. References cited in this review conformed to the Declaration of Helsinki requirements for the use of human research subjects. Most of this review's references (~97%) came from a PubMed search that spanned from 1997 to 2023. Search terms included "sarcopenia" OR "muscle wasting" OR "geriatrics"; OR "ageing"; and AND "diet" OR "exercise". In addition, papers relevant or supportive of the topic as well as those considered seminal were included in the review. Over 96% of the references were peer-reviewed articles.
Collapse
Affiliation(s)
| | | | - John Caruso
- Exercise Physiology Program, University of Louisville, Louisville, KY 40292, USA; (A.S.); (N.P.)
| |
Collapse
|
16
|
Shibamoto A, Namisaki T, Suzuki J, Kubo T, Iwai S, Tomooka F, Takeda S, Fujimoto Y, Enomoto M, Murata K, Inoue T, Tsuji Y, Fujinaga Y, Nishimura N, Kitagawa K, Takaya H, Kaji K, Kawaratani H, Akahane T, Mitoro A, Yoshiji H. Hemoglobin levels as a surrogate marker of sarcopenia in patients with liver cirrhosis. Hepatol Res 2023; 53:713-722. [PMID: 37050844 DOI: 10.1111/hepr.13904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/06/2023] [Accepted: 03/26/2023] [Indexed: 04/14/2023]
Abstract
AIM This study aimed to elucidate a surrogate marker of sarcopenia in patients with liver cirrhosis (LC). METHODS A total of 424 patients were assessed for handgrip strength (HGS) and skeletal muscle index (SMI). They were divided into two groups: sarcopenia (Group S; n = 80) and nonsarcopenia (Group NS; n = 344). RESULTS Group S showed significantly lower HGS, SMI, and hemoglobin (Hb) levels in males and female patients, and lower serum levels of albumin, cholinesterase, and zinc (all p < 0.001), along with significantly higher serum levels of procollagen type III-N-peptide and type IV collagen 7S-domain (p < 0.001 and p < 0.0017) than Group NS. The risk factors for sarcopenia were age 65 years or older, female gender, Child-Pugh class C, and Hb levels <10.9 g/dL in women and <12.4 g/dL in men (p = 0.012, p < 0.001, p = 0.031, and p < 0.001, respectively). Significant positive correlations were found between the Hb level and the SMI and HGS (r = 0.4, p < 0.001 and r = 0.4, p < 0.001, respectively). Sarcopenia, low HGS, and low SMI were significantly associated with overall survival in patients with LC (all p < 0.001). The predictive accuracy of Hb levels for predicting sarcopenia was significantly higher than for predicting SMI and tended to be higher than for predicting HGS (p = 0.014 and p = 0.059, respectively). CONCLUSION Hemoglobin levels are predictive of sarcopenia in patients with LC and warrants further investigation as a biomarker for sarcopenia in LC.
Collapse
Affiliation(s)
- Akihiko Shibamoto
- Department of Gastroenterology, Nara Medical University, Kashihara, Japan
| | - Tadashi Namisaki
- Department of Gastroenterology, Nara Medical University, Kashihara, Japan
| | - Junya Suzuki
- Department of Gastroenterology, Nara Medical University, Kashihara, Japan
| | - Takahiro Kubo
- Department of Gastroenterology, Nara Medical University, Kashihara, Japan
| | - Satoshi Iwai
- Department of Gastroenterology, Nara Medical University, Kashihara, Japan
| | - Fumimasa Tomooka
- Department of Gastroenterology, Nara Medical University, Kashihara, Japan
| | - Soichi Takeda
- Department of Gastroenterology, Nara Medical University, Kashihara, Japan
| | - Yuki Fujimoto
- Department of Gastroenterology, Nara Medical University, Kashihara, Japan
| | - Masahide Enomoto
- Department of Gastroenterology, Nara Medical University, Kashihara, Japan
| | - Koji Murata
- Department of Gastroenterology, Nara Medical University, Kashihara, Japan
| | - Takashi Inoue
- Department of Evidence-Based Medicine, Nara Medical University, Kashihara, Japan
| | - Yuki Tsuji
- Department of Gastroenterology, Nara Medical University, Kashihara, Japan
| | - Yukihisa Fujinaga
- Department of Gastroenterology, Nara Medical University, Kashihara, Japan
| | - Norihisa Nishimura
- Department of Gastroenterology, Nara Medical University, Kashihara, Japan
| | - Koh Kitagawa
- Department of Gastroenterology, Nara Medical University, Kashihara, Japan
| | - Hiroaki Takaya
- Department of Gastroenterology, Nara Medical University, Kashihara, Japan
| | - Kosuke Kaji
- Department of Gastroenterology, Nara Medical University, Kashihara, Japan
| | - Hideto Kawaratani
- Department of Gastroenterology, Nara Medical University, Kashihara, Japan
| | - Takemi Akahane
- Department of Gastroenterology, Nara Medical University, Kashihara, Japan
| | - Akira Mitoro
- Department of Gastroenterology, Nara Medical University, Kashihara, Japan
| | - Hitoshi Yoshiji
- Department of Gastroenterology, Nara Medical University, Kashihara, Japan
| |
Collapse
|
17
|
Jürimäe J, Remmel L, Tamm AL, Purge P, Maasalu K, Tillmann V. Follistatin Is Associated with Bone Mineral Density in Lean Adolescent Girls with Increased Physical Activity. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1226. [PMID: 37508723 PMCID: PMC10378065 DOI: 10.3390/children10071226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
Follistatin is a member of the activin-follistatin-inhibin hormonal system and is proposed to affect bone metabolism. However, data regarding the effect of follistatin on bone are relatively scarce and contradictory in humans. The purpose of the current study was to investigate possible associations of serum follistatin concentration with bone mineral characteristics in lean and physically active adolescent girls. Bone mineral density, body composition, resting energy expenditure and different energy homeostasis hormones in serum including follistatin, leptin and insulin were investigated. Significant relationships (p < 0.05) between serum follistatin (1275.1 ± 263.1 pg/mL) and whole-body (WB) bone mineral content (r = 0.33), WB areal bone mineral density (aBMD) (r = 0.23) and lumbar spine (LS) aBMD (r = 0.29) values were observed. Serum follistatin remained associated with LS aBMD independent of body fat and lean masses (r = 0.21; p < 0.05). However, the follistatin concentration explained only 3% (R2 × 100; p = 0.049) of the total variance in LS aBMD values. In conclusion, serum follistatin concentrations were associated with bone mineral values in lean adolescent girls with increased physical activity. Follistatin was an independent predictor of lumbar spine areal bone mineral density, which predominantly consists of trabecular bone.
Collapse
Affiliation(s)
- Jaak Jürimäe
- Institute of Sport Sciences and Physiotherapy, Faculty of Medicine, University of Tartu, 51008 Tartu, Estonia
| | - Liina Remmel
- Institute of Sport Sciences and Physiotherapy, Faculty of Medicine, University of Tartu, 51008 Tartu, Estonia
| | - Anna-Liisa Tamm
- Department of Physiotherapy and Environmental Health, Tartu Health Care College, 50411 Tartu, Estonia
| | - Priit Purge
- Institute of Sport Sciences and Physiotherapy, Faculty of Medicine, University of Tartu, 51008 Tartu, Estonia
| | - Katre Maasalu
- Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, 50406 Tartu, Estonia
| | - Vallo Tillmann
- Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, 50406 Tartu, Estonia
| |
Collapse
|
18
|
Shibamoto A, Namisaki T, Suzuki J, Kubo T, Iwai S, Tomooka F, Takeda S, Fujimoto Y, Inoue T, Tanaka M, Koizumi A, Yorioka N, Matsuda T, Asada S, Tsuji Y, Fujinaga Y, Nishimura N, Sato S, Takaya H, Kitagawa K, Kaji K, Kawaratani H, Akahane T, Mitoro A, Yoshiji H. Hemoglobin and Endotoxin Levels Predict Sarcopenia Occurrence in Patients with Alcoholic Cirrhosis. Diagnostics (Basel) 2023; 13:2218. [PMID: 37443613 PMCID: PMC10340466 DOI: 10.3390/diagnostics13132218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Alcohol is a major risk factor of liver cirrhosis (LC). This study aimed to elucidate a surrogate marker of sarcopenia in patients with LC of different etiology. Out of 775 patients with LC, 451 were assessed for handgrip strength and skeletal muscle mass (by computed tomography). They were then divided into two groups: alcoholic cirrhosis (AC; n = 149) and nonalcoholic cirrhosis (NAC; n = 302). Endotoxin activity (EA) levels were measured with an EA assay. Group AC showed significantly higher platelet counts (p = 0.027) and lower blood urea nitrogen levels and fibrosis-4 index than group NAC (p = 0.0020 and p = 0.038, respectively). The risk factors of sarcopenia were age ≥ 65 years, female sex, CP-C LC, Hb levels < 12 g/dL, and EA level > 0.4 in all patients with LC; hemoglobin (Hb) levels < 12 g/dL and EA level > 0.4 in group AC; and age ≥ 65 years, CP-C LC, and Hb levels < 12 g/dL in group NAC. The prediction accuracy of Hb for sarcopenia in group AC, group NAC, and all patients was 83.6%, 75.9%, and 78.1% (sensitivity: 92.0%, 69.0%, and 80.2%; specificity: 66.4%, 71.0%, and 64.0%), respectively. Although not significant, the predictive performance was better when using the combination of Hb and EA measurements than when using Hb alone in group AC but was comparable in all patients. Hb levels can predict sarcopenia in patients with LC, but in those with AC, the combination of Hb and EA improves the prediction performance.
