1
|
Krug SM, Lee IM, Knobe L, Hartmannsberger B, Atalla MS, Rittner HL, Fromm M. Characterising epi-perineurial barrier function by microscale techniques including a miniaturised Ussing chamber. Acta Biomater 2025:S1742-7061(25)00296-X. [PMID: 40274060 DOI: 10.1016/j.actbio.2025.04.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/01/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
Barriers of peripheral nerves, like the sciatic nerve, are complex structures, consisting of the inner endoneurial capillary barriers and the outer epi- and perineurial layers. The latter two, collectively also known as epi-perineurium (EPN), are necessary for maintenance of the nerve homeostasis. However, the involvement of the EPN in altered nerve conduction in neuropathy is not well-understood. To date, reliable data on barrier properties and ion permeabilities have been limited by the difficulty of accessing the barrier experimentally. For analysing the EPN of rat sciatic nerves, we developed a preparation technique and a miniaturised (area 0.6 mm²), though edge damage-free, Ussing chamber. Electrophysiological characterisation included measurement of transepiperineurial resistance, differentiation of para- and transcellular contributions to this by two-path impedance spectroscopy and determination of permeabilities for flux markers and for ions by dilution and bi-ionic potential measurements. We found the EPN being definable as tight and responsive to changes in the gradients between the endoneurial and the extra-nerval compartment. In a rat model of bortezomib-induced polyneuropathy, we demonstrate the EPN to be impaired with a specific increase in potassium permeability, which normalises with the recovery of the animals. In conclusion, we present an advanced, dependable method to analyse the EPN, which can be extended to other microscale epi- or endothelia. Functionally, we demonstrate with this technique that the EPN forms a crucial and specific barrier to maintain ion gradients within the sciatic nerve. STATEMENT OF SIGNIFICANCE: We developed a miniaturized Ussing chamber allowing precise electrophysiological analysis of microscale barrier tissues, avoiding edge damage and experimental interferences. Using this, we characterized the epi-perineurium (EPN) barrier of sciatic nerves, demonstrating it to be a tight and responsive barrier, essential for maintaining ion balance within that nerve. In a neuropathy model, we identified impaired potassium permeability during hyperalgesia, which normalized with recovery. Beyond the EPN, this method is broadly applicable to other previously inaccessible microscale barriers, enabling advanced studies of barrier (patho)physiology. Our work bridges biomaterial development and tissue barrier research, providing detailed insights into ion and solute transport, and may be used to study regulatory mechanisms and the subsequent development of potential therapeutic strategies such as targeted drug delivery across these barrier tissues.
Collapse
Affiliation(s)
- S M Krug
- Clinical Physiology / Nutritional Medicine, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany.
| | - I M Lee
- Clinical Physiology / Nutritional Medicine, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - L Knobe
- Clinical Physiology / Nutritional Medicine, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - B Hartmannsberger
- University Hospital Würzburg, Centre for Interdisciplinary Pain Medicine, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, 97080 Würzburg, Germany
| | - M S Atalla
- University Hospital Würzburg, Centre for Interdisciplinary Pain Medicine, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, 97080 Würzburg, Germany
| | - H L Rittner
- University Hospital Würzburg, Centre for Interdisciplinary Pain Medicine, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, 97080 Würzburg, Germany
| | - M Fromm
- Clinical Physiology / Nutritional Medicine, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| |
Collapse
|
2
|
Zhang Y, Li X, Xu S, Li J, Shi L, Wang Z, Chen P, Jia L, Zhang J. The acetylation of Ganoderma applanatum polysaccharides on ameliorating T2DM-induced hepatic and colonic injuries by modulating the Nrf2/keap1-TLR4/NFκB-Bax/Bcl-2 pathways. Int J Biol Macromol 2025; 294:140055. [PMID: 39828155 DOI: 10.1016/j.ijbiomac.2025.140055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 01/12/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
It was imperative to discover and utilize high-efficiency, non-toxic substances for the prevention and management of type 2 diabetes mellitus (T2DM) and its associated complications, given the escalating prevalence and significant global health burden. In the present study, the acetylated Ganoderma applanatum polysaccharide (A-GAP) was successfully obtained and characterized, demonstrating excellent efficacy in ameliorating organ damage induced by T2DM through targeted modulation of the gut-liver axis. The physiological and molecular biological findings indicated that A-GAP may modulate the Nrf2/Keap1-TLR4/NFκB-Bax/Bcl-2 signaling pathway network, thereby mitigating oxidative stress and the subsequent inflammatory response, ultimately alleviating the inhibitory effects of IRS and insulin resistance. Besides, the regulatory impact of A-GAP on the gut-liver axis had been confirmed by its ability to maintain intestinal barrier integrity and increase levels of intestinal tight junction proteins, effectively preventing endotoxin translocation to the liver. This discovery highlighted the potential of A-GAP as a promising option for functional or nutritional foods and pharmaceuticals in managing T2DM and its complications, showcasing the significance of acetylation in enhancing the bioactivities of natural substances.
