1
|
Kamel NA, Bashir DW, El-Leithy EMM, Tohamy AF, Rashad MM, Ali GE, El-Saba AAA. Polyethylene terephthalate nanoplastics-induced neurotoxicity in adult male Swiss albino mice with amelioration of betaine: a histopathological, neurochemical, and molecular investigation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03867-9. [PMID: 39937257 DOI: 10.1007/s00210-025-03867-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/28/2025] [Indexed: 02/13/2025]
Abstract
Medicines, food packaging, personal care products, and cosmetics extensively use polyethylene terephthalate nanoplastics (PET-NaPs). However, they also have harmful impacts on several organs. Betaine demonstrates potent antioxidant and anti-inflammatory characteristics. Our goal was to investigate the detrimental impact of PET-NaPs on the mouse brain and evaluate the neuroprotective properties of betaine. We allocated 40 completely mature male Swiss albino mice into four distinct groups: control group, betaine group, PET-NaPs group, and betaine-co-treated group. Following a 30-day duration, euthanasia was performed on the mice, and analyzed tissue samples were obtained from the cerebrum, cerebellum, and hippocampus. PET-NaPs resulted in an elevated level of malondialdehyde and upregulated cyclooxygenase-2 and interleukin-1 beta (IL-1β) expression while significantly reducing the levels of glutathione and downregulating acetylcholinesterase. The PET-NPs also caused significant changes in the histopathology of the brain tissue, and there was a demonstrable rise in the immunostaining of IL-1β and glial fibrillary acidic proteins. Consequently, betaine effectively alleviated the negative consequences of PET-NaPs. Therefore, betaine possesses the capacity to mitigate the neurotoxic consequences induced by PET-NaPs.
Collapse
Affiliation(s)
- Nehal A Kamel
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Dina W Bashir
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ebtihal M M El-Leithy
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Adel F Tohamy
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Maha M Rashad
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ghada E Ali
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Abdel Aleem A El-Saba
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
2
|
Li B, Sun Q, Ding F, Xu Q, Kang N, Xue Y, Ladron-de-Guevara A, Hirase H, Weikop P, Gong S, Smith N, Nedergaard M. Anti-seizure effects of norepinephrine-induced free fatty acid release. Cell Metab 2025; 37:223-238.e5. [PMID: 39486416 DOI: 10.1016/j.cmet.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/17/2024] [Accepted: 10/10/2024] [Indexed: 11/04/2024]
Abstract
The brain's ability to rapidly transition between sleep, quiet wakefulness, and states of high vigilance is remarkable. Cerebral norepinephrine (NE) plays a key role in promoting wakefulness, but how does the brain avoid neuronal hyperexcitability upon arousal? Here, we show that NE exposure results in the generation of free fatty acids (FFAs) within the plasma membrane from both astrocytes and neurons. In turn, FFAs dampen excitability by differentially modulating the activity of astrocytic and neuronal Na+, K+, ATPase. Direct application of FFA to the occipital cortex in awake, behaving mice dampened visual-evoked potentials (VEPs). Conversely, blocking FFA production via local application of a lipase inhibitor heightened VEP and triggered seizure-like activity. These results suggest that FFA release is a crucial step in NE signaling that safeguards against hyperexcitability. Targeting lipid-signaling pathways may offer a novel therapeutic approach for seizure prevention.
Collapse
Affiliation(s)
- Baoman Li
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
| | - Qian Sun
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Fengfei Ding
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Qiwu Xu
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ning Kang
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Yang Xue
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Antonio Ladron-de-Guevara
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hajime Hirase
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA; Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Pia Weikop
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sheng Gong
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Nathan Smith
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA; Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642
| | - Maiken Nedergaard
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA; Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen, Denmark; Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen N, Denmark.
| |
Collapse
|
3
|
Noshy PA, Yasin NAE, Rashad MM, Shehata AM, Salem FMS, El-Saied EM, Mahmoud MY. Zinc nanoparticles ameliorate oxidative stress and apoptosis induced by silver nanoparticles in the brain of male rats. Neurotoxicology 2023; 95:193-204. [PMID: 36796650 DOI: 10.1016/j.neuro.2023.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/20/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
The current study was conducted to investigate the possible ameliorative role of zinc nanoparticles (Zn NPs) against silver nanoparticles (Ag NPs)-induced oxidative and apoptotic brain damage in adult male rats. Twenty-four mature Wistar rats were randomly and equally divided into four groups: control group, Ag NPs group, Zn NPs group, and Ag NPs + Zn NPs group. Rats were exposed to Ag NPs (50 mg/kg) and/or Zn NPs (30 mg/kg) daily by oral gavage for 12 weeks. The results revealed that exposure to Ag NPs significantly increased malondialdehyde (MDA) content, decreased catalase and reduced glutathione (GSH) activities, downregulated the relative mRNA expression of antioxidant-related genes (Nrf-2 and SOD), and upregulated the relative mRNA expression of apoptosis-related genes (Bax, caspase 3 and caspase 9) in the brain tissue. Furthermore, severe neuropathological lesions with a substantial increase in the caspase 3 and glial fibrillary acidic protein (GFAP) immunoreactivity were observed in the cerebrum and cerebellum of Ag NPs-exposed rats. Conversely, co-administration of Zn NPs with Ag NPs significantly ameliorated most of these neurotoxic effects. Collectively, Zn NPs can be used as a potent prophylactic agent against Ag NPs-induced oxidative and apoptotic neural damage.
Collapse
Affiliation(s)
- Peter A Noshy
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Noha A E Yasin
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Maha M Rashad
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Asmaa M Shehata
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Fatma M S Salem
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Eiman M El-Saied
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Mohamed Y Mahmoud
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
4
|
Astrocyte specific proteins content in the different parts of the rat and mongolian gerbil brain during ontogenesis. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
5
|
Pukoli D, Polyák H, Rajda C, Vécsei L. Kynurenines and Neurofilament Light Chain in Multiple Sclerosis. Front Neurosci 2021; 15:658202. [PMID: 34113231 PMCID: PMC8185147 DOI: 10.3389/fnins.2021.658202] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/29/2021] [Indexed: 12/30/2022] Open
Abstract
Multiple sclerosis is an autoimmune, demyelinating, and neurodegenerative disease of the central nervous system. In recent years, it has been proven that the kynurenine system plays a significant role in the development of several nervous system disorders, including multiple sclerosis. Kynurenine pathway metabolites have both neurotoxic and neuroprotective effects. Moreover, the enzymes of the kynurenine pathway play an important role in immunomodulation processes, among others, as well as interacting with neuronal energy balance and various redox reactions. Dysregulation of many of the enzymatic steps in kynurenine pathway and upregulated levels of these metabolites locally in the central nervous system, contribute to the progression of multiple sclerosis pathology. This process can initiate a pathogenic cascade, including microglia activation, glutamate excitotoxicity, chronic oxidative stress or accumulated mitochondrial damage in the axons, that finally disrupt the homeostasis of neurons, leads to destabilization of neuronal cell cytoskeleton, contributes to neuro-axonal damage and neurodegeneration. Neurofilaments are good biomarkers of the neuro-axonal damage and their level reliably indicates the severity of multiple sclerosis and the treatment response. There is increasing evidence that connections exist between the molecules generated in the kynurenine metabolic pathway and the change in neurofilament concentrations. Thus the alterations in the kynurenine pathway may be an important biomarker of the course of multiple sclerosis. In our present review, we report the possible relationship and connection between neurofilaments and the kynurenine system in multiple sclerosis based on the available evidences.