Collapse
Affiliation(s)
- Akihiko Shibamoto
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Tadashi Namisaki
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Junya Suzuki
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Takahiro Kubo
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Satoshi Iwai
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Fumimasa Tomooka
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Soichi Takeda
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Yuki Fujimoto
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Takashi Inoue
- Department of Evidence-Based Medicine, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Misako Tanaka
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Aritoshi Koizumi
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Nobuyuki Yorioka
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Takuya Matsuda
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Shohei Asada
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Yuki Tsuji
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Yukihisa Fujinaga
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Norihisa Nishimura
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Shinya Sato
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Hiroaki Takaya
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Koh Kitagawa
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Kosuke Kaji
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Hideto Kawaratani
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Takemi Akahane
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Akira Mitoro
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Hitoshi Yoshiji
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| |
Collapse
|
19
|
Bagheri R, Shakibaee A, Camera DM, Sobhani V, Ghobadi H, Nazar E, Fakhari H, Dutheil F. Effects of 8 weeks of resistance training in combination with a high protein diet on body composition, muscular performance, and markers of liver and kidney function in untrained older ex-military men. Front Nutr 2023; 10:1205310. [PMID: 37457969 PMCID: PMC10342203 DOI: 10.3389/fnut.2023.1205310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Background The effects of a high protein diet in combination with chronic resistance training (RT) on skeletal muscle adaptation responses in untrained older ex-military men is unknown. Therefore, we compared the effects of 8 weeks of RT in combination with either a high (1.6 g/kg/d) or low protein diet (0.8 g/kg/d) on body composition [skeletal muscle mass (SMM) and body fat percentage (BFP)], muscular strength, power, and endurance (upper and lower body), markers of liver [alanine transaminase (ALT), aspartate aminotransferase (AST), and gamma-glutamyl transferase (GGT)] and kidney (creatinine and urea) function, and lipid profile low-density lipoprotein (LDL), high-density lipoprotein (HDL), and cholesterol levels in a cohort of healthy, untrained older ex-military males. Methods Forty healthy untrained older ex-military males (age: 61 ± 2 yr, body mass index: 23.2 ± 1.3 kg.m-2) performed 8 weeks (three sessions·w-1) of RT with either 1.6 g/kg/d (RHP; n = 20) or 0.8 g/kg/d of protein (RLP; n = 20). Body composition (assessed by Inbody 720), muscular strength (1-RM for chest and leg press), power (Wingate test), endurance (75% 1-RM for chest and leg press), and markers of liver and kidney function (biochemical kits) were assessed pre and post-intervention. Results SMM and muscular strength (upper and lower body) increased post-intervention in both groups and were significantly greater in RHP compared to RLP, while muscular power increased to the same extent in both groups (p < 0.05) with no between-group differences (p > 0.05). In contrast, there were no post-intervention changes in muscular endurance, HDL, and BFP remained in either group (p > 0.05). ALT and creatinine significantly increased in RHP compared to RLP while GGT, AST, and urea only increased in the RLP group (p < 0.05). LDL and cholesterol significantly decreased in both groups (p < 0.05). Conclusion A daily intake of 1.6 g/kg/d protein was superior to 0.8 g/kg/d (current recommended daily intake) for promoting greater improvements in SMM and muscle strength and thus may be a more suitable level of intake for promoting such adaptive responses. Notwithstanding observed between-group differences in ALT and creatinine and the fact that levels remained within normal ranges, it is feasible to conclude that this daily protein intake is efficacious and well tolerated by healthy, untrained older ex-military males.
Collapse
Affiliation(s)
- Reza Bagheri
- Exercise Physiology Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abolfazl Shakibaee
- Exercise Physiology Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Donny M. Camera
- Department of Health and Biostatistics, Swinburne University, Melbourne, VIC, Australia
| | - Vahid Sobhani
- Exercise Physiology Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Ghobadi
- Department of Exercise Physiology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Eisa Nazar
- Psychiatry and Behavioral Sciences Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hadi Fakhari
- Department of Exercise Physiology, University of Isfahan, Isfahan, Iran
| | - Fred Dutheil
- CNRS, LaPSCo, Physiological and Psychosocial Stress, CHU Clermont-Ferrand, University Hospital of Clermont-Ferrand, Preventive and Occupational Medicine, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
20
|
Hernández-Lepe MA, Miranda-Gil MI, Valbuena-Gregorio E, Olivas-Aguirre FJ. Exercise Programs Combined with Diet Supplementation Improve Body Composition and Physical Function in Older Adults with Sarcopenia: A Systematic Review. Nutrients 2023; 15:nu15081998. [PMID: 37111217 PMCID: PMC10142564 DOI: 10.3390/nu15081998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/07/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Sarcopenia is a progressive and frequent syndrome among older adults highly related to physical inactivity and malnutrition. Nowadays, it is considered a pathology that triggers multiple health complications associated with the loss of muscle mass, strength, autonomy, and quality of life. The objective of the present systematic review was to evaluate the effect of exercise programs combined with dietary supplementation on body composition as the primary outcome. This systematic review was carried out in accordance with the elements considered for planning a systematic review by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), and the search was performed in the Scopus, EBSCO, and PubMed databases for the last 10 years. A total of 16 studies met the inclusion criteria and were included in this systematic review. Regular resistance exercise together with daily essential amino acids or whey protein and vitamin D supplementation improve the maintenance or gains in appendiceal/skeletal muscle mass and total lean mass in sarcopenic older adults. The data suggest a synergistic effect not only on the primary outcome, but also on other variables such as strength, speed, stability, and other indicators of quality of life. This systematic review was registered in PROSPERO, ID: CRD42022344284.
Collapse
|
21
|
Motahari Rad M, Bijeh N, Attarzadeh Hosseini SR, Raouf Saeb A. The effect of two concurrent exercise modalities on serum concentrations of FGF21, irisin, follistatin, and myostatin in men with type 2 diabetes mellitus. Arch Physiol Biochem 2023; 129:424-433. [PMID: 33044849 DOI: 10.1080/13813455.2020.1829649] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This study investigated the effect of concurrent training (CT) sequences on fibroblast growth factor 21 (FGF21), irisin, myostatin (MSTN), and follistatin (FST) among adults with type 2 diabetes mellitus (T2DM). Fifty-one diabetic men were randomly selected and assigned to concurrent aerobic-resistance (A-R) training and concurrent resistance-aerobic (R-A) training, and non-exercise control (CON) groups. The training protocols consisted of three sessions per week for 12 weeks. The A-R and R-A groups received the same CT protocols and performed with different sequences. The subjects' blood samples were obtained at baseline and 48 hours after the last session of the intervention. The results showed that the concentration of FGF21 did not change significantly after the 12 weeks of CT with different sequences (p > .05, η2 = 0.123), but the serum concentration of irisin (A-R = 2.93 μg.L-1 (95% CI = 1.45-4.42, d = -0.57) and R-A = 3.31 μg.L-1 (95% CI = 1.13-5.49, d = -0.68)) and FST (A-R = 4.96 ng.mL-1 (95% CI = 3.41-6.5, d = -0.39) and R-A = 4.19 ng.mL-1 (95% CI = 2.82-5.56, d = -0.55)) significantly increased while the serum MSTN concentration (A-R = 152.32 ng.L-1 (95% CI = 61.83-242.82, d = 1.31) and R-A = 173 ng.L-1 (95% CI = 35.89-227.5, d = 0.83)) of both A-R and R-A groups mainly decreased (p < .01). There was no significant difference between A-R and R-A groups' irisin, FST, and MSTN concentration (p > .05), though the CT improved the body compositions, strength, and peak oxygen uptake in both groups (p < .01). Regardless of the CT sequences, it was found that CT acted as a therapeutic modality of training for T2DM patients by increasing their irisin and FST and decreasing their MSTN concentrations.
Collapse
Affiliation(s)
- Morteza Motahari Rad
- Department of Exercise Physiology, Faculty of Sport Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Nahid Bijeh
- Department of Exercise Physiology, Faculty of Sport Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | | |
Collapse
|
22
|
Ladang A, Beaudart C, Reginster JY, Al-Daghri N, Bruyère O, Burlet N, Cesari M, Cherubini A, da Silva MC, Cooper C, Cruz-Jentoft AJ, Landi F, Laslop A, Maggi S, Mobasheri A, Ormarsdottir S, Radermecker R, Visser M, Yerro MCP, Rizzoli R, Cavalier E. Biochemical Markers of Musculoskeletal Health and Aging to be Assessed in Clinical Trials of Drugs Aiming at the Treatment of Sarcopenia: Consensus Paper from an Expert Group Meeting Organized by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) and the Centre Académique de Recherche et d'Expérimentation en Santé (CARES SPRL), Under the Auspices of the World Health Organization Collaborating Center for the Epidemiology of Musculoskeletal Conditions and Aging. Calcif Tissue Int 2023; 112:197-217. [PMID: 36633611 PMCID: PMC9859913 DOI: 10.1007/s00223-022-01054-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/18/2022] [Indexed: 01/13/2023]
Abstract
In clinical trials, biochemical markers provide useful information on the drug's mode of action, therapeutic response and side effect monitoring and can act as surrogate endpoints. In pharmacological intervention development for sarcopenia management, there is an urgent need to identify biomarkers to measure in clinical trials and that could be used in the future in clinical practice. The objective of the current consensus paper is to provide a clear list of biochemical markers of musculoskeletal health and aging that can be recommended to be measured in Phase II and Phase III clinical trials evaluating new chemical entities for sarcopenia treatment. A working group of the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) proposed classifying biochemical markers into 2 series: biochemical markers evaluating musculoskeletal status and biochemical markers evaluating causal factors. For series 1, the group agreed on 4 biochemical markers that should be assessed in Phase II or Phase III trials (i.e., Myostatin-Follistatin, Brain Derived Neurotrophic Factor, N-terminal Type III Procollagen and Serum Creatinine to Serum Cystatin C Ratio - or the Sarcopenia Index). For series 2, the group agreed on 6 biochemical markers that should be assessed in Phase II trials (i.e., the hormones insulin-like growth factor-1 (IGF-I), dehydroepiandrosterone sulphate, and cortisol, and the inflammatory markers C-reactive protein (CRP), interleukin-6 and tumor necrosis factor-α), and 2 in Phase III trials (i.e., IGF-I and CRP). The group also proposed optional biochemical markers that may provide insights into the mode of action of pharmacological therapies. Further research and development of new methods for biochemical marker assays may lead to the evolution of these recommendations.
Collapse
Affiliation(s)
- Aurélie Ladang
- Department of Clinical Chemistry, CHU de Liège, University of Liège, Liège, Belgium.