Collapse
Affiliation(s)
- Yiwen Zhang
- College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Xiaoxu Li
- College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Shungao Xu
- College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Jinyi Li
- College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Lian Shi
- College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Zhiying Wang
- College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Peiying Chen
- College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Le Jia
- College of Life Sciences, Shandong Agricultural University, Taian 271018, China.
| | - Jianjun Zhang
- College of Life Sciences, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
3
|
Shafiek MZ, Zaki HF, Mohamed AF. New ways to repurpose salmeterol in an animal model of fibromyalgia. Fundam Clin Pharmacol 2025; 39:e13041. [PMID: 39496328 DOI: 10.1111/fcp.13041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/20/2024] [Accepted: 10/11/2024] [Indexed: 11/06/2024]
Abstract
BACKGROUND Fibromyalgia (FM) is a syndrome of pervasive chronic pain accompanied by low mood, sleep disorders, and cognitive decline. The dysfunction of central pain processing systems along with neurotransmitter disturbances are possible contributing mechanisms. Genetic polymorphism of the 𝛽2 adrenergic receptors is reported in FM patients. It is reported that chronic β2 agonists administration is effective for neuropathic pain alleviation. No current information, however, exists on their potential to alleviate nociplastic pain, such as FM. Therefore, the purpose of the current study is to examine salmeterol's potential antiallodynic effects in experimentally produced FM and explore some of the possible contributing mechanisms. METHODS Thirty rats are allocated into three groups (n = 10): a normal group, a reserpine group that received reserpine (1 mg/kg; s.c.) for 3 days, and a reserpine + salmeterol group that received salmeterol (1 mg/kg; i.p.) for 21 consecutive days following last reserpine injection. RESULTS Reserpine administration resulted in behavioral and biochemical changes consistent with FM, including thermal and mechanical hyperalgesia, depressive behavior, and motor incoordination. This is coupled with disturbed spinal monoamine levels, depressed cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling, disturbed mitochondrial function/dynamics, and compromised blood-nerve barrier integrity. Treatment with salmeterol conceivably reversed these effects. CONCLUSION β2 receptor agonists such as salmeterol could be regarded as a promising strategy for the management of FM.
Collapse
Affiliation(s)
- Mena Z Shafiek
- Department of Pharmacology and Toxicology, Faculty of Dentistry, Misr International University, Cairo, Egypt
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, 46612, Egypt
| |
Collapse
|
4
|
Du M, Li J, Ren X, Zhao J, Miao Y, Lu Y. Nicorandil restores endothelial cell Kir6.2 expression to alleviate neuropathic pain in mice after chronic constriction injury. Int Immunopharmacol 2024; 143:113494. [PMID: 39467345 DOI: 10.1016/j.intimp.2024.113494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/06/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
The clinical management of neuropathic pain (NP) remains a significant challenge, as current pharmacological treatments do not fully meet clinical needs. Nicorandil, a potassium ATP channel agonist widely used in cardiovascular medicine, has recently been shown to have significant potential for analgesia. This study aimed to investigate the effects and mechanisms of nicorandil in a chronic constriction injury (CCI) mouse model. Nicorandil significantly alleviated pain hypersensitivity and reduced neuronal injury in the sciatic nerve (SN) and dorsal root ganglion (DRG) post-CCI. Nicorandil primarily affected endothelial cells and Schwann cells in the sciatic nerve, restoring the expression of the KATP channel subunit Kir6.2. Furthermore, nicorandil attenuated the hypoxia-induced apoptosis program in sciatic nerve endothelial cells, leading to reduced expression of apoptotic proteins, which provided significant endothelial protection, improved blood-nerve barrier leakage, and decreased the release of DRG inflammatory factors and pain neurotransmitter substance P. In vitro, nicorandil attenuated the apoptosis of human umbilical vein endothelial cells (HUVECs) in a hypoxic environment while maintaining cellular functions. In addition, administering the KATP channel inhibitor glibenclamide in vitro further confirmed the crucial role of Kir6.2 in reducing endothelial hypoxic stress, as confirmed by transmission electron microscopy and behavioural experiments. Overall, these findings indicate that nicorandil significantly ameliorates CCI-induced NP in mice by targeting Kir6.2 in sciatic nerve endothelial cells, thus inhibiting pain sensitization.
Collapse
Affiliation(s)
- Minghao Du
- Department of Neurosurgery, Xi'an Central Hospital, Xi'an Jiaotong University, Xi'an 710003, China
| | - Jiani Li
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an Jiaotong University, Xi'an 710003, China
| | - Xiaoyu Ren
- Orthopedic Microsurgical Reconstruction Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Jian Zhao
- Orthopedic Microsurgical Reconstruction Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Yu Miao
- Department of Neurosurgery, Xi'an Central Hospital, Xi'an Jiaotong University, Xi'an 710003, China.
| | - Yichen Lu
- Orthopedic Microsurgical Reconstruction Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China.
| |
Collapse
|
5
|
Leng SZ, Fang MJ, Wang YM, Lin ZJ, Li QY, Xu YN, Mai CL, Wan JY, Yu Y, Wei M, Li Y, Zheng YF, Zhang KL, Wang YJ, Zhou LJ, Tan Z, Zhang H. Elevated plasma CXCL12 leads to pain chronicity via positive feedback upregulation of CXCL12/CXCR4 axis in pain synapses. J Headache Pain 2024; 25:213. [PMID: 39627724 PMCID: PMC11616163 DOI: 10.1186/s10194-024-01917-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/16/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Chronic pain poses a clinical challenge due to its associated costly disability and treatment needs. Determining how pain transitions from acute to chronic is crucial for effective management. Upregulation of the chemokine C-X-C motif ligand 12 (CXCL12) in nociceptive pathway is associated with chronic pain. Our previous study has reported that elevated plasma CXCL12 mediates intracerebral neuroinflammation and the comorbidity of cognitive impairment in neuropathic pain, but whether it is also involved in the pathogenesis of pathologic pain has not been investigated. METHODS Intravenous or intrathecal injection (i.v. or i.t.) of recombinant mouse CXCL12, neutralizing antibody (anti-CXCL12) or AMD3100 [an antagonist of its receptor C-X-C chemokine receptor type 4 (CXCR4)] was used to investigate the role of CXCL12 signaling pathway in pain chronicity. Two behavioral tests were used to examine pain changes. ELISA, immunofluorescence staining, Western blot, quantitative Real Time-PCR and Cytokine array were applied to detect the expressions of different molecules. RESULTS We found that increased plasma CXCL12 was positively correlated with pain severity in both chronic pain patients and neuropathic pain model in mice with spared nerve injury (SNI). Neutralizing plasma CXCL12 mitigated SNI-induced hyperalgesia. A single i.v. injection of CXCL12 induced prolonged mechanical hyperalgesia and activation of the nociceptive pathway. Multiple intravenous CXCL12 caused persistent hypersensitivity, enhanced structural plasticity of nociceptors and up-regulation of the CXCL12/CXCR4 axis in the dorsal root ganglion (DRG) and spinal dorsal horn (SDH). However, intrathecal blocking of CXCL12/CXCR4 pathway by CXCL12 antibody or CXCR4 antagonist AMD3100 significantly alleviated CXCL12-induced pain hypersensitivity and pathological changes. CONCLUSIONS Our study provides strong evidence that a sustained increase in plasma CXCL12 contributes to neuropathic pain through a positive feedback loop that enhances nociceptor plasticity, and suggests that targeting CXCL12/CXCR4 axis in plasma or nociceptive pathways has potential value in regulating pain chronicity.