Collapse
Affiliation(s)
- Dániel Pukoli
- Department of Neurology, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Department of Neurology, Vaszary Kolos Hospital, Esztergom, Hungary
| | - Helga Polyák
- Department of Neurology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Cecilia Rajda
- Department of Neurology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Neuroscience Research Group, Department of Neurology, Faculty of Medicine, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| |
Collapse
|
6
|
Bhat A, Tan V, Heng B, Lovejoy DB, Sakharkar MK, Essa MM, Chidambaram SB, Guillemin GJ. Roflumilast, a cAMP-Specific Phosphodiesterase-4 Inhibitor, Reduces Oxidative Stress and Improves Synapse Functions in Human Cortical Neurons Exposed to the Excitotoxin Quinolinic Acid. ACS Chem Neurosci 2020; 11:4405-4415. [PMID: 33261317 DOI: 10.1021/acschemneuro.0c00636] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The overexpression of phosphodiesterase 4 (PDE4) enzymes is reported in several neurodegenerative diseases. PDE4 depletes cyclic 3'-5' adenosine monophosphate (cAMP) and, in turn, cAMP response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF), the key players in cognitive function. The present study was undertaken to investigate the mechanism behind the protective effects of roflumilast (ROF), a cAMP-specific PDE4 inhibitor, against quinolinic acid (QUIN)-induced neurotoxicity using human primary cortical neurons. Cytotoxicity was analyzed using an MTS assay. Reactive oxygen species (ROS) and mitochondrial membrane potential were measured by DCF-DA and JC-10 staining, respectively. Caspase 3/7 activity was measured using an ApoTox-Glo Triplex assay kit. cAMP was measured using an ELISA kit. The protein expression of CREB, BDNF, SAP-97, synaptophysin, synapsin-I, and PSD-95 was analyzed by the Western blotting technique. QUIN exposure down-regulated CREB, BDNF, and synaptic protein expression in neurons. Pretreatment with ROF increased the intracellular cAMP, mitochondrial membrane potential, and nicotinamide adenine dinucleotide (NAD+) content and decreased the ROS and caspase 3/7 levels in QUIN-exposed neurons. ROF up-regulated the expression of synapse proteins SAP-97, synaptophysin, synapsin-I, PSD-95, and CREB and BDNF, which indicates its potential role in memory. This study suggests for the first time that QUIN causes pre- and postsynaptic protein damage. We further demonstrate the restorative effects of ROF on the mitochondrial membrane potential and antiapoptotic properties in human neurons. These data encourage further investigations to reposition ROF in neurodegenerative diseases and their associated cognitive deficits.
Collapse
Affiliation(s)
- Abid Bhat
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagar, Mysuru, Karnataka 570015, India
- Neuroinflammation Group, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Vanessa Tan
- Neuroinflammation Group, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Benjamin Heng
- Neuroinflammation Group, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - David B. Lovejoy
- Neuroinflammation Group, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Meena Kishore Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A2, Canada
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagar, Mysuru, Karnataka 570015, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, Karnataka 570015, India
| | - Gilles J. Guillemin
- Neuroinflammation Group, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
7
|
Rahman A, Al-Qenaie S, Rao MS, Khan KM, Guillemin GJ. Memantine Is Protective against Cytotoxicity Caused by Lead and Quinolinic Acid in Cultured Rat Embryonic Hippocampal Cells. Chem Res Toxicol 2019; 32:1134-1143. [PMID: 30950269 DOI: 10.1021/acs.chemrestox.8b00421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Quinolinic acid (QA) is an excitotoxic metabolite of the kynurenine pathway of tryptophan metabolism produced in response to inflammation and oxidative stress. Lead (Pb) causes oxidative stress and thus may produce neurotoxicity by increasing QA production. We investigated the in vitro cytotoxic effects of Pb and QA and the protective effects of the NMDA receptor antagonist memantine. Primary cultures of embryonic hippocampal cells from Wistar rats were treated with different concentrations of Pb, QA, and Pb + QA with and without memantine. Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Apoptosis was analyzed by flow cytometry after Annexin-V/propidium iodide staining. The numbers of immunostained neurons (with β3-Tubulin; Tuj1) and astrocytes (with glial fibrillary acidic protein) were counted. Pb at 20 μg/dL (0.97 μM) and QA at 500 nM concentrations showed significant cytotoxic effects, as evidenced by decreased cell viability, increased apoptosis, and a decrease in the number of both astrocytes and neurons. The combination of Pb and QA showed significant synergistic apoptotic effects at lower doses. Memantine (500 nM) was largely protective against the cytotoxic effects of both Pb and QA, suggesting that Pb's and QA's cytotoxicity involves NMDA receptor activation. Whereas the neuroprotection by memantine from QA-induced toxicity has been previously reported, this is the first study reporting the protection by memantine against Pb-induced cytotoxicity in cultured hippocampal cells. Protection by memantine against these neurotoxicants in vivo needs to be investigated.
Collapse
Affiliation(s)
- Abdur Rahman
- Department of Food Science and Nutrition, College of Life Sciences , Kuwait University , 13060 Kuwait City , Kuwait
| | - Sara Al-Qenaie
- Department of Food Science and Nutrition, College of Life Sciences , Kuwait University , 13060 Kuwait City , Kuwait.,Kuwait Oil Company Hospital , 61008 Ahmadi , Kuwait
| | - Muddanna S Rao
- Department of Anatomy, Faculty of Medicine , Kuwait University , 13060 Kuwait City , Kuwait
| | - Khalid M Khan
- Department of Anatomy, Faculty of Medicine , Kuwait University , 13060 Kuwait City , Kuwait
| | - Gilles J Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences , Macquarie University , Macquarie Park , New South Wales 2109 , Australia
| |
Collapse
|
8
|
Rahman A, Rao MS, Khan KM. Intraventricular infusion of quinolinic acid impairs spatial learning and memory in young rats: a novel mechanism of lead-induced neurotoxicity. J Neuroinflammation 2018; 15:263. [PMID: 30217162 PMCID: PMC6137743 DOI: 10.1186/s12974-018-1306-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/04/2018] [Indexed: 12/20/2022] Open
Abstract
Background Lead (Pb), a heavy metal, and quinolinic acid (QA), a metabolite of the kynurenine pathway of tryptophan metabolism, are known neurotoxicants. Both Pb and QA impair spatial learning and memory. Pb activates astrocytes and microglia, which in turn induce the synthesis of QA. We hypothesized increased QA production in response to Pb exposure as a novel mechanism of Pb-neurotoxicity. Methods Two experimental paradigms were used. In experiment one, Wistar rat pups were exposed to Pb via their dams’ drinking water from postnatal day 1 to 21. Control group was given regular water. In the second protocol, QA (9 mM) or normal saline (as Vehicle Control) was infused into right lateral ventricle of 21-day old rats for 7 days using osmotic pumps. Learning and memory were assessed by Morris water maze test on postnatal day 30 or 45 in both Pb- and QA-exposed rats. QA levels in the Pb exposed rats were measured in blood by ELISA and in the brain by immunohistochemistry on postnatal days 45 and 60. Expression of various molecules involved in learning and memory was analyzed by Western blot. Means of control and experimental groups were compared with two-way repeated measure ANOVA (learning) and t test (all other variables). Results Pb exposure increased QA level in the blood (by ~ 58%) and increased (p < 0.05) the number of QA-immunoreactive cells in the cortex, and CA1, CA3 and dentate gyrus regions of the hippocampus, compared to control rats. In separate experiments, QA infusion impaired learning and short-term memory similar to Pb. PSD-95, PP1, and PP2A were decreased (p < 0.05) in the QA-infused rats, whereas tau phosphorylation was increased, compared to vehicle infused rats. Conclusion Putting together the results of the two experimental paradigms, we propose that increased QA production in response to Pb exposure is a novel mechanism of Pb-induced neurotoxicity.