| | - Charlotte Beaudart
- Division of Public Health, Epidemiology and Health Economics, WHO Collaborating Center for Public Health Aspects of Musculo-Skeletal Health and Ageing,, University of Liège, Liège, Belgium
| | - Jean-Yves Reginster
- Division of Public Health, Epidemiology and Health Economics, WHO Collaborating Center for Public Health Aspects of Musculo-Skeletal Health and Ageing,, University of Liège, Liège, Belgium
- Biochemistry Department, College of Science, Chair for Biomarkers of Chronic Diseases, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Nasser Al-Daghri
- Biochemistry Department, College of Science, Chair for Biomarkers of Chronic Diseases, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Olivier Bruyère
- Division of Public Health, Epidemiology and Health Economics, WHO Collaborating Center for Public Health Aspects of Musculo-Skeletal Health and Ageing,, University of Liège, Liège, Belgium
| | - Nansa Burlet
- Division of Public Health, Epidemiology and Health Economics, WHO Collaborating Center for Public Health Aspects of Musculo-Skeletal Health and Ageing,, University of Liège, Liège, Belgium
| | - Matteo Cesari
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio Cherubini
- Geriatric Unit, IRCCS Istituti Clinici Scientifici Maugeri, Milan, Italy
| | | | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | | | - Francesco Landi
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart, Rome, Italy
| | - Andrea Laslop
- Scientific Office, Federal Office for Safety in Health Care, Vienna, Austria
| | | | - Ali Mobasheri
- Division of Public Health, Epidemiology and Health Economics, WHO Collaborating Center for Public Health Aspects of Musculo-Skeletal Health and Ageing,, University of Liège, Liège, Belgium
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | | | - Régis Radermecker
- Department of Diabetes, Nutrition and Metabolic Disorders, Clinical Pharmacology, University of Liege, CHU de Liège, Liège, Belgium
| | - Marjolein Visser
- Department of Health Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | | | - René Rizzoli
- Faculty of Medicine, Service of Bone Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Etienne Cavalier
- Department of Clinical Chemistry, CHU de Liège, University of Liège, Liège, Belgium
| |
Collapse
|
23
|
Gao J, Yu L. Effects of concurrent training sequence on VO 2max and lower limb strength performance: A systematic review and meta-analysis. Front Physiol 2023; 14:1072679. [PMID: 36776981 PMCID: PMC9908959 DOI: 10.3389/fphys.2023.1072679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
The aim of this study is to compare the effects of concurrent strength and endurance training sequences on VO2max and lower limb strength performance to provide scientific guidance for training practice. We searched PubMed, EBSCO, Web of Science (WOS), Wanfang, and China National Knowledge Infrastructure (CNKI) databases up to December 2022. The included articles were randomized controlled trials that allowed us to compare the strength-endurance (S-E) sequence and endurance-strength (E-S) sequence on VO2max, maximum knee extension strength, maximum knee flexion strength, and lower limb power. The Cochrane bias risk tool was used to evaluate the methodological quality of the included literature, and Stata 12.0 was used for the heterogeneity test, subgroup analysis, draw forest map, sensitivity analysis, and publication bias evaluation. The results have been presented as standardized mean differences (SMDs) between treatments with 95% confidence intervals and calculations performed using random effects models. Significance was accepted when p < 0.05. The studies included 19 randomized controlled trials (285 males and 197 females), 242 subjects in S-E sequence, and 240 subjects in E-S sequence in the analyses. No difference changes between S-E and E-S sequences has been observed on VO2max in the overall analysis (SMD = 0.02, 95% CI: -0.21-0.25, p = 0.859). The S-E sequence shows a greater increase in lower limb strength performance than does the E-S sequence (SMD = 0.19, 95% CI: 0.02-0.37, p = 0.032), which was manifested in the elderly (p = 0.039) and women (p = 0.017); in training periods >8 weeks (p = 0.002) and training frequencies twice a week (p = 0.003); and with maximum knee flexion (p = 0.040) and knee extension strength (p = 0.026), while no difference was found in lower limb power (p = 0.523). In conclusion, the effect of VO2max will not change with different concurrent training sequences. The S-E sequence improves lower limb strength more significantly, mainly in the improvement of knee flexion and knee extension. This advantage is more related to factors such as age, gender, training period, and training frequency.
Collapse
Affiliation(s)
- Jiuxiang Gao
- Laboratory of Exercise Physiology, College of Sports Science, Beijing Sport University, Beijing, China
| | - Liang Yu
- Laboratory of Fitness Training, College of Fitness Training, Beijing Sport University, Beijing, China,*Correspondence: Liang Yu,
| |
Collapse
|
24
|
Carcelén-Fraile MDC, Lorenzo-Nocino MF, Afanador-Restrepo DF, Rodríguez-López C, Aibar-Almazán A, Hita-Contreras F, Achalandabaso-Ochoa A, Castellote-Caballero Y. Effects of different intervention combined with resistance training on musculoskeletal health in older male adults with sarcopenia: A systematic review. Front Public Health 2023; 10:1037464. [PMID: 36684863 PMCID: PMC9853907 DOI: 10.3389/fpubh.2022.1037464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/14/2022] [Indexed: 01/07/2023] Open
Abstract
Objectives Nowadays, there is a significant increase in the elderly population in many countries around the world, and sarcopenia is one of the most common consequences of this with resistance training being one of the best treatments. Hence, this systematic review was conducted to determine what are the effects of different combinations of resistance training-based interventions on the musculoskeletal health of older male adults with sarcopenia. Methods This systematic review was performed following the PRISMA 2020 guidelines. The search was performed between February and August 2022 in three electronic databases: Pubmed (MEDLINE), Web of Science (WOS) and Scopus employing different keywords combined with Boolean operators. Only 13 articles were included out of the initial 1,019. Results The articles studied the effects of resistance training combined with other interventions, 6 articles combined it with protein and vitamin supplementation, 4 with protein supplements only, while 3 combined it with aerobic training, finding beneficial results mainly on strength, functionality, and body composition. Conclusion Resistance Training combined with Aerobic Training or nutritional supplements has better effects than Resistance Training alone in older male adults with sarcopenia. Systematic review registration https://www.crd.york.ac.uk/prospero/#recordDetails, identifier: CRD42022354184.
Collapse
Affiliation(s)
| | | | - Diego Fernando Afanador-Restrepo
- ZIPATEFI Research Group, Faculty of Health Sciences and Sports, University Foundation of the Área Andina, Pereira, Colombia
- GIP Pedagogy Research Group, Faculty of Distance and Virtual Education, Antonio José Camacho University Institution, Santiago de Cali, Colombia
| | - Carlos Rodríguez-López
- Clinical Director at Sinapse Neurology, CEO Mbody Research and Formation Group, University Schools Gimbernat, Attached to the University of Cantabria, A Coruña, Spain
| | - Agustín Aibar-Almazán
- Department of Health Sciences, Faculty of Health Sciences, University of Jaén, Jaén, Spain
| | - Fidel Hita-Contreras
- Department of Health Sciences, Faculty of Health Sciences, University of Jaén, Jaén, Spain
| | | | | |
Collapse
|
25
|
Cai L, Shi L, Peng Z, Sun Y, Chen J. Ageing of skeletal muscle extracellular matrix and mitochondria: finding a potential link. Ann Med 2023; 55:2240707. [PMID: 37643318 PMCID: PMC10732198 DOI: 10.1080/07853890.2023.2240707] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/13/2023] [Accepted: 07/21/2023] [Indexed: 08/31/2023] Open
Abstract
Aim: To discuss the progress of extracellular matrix (ECM) characteristics, mitochondrial homeostasis, and their potential crosstalk in the pathogenesis of sarcopenia, a geriatric syndrome characterized by a generalized and progressive reduction in muscle mass, strength, and physical performance.Methods: This review focuses on the anatomy and physiology of skeletal muscle, alterations of ECM and mitochondria during ageing, and the role of the interplay between ECM and mitochondria in the pathogenesis of sarcopenia.Results: Emerging evidence points to a clear interplay between mitochondria and ECM in various tissues and organs. Under the ageing process, the ECM undergoes changes in composition and physical properties that may mediate mitochondrial changes via the systematic metabolism, ROS, SPARC pathway, and AMPK/PGC-1α signalling, which in turn exacerbate muscle degeneration. However, the precise effects of such crosstalk on the pathobiology of ageing, particularly in skeletal muscle, have not yet been fully understood.Conclusion: The changes in skeletal muscle ECM and mitochondria are partially responsible for the worsened muscle function during the ageing process. A deeper understanding of their alterations and interactions in sarcopenic patients can help prevent sarcopenia and improve its prognoses.
Collapse
Affiliation(s)
- Lubing Cai
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luze Shi
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Peng
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiwu Chen
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Jalili C, Talebi S, Bagheri R, Ghanavati M, Camera DM, Amirian P, Zarpoosh M, Dizaji MK, Kermani MAH, Moradi S. The Association between Dietary Inflammatory Index and Aging Biomarkers/Conditions: A Systematic Review and Dose-response Meta-analysis. J Nutr Health Aging 2023; 27:378-390. [PMID: 37248762 DOI: 10.1007/s12603-023-1919-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 04/19/2023] [Indexed: 05/31/2023]
Abstract
OBJECTIVES We performed a current study to examine the association between dietary inflammatory index (DII) score and older age-related muscle conditions, including sarcopenia, low muscle mass, low muscle strength, frailty, and/or disability. DESIGN Systematic review and dose-response meta-analysis. SETTING A systematic literature search was performed using Scopus, PubMed/MEDLINE, and ISI Web of Science without limitation until October 04, 2022. Relative risk (RR) and 95% confidence interval (CI) were pooled by applying a random-effects model, while validated methods examined assess quality and publication bias via Newcastle-Ottawa Scale, Egger's regression asymmetry, and Begg's rank correlation tests respectively. A dose-response meta-analysis was conducted to estimate the RRs per 1-unit increment in DII scores. PARTICIPANTS Adults (≥18 years). MEASURES The risk of older age-related muscle conditions (sarcopenia, low muscle mass, low muscle strength, frailty, and/or disability). RESULTS Data were available from 19 studies with 68079 participants. Results revealed that a higher DII score was significantly related to an increased risk of sarcopenia (RR=1.50; 95% CI: 1.26, 1.79; I2=53.3%; p<0.001; n=10; sample size =43097), low muscle strength (RR=1.47; 95% CI: 1.24, 1.74; I2=6.6%; p<0.001; n=4; sample size =9339), frailty (RR=1.61; 95% CI: 1.41, 1.84; I2=0.0%; p<0.001; study=5; participant=3882) and disability (RR=1.41; 95% CI: 1.16, 1.72; I2=58.4%; p=0.001; n=5; sample size =13760), but not low muscle mass (RR=1.24; 95% CI: 0.98, 1.56; I2=49.3%; p=0.069; n=4; sample size =11222). Additionally, results of the linear dose-response indicated that an increase of one point in the DII score was related to a 14% higher risk of sarcopenia, 6% higher risk of low muscle mass, 7% higher risk of low muscle strength, and a 7% higher risk of disability in adults. Non-linear dose-response relationships also revealed a positive linear association between the DII score and the risk of sarcopenia (Pnonlinearity = 0.097, Pdose-response<0.001), frailty (Pnonlinearity = 0.844, Pdose-response=0.010) and disability (Pnonlinearity = 0.596, Pdose-response=0.007). CONCLUSION Adherence to a pro-inflammatory diet was significantly associated with a higher risk of sarcopenia and other age-associated adverse effects such as low muscle strength, disability, and frailty. These results indicate a necessity to prioritize the reduction of pro-inflammatory diets to help promote overall older age-related muscle conditions.
Collapse
Affiliation(s)
- C Jalili
- Sajjad Moradi, Nutritional Sciences Department, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran;
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ramírez-Vélez R, González A, García-Hermoso A, Amézqueta IL, Izquierdo M, Díez J. Revisiting skeletal myopathy and exercise training in heart failure: Emerging role of myokines. Metabolism 2023; 138:155348. [PMID: 36410495 DOI: 10.1016/j.metabol.2022.155348] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022]
Abstract
Exercise intolerance remains a major unmet medical need in patients with heart failure (HF). Skeletal myopathy is currently considered as the major limiting factor for exercise capacity in HF patients. On the other hand, emerging evidence suggest that physical exercise can decrease morbidity and mortality in HF patients. Therefore, mechanistic insights into skeletal myopathy may uncover critical aspects for therapeutic interventions to improve exercise performance in HF. Emerging data reviewed in this article suggest that the assessment of circulating myokines (molecules synthesized and secreted by skeletal muscle in response to contraction that display autocrine, paracrine and endocrine actions) may provide new insights into the pathophysiology, phenotyping and prognostic stratification of HF-related skeletal myopathy. Further studies are required to determine whether myokines may also serve as biomarkers to personalize the modality and dose of physical training prescribed for patients with HF and exercise intolerance. In addition, the production and secretion of myokines in patients with HF may interact with systemic alterations (e.g., inflammation and metabolic disturbances), frequently present in patients with HF. Furthermore, myokines may exert beneficial or detrimental effects on cardiac structure and function, which may influence adverse cardiac remodelling and clinical outcomes in HF patients. Collectively, these data suggest that a deeper knowledge on myokines regulation and actions may lead to the identification of novel physical exercise-based therapeutic approaches for HF patients.