Collapse
Affiliation(s)
- Shi-Ze Leng
- Department of Anesthesiology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
| | - Mei-Jia Fang
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University , Guangzhou, 510080, China
| | - Yi-Min Wang
- Department of Anesthesiology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
| | - Zhen-Jia Lin
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University , Guangzhou, 510080, China
| | - Qian-Yi Li
- Department of Anesthesiology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
| | - Ya-Nan Xu
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University , Guangzhou, 510080, China
| | - Chun-Lin Mai
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University , Guangzhou, 510080, China
| | - Jun-Ya Wan
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University , Guangzhou, 510080, China
| | - Yangyinhui Yu
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University , Guangzhou, 510080, China
| | - Ming Wei
- Department of Anesthesiology and Pain Clinic, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ying Li
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University , Guangzhou, 510080, China
| | - Yu-Fan Zheng
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University , Guangzhou, 510080, China
| | - Kai-Lang Zhang
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University , Guangzhou, 510080, China
| | - Ya-Juan Wang
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University , Guangzhou, 510080, China
| | - Li-Jun Zhou
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University , Guangzhou, 510080, China.
| | - Zhi Tan
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University , Guangzhou, 510080, China.
| | - Hui Zhang
- Department of Anesthesiology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China.
| |
Collapse
|
6
|
Antoine JC. Antibodies in immune-mediated peripheral neuropathies. Where are we in 2024? Rev Neurol (Paris) 2024; 180:876-887. [PMID: 39322491 DOI: 10.1016/j.neurol.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
Over the past 30 years, about 20 antibodies have been identified in immune-mediated neuropathies, recognizing membrane or intracellular proteins or glycolipids of neuron and Schwann cells. This article reviews the different methods used for their detection, what we know about their pathogenic role, how they have helped identify several disorders, and how they are essential for diagnosis. Despite sustained efforts, some immune-mediated disorders still lack identified autoantibodies, notably the classical form of Guillain-Barré syndrome and chronic inflammatory demyelinating polyneuropathy. The reasons for this are discussed. The article also tries to determine potential future developments in antibody research, particularly the use of omic approaches and the search for other types of biomarkers beyond diagnostic ones, such as those that can identify patients who will respond to a given treatment.
Collapse
Affiliation(s)
- J-C Antoine
- Service de neurologie, CHU de Saint-Étienne, 42055 Saint-Étienne cedex, France; Inserm CNRS, laboratoire SynAtac, MeliS, université Jean-Monnet, Saint-Étienne, France.
| |
Collapse
|
7
|
Zebochin I, Denk F, Nochi Z. Modeling neuropathic pain in a dish. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:233-278. [PMID: 39580214 DOI: 10.1016/bs.irn.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
The study of pain mechanisms has advanced significantly with the development of innovative in vitro models. This chapter explores those already used in or potentially useful for neuropathic pain research, emphasizing the complementary roles of animal and human cellular models to enhance translational success. Traditional animal models have provided foundational insights into the neurobiology of pain and remain invaluable for understanding complex pain pathways. However, integrating human cellular models addresses the need for better replication of human nociceptors. The chapter details methodologies for culturing rodent and human primary sensory neurons, including isolation and culture techniques, advantages, and limitations. It highlights the application of these models in neuropathic pain research, such as identifying pain-associated receptors and ion channels. Recent advancements in using induced pluripotent stem cell (iPSC)-derived sensory neurons are also discussed. Finally, the chapter explores advanced in vitro models, including 2D co-cultures and 3D organoids, and their implications for studying neuropathic pain. These models offer significant advantages for drug screening and ethical research practices, providing a more accurate representation of human pain pathways and paving the way for innovative therapeutic strategies. Despite challenges such as limited access to viable human tissue and variability between samples, these in vitro models, alongside traditional animal models, are indispensable for advancing our understanding of neuropathic pain and developing effective treatments.