Collapse
Affiliation(s)
- Abdur Rahman
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Kuwait City, Kuwait.
| | - Muddanna S Rao
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Khalid M Khan
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
9
|
Schmitz F, Pierozan P, Biasibetti-Brendler H, Ferreira FS, Dos Santos Petry F, Trindade VMT, Pessoa-Pureur R, Wyse ATS. Methylphenidate disrupts cytoskeletal homeostasis and reduces membrane-associated lipid content in juvenile rat hippocampus. Metab Brain Dis 2018; 33:693-704. [PMID: 29288365 DOI: 10.1007/s11011-017-0177-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 12/25/2017] [Indexed: 12/16/2022]
Abstract
Although methylphenidate (MPH) is ubiquitously prescribed to children and adolescents, the consequences of chronic utilization of this psychostimulant are poorly understood. In this study, we investigated the effects of MPH on cytoskeletal homeostasis and lipid content in rat hippocampus. Wistar rats received intraperitoneal injections of MPH (2.0 mg/kg) or saline solution (controls), once a day, from the 15th to the 44th day of age. Results showed that MPH provoked hypophosphorylation of glial fibrillary acidic protein (GFAP) and reduced its immunocontent. Middle and high molecular weight neurofilament subunits (NF-M, NF-H) were hypophosphorylated by MPH on KSP repeat tail domains, while NFL, NFM and NFH immunocontents were not altered. MPH increased protein phosphatase 1 (PP1) and 2A (PP2A) immunocontents. MPH also decreased the total content of ganglioside and phospholipid, as well as the main brain gangliosides (GM1, GD1a, and GD1b) and the major brain phospholipids (sphingomyelin, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, and phosphatidylserine). Total cholesterol content was also reduced in the hippocampi of juvenile rats treated with MPH. These results provide evidence that disruptions of cytoskeletal and lipid homeostasis in hippocampus of juvenile rats are triggers by chronic MPH treatment and present a new basis for understanding the effects and consequences associated with chronic use of this psychostimulant during the development of the central nervous system.
Collapse
Affiliation(s)
- Felipe Schmitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Paula Pierozan
- Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Helena Biasibetti-Brendler
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Silva Ferreira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Dos Santos Petry
- Laboratório de Bioquímica e Biologia Celular de Lipídios, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vera Maria Treis Trindade
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório de Bioquímica e Biologia Celular de Lipídios, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Regina Pessoa-Pureur
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório do Citoesqueleto, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angela T S Wyse
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, CEP 90035-003, Brazil.
| |
Collapse
|
10
|
Ferreira FS, Biasibetti-Brendler H, Pierozan P, Schmitz F, Bertó CG, Prezzi CA, Manfredini V, Wyse ATS. Kynurenic Acid Restores Nrf2 Levels and Prevents Quinolinic Acid-Induced Toxicity in Rat Striatal Slices. Mol Neurobiol 2018; 55:8538-8549. [PMID: 29564809 DOI: 10.1007/s12035-018-1003-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/07/2018] [Indexed: 02/07/2023]
Abstract
Kynurenic acid (KYNA) and quinolinic acid (QUIN) are metabolites produced in the degradation of tryptophan and have important neurological activities. KYNA/QUIN ratio changes are known to be associated with central nervous system disorders, such Alzheimer, Parkinson, and Huntington diseases. In the present study, we investigate the ability of KYNA in prevent the first events preceding QUIN-induced neurodegeneration in striatal slices of rat. We evaluated the protective effect of KYNA on oxidative status (reactive oxygen species production, antioxidant enzymes activities, lipid peroxidation, nitrite levels, protein and DNA damage, and iNOS immunocontent), mitochondrial function (mitochondrial mass, membrane potential, and respiratory chain enzymes), and Na+,K+-ATPase in striatal slices of rats treated with QUIN. Since QUIN alters the levels of Nrf2, we evaluated the influence of KYNA protection on this parameter. Striatal slices from 30-day-old Wistar rats were preincubated with KYNA (100 μM) for 15 min, followed by incubation with 100-μM QUIN for 30 min. Results showed that KYNA prevented the increase of ROS production caused by QUIN and restored antioxidant enzyme activities and the protein and lipid damage, as well as the Nrf2 levels. KYNA also prevented the effects of QUIN on mitochondrial mass and mitochondrial membrane potential, as well as the decrease in the activities of complex II, SDH, and Na+,K+-ATPase. We suggest that KYNA prevents changes in Nrf2 levels, oxidative imbalance, and mitochondrial dysfunction caused by QUIN in striatal slices. This study elucidates some of the protective effects of KYNA against the damage caused by QUIN toxicity.
Collapse
Affiliation(s)
- Fernanda Silva Ferreira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.,Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Helena Biasibetti-Brendler
- Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Paula Pierozan
- Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Felipe Schmitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.,Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Carolina Gessinger Bertó
- Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Caroline Acauan Prezzi
- Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Vanusa Manfredini
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, BR 472, Km 585, 118, Uruguaiana, RS, CEP 97500-970, Brazil
| | - Angela T S Wyse
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil. .,Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil. .,Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
11
|
Hu P, Hunt NH, Arfuso F, Shaw LC, Uddin MN, Zhu M, Devasahayam R, Adamson SJ, Benson VL, Chan-Ling T, Grant MB. Increased Indoleamine 2,3-Dioxygenase and Quinolinic Acid Expression in Microglia and Müller Cells of Diabetic Human and Rodent Retina. Invest Ophthalmol Vis Sci 2017; 58:5043-5055. [PMID: 28980000 PMCID: PMC5633007 DOI: 10.1167/iovs.17-21654] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose We investigated the relationship between inflammation, neuronal loss, and expression of indoleamine 2, 3-dioxygenase (IDO) and quinolinic acid (QUIN) in the retina of subjects with type 1 diabetes (T1D) and type 2 diabetes (T2D) and in the retina of rats with T1D. Methods Retinas from T1D (n = 7), T2D (n = 13), and 20 age-matched nondiabetic human donors and from T1D (n = 3) and control rats (n = 3) were examined using immunohistochemistry for IDO, QUIN, cluster of differentiation 39 (CD39), ionized calcium-binding adaptor molecule (Iba-1, for macrophages and microglia), Vimentin (VIM; for Müller cells), neuronal nuclei (NeuN; for neurons), and UEA1 lectin (for blood vessels). Results Based on morphologic criteria, CD39+/ionized calcium binding adaptor molecule 1(Iba-1+) resident microglia and CD39−/Iba-1+ bone marrow–derived macrophages were present at higher density in T1D (13% increase) and T2D (26% increase) human retinas when compared with controls. The density and brightness of IDO+ microglia were increased in both T1D and T2D human retinas. The intensity of QUIN+ expression on CD39+ microglia and VIM+ Müller cells was greatly increased in both human T1D and T2D retinas. T1D retinas showed a 63% loss of NeuN+ neurons and T2D retinas lost approximately 43% when compared with nondiabetic human retinas. Few QUIN+ microglia-like cells were seen in nondiabetic retinas, but the numbers increased 18-fold in T1D and 7-fold in T2D in the central retina. In T1D rat retinas, the density of IDO+ microglia increased 2.8-fold and brightness increased 2.1-fold when compared with controls. Conclusions Our findings suggest that IDO and QUIN expression in the retinas of diabetic rats and humans could contribute to the neuronal degeneration that is characteristic of diabetic retinopathy.