Collapse
Affiliation(s)
- Robinson Ramírez-Vélez
- Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Spain; CIBERFES, Carlos III Institute of Health, Madrid, Spain; Institute for Health Research of Navarra (IDISNA), Pamplona, Spain
| | - Arantxa González
- Institute for Health Research of Navarra (IDISNA), Pamplona, Spain; Program of Cardiovascular Diseases, Center of Applied Medical Research (CIMA), Universidad deNavarra, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Antonio García-Hermoso
- Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Spain; CIBERFES, Carlos III Institute of Health, Madrid, Spain; Institute for Health Research of Navarra (IDISNA), Pamplona, Spain
| | - Iñigo Latasa Amézqueta
- Program of Cardiovascular Diseases, Center of Applied Medical Research (CIMA), Universidad deNavarra, Pamplona, Spain
| | - Mikel Izquierdo
- Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Spain; CIBERFES, Carlos III Institute of Health, Madrid, Spain; Institute for Health Research of Navarra (IDISNA), Pamplona, Spain.
| | - Javier Díez
- Institute for Health Research of Navarra (IDISNA), Pamplona, Spain; Program of Cardiovascular Diseases, Center of Applied Medical Research (CIMA), Universidad deNavarra, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain.
| |
Collapse
|
28
|
Barros D, Marques EA, Magalhães J, Carvalho J. Energy metabolism and frailty: The potential role of exercise-induced myokines - A narrative review. Ageing Res Rev 2022; 82:101780. [PMID: 36334911 DOI: 10.1016/j.arr.2022.101780] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Frailty is a complex condition that emerges from dysregulation in multiple physiological systems. Increasing evidence suggests the potential role of age-related energy dysregulation as a key driver of frailty. Exercise is considered the most efficacious intervention to prevent and even ameliorate frailty as it up-tunes and improves the function of several related systems. However, the mechanisms and molecules responsible for these intersystem benefits are not fully understood. The skeletal muscle is considered a secretory organ with endocrine functions that can produce and secrete exercise-related molecules such as myokines. These molecules are cytokines and other peptides released by muscle fibers in response to acute and/or chronic exercise. The available evidence supports that several myokines can elicit autocrine, paracrine, or endocrine effects, partly mediating inter-organ crosstalk and also having a critical role in improving cardiovascular, metabolic, immune, and neurological health. This review describes the current evidence about the potential link between energy metabolism dysregulation and frailty and provides a theoretical framework for the potential role of myokines (via exercise) in counteracting frailty. It also summarizes the physiological role of selected myokines and their response to different acute and chronic exercise protocols in older adults.
Collapse
Affiliation(s)
- Duarte Barros
- The Research Centre in Physical Activity, Health and Leisure, CIAFEL, University of Porto, Portugal; ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal.
| | - Elisa A Marques
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University of Maia (ISMAI), Portugal; School of Sport and Exercise Sciences, Loughborough University, Loughborough, UK
| | - José Magalhães
- The Research Centre in Physical Activity, Health and Leisure, CIAFEL, University of Porto, Portugal; ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Joana Carvalho
- The Research Centre in Physical Activity, Health and Leisure, CIAFEL, University of Porto, Portugal; ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| |
Collapse
|
29
|
Santos HO, Cerqueira HS, Tinsley GM. The Effects of Dietary Supplements, Nutraceutical Agents, and Physical Exercise on Myostatin Levels: Hope or Hype? Metabolites 2022; 12:1146. [PMID: 36422286 PMCID: PMC9695935 DOI: 10.3390/metabo12111146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 09/12/2024] Open
Abstract
Myostatin, a secreted growth factor belonging to the transforming growth factor β (TGF-β) family, performs a role in hindering muscle growth by inhibiting protein kinase B (Akt) phosphorylation and the associated activation of hypertrophy pathways (e.g., IGF-1/PI3K/Akt/mTOR pathway). In addition to pharmacological agents, some supplements and nutraceutical agents have demonstrated modulatory effects on myostatin levels; however, the clinical magnitude must be appraised with skepticism before translating the mechanistic effects into muscle hypertrophy outcomes. Here, we review the effects of dietary supplements, nutraceutical agents, and physical exercise on myostatin levels, addressing the promise and pitfalls of relevant randomized clinical trials (RCTs) to draw clinical conclusions. RCTs involving both clinical and sports populations were considered, along with wasting muscle disorders (e.g., sarcopenia) and resistance training-induced muscle hypertrophy, irrespective of disease status. Animal models were considered only to expand the mechanisms of action, and observational data were consulted to elucidate potential cutoff values. Collectively, the effects of dietary supplements, nutraceutical agents, and physical exercise on myostatin mRNA expression in skeletal muscle and serum myostatin levels are not uniform, and there may be reductions, increases, or neutral effects. Large amounts of research using resistance protocols shows that supplements or functional foods do not clearly outperform placebo for modulating myostatin levels. Thus, despite some biological hope in using supplements or certain functional foods to decrease myostatin levels, caution must be exercised not to propagate the hope of the food supplement market, select health professionals, and laypeople.
Collapse
Affiliation(s)
- Heitor O. Santos
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia 38408-100, Brazil
| | | | - Grant M. Tinsley
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
30
|
Abstract
Obesity remains a serious relevant public health concern throughout the world despite related countermeasures being well understood (i.e. mainly physical activity and an adjusted diet). Among different nutritional approaches, there is a growing interest in ketogenic diets (KD) to manipulate body mass (BM) and to enhance fat mass loss. KD reduce the daily amount of carbohydrate intake drastically. This results in increased fatty acid utilisation, leading to an increase in blood ketone bodies (acetoacetate, 3-β-hydroxybutyrate and acetone) and therefore metabolic ketosis. For many years, nutritional intervention studies have focused on reducing dietary fat with little or conflicting positive results over the long term. Moreover, current nutritional guidelines for athletes propose carbohydrate-based diets to augment muscular adaptations. This review discusses the physiological basis of KD and their effects on BM reduction and body composition improvements in sedentary individuals combined with different types of exercise (resistance training or endurance training) in individuals with obesity and athletes. Ultimately, we discuss the strengths and the weaknesses of these nutritional interventions together with precautionary measures that should be observed in both individuals with obesity and athletic populations. A literature search from 1921 to April 2021 using Medline, Google Scholar, PubMed, Web of Science, Scopus and Sportdiscus Databases was used to identify relevant studies. In summary, based on the current evidence, KD are an efficient method to reduce BM and body fat in both individuals with obesity and athletes. However, these positive impacts are mainly because of the appetite suppressive effects of KD, which can decrease daily energy intake. Therefore, KD do not have any superior benefits to non-KD in BM and body fat loss in individuals with obesity and athletic populations in an isoenergetic situation. In sedentary individuals with obesity, it seems that fat-free mass (FFM) changes appear to be as great, if not greater, than decreases following a low-fat diet. In terms of lean mass, it seems that following a KD can cause FFM loss in resistance-trained individuals. In contrast, the FFM-preserving effects of KD are more efficient in endurance-trained compared with resistance-trained individuals.
Collapse
|
31
|
Effects of Icelandic yogurt consumption and resistance training in healthy untrained older males. Br J Nutr 2022; 127:1334-1342. [PMID: 34121642 DOI: 10.1017/s0007114521002166] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Due to the important roles of resistance training and protein consumption in the prevention and treatment of sarcopenia, we assessed the efficacy of post-exercise Icelandic yogurt consumption on lean mass, strength and skeletal muscle regulatory factors in healthy untrained older males. Thirty healthy untrained older males (age = 68 ± 4 years) were randomly assigned to Icelandic yogurt (IR; n 15, 18 g of protein) or an iso-energetic placebo (PR; n 15, 0 g protein) immediately following resistance training (3×/week) for 8 weeks. Before and after training, lean mass, strength and skeletal muscle regulatory factors (insulin-like growth factor-1 (IGF-1), transforming growth factor-beta 1 (TGF-β1), growth differentiation factor 15 (GDF15), Activin A, myostatin (MST) and follistatin (FST)) were assessed. There were group × time interactions (P < 0·05) for body mass (IR: Δ 1, PR: Δ 0·7 kg), BMI (IR: Δ 0·3, PR: Δ 0·2 kg/m2), lean mass (IR: Δ 1·3, PR: Δ 0·6 kg), bench press (IR: Δ 4, PR: 2·3 kg), leg press (IR: Δ 4·2, PR: Δ 2·5 kg), IGF-1 (IR: Δ 0·5, Δ PR: 0·1 ng/ml), TGF-β (IR: Δ - 0·2, PR: Δ - 0·1 ng/ml), GDF15 (IR: Δ - 10·3, PR: Δ - 4·8 pg/ml), Activin A (IR: Δ - 9·8, PR: Δ - 2·9 pg/ml), MST (IR: Δ - 0·1, PR: Δ - 0·04 ng/ml) and FST (IR: Δ 0·09, PR: Δ 0·03 ng/ml), with Icelandic yogurt consumption resulting in greater changes compared with placebo. The addition of Icelandic yogurt consumption to a resistance training programme improved lean mass, strength and altered skeletal muscle regulatory factors in healthy untrained older males compared with placebo. Therefore, Icelandic yogurt as a nutrient-dense source and cost-effective supplement enhances muscular gains mediated by resistance training and consequently may be used as a strategy for the prevention of sarcopenia.