Collapse
Affiliation(s)
- Irene Zebochin
- Wolfson Sensory Pain and Regeneration Centre (SPaRC), King's College London
| | - Franziska Denk
- Wolfson Sensory Pain and Regeneration Centre (SPaRC), King's College London
| | - Zahra Nochi
- Danish Pain Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
8
|
Ni G, Kou L, Duan C, Meng R, Wang P. MicroRNA-199a-5p attenuates blood-brain barrier disruption following ischemic stroke by regulating PI3K/Akt signaling pathway. PLoS One 2024; 19:e0306793. [PMID: 39302945 DOI: 10.1371/journal.pone.0306793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/24/2024] [Indexed: 09/22/2024] Open
Abstract
OBJECTIVE To explore whether miR-199a-5p regulated BBB integrity through PI3K/Akt pathway after ischemia stroke. METHODS Adult male Sprague-Dawley rats with permanent middle cerebral artery occlusion(MCAO) were used in experiment. The Ludmila Belayev 12-point scoring was used to measure the neurological function of MCAO rats. The Evans Blue Stain, immunofluorescence staining, western-blotting and RT-PCR were performed to evaluate the effects of miR-199a-5p mimic on BBB integrity in rats following MCAO. RESULTS The result suggested that miR-199a-5p mimic treatment possessed the potential to boost proprioception and motor activity of MCAO rats. MiR-199a-5p decreased the expression of PIK3R2 after MCAO, activated Akt signaling pathway, and increased the expression of Claudin-5 and VEGF in the ischemic penumbra. Furthermore, miR-199a-5p alleviated inflammation after cerebral ischemia. BBB leakage and neurocyte apoptosis were cut down in MCAO rats treated with miR-199a-5p mimic. CONCLUSIONS MiR-199a-5p mimic decreased the expression of PIK3R2 and activated Akt signaling pathway after ischemia stroke, reduced the expression of inflammatory cytokines, and attenuated BBB disruption after ischemic stroke.
Collapse
Affiliation(s)
- Guangxiao Ni
- Department of Rehabilitation of the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lulu Kou
- Department of Rehabilitation of the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chunqiao Duan
- Department of Rehabilitation of the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ran Meng
- Department of Rehabilitation of the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Pu Wang
- Stomatological Laboratory of the Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
9
|
Patritti-Cram J, Rahrmann EP, Rizvi TA, Scheffer KC, Phoenix TN, Largaespada DA, Ratner N. NF1-dependent disruption of the blood-nerve-barrier is improved by blockade of P2RY14. iScience 2024; 27:110294. [PMID: 39100928 PMCID: PMC11294707 DOI: 10.1016/j.isci.2024.110294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/17/2023] [Accepted: 06/14/2024] [Indexed: 08/06/2024] Open
Abstract
The blood-nerve-barrier (BNB) that regulates peripheral nerve homeostasis is formed by endoneurial capillaries and perineurial cells surrounding the Schwann cell (SC)-rich endoneurium. Barrier dysfunction is common in human tumorigenesis, including in some nerve tumors. We identify barrier disruption in human NF1 deficient neurofibromas, which were characterized by reduced perineurial cell glucose transporter 1 (GLUT1) expression and increased endoneurial fibrin(ogen) deposition. Conditional Nf1 loss in murine SCs recapitulated these alterations and revealed decreased tight junctions and decreased caveolin-1 (Cav1) expression in mutant nerves and in tumors, implicating reduced Cav1-mediated transcytosis in barrier disruption and tumorigenesis. Additionally, elevated receptor tyrosine kinase activity and genetic deletion of Cav1 increased endoneurial fibrin(ogen), and promoted SC tumor formation. Finally, when SC lacked Nf1, genetic loss or pharmacological inhibition of P2RY14 rescued Cav1 expression and barrier function. Thus, loss of Nf1 in SC causes dysfunction of the BNB via P2RY14-mediated G-protein coupled receptor (GPCR) signaling.
Collapse
Affiliation(s)
- Jennifer Patritti-Cram
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0713, USA
| | - Eric P. Rahrmann
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Tilat A. Rizvi
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Katherine C. Scheffer
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Timothy N. Phoenix
- Division of Pharmaceutical Sciences, James L. Wrinkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229, USA
| | - David A. Largaespada
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
10
|
Mehling K, Becker J, Chen J, Scriba S, Kindl G, Jakubietz R, Sommer C, Hartmannsberger B, Rittner HL. Bilateral deficiency of Meissner corpuscles and papillary microvessels in patients with acute complex regional pain syndrome. Pain 2024; 165:1613-1624. [PMID: 38335004 PMCID: PMC11190899 DOI: 10.1097/j.pain.0000000000003168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 02/10/2024]
Abstract
ABSTRACT Complex regional pain syndrome (CRPS) presents postinjury with disproportionate pain and neuropathic, autonomic, motor symptoms, and skin texture affection. However, the origin of these multiplex changes is unclear. Skin biopsies offer a window to analyze the somatosensory and vascular system as well as skin trophicity with their protecting barriers. In previous studies, barrier-protective exosomal microRNAs were altered in CRPS. We here postulated that tissue architecture and barrier proteins are already altered at the beginning of CRPS. We analyzed ipsilateral and contralateral skin biopsies of 20 fully phenotyped early CRPS patients compared with 20 age- and sex-matched healthy controls. We established several automated unbiased methods to comprehensively analyze microvessels and somatosensory receptors as well as barrier proteins, including claudin-1, claudin-5, and claudin-19. Meissner corpuscles in the skin were bilaterally reduced in acute CRPS patients with some of them lacking these completely. The number of Merkel cells and the intraepidermal nerve fiber density were not different between the groups. Dermal papillary microvessels were bilaterally less abundant in CRPS, especially in patients with allodynia. Barrier proteins in keratinocytes, perineurium of dermal nerves, Schwann cells, and papillary microvessels were not affected in early CRPS. Bilateral changes in the tissue architecture in early CRPS might indicate a predisposition for CRPS that manifests after injury. Further studies should evaluate whether these changes might be used to identify risk patients for CRPS after trauma and as biomarkers for outcome.