Collapse
Affiliation(s)
- Ping Hu
- Department of Anatomy, Bosch Institute, University of Sydney, New South Wales, Australia.,Department of Ophthalmology, the Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana, United States
| | - Nicholas H Hunt
- Department of Pathology, Bosch Institute, University of Sydney, New South Wales, Australia
| | - Frank Arfuso
- Department of Anatomy, Bosch Institute, University of Sydney, New South Wales, Australia.,Stem Cell & Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Lynn C Shaw
- Department of Ophthalmology, the Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana, United States
| | - Mohammad Nasir Uddin
- Department of Anatomy, Bosch Institute, University of Sydney, New South Wales, Australia
| | - Meidong Zhu
- Lions New South Wales Eye Bank, New South Wales Organ and Tissue Donation Service, South Eastern Sydney Local Health District, New South Wales, Australia.,Save Sight Institute, Discipline of Clinical Ophthalmology and Eye Health, University of Sydney, New South Wales, Australia
| | - Raj Devasahayam
- Lions New South Wales Eye Bank, New South Wales Organ and Tissue Donation Service, South Eastern Sydney Local Health District, New South Wales, Australia
| | - Samuel J Adamson
- Department of Anatomy, Bosch Institute, University of Sydney, New South Wales, Australia
| | - Vicky L Benson
- Department of Physiology, Faculty of Health and Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Tailoi Chan-Ling
- Department of Anatomy, Bosch Institute, University of Sydney, New South Wales, Australia
| | - Maria B Grant
- Department of Ophthalmology, the Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana, United States.,Univeristy of Alabama, Birmingham, Alabama, United States
| |
Collapse
|
12
|
Pierozan P, Colín-González AL, Biasibetti H, da Silva JC, Wyse A, Wajner M, Santamaria A. Toxic Synergism Between Quinolinic Acid and Glutaric Acid in Neuronal Cells Is Mediated by Oxidative Stress: Insights to a New Toxic Model. Mol Neurobiol 2017; 55:5362-5376. [PMID: 28936789 DOI: 10.1007/s12035-017-0761-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/31/2017] [Indexed: 12/31/2022]
Abstract
It has been shown that synergistic toxic effects of quinolinic acid (QUIN) and glutaric acid (GA), both in isolated nerve endings and in vivo conditions, suggest the contribution of these metabolites to neurodegeneration. However, this synergism still requires a detailed characterization of the mechanisms involved in cell damage during its occurrence. In this study, the effects of subtoxic concentrations of QUIN and/or GA were tested in neuronal cultures, co-cultures (neuronal cells + astrocytes), and mixed cultures (neuronal cells + astrocytes + microglia) from rat cortex and striatum. The exposure of different cortical and striatal cell cultures to QUIN + GA resulted in cell death and stimulated different markers of oxidative stress, including reactive oxygen species (ROS) formation; changes in the activity of antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase; and depletion of endogenous antioxidants such as -SH groups and glutathione. The co-incubation of neuronal cultures with QUIN + GA plus the N-methyl-D-aspartate antagonist MK-801 prevented cell death but not ROS formation, whereas the antioxidant melatonin reduced both parameters. Our results demonstrated that QUIN and GA can create synergistic scenarios, inducing toxic effects on some parameters of cell viability via the stimulation of oxidative damage. Therefore, it is likely that oxidative stress may play a major causative role in the synergistic actions exerted by QUIN + GA in a variety of cell culture conditions involving the interaction of different neural types.
Collapse
Affiliation(s)
- Paula Pierozan
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana Laura Colín-González
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, SSA, Insurgentes Sur 3877, 14269, Mexico City, Mexico
| | - Helena Biasibetti
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Janaina Camacho da Silva
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angela Wyse
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Moacir Wajner
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, SSA, Insurgentes Sur 3877, 14269, Mexico City, Mexico.
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, SSA, Insurgentes Sur 3877, 14269, Mexico City, Mexico.
| |
Collapse
|
13
|
Pierozan P, Biasibetti-Brendler H, Schmitz F, Ferreira F, Pessoa-Pureur R, Wyse ATS. Kynurenic Acid Prevents Cytoskeletal Disorganization Induced by Quinolinic Acid in Mixed Cultures of Rat Striatum. Mol Neurobiol 2017; 55:5111-5124. [PMID: 28840509 DOI: 10.1007/s12035-017-0749-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/31/2017] [Indexed: 01/03/2023]
Abstract
Kynurenic acid (KYNA) is a neuroactive metabolite of tryptophan known to modulate a number of mechanisms involved in neural dysfunction. Although its activity in the brain has been widely studied, the effect of KYNA counteracting the actions of quinolinic acid (QUIN) remains unknown. The present study aims at describing the ability of 100 μM KYNA preventing cytoskeletal disruption provoked by QUIN in astrocyte/neuron/microglia mixed culture. KYNA totally preserved cytoskeletal organization, cell morphology, and redox imbalance in mixed cultures exposed to QUIN. However, KYNA partially prevented morphological alteration in isolated primary astrocytes and failed to protect the morphological alterations of neurons caused by QUIN exposure. Moreover, KYNA prevented QUIN-induced microglial activation and upregulation of ionized calcium-binding adapter molecule 1 (Iba-1) and partially preserved tumor necrosis factor-α (TNF-α) level in mixed cultures. TNF-α level was also partially preserved in astrocytes. In addition to the mechanisms dependent on redox imbalance and microglial activation, KYNA prevented downregulation of connexin-43 and the loss of functionality of gap junctions (GJs), preserving cell-cell contact, cytoskeletal organization, and cell morphology in QUIN-treated cells. Furthermore, the toxicity of QUIN targeting the cytoskeleton of mixed cultures was not prevented by the N-methyl-D-aspartate (NMDA) antagonist MK-801. We suggest that KYNA protects the integrity of the cytoskeleton of mixed cultures by complex mechanisms including modulating microglial activation preventing oxidative imbalance and misregulated GJs leading to disrupted cytoskeleton in QUIN-treated cells. This study contributed to elucidate the molecular basis of KYNA protection against QUIN toxicity.