Collapse
|
32
|
Bijeh N, Mohammadnia-Ahmadi M, Hooshamnd-Moghadam B, Eskandari M, Golestani F. Effects of Soy Milk in Conjunction With Resistance Training on Physical Performance and Skeletal Muscle Regulatory Markers in Older Men. Biol Res Nurs 2022; 24:294-307. [PMID: 35332795 DOI: 10.1177/10998004211073123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Purpose: We aimed to determine the effects of 12 weeks of soy milk consumption combined with resistance training (RT) on body composition, physical performance, and skeletal muscle regulatory markers in older men. Methods: In this randomized clinical trial study, 60 healthy elderly men (age = 65.63 ± 3.16 years) were randomly assigned to four groups: resistance training (RT; n = 15), soy milk consumption (SMC; n = 15), resistance training + soy milk (RSM; n = 15), and control (CON; n = 15) groups. The study was double-blind for the soy milk/placebo. Participants in RT and RSM groups performed resistance training (3 times/week) for 12 weeks. Participants in the SMC and RSM groups consumed 240 mL of soy milk daily. Body composition [body mass (BM), body fat percent (BFP), waist-hip ratio (WHR), and fat mass (FM)], physical performance [upper body strength (UBS), lower body strength (LBS), VO2max, upper anaerobic power, lower anaerobic power, and handgrip strength], and serum markers [follistatin, myostatin, myostatin-follistatin ratio (MFR), and growth and differentiation factor 11 (GDF11)] were evaluated before and after interventions. Results: All 3 interventions significantly (p < 0.05) increased serum follistatin concentrations (RT = 1.7%, SMC = 2.9%, RSM = 7.8%) and decreased serum myostatin (RT = -1.3% SMC = -5.4%, RSM = -0.5%) and GDF11 concentrations (RT = -1.4%, SMC = -1.4%, RSM = -9.0%), and MFR (RT = -2.6%, SMC = -3.2%, RSM = -12%). In addition, we observed significant reduction in all 3 intervention groups in BFP (RT = -3.6%, SMC = -1.4%, RSM = -6.0%), WHR (RT = -2.2%, SMC = -2.1%, RSM = -4.3%), and FM (RT = -9.6%, SMC = -3.8%, RSM = -11.0%). Moreover, results found significant increase only in RT and RSM groups for muscle mass (RT = 3.8% and RSM = 11.8%), UBS (RT = 10.9% and RSM = 21.8%), LBS (RT = 4.3% and RSM = 7.8%), upper anaerobic power (RT = 7.8% and RSM = 10.3%), and lower anaerobic power (RT = 4.6% and RSM = 8.9%). Handgrip strength were significantly increased in all 3 intervention groups (RT = 7.0%, SMC = 6.9%, RSM = 43.0%). VO2max significantly increased only in RSM (1.7%) after 12 weeks of intervention. Additionally, significant differences were observed between the changes for all variables in the RSM group compared to RT, SMC, and CON groups (p < 0.05). Conclusions: There were synergistic effects of soy milk and RT for skeletal muscle regulatory markers, body composition, and physical performance. Results of the present study support the importance of soy milk in conjunction with RT for older men.
Collapse
Affiliation(s)
- Nahid Bijeh
- Department of Exercise Physiology, 48440Ferdowsi University of Mashhad, Mashhad, Iran
| | | | | | - Mozhgan Eskandari
- Department of Exercise Physiology, 48528University of Birjand, Birjand, Iran
| | - Fateme Golestani
- Department of Exercise Physiology, 48528University of Birjand, Birjand, Iran
| |
Collapse
|
33
|
Murata K, Namisaki T, Fujimoto Y, Takeda S, Enomoto M, Takaya H, Tsuji Y, Shibamoto A, Suzuki J, Kubo T, Iwai S, Tomooka F, Tanaka M, Kaneko M, Asada S, Koizumi A, Yorioka N, Matsuda T, Ozutsumi T, Ishida K, Ogawa H, Takagi H, Fujinaga Y, Furukawa M, Sawada Y, Nishimura N, Kitagawa K, Sato S, Kaji K, Inoue T, Asada K, Kawaratani H, Moriya K, Akahane T, Mitoro A, Yoshiji H. Clinical Significance of Serum Zinc Levels on the Development of Sarcopenia in Cirrhotic Patients. CANCER DIAGNOSIS & PROGNOSIS 2022; 2:184-193. [PMID: 35399181 PMCID: PMC8962814 DOI: 10.21873/cdp.10093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND/AIM Sarcopenia increases the mortality in patients with cirrhosis. Approximately 60% of zinc is accumulated in skeletal muscle. We aimed to determine the role of subclinical zinc deficiency on sarcopenia development in patients with cirrhosis. PATIENTS AND METHODS We enrolled 151 patients with cirrhosis and divided them into the group with normal serum zinc levels (Group N: 80-130 μg/dl; n=38) and group with subclinical zinc deficiency (Group D: <80 μg/dl; n=113). The risk factors for sarcopenia were then investigated. RESULTS Group D had more sarcopenia cases than Group N (31.0% vs. 13.2%). In group D, HGS exhibited a weakly positive but significant correlation with serum zinc levels (R=0.287, p=0.00212), serum zinc levels negatively correlated with both ammonia and myostatin levels (R=-0.254, p=0.0078; R=-0.33, p<0.01), and low zinc levels were independently associated with sarcopenia development. CONCLUSION Patients with cirrhosis showing subclinical zinc deficiency have a significantly higher risk of developing sarcopenia.
Collapse
Affiliation(s)
- Koji Murata
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Tadashi Namisaki
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Yuki Fujimoto
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Soichi Takeda
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Masahide Enomoto
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Hiroaki Takaya
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Yuki Tsuji
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Akihiko Shibamoto
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Junya Suzuki
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Takahiro Kubo
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Satoshi Iwai
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Fumimasa Tomooka
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Misako Tanaka
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Miki Kaneko
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Shohei Asada
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Aritoshi Koizumi
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Nobuyuki Yorioka
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Takuya Matsuda
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Takahiro Ozutsumi
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Koji Ishida
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Hiroyuki Ogawa
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Hirotetsu Takagi
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Yukihisa Fujinaga
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Masanori Furukawa
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Yasuhiko Sawada
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Norihisa Nishimura
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Koh Kitagawa
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Shinya Sato
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Kosuke Kaji
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Takashi Inoue
- Institute for Clinical and Translational Science, Nara Medical University Hospital, Kashihara, Japan
| | - Kiyoshi Asada
- Institute for Clinical and Translational Science, Nara Medical University Hospital, Kashihara, Japan
| | - Hideto Kawaratani
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Kei Moriya
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Takemi Akahane
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Akira Mitoro
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Hitoshi Yoshiji
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| |
Collapse
|
34
|
Ni HJ, Hsu TF, Chen LK, Chou HL, Tung HH, Chow LH, Chen YC. Effects of Exercise Programs in older adults with Muscle Wasting: A Systematic Review and Meta-analysis. Arch Gerontol Geriatr 2022; 99:104605. [DOI: 10.1016/j.archger.2021.104605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/21/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022]
|
35
|
Alizadeh Pahlavani H. Exercise Therapy for People With Sarcopenic Obesity: Myokines and Adipokines as Effective Actors. Front Endocrinol (Lausanne) 2022; 13:811751. [PMID: 35250869 PMCID: PMC8892203 DOI: 10.3389/fendo.2022.811751] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/24/2022] [Indexed: 12/15/2022] Open
Abstract
Sarcopenic obesity is defined as a multifactorial disease in aging with decreased body muscle, decreased muscle strength, decreased independence, increased fat mass, due to decreased physical activity, changes in adipokines and myokines, and decreased satellite cells. People with sarcopenic obesity cause harmful changes in myokines and adipokines. These changes are due to a decrease interleukin-10 (IL-10), interleukin-15 (IL-15), insulin-like growth factor hormone (IGF-1), irisin, leukemia inhibitory factor (LIF), fibroblast growth factor-21 (FGF-21), adiponectin, and apelin. While factors such as myostatin, leptin, interleukin-6 (IL-6), interleukin-8 (IL-8), and resistin increase. The consequences of these changes are an increase in inflammatory factors, increased degradation of muscle proteins, increased fat mass, and decreased muscle tissue, which exacerbates sarcopenia obesity. In contrast, exercise, especially strength training, reverses this process, which includes increasing muscle protein synthesis, increasing myogenesis, increasing mitochondrial biogenesis, increasing brown fat, reducing white fat, reducing inflammatory factors, and reducing muscle atrophy. Since some people with chronic diseases are not able to do high-intensity strength training, exercises with blood flow restriction (BFR) are newly recommended. Numerous studies have shown that low-intensity BFR training produces the same increase in hypertrophy and muscle strength such as high-intensity strength training. Therefore, it seems that exercise interventions with BFR can be an effective way to prevent the exacerbation of sarcopenia obesity. However, due to limited studies on adipokines and exercises with BFR in people with sarcopenic obesity, more research is needed.
Collapse
|
36
|
Mendez-Gutierrez A, Aguilera CM, Osuna-Prieto FJ, Martinez-Tellez B, Prados MCR, Acosta FM, Llamas-Elvira JM, Ruiz JR, Sanchez-Delgado G. Exercise-induced changes on exerkines that might influence brown adipose tissue metabolism in young sedentary adults. Eur J Sport Sci 2022; 23:625-636. [PMID: 35152857 DOI: 10.1080/17461391.2022.2040597] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In rodents, exercise alters the plasma concentration of exerkines that regulate white adipose tissue (WAT) browning or brown adipose tissue (BAT) metabolism. This study aims to analyse the acute and chronic effect of exercise on the circulating concentrations of 16 of these exerkines in humans. Ten young sedentary adults (6 female) performed a maximum walking effort test and a resistance exercise session. The plasma concentration of 16 exerkines was assessed before, and 3, 30, 60, and 120 minutes after exercise. Those exerkines modified by exercise were additionally measured in another 28 subjects (22 women). We also measured the plasma concentrations of the exerkines before and after a 24-week exercise program (endurance + resistance; 3-groups: control, moderate-intensity and vigorous-intensity) in 110 subjects (75 women). Endurance exercise acutely increased the plasma concentration of lactate, norepinephrine, brain-derived neurotrophic factor, interleukin 6, and follistatin-like protein 1 (3 minutes after exercise), and musclin and fibroblast growth factor 21 (30 and 60 minutes after exercise), decreasing the plasma concentration of leptin (30 minutes after exercise). Adiponectin, atrial natriuretic peptide (ANP), β-aminoisobutyric acid, meteorin-like, follistatin, pro-ANP, irisin and myostatin were not modified or not detectable. The resistance exercise session increased the plasma concentration of lactate 3 minutes after exercise. Chronic exercise did not alter the plasma concentration of these exerkines. In sedentary young adults, acute endurance exercise releases to the bloodstream exerkines that regulate BAT metabolism and WAT browning. In contrast, neither a low-volume resistance exercise session nor a 24-week training program modified plasma levels of these molecules.Trial registration: ClinicalTrials.gov identifier: NCT02365129..