Collapse
Affiliation(s)
- Katharina Mehling
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, Center for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Juliane Becker
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, Center for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Jeremy Chen
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, Center for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Sabrina Scriba
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, Center for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Gudrun Kindl
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, Center for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Rafael Jakubietz
- Department Surgery II, University Hospital Würzburg, Würzburg, Germany
| | - Claudia Sommer
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Beate Hartmannsberger
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, Center for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Heike L. Rittner
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, Center for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
11
|
Yunqing W, Shilei C, Yong L, Qing L, Xiaohong S, Jiawei W. Cavernous Sinus MRI Findings in Inflammatory and Ischemic Oculomotor Cranial Nerve Palsies. J Neuroophthalmol 2024; 44:236-241. [PMID: 37751328 PMCID: PMC11081484 DOI: 10.1097/wno.0000000000001958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
BACKGROUND The significance of asymmetric enhancement on cavernous sinus MRIs in the differential diagnosis of ischemic and inflammatory oculomotor cranial nerve (OCN) palsies remains controversial. This study explored the cavernous sinus MRI findings for cavernous sinus idiopathic inflammation (inflammation group), microvascular ischemic OCN palsy (ischemic group), and ocular myasthenia gravis (OMG group) patients. METHODS A total of 66, 117, and 60 patients were included in the inflammation, ischemic, and OMG groups, respectively. Cavernous sinus MRIs were retrospectively analyzed. RESULTS The abnormality rates of cavernous sinus MRIs for OMG and ischemic groups were 41.7% (25/60) and 61.5% (72/117), respectively. Inconsistency rates between clinical topical diagnosis and imaging findings for inflammation and ischemic groups were 3.0% (2/66) and 13.7% (16/117), respectively ( P = 0.020). In the inflammation group, cavernous sinus thickness, thickening enhancement, and enhancing adjacent lesions were noted in 90.9% (60/66), 71.2% (47/66), and 25.8% (17/66) of the patients, whereas in the ischemic group, they were noted in 51.3% (60/117), 38.5% (45/117), and 0.9% (3/117) of the patients, respectively ( P < 0.001). Among ischemic CN III palsy patients, 55.5% (15/27) and 16.7% (2/12) of the cases had CN III enlargement and enhancement in the diabetic and nondiabetic groups, respectively ( P = 0.037). CONCLUSIONS Cavernous sinus MRI abnormalities can be explained by specific pathologic mechanisms of the primary disease based on the complex neuroanatomy. However, suspicious inflammatory changes cannot exclude the possibility of ischemia and over reliance on these findings should be avoided.
Collapse
|
12
|
Sullivan JM, Bagnell AM, Alevy J, Avila EM, Mihaljević L, Saavedra-Rivera PC, Kong L, Huh JS, McCray BA, Aisenberg WH, Zuberi AR, Bogdanik L, Lutz CM, Qiu Z, Quinlan KA, Searson PC, Sumner CJ. Gain-of-function mutations of TRPV4 acting in endothelial cells drive blood-CNS barrier breakdown and motor neuron degeneration in mice. Sci Transl Med 2024; 16:eadk1358. [PMID: 38776392 PMCID: PMC11316273 DOI: 10.1126/scitranslmed.adk1358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Blood-CNS barrier disruption is a hallmark of numerous neurological disorders, yet whether barrier breakdown is sufficient to trigger neurodegenerative disease remains unresolved. Therapeutic strategies to mitigate barrier hyperpermeability are also limited. Dominant missense mutations of the cation channel transient receptor potential vanilloid 4 (TRPV4) cause forms of hereditary motor neuron disease. To gain insights into the cellular basis of these disorders, we generated knock-in mouse models of TRPV4 channelopathy by introducing two disease-causing mutations (R269C and R232C) into the endogenous mouse Trpv4 gene. TRPV4 mutant mice exhibited weakness, early lethality, and regional motor neuron loss. Genetic deletion of the mutant Trpv4 allele from endothelial cells (but not neurons, glia, or muscle) rescued these phenotypes. Symptomatic mutant mice exhibited focal disruptions of blood-spinal cord barrier (BSCB) integrity, associated with a gain of function of mutant TRPV4 channel activity in neural vascular endothelial cells (NVECs) and alterations of NVEC tight junction structure. Systemic administration of a TRPV4-specific antagonist abrogated channel-mediated BSCB impairments and provided a marked phenotypic rescue of symptomatic mutant mice. Together, our findings show that mutant TRPV4 channels can drive motor neuron degeneration in a non-cell autonomous manner by precipitating focal breakdown of the BSCB. Further, these data highlight the reversibility of TRPV4-mediated BSCB impairments and identify a potential therapeutic strategy for patients with TRPV4 mutations.