Collapse
Affiliation(s)
- Paula Pierozan
- Laboratório de Neuroproteção e DoençasMetabólicas, Departamento de Bioquímica, Instituto de CiênciasBásicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Departamento de Bioquímica, Instituto de CiênciasBásicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP, Porto Alegre, RS, 90035-003, Brazil.
| | - Helena Biasibetti-Brendler
- Laboratório de Neuroproteção e DoençasMetabólicas, Departamento de Bioquímica, Instituto de CiênciasBásicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Felipe Schmitz
- Laboratório de Neuroproteção e DoençasMetabólicas, Departamento de Bioquímica, Instituto de CiênciasBásicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Ferreira
- Laboratório de Neuroproteção e DoençasMetabólicas, Departamento de Bioquímica, Instituto de CiênciasBásicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Regina Pessoa-Pureur
- Departamento de Bioquímica, Instituto de CiênciasBásicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP, Porto Alegre, RS, 90035-003, Brazil
- Laboratório de Citoesqueleto, Departamento de Bioquímica, Instituto de CiênciasBásicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angela T S Wyse
- Laboratório de Neuroproteção e DoençasMetabólicas, Departamento de Bioquímica, Instituto de CiênciasBásicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de CiênciasBásicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP, Porto Alegre, RS, 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
14
|
Pierozan P, Pessoa-Pureur R. Cytoskeleton as a Target of Quinolinic Acid Neurotoxicity: Insight from Animal Models. Mol Neurobiol 2017. [PMID: 28647871 DOI: 10.1007/s12035-017-0654-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytoskeletal proteins are increasingly recognized as having important roles as a target of the action of different neurotoxins. In the last years, several works of our group have shown that quinolinic acid (QUIN) was able to disrupt the homeostasis of the cytoskeleton of neural cells and this was associated with cell dysfunction and neurodegeneration. QUIN is an excitotoxic metabolite of tryptophan metabolism and its accumulation is associated with several neurodegenerative diseases. In the present review, we provide a comprehensive view of the actions of QUIN upstream of glutamate receptors, eliciting kinase/phosphatase signaling cascades that disrupt the homeostasis of the phosphorylation system associated with intermediate filament proteins of astrocytes and neurons. We emphasize the critical role of calcium in these actions and the evidence that misregulated cytoskeleton takes part of the cell response to the injury resulting in neurodegeneration in different brain regions, disrupted cell signaling in acute tissue slices, and disorganized cytoskeleton with altered cell morphology in primary cultures. We also discuss the interplay among misregulated cytoskeleton, oxidative stress, and cell-cell contact through gap junctions mediating the quinolinic acid injury in rat brain. The increasing amount of cross talks identified between cytoskeletal proteins and cellular signaling cascades reinforces the exciting possibility that cytoskeleton could be a new target in the neurotoxicity of QUIN and further studies will be necessary to develop strategies to protect the cytoskeleton and counteracts the cytotoxicity of this metabolite.
Collapse
Affiliation(s)
- Paula Pierozan
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600 Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Regina Pessoa-Pureur
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600 Anexo, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
15
|
Hernandez-Martinez JM, Forrest CM, Darlington LG, Smith RA, Stone TW. Quinolinic acid induces neuritogenesis in SH-SY5Y neuroblastoma cells independently of NMDA receptor activation. Eur J Neurosci 2017; 45:700-711. [PMID: 27973747 DOI: 10.1111/ejn.13499] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/29/2016] [Accepted: 11/29/2016] [Indexed: 12/25/2022]
Abstract
Glutamate and nicotinamide adenine dinucleotide (NAD+ ) have been implicated in neuronal development and several types of cancer. The kynurenine pathway of tryptophan metabolism includes quinolinic acid (QA) which is both a selective agonist at N-methyl-D-aspartate (NMDA) receptors and also a precursor for the formation of NAD+ . The effect of QA on cell survival and differentiation has therefore been examined on SH-SY5Y human neuroblastoma cells. Retinoic acid (RA, 10 μm) induced differentiation of SH-SY5Y cells into a neuronal phenotype showing neurite growth. QA (50-150 nm) also caused a concentration-dependent increase in the neurite/soma ratio, indicating differentiation. Both RA and QA increased expression of the neuronal marker β3-tubulin in whole-cell homogenates and in the neuritic fraction assessed using a neurite outgrowth assay. Expression of the neuronal proliferation marker doublecortin revealed that, unlike RA, QA did not decrease the number of mitotic cells. QA-induced neuritogenesis coincided with an increase in the generation of reactive oxygen species. Neuritogenesis was prevented by diphenylene-iodonium (an inhibitor of NADPH oxidase) and superoxide dismutase, supporting the involvement of reactive oxygen species. NMDA itself did not promote neuritogenesis and the NMDA antagonist dizocilpine (MK-801) did not prevent quinolinate-induced neuritogenesis, indicating that the effects of QA were independent of NMDA receptors. Nicotinamide caused a significant increase in the neurite/soma ratio and the expression of β3-tubulin in the neuritic fraction. Taken together, these results suggest that QA induces neuritogenesis by promoting oxidizing conditions and affecting the availability of NAD+ , independently of NMDA receptors.
Collapse
Affiliation(s)
- Juan-Manuel Hernandez-Martinez
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, West Medical Building, Glasgow, G12 8QQ, UK
| | - Caroline M Forrest
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, West Medical Building, Glasgow, G12 8QQ, UK
| | | | - Robert A Smith
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, West Medical Building, Glasgow, G12 8QQ, UK
| | - Trevor W Stone
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, West Medical Building, Glasgow, G12 8QQ, UK
| |
Collapse
|
16
|
Quinolinic acid neurotoxicity: Differential roles of astrocytes and microglia via FGF-2-mediated signaling in redox-linked cytoskeletal changes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:3001-3014. [PMID: 27663072 DOI: 10.1016/j.bbamcr.2016.09.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/12/2016] [Accepted: 09/17/2016] [Indexed: 11/24/2022]
Abstract
QUIN is a glutamate agonist playing a role in the misregulation of the cytoskeleton, which is associated with neurodegeneration in rats. In this study, we focused on microglial activation, FGF2/Erk signaling, gap junctions (GJs), inflammatory parameters and redox imbalance acting on cytoskeletal dynamics of the in QUIN-treated neural cells of rat striatum. FGF-2/Erk signaling was not altered in QUIN-treated primary astrocytes or neurons, however cytoskeleton was disrupted. In co-cultured astrocytes and neurons, QUIN-activated FGF2/Erk signaling prevented the cytoskeleton from remodeling. In mixed cultures (astrocyte, neuron, microglia), QUIN-induced FGF-2 increased level failed to activate Erk and promoted cytoskeletal destabilization. The effects of QUIN in mixed cultures involved redox imbalance upstream of Erk activation. Decreased connexin 43 (Cx43) immunocontent and functional GJs, was also coincident with disruption of the cytoskeleton in primary astrocytes and mixed cultures. We postulate that in interacting astrocytes and neurons the cytoskeleton is preserved against the insult of QUIN by activation of FGF-2/Erk signaling and proper cell-cell interaction through GJs. In mixed cultures, the FGF-2/Erk signaling is blocked by the redox imbalance associated with microglial activation and disturbed cell communication, disrupting the cytoskeleton. Thus, QUIN signal activates differential mechanisms that could stabilize or destabilize the cytoskeleton of striatal astrocytes and neurons in culture, and glial cells play a pivotal role in these responses preserving or disrupting a combination of signaling pathways and cell-cell interactions. Taken together, our findings shed light into the complex role of the active interaction of astrocytes, neurons and microglia in the neurotoxicity of QUIN.