Collapse
Affiliation(s)
- Andrea Mendez-Gutierrez
- Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, Granada, 18016, Spain.,Biohealth Research Institute in Granada (ibs. GRANADA), Granada, 18012, Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Madrid, 28029, Spain
| | - Concepción M Aguilera
- Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, Granada, 18016, Spain.,Biohealth Research Institute in Granada (ibs. GRANADA), Granada, 18012, Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Madrid, 28029, Spain
| | - Francisco J Osuna-Prieto
- Department of Analytical Chemistry, University of Granada; Technology Centre for Functional Food Research and Development (CIDAF), Granada, 18100, Spain.,PROFITH "PROmoting FITness and Health through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Crta. Alfacar s/n, Granada, 18071 Spain
| | - Borja Martinez-Tellez
- PROFITH "PROmoting FITness and Health through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Crta. Alfacar s/n, Granada, 18071 Spain.,Department of Medicine, Leiden University Medical Center, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicina, Leiden, 2333 ZA, Netherlands
| | - M Cruz Rico Prados
- Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, Granada, 18016, Spain.,RETIC SAMID. RETIC-SALUD Materno infantil y del desarrollo, Spain
| | - Francisco M Acosta
- PROFITH "PROmoting FITness and Health through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Crta. Alfacar s/n, Granada, 18071 Spain.,Turku PET Centre, University of Turku. Turku PET Centre, Turku University Hospital, Turku, 20520, Finland
| | - Jose M Llamas-Elvira
- Biohealth Research Institute in Granada (ibs. GRANADA), Granada, 18012, Spain.,Nuclear Medicine Service, "Virgen de las Nieves" University Hospital, Granada, 18014, Spain
| | - Jonatan R Ruiz
- PROFITH "PROmoting FITness and Health through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Crta. Alfacar s/n, Granada, 18071 Spain
| | - Guillermo Sanchez-Delgado
- PROFITH "PROmoting FITness and Health through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Crta. Alfacar s/n, Granada, 18071 Spain.,Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| |
Collapse
|
37
|
Moghadam BH, Rashidlamir A, Hosseini SRA, Gaeini AA, Kaviani M. The Effects of Saffron (Crocus sativus L.) in conjunction with Concurrent Training on body composition, glycemic status, and inflammatory markers in obese men with type 2 diabetes mellitus: a randomized double-blind clinical trial. Br J Clin Pharmacol 2022; 88:3256-3271. [PMID: 35001410 DOI: 10.1111/bcp.15222] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/09/2021] [Accepted: 12/05/2021] [Indexed: 11/29/2022] Open
Abstract
AIM Chronic inflammation is one of the major challenges in the management of obesity and type 2 diabetes mellitus (T2DM). Our primary aim was to assess the anti-inflammatory effects of Saffron (Crocus sativus L.) supplementation and concurrent training in obese men with T2DM. METHODS Sixty obese men with T2DM (age = 39 ± 5 years; body mass = 93.9 ± 6 kg) were randomly assigned to four groups; concurrent training + placebo (CT; n = 15), saffron supplementation (S; n = 15), concurrent training + saffron supplementation (CTS; n = 15), or control (CON; n = 15). The participants in the CT group performed concurrent training (resistance + aerobic) three times per week for 12 weeks and received daily one pill of placebo (maltodextrin); the participants in the S group supplemented with one pill of 100 mg of saffron daily, and the participants in the CTS group participated in both saffron and training intervention while CON group continued regular lifestyle (no training or no supplementation). Inflammatory markers, body composition (evaluated by a multi-frequency bioelectrical impedance device; Jawon X-Contact 356), and metabolic profile were evaluated before and after interventions. RESULTS All three interventions significantly (p<0.05) decreased TNF-α (CT = -4.22, S = -1.91, CTS = -9.69 pg/mL), hs-CRP (CT = -0.13, S = -0.1, CTS = -0.32 ng/mL), IL-6 (CT = -6.84, S = -6.36, CTS = -13.55 pg/mL), IL-1β (CT = -8.85, S = -6.46, CTS = -19.8 pg/mL), FBG (CT = -6.97, S = -2.45, CTS = -13.86 mg/dL), insulin (CT = -0.13, S = -0.03, CTS = -0.21 mU/L), HOMA-IR (CT = -0.12, S = -0.04, CTS = -0.21), HbA1c (CT = -0.17, S = -0.11, CTS = -0.26 %), and increased IL-10 (CT = 1.09, S= 0.53, CTS = 2.27 pg/mL) concentrations. There was a positive correlation between changes in BFP with hs-CRP, IL-6, IL-1β, and TNF-α, and IL-10 concentrations across the intervention groups. Additionally, significant differences were observed between the changes for all variables in the CTS group compared to CT, S, and CON groups (p<0.05) CONCLUSION: It seems that an interactive of saffron supplementation and concurrent training has more efficient effects on the anti-inflammatory status compared to the saffron supplementation or concurrent training alone.
Collapse
Affiliation(s)
| | - Amir Rashidlamir
- Department of Exercise Physiology, Ferdowsi university of Mashhad, Mashhad, Iran
| | | | - Abbas Ali Gaeini
- Department of Exercise Physiology, University of Tehran, Tehran, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| |
Collapse
|
38
|
Effects of Resistance Training Intervention along with Leucine-Enriched Whey Protein Supplementation on Sarcopenia and Frailty in Post-Hospitalized Older Adults: Preliminary Findings of a Randomized Controlled Trial. J Clin Med 2021; 11:jcm11010097. [PMID: 35011838 PMCID: PMC8745511 DOI: 10.3390/jcm11010097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022] Open
Abstract
Resistance training and protein supplementation are expected to exert the greatest effect in counteracting muscle-wasting conditions. Myokines might play a key role, but this remains to be elucidated. The aim of this study (NCT03815201) was to examine the effects of a resistance training program with post-exercise leucine-enriched protein supplementation on sarcopenia and frailty status and on the plasma myokine concentrations of post-hospitalized older adults. A total of 41 participants were included in this 12-week resistance training intervention and randomized either to the placebo group or the protein group. Sarcopenia, frailty, body composition and blood-based myokines were measured at baseline and after 12 weeks. Both groups improved in terms of physical performance (p < 0.005) and frailty (p < 0.07) following the resistance training intervention, but without any difference between groups. Myokine concentrations did not change after the intervention in either group. Changes in myostatin concentrations were associated with greater improvements in appendicular skeletal muscle mass at the end of the intervention (p < 0.05). In conclusion, the implementation of resistance training programs after hospitalization in older adults should be prioritized to combat sarcopenia and frailty immediately. The results regarding myostatin should be taken as preliminary findings.
Collapse
|
39
|
Lu L, Mao L, Feng Y, Ainsworth BE, Liu Y, Chen N. Effects of different exercise training modes on muscle strength and physical performance in older people with sarcopenia: a systematic review and meta-analysis. BMC Geriatr 2021; 21:708. [PMID: 34911483 PMCID: PMC8672633 DOI: 10.1186/s12877-021-02642-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE We conducted a systematic review and meta-analysis to clarify the effects of different exercise modes (resistance training [RT], whole body vibration training [WBVT], and mixed training [MT, resistance training combined with other exercises such as balance, endurance and aerobic training]) on muscle strength (knee extension strength [KES]) and physical performance (Timed Up and Go [TUG], gait speed [GS] and the Chair Stand [CS]) in older people with sarcopenia. METHOD All studies published from January 2010 to March 2021 on the effects of exercise training in older people with sarcopenia were retrieved from 6 electronic databases: Pubmed, Cochrane Library, Embase, Web of Science, the China National Knowledge Infrastructure (CNKI), and Wanfang Database. Two researchers independently extracted and evaluated studies that met inclusion and exclusion criteria. Pooled analyses for pre- and post- outcome measurements were performed using Review Manager 5.4 with standardized mean differences (SMDs) and fixed-effect models. RESULT Twenty-six studies (25 randomized controlled trails [RCTs] and one non-randomized controlled trail) were included in this study with 1191 older people with sarcopenia (mean age 60.6 ± 2.3 to 89.5 ± 4.4). Compared with a control group, RT and MT significantly improved KES (RT, SMD = 1.36, 95% confidence intervals [95% CI]: 0.71 to 2.02, p < 0.0001, I2 = 72%; MT, SMD = 0.62, 95% CI: 0.29 to 0.95, p = 0.0002, I2 = 56%) and GS (RT, SMD = 2.01, 95% CI: 1.04 to 2.97, p < 0.0001, I2 = 84%; MT, SMD = 0.69, 95% CI: 0.29 to 1.09, p = 0.008, I2 = 81%). WBVT showed no changes in KES (SMD = 0.65, 95% CI: - 0.02 to 1.31, p = 0.06, I2 = 80%) or GS (SMD = 0.12, 95% CI: - 0.15 to 0.39, p = 0.38, I2 = 0%). TUG times were significantly improved with all exercise training modes (SMD = -0.66, 95% CI: - 0.94 to - 0.38, p < 0.00001, I2 = 60%). There were no changes in CS times with any of the exercise training modes (SMD = 0.11, 95% CI: - 0.36 to 0.57, p = 0.65, I2 = 87%). CONCLUSIONS In older people with sarcopenia, KES and GS can be improved by RT and MT, but not by WBVT. All three training modes improved TUG times, but not improved CS times.
Collapse
Affiliation(s)
- Linqian Lu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
- Department of Rehabilitation, Xinhua Hospital Chongming Branch, Shanghai, 202150, China
| | - Lin Mao
- Department of Rehabilitation, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuwei Feng
- Department of Rehabilitation, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | - Yu Liu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
| | - Nan Chen
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China.
- Department of Rehabilitation, Xinhua Hospital Chongming Branch, Shanghai, 202150, China.
| |
Collapse
|
40
|
Griffen C, Duncan M, Hattersley J, Weickert MO, Dallaway A, Renshaw D. Effects of resistance exercise and whey protein supplementation on skeletal muscle strength, mass, physical function, and hormonal and inflammatory biomarkers in healthy active older men: a randomised, double-blind, placebo-controlled trial. Exp Gerontol 2021; 158:111651. [PMID: 34896568 DOI: 10.1016/j.exger.2021.111651] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/18/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE To determine the individual and combined effects of 12 weeks of resistance exercise (RE) and whey protein supplementation on skeletal muscle strength (primary outcome), mass and physical function, and hormonal and inflammatory biomarkers in older adults. METHODS Thirty-six healthy older men [(mean±SE) age: 67±1 y; BMI: 25.5±0.4 kg/m2] were randomised to either control (CON; n=9), whey protein (PRO; n=9), RE+control (EX+CON; n=9), or RE+whey protein (EX+PRO; n=9) in a double-blinded fashion. Whole-body RE (2 sets of 8 repetitions and 1 set to volitional failure at 80% 1RM) was performed twice weekly. Supplements (PRO, 25 g whey protein isolate; CON, 23.75 g maltodextrin) were consumed twice daily. RESULTS EX+CON and EX+PRO increased leg extension (+19±3 kg and +20±3 kg, respectively) and leg press 1RM (+27±3 kg and +39±2 kg, respectively) greater than the CON and PRO groups (P<0.001, Cohen's d=1.50-1.90). RE (EX+CON and EX+PRO groups pooled) also increased fat-free mass (FFM) (+0.9±0.3 kg) and 6-min walk test distance (+21±5 m) and decreased fat mass (-0.4±0.4 kg), and interleukin-6 (-1.0±0.4 pg/mL) and tumor necrosis factor-alpha concentration (-0.7±0.3 pg/mL) greater than non-exercise (CON and PRO groups pooled; P<0.05, Cohen's f=0.37-0.45). Whey protein supplementation (PRO and EX+PRO groups pooled) increased 4-m gait speed greater than control (CON and EX+CON groups pooled) (+0.08±0.03 m/s; P=0.007, f=0.51). CONCLUSION RE increased muscle strength, FFM and physical function, and decreased markers of systemic inflammation in healthy active older men. Whey protein supplementation alone increased gait speed. No synergistic effects were observed. This study was registered at clinicaltrials.gov as NCT03299972.