Collapse
Affiliation(s)
- Jeremy M. Sullivan
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Anna M. Bagnell
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Jonathan Alevy
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Elvia Mena Avila
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island; Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island; Kingston, RI 02881, USA
| | - Ljubica Mihaljević
- Department of Physiology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | | | - Lingling Kong
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Jennifer S. Huh
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Brett A. McCray
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - William H. Aisenberg
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | | | | | | | - Zhaozhu Qiu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
- Department of Physiology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Katharina A. Quinlan
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island; Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island; Kingston, RI 02881, USA
| | - Peter C. Searson
- Institute for Nanobiotechnology, Johns Hopkins University; Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University; Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University; Baltimore, MD 21218, USA
| | - Charlotte J. Sumner
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| |
Collapse
|
13
|
Lund H, Hunt MA, Kurtović Z, Sandor K, Kägy PB, Fereydouni N, Julien A, Göritz C, Vazquez-Liebanas E, Andaloussi Mäe M, Jurczak A, Han J, Zhu K, Harris RA, Lampa J, Graversen JH, Etzerodt A, Haglund L, Yaksh TL, Svensson CI. CD163+ macrophages monitor enhanced permeability at the blood-dorsal root ganglion barrier. J Exp Med 2024; 221:e20230675. [PMID: 38117255 PMCID: PMC10733632 DOI: 10.1084/jem.20230675] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/04/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023] Open
Abstract
In dorsal root ganglia (DRG), macrophages reside close to sensory neurons and have largely been explored in the context of pain, nerve injury, and repair. However, we discovered that most DRG macrophages interact with and monitor the vasculature by sampling macromolecules from the blood. Characterization of the DRG vasculature revealed a specialized endothelial bed that transformed in molecular, structural, and permeability properties along the arteriovenous axis and was covered by macrophage-interacting pericytes and fibroblasts. Macrophage phagocytosis spatially aligned with peak endothelial permeability, a process regulated by enhanced caveolar transcytosis in endothelial cells. Profiling the DRG immune landscape revealed two subsets of perivascular macrophages with distinct transcriptome, turnover, and function. CD163+ macrophages self-maintained locally, specifically participated in vasculature monitoring, displayed distinct responses during peripheral inflammation, and were conserved in mouse and man. Our work provides a molecular explanation for the permeability of the blood-DRG barrier and identifies an unappreciated role of macrophages as integral components of the DRG-neurovascular unit.
Collapse
Affiliation(s)
- Harald Lund
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Matthew A. Hunt
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zerina Kurtović
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Kancera AB, Karolinska Institutet Science Park, Stockholm, Sweden
| | - Katalin Sandor
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paul B. Kägy
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Noah Fereydouni
- Department of Medicine, Rheumatology Unit, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anais Julien
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christian Göritz
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Elisa Vazquez-Liebanas
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Maarja Andaloussi Mäe
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Alexandra Jurczak
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jinming Han
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Keying Zhu
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Robert A. Harris
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jon Lampa
- Department of Medicine, Rheumatology Unit, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Anders Etzerodt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Lisbet Haglund
- Division of Orthopaedic Surgery, Department of Surgery, McGill University, Montreal, Canada
| | - Tony L. Yaksh
- Department of Anesthesiology, University of California, San Diego, CA, USA
| | - Camilla I. Svensson
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Ohmura K, Kinoshita T, Tomita H, Okada H, Shimizu M, Mori K, Taniguchi T, Suzuki A, Iwama T, Hara A. Prevention of vincristine-induced peripheral neuropathy by protecting the endothelial glycocalyx shedding. Biochem Biophys Res Commun 2024; 691:149286. [PMID: 38016339 DOI: 10.1016/j.bbrc.2023.149286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023]
Abstract
Vincristine-induced peripheral neuropathy (VIPN) adversely affects the quality of life and treatment continuity of patients. The endothelial glycocalyx (eGCX) protects nerves from harmful substances released from the capillary vessels, but its role in peripheral neuropathy remains unclear. We investigated the impact of eGCX protection on VIPN. Using a murine model of VIPN, we administered nafamostat mesylate to protect the eGCX shedding, and analyzed the eGCX integrity and manifestation of peripheral neuropathy. Nafamostat treatment suppressed allodynia associated with neuropathy. Additionally, nafamostat administration resulted in the suppression of increased vascular permeability in capillaries of peripheral nerves, further indicating its positive influence on eGCX in VIPN model mice. This study provided the importance of eGCX in VIPN. With the potential for rapid clinical translation through drug repositioning, nafamostat may be a new promising treatment for the prevention of VIPN.
Collapse
Affiliation(s)
- Kazufumi Ohmura
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan; Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan; Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan.
| | - Hideshi Okada
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan; Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan.
| | - Masayoshi Shimizu
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kosuke Mori
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Toshiaki Taniguchi
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akio Suzuki
- Department of Pharmacy, Gifu University Hospital, Gifu, Japan
| | - Toru Iwama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
15
|
Wu PZ, Yao J, Meng B, Qin YB, Cao S. Blood-nerve barrier enhances chronic postsurgical pain via the HIF-1α/ aquaporin-1 signaling axis. BMC Anesthesiol 2023; 23:381. [PMID: 37990154 PMCID: PMC10662690 DOI: 10.1186/s12871-023-02306-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 10/06/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Blood nerve barrier (BNB) participates in the development of neuropathic pain. AQP1 is involved in peripheral pain perception and is negatively correlated with HIF-1α phenotype, which regulates endothelial permeability. However, the role of HIF-1α-AQP1-mediated BNB dysfunction in Chronic Postsurgical Pain (CPSP) has not been reported. METHODS Male Sprague-Dawley rats were randomized into 5 groups: (i) Naive group; (ii) Sham group; (iii) SMIR group: skin/muscle incision and retraction for one hour. Behavioral tests were performed for the three groups, BNB vascular permeability and western blotting were conducted to determine HIF-1α and AQP1 protein expression. (iv) The SMIR + HIF-1α inhibitor group; (v) SMIR + DMSO group. Rats in the two groups were administered with HIF-1α inhibitor (2ME2) or DMSO intraperitoneally on the third day post-SMIR surgery followed by performance of behavioral tests, BNB permeability assessment, and determination of HIF-1α, AQP1 and NF200 protein levels. RESULTS The permeability of BNB was significantly increased and the expression of AQP1 was downregulated on the 3rd and 7th days post-operation. AQP1 is mainly located in neurons and NF200, CGRP-positive nerve fibers. HIF-1α was highly expressed on the third day post-operation. HIF-1α inhibitor reversed the decrease in AQP1 expression and increase in NF200 expression, barrier permeability and hyperalgesia induced by SMIR on the 3rd day post-surgery. CONCLUSIONS Early dysfunction of BNB mediated by HIF-1α/AQP1 activated by SMIR may be an important mechanism to promote acute postoperative painful transformation of CPSP. Preadaptive protection of endothelial cells around nerve substructures may be an important countermeasure to inhibit CPSP transformation. Early impairment of BNB function mediated by HIF-1α/AQP1 activated by SMIR may be an important mechanism for promoting acute postoperative pain transformation of CPSP.