Collapse
|
17
|
Acute Hyperammonemia Induces NMDA-Mediated Hypophosphorylation of Intermediate Filaments Through PP1 and PP2B in Cerebral Cortex of Young Rats. Neurotox Res 2016; 30:138-49. [PMID: 26936604 DOI: 10.1007/s12640-016-9607-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/20/2016] [Accepted: 02/10/2016] [Indexed: 11/27/2022]
Abstract
In the present work, we studied the effects of toxic ammonia levels on the cytoskeleton of neural cells, with emphasis in the homeostasis of the phosphorylating system associated with the intermediate filaments (IFs). We used in vivo and in vitro models of acute hyperammonemia in 10- and 21-day-old rats. In the in vivo model, animals were intraperitoneally injected with ammonium acetate (7 mmol/Kg), and the phosphorylation level of the cytoskeletal proteins was analyzed in the cerebral cortex and hippocampus 30 and 60 min after injection. The injected ammonia altered the IF phosphorylation of astrocytes (GFAP and vimentin) and neurons (neurofilament subunits of low, middle, and high molecular weight, respectively: NFL, NFM, and NFH) from cerebral cortex of 21-day-old rats. This was a transitory effect observed 30 min after injection, recovering 30 min afterward. Phosphorylation was not altered in the cerebral cortex of 10-day-old pups. The homeostasis of hippocampal IFs was preserved at the studied ages and times. In the in vitro model, cortical slices of 10- and 21-day-old rats were incubated with 0.5, 1, or 5 mM NH4Cl, and the phosphorylation level of the IF proteins was analyzed after 30 min. The IF phosphorylation was not altered in cortical slices of 10-day-old rats; however, in cortical slices of 21-day-old pups, 5 mM NH4Cl induced hypophosphorylation of GFAP and vimentin, preserving neurofilament phosphorylation levels. Hypophosphorylation was mediated by the protein phosphatases 1 (PP1) and 2B (PP2B), and this event was associated with Ca(2+) influx via N-methyl-D-aspartate (NMDA) glutamate receptors. The aim of this study is to show that acute ammonia toxicity targets the phosphorylating system of IFs in the cerebral cortex of rats in a developmentally regulated manner, and NMDA-mediated Ca(2+) signaling plays a central role in this mechanism. We propose that the disruption of cytoskeletal homeostasis could be an endpoint of the acute hyperammonemia in the developing brain. We believe that these results contribute for better understanding the molecular basis of the ammonia toxicity in brain.
Collapse
|
18
|
Reis KP, Heimfarth L, Pierozan P, Ferreira F, Loureiro SO, Fernandes CG, Carvalho RV, Pessoa-Pureur R. High postnatal susceptibility of hippocampal cytoskeleton in response to ethanol exposure during pregnancy and lactation. Alcohol 2015; 49:665-74. [PMID: 26314629 DOI: 10.1016/j.alcohol.2015.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/08/2015] [Accepted: 06/08/2015] [Indexed: 12/30/2022]
Abstract
Ethanol exposure to offspring during pregnancy and lactation leads to developmental disorders, including central nervous system dysfunction. In the present work, we have studied the effect of chronic ethanol exposure during pregnancy and lactation on the phosphorylating system associated with the astrocytic and neuronal intermediate filament (IF) proteins: glial fibrillary acidic protein (GFAP), and neurofilament (NF) subunits of low, medium, and high molecular weight (NFL, NFM, and NFH, respectively) in 9- and 21-day-old pups. Female rats were fed with 20% ethanol in their drinking water during pregnancy and lactation. The homeostasis of the IF phosphorylation was not altered in the cerebral cortex, cerebellum, or hippocampus of 9-day-old pups. However, GFAP, NFL, and NFM were hyperphosphorylated in the hippocampus of 21-day-old pups. PKA had been activated in the hippocampus, and Ser55 in the N-terminal region of NFL was hyperphosphorylated. In addition, JNK/MAPK was activated and KSP repeats in the C-terminal region of NFM were hyperphosphorylated in the hippocampus of 21-day-old pups. Decreased NFH immunocontent but an unaltered total NFH/phosphoNFH ratio suggested altered stoichiometry of NFs in the hippocampus of ethanol-exposed 21-day-old pups. In contrast to the high susceptibility of hippocampal cytoskeleton in developing rats, the homeostasis of the cytoskeleton of ethanol-fed adult females was not altered. Disruption of the cytoskeletal homeostasis in neural cells supports the view that regions of the brain are differentially vulnerable to alcohol insult during pregnancy and lactation, suggesting that modulation of JNK/MAPK and PKA signaling cascades target the hippocampal cytoskeleton in a window of vulnerability in 21-day-old pups. Our findings are relevant, since disruption of the cytoskeleton in immature hippocampus could contribute to later hippocampal damage associated with ethanol toxicity.
Collapse
Affiliation(s)
- Karina Pires Reis
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Luana Heimfarth
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Paula Pierozan
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Fernanda Ferreira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | | | | | - Rônan Vivian Carvalho
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Regina Pessoa-Pureur
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
19
|
NMDA Receptors and Oxidative Stress Induced by the Major Metabolites Accumulating in HMG Lyase Deficiency Mediate Hypophosphorylation of Cytoskeletal Proteins in Brain From Adolescent Rats: Potential Mechanisms Contributing to the Neuropathology of This Disease. Neurotox Res 2015; 28:239-52. [PMID: 26174040 DOI: 10.1007/s12640-015-9542-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/01/2015] [Accepted: 07/07/2015] [Indexed: 01/01/2023]
Abstract
Neurological symptoms and cerebral abnormalities are commonly observed in patients with 3-hydroxy-3-methylglutaryl-CoA lyase (HMG lyase) deficiency, which is biochemically characterized by predominant tissue accumulation of 3-hydroxy-3-methylglutaric (HMG), 3-methylglutaric (MGA), and 3-methylglutaconic (MGT) acids. Since the pathogenesis of this disease is poorly known, the present study evaluated the effects of these compounds on the cytoskeleton phosphorylating system in rat brain. HMG, MGA, and MGT caused hypophosphorylation of glial fibrillary acidic protein (GFAP) and of the neurofilament subunits NFL, NFM, and NFH. HMG-induced hypophosphorylation was mediated by inhibiting the cAMP-dependent protein kinase (PKA) on Ser55 residue of NFL and c-Jun kinase (JNK) by acting on KSP repeats of NFM and NFH subunits. We also evidenced that the subunit NR2B of NMDA receptor and Ca(2+) was involved in HMG-elicited hypophosphorylation of cytoskeletal proteins. Furthermore, the antioxidants L-NAME and TROLOX fully prevented both the hypophosphorylation and the inhibition of PKA and JNK caused by HMG, suggesting that oxidative damage may underlie these effects. These findings indicate that the main metabolites accumulating in HMG lyase deficiency provoke hypophosphorylation of cytoskeleton neural proteins with the involvement of NMDA receptors, Ca(2+), and reactive species. It is presumed that these alterations may contribute to the neuropathology of this disease.
Collapse
|
20
|
Pierozan P, Gonçalves Fernandes C, Ferreira F, Pessoa-Pureur R. Acute intrastriatal injection of quinolinic acid provokes long-lasting misregulation of the cytoskeleton in the striatum, cerebral cortex and hippocampus of young rats. Brain Res 2014; 1577:1-10. [DOI: 10.1016/j.brainres.2014.06.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/16/2014] [Accepted: 06/19/2014] [Indexed: 10/25/2022]
|
21
|
Lee KM, Chiu KB, Renner NA, Sansing HA, Didier PJ, MacLean AG. Form follows function: astrocyte morphology and immune dysfunction in SIV neuroAIDS. J Neurovirol 2014; 20:474-84. [PMID: 24970236 DOI: 10.1007/s13365-014-0267-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/22/2014] [Accepted: 06/16/2014] [Indexed: 11/24/2022]
Abstract
Cortical function is disrupted in neuroinflammatory disorders, including HIV-associated neurocognitive disorders (HAND). Astrocyte dysfunction includes retraction of foot processes from the blood-brain barrier and decreased removal of neurotransmitters from synaptic clefts. Mechanisms of astrocyte activation, including innate immune function and the fine neuroanatomy of astrocytes, however, remain to be investigated. We quantified the number of glial fibrillary acidic protein (GFAP)-labeled astrocytes per square millimeter and the proportion of astrocytes immunopositive for Toll-like receptor 2 (TLR2) to examine innate immune activation in astrocytes. We also performed detailed morphometric analyses of gray and white matter astrocytes in the frontal and parietal lobes of rhesus macaques infected with simian immunodeficiency virus (SIV), both with and without encephalitis, an established model of AIDS neuropathogenesis. Protoplasmic astrocytes (gray matter) and fibrous astrocytes (deep white matter) were imaged, and morphometric features were analyzed using Neurolucida. Gray matter and white matter astrocytes showed no change in cell body size in animals infected with SIV regardless of encephalitic status. In SIV-infected macaques, both gray and white matter astrocytes had shorter, less ramified processes, resulting in decreased cell arbor compared with controls. SIV-infected macaques with encephalitis showed decreases in arbor length in white matter astrocytes and reduced complexity in gray matter astrocytes compared to controls. These results provide the first evidence that innate immune activation of astrocytes is linked to altered cortical astrocyte morphology in SIV/HIV infection. Here, we demonstrate that astrocyte remodeling is correlated with infection. Perturbed neuron-glia signaling may be a driving factor in the development of HAND.