Collapse
Affiliation(s)
- Corbin Griffen
- Centre for Sport, Exercise and Life Sciences, Research Institute of Health and Wellbeing, Coventry University, Coventry, CV1 2DS, United Kingdom; Human Metabolism Research Unit, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, United Kingdom.
| | - Michael Duncan
- Centre for Sport, Exercise and Life Sciences, Research Institute of Health and Wellbeing, Coventry University, Coventry, CV1 2DS, United Kingdom; School of Life Sciences, Faculty of Health and Life Sciences, Coventry University, Coventry, CV1 2DS, United Kingdom
| | - John Hattersley
- Centre for Sport, Exercise and Life Sciences, Research Institute of Health and Wellbeing, Coventry University, Coventry, CV1 2DS, United Kingdom; Human Metabolism Research Unit, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, United Kingdom; School of Engineering, University of Warwick, Coventry, CV4 7HL, United Kingdom
| | - Martin O Weickert
- Centre for Sport, Exercise and Life Sciences, Research Institute of Health and Wellbeing, Coventry University, Coventry, CV1 2DS, United Kingdom; Department of Endocrinology and Diabetes, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, United Kingdom; Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Alexander Dallaway
- Centre for Sport, Exercise and Life Sciences, Research Institute of Health and Wellbeing, Coventry University, Coventry, CV1 2DS, United Kingdom; Human Metabolism Research Unit, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, United Kingdom
| | - Derek Renshaw
- Centre for Sport, Exercise and Life Sciences, Research Institute of Health and Wellbeing, Coventry University, Coventry, CV1 2DS, United Kingdom
| |
Collapse
|
41
|
Esposito P, Picciotto D, Battaglia Y, Costigliolo F, Viazzi F, Verzola D. Myostatin: Basic biology to clinical application. Adv Clin Chem 2021; 106:181-234. [PMID: 35152972 DOI: 10.1016/bs.acc.2021.09.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Myostatin is a member of the transforming growth factor (TGF)-β superfamily. It is expressed by animal and human skeletal muscle cells where it limits muscle growth and promotes protein breakdown. Its effects are influenced by complex mechanisms including transcriptional and epigenetic regulation and modulation by extracellular binding proteins. Due to its actions in promoting muscle atrophy and cachexia, myostatin has been investigated as a promising therapeutic target to counteract muscle mass loss in experimental models and patients affected by different muscle-wasting conditions. Moreover, growing evidence indicates that myostatin, beyond to regulate skeletal muscle growth, may have a role in many physiologic and pathologic processes, such as obesity, insulin resistance, cardiovascular and chronic kidney disease. In this chapter, we review myostatin biology, including intracellular and extracellular regulatory pathways, and the role of myostatin in modulating physiologic processes, such as muscle growth and aging. Moreover, we discuss the most relevant experimental and clinical evidence supporting the extra-muscle effects of myostatin. Finally, we consider the main strategies developed and tested to inhibit myostatin in clinical trials and discuss the limits and future perspectives of the research on myostatin.
Collapse
Affiliation(s)
- Pasquale Esposito
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Daniela Picciotto
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Yuri Battaglia
- Nephrology and Dialysis Unit, St. Anna University Hospital, Ferrara, Italy
| | - Francesca Costigliolo
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesca Viazzi
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Daniela Verzola
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
42
|
Alvarez C, Ciolac EG, Guimarães GV, Andrade DC, Vasquez-Muñoz M, Monsalves-Álvarez M, Delgado-Floody P, Alonso-Martínez AM, Izquierdo M. Residual Impact of Concurrent, Resistance, and High-Intensity Interval Training on Fasting Measures of Glucose Metabolism in Women With Insulin Resistance. Front Physiol 2021; 12:760206. [PMID: 34858210 PMCID: PMC8632353 DOI: 10.3389/fphys.2021.760206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/15/2021] [Indexed: 11/29/2022] Open
Abstract
We sought to assess the residual effects (post 72-h training cessation) on fasting plasma glucose (FPG) and fasting insulin (FI) after 12-weeks of high-intensity interval training (HIIT), resistance training (RT), or concurrent training (CT) in women with insulin resistance (IR). We also aimed to determine the training-induced, post-training residual impact of CT. A total of adult 45 women (age 38.5±9.2years) were included in the final analysis and were assigned to a control (CG; n=13, BMI 28.3±3.6kg/m2), HIIT [n=14, BMI 28.6±3.6kg/m2, three sessions/wk., 80-100% of the maximum heart rate (HRmax)], RT [n=8, BMI 29.4±5.5kg/m2, two sessions/wk., 8-10 points of the modified Borg, corresponding to 20 to 50% range of one maximum repetition test (1RM)], or CT group (n=10, BMI 29.1±3.0kg/m2, three sessions/wk., 80-100% of HRmax, and 8-10 Borg, or 20 to 50% range of 1RM, to each HIIT and RT compounds), with the latter including both HIIT and RT regimens. Training interventions lasted 12-weeks. The main outcomes were FPG and FI measured at pre- and 24-h and 72-h post-training (FPG24h, FI24h, and FPG72h, FI72h, respectively). Secondary endpoints were body composition/anthropometry and the adiposity markers waist circumference (WC) and tricípital skinfold (TSF). The residual effects 72-h post-training [delta (∆)] were significantly poorer (all p<0.01) in the CT group (∆FPG72h+6.6mg/dl, η 2: 0.76) than in the HIIT (∆FPG72h+1.2mg/dl, η 2: 0.07) and RT (∆FPG72h+1.0mg/dl, η 2: 0.05) groups. These findings reveal that HIIT reduces FPG and RT reduces FI 24-h post-training; both exercise interventions alone have remarkably better residual effects on FPG and FI (post-72h) than CT in women with insulin resistance.
Collapse
Affiliation(s)
- Cristian Alvarez
- Quality of Life and Wellness Research Group, Department of Health, Universidad de Los Lagos, Osorno, Chile
| | - Emmanuel Gomes Ciolac
- Exercise and Chronic Disease Research Laboratory, Department of Physical Education, School of Sciences, São Paulo State University (UNESP), São Paulo, Brazil
| | | | - David C Andrade
- Centro de Investigación en Fisiología y Medicina de Altura (FiMedAlt), Biomedical Department, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | | | - Matías Monsalves-Álvarez
- Instituto de Ciencias de La Salud, Universidad de O’higgins, Rancagua, Chile
- Human Performance Laboratory, Motion Health and Performance Center, Lo Barnechea, Chile
| | - Pedro Delgado-Floody
- Department of Physical Education, Sports and Recreation, Universidad de La Frontera, Temuco, Chile
| | - Alicia M. Alonso-Martínez
- Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Mikel Izquierdo
- Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
- CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
43
|
Ghobadi H, Attarzadeh Hosseini SR, Rashidlamir A, Forbes SC. Auto-regulatory progressive training compared to linear programming on muscular strength, endurance, and body composition in recreationally active males. Eur J Sport Sci 2021; 22:1543-1554. [PMID: 34346831 DOI: 10.1080/17461391.2021.1963321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We compared eight weeks of auto-regulatory progressive resistance exercise (APRE) to linear programming resistance exercise (LPRE) on changes in muscular strength and endurance, anaerobic power, and body composition in recreationally active males. Twenty-four recreationally active males (age: 24 ± 3 y; body mass: 78.3 ± 10.3 kg) were randomly assigned to one of two groups: APRE (n = 12) and LPRE (n = 12). Both groups performed supervised training 3x/week for eight weeks Upper and lower body muscular strength and endurance, anaerobic power, and body composition were assessed at baseline, week 4, and 48 h after the final training session. Repeated measures ANOVA and hedge's g effect sizes (ES) were used to interpret the data. After training, there was a significant increase in absolute leg press (APRE: ES = 2.23; LPRE: ES = 1.35) and chest press strength (APRE: ES = 2.19; LPRE: ES = 0.98), upper (APRE: ES = 2.50; LPRE: ES = 1.074), and lower body peak power (APRE: ES = 0.78; LPRE: ES = 0.39), and upper (APRE: ES = 2.50; LPRE: ES = 1.60) and lower mean power (APRE: ES = 0.99; LPRE: ES = 0.54) over time in both groups compared to baseline. Following APRE, absolute leg press strength was significantly greater compared to LPRE (p = 0.04; ES = 2.41, ES = 1.36), while absolute chest press strength gains were similar between groups (p = 0.08; ES = 2.21, ES = 0.98). Skeletal muscle mass significantly increased similarly in both groups over time (APRE: ES = 0.46; LPRE: ES = 0.21), while there was no change over time or between groups for body fat %. APRE and LPRE were both effective at improving anaerobic power and skeletal muscle mass; however, APRE was more effective at improving lower body muscular strength in recreationally active males.
Collapse
Affiliation(s)
- Hamid Ghobadi
- Faculty of Sport Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Amir Rashidlamir
- Faculty of Sport Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Scott C Forbes
- Department of Physical Education, Brandon University, Brandon, MB, Canada
| |
Collapse
|
44
|
Melo EASD, Ferreira LEDS, Cavalcanti RJF, Botelho Filho CADL, Lopes MR, Barbosa RHDA. Nuances between sedentary behavior and physical inactivity: cardiometabolic effects and cardiovascular risk. ACTA ACUST UNITED AC 2021; 67:335-343. [PMID: 34406261 DOI: 10.1590/1806-9282.67.02.20200746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The aim of this study was to highlight the differences between the cardiometabolic effects and the cardiovascular risk of physical inactivity and sedentary behavior. METHODS A narrative bibliographic review was conducted. In the research, national and international articles were selected from the PubMed, SciELO, and LILACS databases using the descriptors "sedentary lifestyle, cardiovascular risk, physical inactivity, sedentary behavior, and cardiovascular risks." DISCUSSION Both physical inactivity and sedentary behavior are related to metabolic and organic changes, promoting a chronic proinflammatory state, cardiac remodeling, increased body adiposity, and skeletal muscle dysfunction. It is possibly stated that both of them result in a higher risk of developing chronic diseases, resulting in higher global and cardiovascular morbidity and mortality, with nuances in their intrinsic effects. CONCLUSIONS It is inferred that both physical inactivity and sedentary behavior are cardiovascular risk factors that can be modified with the correct clinical approach. It is necessary to differentiate physically inactive individuals from those with a high number of sedentary behaviors. These concepts need better clinical applicability to improve the prevention of primary and secondary cardiovascular risks.