Collapse
Affiliation(s)
- Pei-Zhi Wu
- Department of Anesthesiology, Affiliated Hospital and Medical School of Nantong University, No. 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Ju Yao
- Department of Anesthesiology, Affiliated Hospital and Medical School of Nantong University, No. 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Bei Meng
- Department of Anesthesiology, Affiliated Hospital and Medical School of Nantong University, No. 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Yi-Bin Qin
- Department of Anesthesiology, Affiliated Hospital and Medical School of Nantong University, No. 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Su Cao
- Department of Anesthesiology, Affiliated Hospital and Medical School of Nantong University, No. 20 Xisi Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
16
|
Collins MP, Hadden RDM, Shahnoor N. Primary perineuritis, a rare but treatable neuropathy: Review of perineurial anatomy, clinicopathological features, and differential diagnosis. Muscle Nerve 2023; 68:696-713. [PMID: 37602939 DOI: 10.1002/mus.27949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/10/2023] [Accepted: 07/16/2023] [Indexed: 08/22/2023]
Abstract
The perineurium surrounds each fascicle in peripheral nerves, forming part of the blood-nerve barrier. We describe its normal anatomy and function. "Perineuritis" refers to both a nonspecific histopathological finding and more specific clinicopathological entity, primary perineuritis (PP). Patients with PP are often assumed to have nonsystemic vasculitic neuropathy until nerve biopsy is performed. We systematically reviewed the literature on PP and developed a differential diagnosis for histopathologically defined perineuritis. We searched PubMed, Embase, Scopus, and Web of Science for "perineuritis." We identified 20 cases (11 M/9F) of PP: progressive, unexplained neuropathy with biopsy showing perineuritis without vasculitis or other known predisposing condition. Patients ranged in age from 18 to 75 (mean 53.7) y and had symptoms 2-24 (median 4.5) mo before diagnosis. Neuropathy was usually sensory-motor (15/20), painful (18/19), multifocal (16/20), and distal-predominant (16/17) with legs more affected than arms. Truncal numbness occurred in 6/17; 10/18 had elevated cerebrospinal fluid (CSF) protein. Electromyography (EMG) and nerve conduction studies (NCS) demonstrated primarily axonal changes. Nerve biopsies showed T-cell-predominant inflammation, widening, and fibrosis of perineurium; infiltrates in epineurium in 10/20 and endoneurium in 7/20; and non-uniform axonal degeneration. Six had epithelioid cells. 19/20 received corticosteroids, 8 with additional immunomodulators; 18/19 improved. Two patients did not respond to intravenous immunoglobulin (IVIg). At final follow-up, 13/16 patients had mild and 2/16 moderate disability; 1/16 died. Secondary causes of perineuritis include leprosy, vasculitis, neurosarcoidosis, neuroborreliosis, neurolymphomatosis, toxic oil syndrome, eosinophilia-myalgia syndrome, and rarer conditions. PP appears to be an immune-mediated, corticosteroid-responsive disorder. It mimics nonsystemic vasculitic neuropathy. Cases with epithelioid cells might represent peripheral nervous system (PNS)-restricted forms of sarcoidosis.
Collapse
Affiliation(s)
- Michael P Collins
- Department of Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - Nazima Shahnoor
- Neuromuscular Pathology Laboratory, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
17
|
Santifort KM, Glass EN, Pumarola M, Aige Gil V. Microanatomical findings with relevance to trigeminal ganglion enhancement on post-contrast T1-weighted magnetic resonance images in dogs. Front Vet Sci 2023; 10:1256947. [PMID: 37781281 PMCID: PMC10533922 DOI: 10.3389/fvets.2023.1256947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Trigeminal ganglion contrast enhancement (TGCE) is reported to be a normal and a common finding on magnetic resonance imaging studies of dogs, cats and humans. The intent of the present study was to describe the anatomical characteristics of the trigeminal ganglion, its surrounding structures, and histological features that are relevant to explain or hypothesize on the reason for TGCE on T1-weighted post-contrast MRI studies of the brain in dogs. Methods Eight dog cadavers were dissected to study the anatomy of the trigeminal ganglion. The presence and anatomy of vessels was studied by dissection and by histological techniques. Two trigeminal ganglia were isolated and stained with hematoxylin-eosin (HE). Two other trigeminal ganglia included in the trigeminal canal and trigeminal cavity were decalcified with formic acid/formalin for 12 weeks and stained with HE to study the related vessels. Additionally, a corrosion cast was obtained from a separate canine specimen. Results Leptomeninges and a subarachnoid space were identified at the level of the trigeminal nerve roots and the trigeminal ganglion. No subarachnoid space was identified and leptomeninges were no longer present at the level of the three trigeminal nerve branches. Small arterial vessels ran to and supplied the trigeminal ganglion, passing through the dura mater. No venous plexus was visualized at the level of the trigeminal ganglion in the dissections. A complex arterial vascular network was identified within the leptomeningeal covering of the trigeminal ganglion and was best appreciated in the corrosion cast. Histological examination revealed small-to moderate-sized blood vessels located in the epineurium around the ganglion; from there a multitude of arterioles penetrated into the perineurium. Small endoneurial branches and capillaries penetrated the ganglion and the trigeminal nerve branches. Discussion Limitations to this study include the limited number of canine specimens included and the lack of electron microscopy to further support current hypotheses included in our discussion. In conclusion, this study provides further support to the theory that TGCE in dogs may be due an incomplete blood-nerve barrier or blood-ganglion barrier at the interface between the central nervous system and the peripheral nervous system.