Collapse
Affiliation(s)
- Kim M Lee
- Tulane National Primate Research Center, Covington, LA, USA
| | | | | | | | | | | |
Collapse
|
22
|
Signaling mechanisms and disrupted cytoskeleton in the diphenyl ditelluride neurotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:458601. [PMID: 25050142 PMCID: PMC4090446 DOI: 10.1155/2014/458601] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 02/26/2014] [Indexed: 01/14/2023]
Abstract
Evidence from our group supports that diphenyl ditelluride (PhTe)2 neurotoxicity depends on modulation of signaling pathways initiated at the plasma membrane. The (PhTe)2-evoked signal is transduced downstream of voltage-dependent Ca2+ channels (VDCC), N-methyl-D-aspartate receptors (NMDA), or metabotropic glutamate receptors activation via different kinase pathways (protein kinase A, phospholipase C/protein kinase C, mitogen-activated protein kinases (MAPKs), and Akt signaling pathway). Among the most relevant cues of misregulated signaling mechanisms evoked by (PhTe)2 is the cytoskeleton of neural cells. The in vivo and in vitro exposure to (PhTe)2 induce hyperphosphorylation/hypophosphorylation of neuronal and glial intermediate filament (IF) proteins (neurofilaments and glial fibrillary acidic protein, resp.) in different brain structures of young rats. Phosphorylation of IFs at specific sites modulates their association/disassociation and interferes with important physiological roles, such as axonal transport. Disrupted cytoskeleton is a crucial marker of neurodegeneration and is associated with reactive astrogliosis and apoptotic cell death. This review focuses the current knowledge and important results on the mechanisms of (PhTe)2 neurotoxicity with special emphasis on the cytoskeletal proteins and their differential regulation by kinases/phosphatases and Ca2+-mediated mechanisms in developmental rat brain. We propose that the disrupted cytoskeletal homeostasis could support brain damage provoked by this neurotoxicant.
Collapse
|
23
|
Pierozan P, Fernandes CG, Dutra MF, Pandolfo P, Ferreira F, de Lima BO, Porciúncula L, Wajner M, Pessoa-Pureur R. Biochemical, histopathological and behavioral alterations caused by intrastriatal administration of quinolic acid to young rats. FEBS J 2014; 281:2061-73. [DOI: 10.1111/febs.12762] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/03/2014] [Accepted: 02/19/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Paula Pierozan
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
| | - Carolina G. Fernandes
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
| | - Márcio F. Dutra
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
- Departamento de Biologia Celular, Embriologia e Genética; Centro Ciências Biológicas; Universidade Federal de Santa Catarina; Florianópolis SC Brasil
| | - Pablo Pandolfo
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
- Departamento de Neurobiologia; Instituto de Biologia; Universidade Federal Fluminense; Niterói RJ Brasil
| | - Fernanda Ferreira
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
| | - Bárbara O. de Lima
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
| | - Lisiane Porciúncula
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
| | - Moacir Wajner
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
| | - Regina Pessoa-Pureur
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
| |
Collapse
|
24
|
Pierozan P, Ferreira F, Ortiz de Lima B, Gonçalves Fernandes C, Totarelli Monteforte P, de Castro Medaglia N, Bincoletto C, Soubhi Smaili S, Pessoa-Pureur R. The phosphorylation status and cytoskeletal remodeling of striatal astrocytes treated with quinolinic acid. Exp Cell Res 2014; 322:313-23. [PMID: 24583400 DOI: 10.1016/j.yexcr.2014.02.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/10/2014] [Accepted: 02/19/2014] [Indexed: 12/24/2022]
Abstract
Quinolinic acid (QUIN) is a glutamate agonist which markedly enhances the vulnerability of neural cells to excitotoxicity. QUIN is produced from the amino acid tryptophan through the kynurenine pathway (KP). Dysregulation of this pathway is associated with neurodegenerative conditions. In this study we treated striatal astrocytes in culture with QUIN and assayed the endogenous phosphorylating system associated with glial fibrillary acidic protein (GFAP) and vimentin as well as cytoskeletal remodeling. After 24h incubation with 100 µM QUIN, cells were exposed to (32)P-orthophosphate and/or protein kinase A (PKA), protein kinase dependent of Ca(2+)/calmodulin II (PKCaMII) or protein kinase C (PKC) inhibitors, H89 (20 μM), KN93 (10 μM) and staurosporin (10nM), respectively. Results showed that hyperphosphorylation was abrogated by PKA and PKC inhibitors but not by the PKCaMII inhibitor. The specific antagonists to ionotropic NMDA and non-NMDA (50 µM DL-AP5 and CNQX, respectively) glutamate receptors as well as to metabotropic glutamate receptor (mGLUR; 50 µM MCPG), mGLUR1 (100 µM MPEP) and mGLUR5 (10 µM 4C3HPG) prevented the hyperphosphorylation provoked by QUIN. Also, intra and extracellular Ca(2+) quelators (1mM EGTA; 10 µM BAPTA-AM, respectively) prevented QUIN-mediated effect, while Ca(2+) influx through voltage-dependent Ca(2+) channel type L (L-VDCC) (blocker: 10 µM verapamil) is not implicated in this effect. Morphological analysis showed dramatically altered actin cytoskeleton with concomitant change of morphology to fusiform and/or flattened cells with retracted cytoplasm and disruption of the GFAP meshwork, supporting misregulation of actin cytoskeleton. Both hyperphosphorylation and cytoskeletal remodeling were reversed 24h after QUIN removal. Astrocytes are highly plastic cells and the vulnerability of astrocyte cytoskeleton may have important implications for understanding the neurotoxicity of QUIN in neurodegenerative disorders.