Collapse
Affiliation(s)
| | | | | | | | - Matheus Rodrigues Lopes
- Universidade Federal do Vale do São Francisco, Campus Paulo Afonso - Paulo Afonso (BA), Brazil
| | | |
Collapse
|
45
|
Abstract
Exercise has long been known to extend health and lifespan in humans and other mammals. However, typically exercise is thought to slow the loss of function that accompanies aging. Brett et al. have now shown that exercise restores functional competency to regenerate muscle stem cells (MuSCs) in mice as well as restore a significant portion of the transcriptional signature associated with young MuSCs. The mechanism involves the likely induction of plasma-borne factors that upregulate cell cycle regulator cyclin D1, which otherwise decreases with increasing age. Cyclin D1, in turn, through its noncanonical attenuation of TGF-beta/Smad3 signaling, helps maintain the regenerative capacity of MuSCs, which is lost as TGF-beta signaling increases with age. Interestingly, elevated levels of some proinflammatory regulators including NF-κB, TNF-alpha, and interleukin 6 (IL-6) are also reduced by exercise or ectopic expression of cyclin D1. Importantly, the rejuvenation is not complete, as Notch signaling, which also decreases with age, remains at old levels and the rejuvenative effect is not permanent: wearing off in ∼2 weeks after cessation of exercise. Understanding the limitations of the rejuvenative effect of exercise on MuSCs at the molecular level, including changes in the epigenome such as altered DNA methylation age, will be critical in developing more significant rejuvenative therapies including some for aged people wherein morbidities limit exercise.
Collapse
Affiliation(s)
- James W Larrick
- Panorama Research Institute, Sunnyvale, California, USA.,Regenerative Sciences Institute, Sunnyvale, California, USA
| | - Andrew R Mendelsohn
- Panorama Research Institute, Sunnyvale, California, USA.,Regenerative Sciences Institute, Sunnyvale, California, USA
| |
Collapse
|
46
|
Moghadam BH, Bagheri R, Roozbeh B, Ashtary-Larky D, Gaeini AA, Dutheil F, Wong A. Impact of saffron (Crocus Sativus Linn) supplementation and resistance training on markers implicated in depression and happiness levels in untrained young males. Physiol Behav 2021; 233:113352. [DOI: 10.1016/j.physbeh.2021.113352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/20/2020] [Accepted: 02/04/2021] [Indexed: 12/20/2022]
|
47
|
Antimyostatin Treatment in Health and Disease: The Story of Great Expectations and Limited Success. Cells 2021; 10:cells10030533. [PMID: 33802348 PMCID: PMC8001237 DOI: 10.3390/cells10030533] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/14/2022] Open
Abstract
In the past 20 years, myostatin, a negative regulator of muscle mass, has attracted attention as a potential therapeutic target in muscular dystrophies and other conditions. Preclinical studies have shown potential for increasing muscular mass and ameliorating the pathological features of dystrophic muscle by the inhibition of myostatin in various ways. However, hardly any clinical trials have proven to translate the promising results from the animal models into patient populations. We present the background for myostatin regulation, clinical and preclinical results and discuss why translation from animal models to patients is difficult. Based on this, we put the clinical relevance of future antimyostatin treatment into perspective.
Collapse
|
48
|
Fraga I, Weber C, Galiano WB, Iraci L, Wohlgemuth M, Morales G, Cercato C, Rodriguez J, Pochmann D, Dani C, Menz P, Bosco AD, Elsner VR. Effects of a multimodal exercise protocol on functional outcomes, epigenetic modulation and brain-derived neurotrophic factor levels in institutionalized older adults: a quasi-experimental pilot study. Neural Regen Res 2021; 16:2479-2485. [PMID: 33907037 PMCID: PMC8374571 DOI: 10.4103/1673-5374.313067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Epigenetic changes have been shown to be associated with both aging process and aging-related diseases. There is evidence regarding the benefits of physical activity on the functionality, cognition, and quality of life of institutionalized older adults, however, the molecular mechanisms involved are not elucidated. The purpose of this pilot study was to investigate the effects of a multimodal exercise intervention on functional outcomes, cognitive performance, quality of life (QOL), epigenetic markers and brain-derived neurotrophic factor (BDNF) levels among institutionalized older adult individuals. Participants (n = 8) without dementia who were aged 73.38 ± 11.28 years and predominantly female (87.5%) were included in this quasi-experimental pilot study. A multimodal exercise protocol (cardiovascular capacity, strength, balance/agility and flexibility, perception and cognition) consisted of twice weekly sessions (60 minutes each) over 8 weeks. Balance (Berg Scale), mobility (Timed Up and Go test), functional capacity (Six-Minute Walk test), cognitive function (Mini-Mental State Examination) and QOL (the World Health Organization Quality of Life-BREF Scale questionnaire) were evaluated before and after the intervention. Blood sample (15 mL) was also collected before and after intervention for analysis of biomarkers global histone H3 acetylation and brain-derived neurotrophic factor levels. Significant improvements were observed in cognitive function, balance, mobility, functional capacity and QOL after the intervention. In addition, a tendency toward an increase in global histone H3 acetylation levels was observed, while brain-derived neurotrophic factor level remained unchanged. This study provided evidence that an 8-week multimodal exercise protocol has a significant effect on ameliorating functional outcomes and QOL in institutionalized older adult individuals. In addition, it was also able to promote cognitive improvement, which seems to be partially related to histone hyperacetylation status. The Ethics Research Committee of Centro Universitário Metodista-IPA, Brazil approved the current study on June 6, 2019 (approval No. 3.376.078).
Collapse
Affiliation(s)
- Iasmin Fraga
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Camila Weber
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Wériton Baldo Galiano
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Lucio Iraci
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Mariana Wohlgemuth
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Gabriela Morales
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Camila Cercato
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Juliana Rodriguez
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Daniela Pochmann
- Programa de Pós-Graduação em Biociências e Reabilitação, Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Caroline Dani
- Programa de Pós-Graduação em Biociências e Reabilitação, Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Pérsia Menz
- Physiotherapist, working in Long-Term Institutions, Porto Alegre, RS, Brasil
| | - Adriane Dal Bosco
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| | - Viviane Rostirola Elsner
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul; Curso de Fisioterapia do Centro Universitário Metodista-IPA; Programa de Pós-Graduação em Biociências e Reabilitação, Centro Universitário Metodista-IPA, Porto Alegre, RS, Brasil
| |
Collapse
|
49
|
Bagheri R, Forbes SC, Candow DG, Wong A. Effects of branched-chain amino acid supplementation and resistance training in postmenopausal women. Exp Gerontol 2020; 144:111185. [PMID: 33279662 DOI: 10.1016/j.exger.2020.111185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The age-related loss in muscular function is typically accelerated after menopause. Resistance training (RT) has been shown to increase muscle mass and strength in postmenopausal women. Branched-chain amino acid (BCAA) supplementation acutely increases myofibrillar protein synthesis (MPS) and decreases muscle soreness following RT. However, the combined effects of BCAA supplementation and RT on muscle mass, strength, and regulatory factors on postmenopausal cohorts are currently unknown. The purpose of this study was to explore the combined effects of BCAA supplementation and RT on muscle mass, strength, and regulatory factors in postmenopausal women. METHODS Thirty postmenopausal women were randomly assigned to one of three conditions: RT and placebo (PLA; n = 10), RT and BCAA (BCAA; 9 g/day; n = 10), or control (CON; n = 10). Muscle mass, strength, and serum concentrations of muscle regulatory factors (myostatin, follistatin, and insulin-like growth factor-1 [IGF-1]) were assessed before and following 8 weeks of whole-body supervised RT (3×/week, 3-4 sets using 60-75% 1-repetition maximum [1-RM]). RESULTS There were significant increases (P < 0.05) in muscle mass and strength in both the PLA and BCAA conditions. Additionally, myostatin significantly (P < 0.05) decreased, while IGF-1 (P < 0.05) increased following PLA and BCAA. However, follistatin significantly increased in the BCAA condition. There were no differences between RT conditions over time. Furthermore, there were no changes in any variable after CON. CONCLUSIONS Short-term (8 weeks) RT is an effective intervention for improving muscle mass, strength, and muscle regulatory factors in postmenopausal women. The addition of BCAA supplementation to RT failed to augment these physiological changes.
Collapse
Affiliation(s)
- Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan, Iran
| | - Scott C Forbes
- Department of Physical Education, Brandon University, Brandon, MB, Canada
| | - Darren G Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, United States.
| |
Collapse
|
50
|
Kowalik S, Wiśniewska A, Kędzierski W, Janczarek I. Concentrations of Circulating Irisin and Myostatin in Race and Endurace Purebred Arabian Horses-Preliminary Study. Animals (Basel) 2020; 10:ani10122268. [PMID: 33271939 PMCID: PMC7760310 DOI: 10.3390/ani10122268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Irisin and myostatin are regulatory proteins produced by muscle cells. The aim of the study was to evaluate the effect of exercise on plasma irisin and myostatin concentrations in horses in different types of training (speed versus endurance). To find out, we tested 20 Arabian horses, submitted to the two different equestrian disciplines, and consequently different training regimes. The first group of horses realized a short-term, high-speed bout of exercise whereas the second group of horses were submitted to long-lasting, endurance effort. The obtained results showed that the single bout of exercise induced an increase in plasma myostatin concentration. Plasma irisin level decreased during the race season in racehorses. This means that irisin and myostatin may play a regulatory role in the maintenance of the energy balance processes. Abstract Skeletal muscle is considered to be the largest endocrine organ determining the maintenance of energy homeostasis. Adaptive changes in skeletal muscles in response to physical exercise influence the production as well as secretion of myokines, which are bioactive factors that play a crucial role in energy expenditure processes. The aim of the study was to investigate the impact of two different types of exercise on the circulating level of two of these, myostatin and irisin, in trained horses. Twenty purebred Arabian horses were involved in the study: 10 three-year-old horses trained on the racetrack and 10 endurance horses aged 7.4 ± 1.9 years. The horses from both groups were regularly trained throughout the entire season, during which they also participated in Polish National competitions. To assess the influence of the training sessions on plasma myostatin and irisin concentrations, blood samples taken at rest and 30 min after the end of exercise were analyzed. In the studied horses, the single bout of exercise did not influence plasma irisin but induced an increase in plasma myostatin concentration. In racehorses, plasma irisin concentration decreased with the length of the training season. Plasma myostatin was higher in endurance horses than in three-year-old racehorses. Lack of exercise-induced fluctuation in circulating irisin in studied horses suggests that myostatin released in response to exercise provides a negative feedback signal to irisin release.
Collapse
Affiliation(s)
- Sylwester Kowalik
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, ul. Akademicka 12, 20-033 Lublin, Poland;
| | - Anna Wiśniewska
- Department of Horse Breeding and Use, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, ul. Akademicka 13, 20-950 Lublin, Poland;
- Correspondence:
| | - Witold Kędzierski
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, ul. Akademicka 12, 20-033 Lublin, Poland;
| | - Iwona Janczarek
- Department of Horse Breeding and Use, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, ul. Akademicka 13, 20-950 Lublin, Poland;
| |
Collapse
|