Collapse
Affiliation(s)
- Paula Pierozan
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| | - Fernanda Ferreira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| | - Bárbara Ortiz de Lima
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| | - Carolina Gonçalves Fernandes
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| | | | | | - Claudia Bincoletto
- Departamento de Farmacologia, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, SP, Brazil
| | - Soraya Soubhi Smaili
- Departamento de Farmacologia, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, SP, Brazil
| | - Regina Pessoa-Pureur
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil.
| |
Collapse
|
25
|
Quinolinic acid: an endogenous neurotoxin with multiple targets. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:104024. [PMID: 24089628 PMCID: PMC3780648 DOI: 10.1155/2013/104024] [Citation(s) in RCA: 425] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/23/2013] [Accepted: 08/01/2013] [Indexed: 11/21/2022]
Abstract
Quinolinic acid (QUIN), a neuroactive metabolite of the kynurenine pathway, is normally presented in nanomolar concentrations in human brain and cerebrospinal fluid (CSF) and is often implicated in the pathogenesis of a variety of human neurological diseases. QUIN is an agonist of N-methyl-D-aspartate (NMDA) receptor, and it has a high in vivo potency as an excitotoxin. In fact, although QUIN has an uptake system, its neuronal degradation enzyme is rapidly saturated, and the rest of extracellular QUIN can continue stimulating the NMDA receptor. However, its toxicity cannot be fully explained by its activation of NMDA receptors it is likely that additional mechanisms may also be involved. In this review we describe some of the most relevant targets of QUIN neurotoxicity which involves presynaptic receptors, energetic dysfunction, oxidative stress, transcription factors, cytoskeletal disruption, behavior alterations, and cell death.
Collapse
|
26
|
Petrik D, Yun S, Latchney SE, Kamrudin S, LeBlanc JA, Bibb JA, Eisch AJ. Early postnatal in vivo gliogenesis from nestin-lineage progenitors requires cdk5. PLoS One 2013; 8:e72819. [PMID: 23991155 PMCID: PMC3753242 DOI: 10.1371/journal.pone.0072819] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 07/19/2013] [Indexed: 01/11/2023] Open
Abstract
The early postnatal period is a unique time of brain development, as diminishing amounts of neurogenesis coexist with waves of gliogenesis. Understanding the molecular regulation of early postnatal gliogenesis may provide clues to normal and pathological embryonic brain ontogeny, particularly in regards to the development of astrocytes and oligodendrocytes. Cyclin dependent kinase 5 (Cdk5) contributes to neuronal migration and cell cycle control during embryogenesis, and to the differentiation of neurons and oligodendrocytes during adulthood. However, Cdk5's function in the postnatal period and within discrete progenitor lineages is unknown. Therefore, we selectively removed Cdk5 from nestin-expressing cells and their progeny by giving transgenic mice (nestin-CreERT2/R26R-YFP/CDK5(flox/flox) [iCdk5] and nestin-CreERT2/R26R-YFP/CDK5(wt/wt) [WT]) tamoxifen during postnatal (P) days P2-P 4 or P7-P 9, and quantified and phenotyped recombined (YFP+) cells at P14 and P21. When Cdk5 gene deletion was induced in nestin-expressing cells and their progeny during the wave of cortical and hippocampal gliogenesis (P2-P4), significantly fewer YFP+ cells were evident in the cortex, corpus callosum, and hippocampus. Phenotypic analysis revealed the cortical decrease was due to fewer YFP+ astrocytes and oligodendrocytes, with a slightly earlier influence seen in oligodendrocytes vs. astrocytes. This effect on cortical gliogenesis was accompanied by a decrease in YFP+ proliferative cells, but not increased cell death. The role of Cdk5 in gliogenesis appeared specific to the early postnatal period, as induction of recombination at a later postnatal period (P7-P9) resulted in no change YFP+ cell number in the cortex or hippocampus. Thus, glial cells that originate from nestin-expressing cells and their progeny require Cdk5 for proper development during the early postnatal period.
Collapse
Affiliation(s)
- David Petrik
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Cattani D, Goulart PB, Cavalli VLDLO, Winkelmann-Duarte E, Dos Santos AQ, Pierozan P, de Souza DF, Woehl VM, Fernandes MC, Silva FRMB, Gonçalves CA, Pessoa-Pureur R, Zamoner A. Congenital hypothyroidism alters the oxidative status, enzyme activities and morphological parameters in the hippocampus of developing rats. Mol Cell Endocrinol 2013; 375:14-26. [PMID: 23693027 DOI: 10.1016/j.mce.2013.05.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 04/17/2013] [Accepted: 05/01/2013] [Indexed: 11/23/2022]
Abstract
Congenital hypothyroidism is associated with delay in cell migration and proliferation in brain tissue, impairment of synapse formation, misregulation of neurotransmitters, hypomyelination and mental retardation. However, the mechanisms underlying the neuropsychological deficits observed in congenital hypothyroidism are not completely understood. In the present study we proposed a mechanism by which hypothyroidism leads to hippocampal neurotoxicity. Congenital hypothyroidism induces c-Jun-N-terminal kinase (JNK) pathway activation leading to hyperphosphorylation of the glial fibrillary acidic protein (GFAP), vimentin and neurofilament subunits from hippocampal astrocytes and neurons, respectively. Moreover, hyperphosphorylation of the cytoskeletal proteins was not reversed by T3 and poorly reversed by T4. In addition, congenital hypothyroidism is associated with downregulation of astrocyte glutamate transporters (GLAST and GLT-1) leading to decreased glutamate uptake and subsequent influx of Ca(2+) through N-methyl-D-aspartate (NMDA) receptors. The Na(+)-coupled (14)C-α-methyl-amino-isobutyric acid ((14)C-MeAIB) accumulation into hippocampal cells also might cause an increase in the intracellular Ca(2+) concentration by opening voltage-dependent calcium channels (VDCC). The excessive influx of Ca(2+) through NMDA receptors and VDCCs might lead to an overload of Ca(2+) within the cells, which set off glutamate excitotoxicity and oxidative stress. The inhibited acetylcholinesterase (AChE) activity might also induce Ca(2+) influx. The inhibited glucose-6-phosphate dehydrogenase (G6PD) and gamma-glutamyl transferase (GGT) activities, associated with altered glutamate and neutral amino acids uptake could somehow affect the GSH turnover, the antioxidant defense system, as well as the glutamate-glutamine cycle. Reduced levels of S100B and glial fibrillary acidic protein (GFAP) take part of the hypothyroid condition, suggesting a compromised astroglial/neuronal neurometabolic coupling which is probably related to the neurotoxic damage in hypothyroid brain.
Collapse
Affiliation(s)
- Daiane Cattani
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zanatta L, Goulart PB, Gonçalves R, Pierozan P, Winkelmann-Duarte EC, Woehl VM, Pessoa-Pureur R, Silva FRMB, Zamoner A. 1α,25-Dihydroxyvitamin D3 mechanism of action: Modulation of L-type calcium channels leading to calcium uptake and intermediate filament phosphorylation in cerebral cortex of young rats. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1708-19. [DOI: 10.1016/j.bbamcr.2012.06.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 12/22/2022]
|
29
|
Heimfarth L, Loureiro SO, Dutra MF, Andrade C, Pettenuzzo L, Guma FTCR, Gonçalves CAS, da Rocha JBT, Pessoa-Pureur R. In vivo treatment with diphenyl ditelluride induces neurodegeneration in striatum of young rats: Implications of MAPK and Akt pathways. Toxicol Appl Pharmacol 2012; 264:143-52. [DOI: 10.1016/j.taap.2012.07.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/09/2012] [Accepted: 07/15/2012] [Indexed: 11/28/2022]
|
30
|
Heimfarth L, Reis KP, Loureiro SO, de Lima BO, da Rocha JBT, Pessoa-Pureur R. Exposure of young rats to diphenyl ditelluride during lactation affects the homeostasis of the cytoskeleton in neural cells from striatum and cerebellum. Neurotoxicology 2012; 33:1106-16. [DOI: 10.1016/j.neuro.2012.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 06/05/2012] [Accepted: 06/05/2012] [Indexed: 10/28/2022]
|