Collapse
Affiliation(s)
- Koen M. Santifort
- IVC Evidensia Small Animal Referral Hospital Arnhem, Neurology, Arnhem, Netherlands
- IVC Evidensia Small Animal Referral Hospital Hart van Brabant, Neurology, Waalwijk, Netherlands
| | - Eric N. Glass
- Section of Neurology and Neurosurgery, Red Bank Veterinary Hospital, Tinton Falls, NJ, United States
| | - Marti Pumarola
- Unit of Compared and Murine Pathology, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vicente Aige Gil
- Department of Sanitat i Anatomía Animal, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
18
|
Chen JTC, Hu X, Otto IUC, Schürger C, von Bieberstein BR, Doppler K, Krug SM, Hankir MK, Blasig R, Sommer C, Brack A, Blasig IE, Rittner HL. Myelin barrier breakdown, mechanical hypersensitivity, and painfulness in polyneuropathy with claudin-12 deficiency. Neurobiol Dis 2023; 185:106246. [PMID: 37527762 DOI: 10.1016/j.nbd.2023.106246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/25/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND The blood-nerve and myelin barrier shield peripheral neurons and their axons. These barriers are sealed by tight junction proteins, which control the passage of potentially noxious molecules including proinflammatory cytokines via paracellular pathways. Peripheral nerve barrier breakdown occurs in various neuropathies, such as chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) and traumatic neuropathy. Here, we studied the functional role of the tight junction protein claudin-12 in regulating peripheral nerve barrier integrity and CIDP pathogenesis. METHODS Sections from sural nerve biopsies from 23 patients with CIDP and non-inflammatory idiopathic polyneuropathy (PNP) were analyzed for claudin-12 and -19 immunoreactivity. Cldn12-KO mice were generated and subjected to the chronic constriction injury (CCI) model of neuropathy. These mice were then characterized using a battery of barrier and behavioral tests, histology, immunohistochemistry, and mRNA/protein expression. In phenotype rescue experiments, the proinflammatory cytokine TNFα was neutralized with the anti-TNFα antibody etanercept; the peripheral nerve barrier was stabilized with the sonic hedgehog agonist smoothened (SAG). RESULTS Compared to those without pain, patients with painful neuropathy exhibited reduced claudin-12 expression independently of fiber loss. Accordingly, global Cldn12-KO in male mice, but not fertile female mice, selectively caused mechanical allodynia associated with a leaky myelin barrier, increased TNFα, decreased sonic hedgehog (SHH), and loss of small axons accompanied by reduced peripheral myelin protein 22 (Pmp22). Other barriers and neurological functions remained intact. The Cldn12-KO phenotype could be rescued either by neutralizing TNFα with etanercept or stabilizing the barrier with SAG, which both also upregulated the Schwann cell barrier proteins Cldn19 and Pmp22. CONCLUSION These results point to a critical role for claudin-12 in maintaining the myelin barrier presumably via Pmp22 and highlight restoration of the hedgehog pathway as a potential treatment strategy for painful inflammatory neuropathy.
Collapse
Affiliation(s)
- Jeremy Tsung-Chieh Chen
- University Hospital Würzburg, Center for Interdisciplinary Pain Medicine, Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, 97080 Würzburg, Germany
| | - Xiawei Hu
- University Hospital Würzburg, Center for Interdisciplinary Pain Medicine, Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, 97080 Würzburg, Germany
| | - Isabel U C Otto
- University Hospital Würzburg, Center for Interdisciplinary Pain Medicine, Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, 97080 Würzburg, Germany
| | - Christina Schürger
- University Hospital Würzburg, Center for Interdisciplinary Pain Medicine, Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, 97080 Würzburg, Germany
| | - Bruno Rogalla von Bieberstein
- University Hospital Würzburg, Center for Interdisciplinary Pain Medicine, Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, 97080 Würzburg, Germany
| | - Kathrin Doppler
- University Hospital Würzburg, Department of Neurology, 97080 Würzburg, Germany
| | - Susanne M Krug
- Charité-Universitätsmedizin Berlin, Clinical Physiology/Nutritional Medicine, 13125 Berlin, Germany
| | - Mohammed K Hankir
- University Hospital Würzburg, Department of General, Transplantation, Visceral, Vascular and Pediatric Surgery, 97080 Würzburg, Germany
| | - Rosel Blasig
- Leibnitz Institute of Molecular Pharmacology, Departments of Molecular Physiology and Cell Biology, 13125 Berlin, Germany
| | - Claudia Sommer
- University Hospital Würzburg, Department of Neurology, 97080 Würzburg, Germany
| | - Alexander Brack
- University Hospital Würzburg, Center for Interdisciplinary Pain Medicine, Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, 97080 Würzburg, Germany
| | - Ingolf E Blasig
- Leibnitz Institute of Molecular Pharmacology, Departments of Molecular Physiology and Cell Biology, 13125 Berlin, Germany
| | - Heike L Rittner
- University Hospital Würzburg, Center for Interdisciplinary Pain Medicine, Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, 97080 Würzburg, Germany.
| |
Collapse
|
19
|
Reinhold AK, Hartmannsberger B, Burek M, Rittner HL. Stabilizing the neural barrier - A novel approach in pain therapy. Pharmacol Ther 2023; 249:108484. [PMID: 37390969 DOI: 10.1016/j.pharmthera.2023.108484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/08/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Chronic and neuropathic pain are a widespread burden. Incomplete understanding of underlying pathomechanisms is one crucial factor for insufficient treatment. Recently, impairment of the blood nerve barrier (BNB) has emerged as one key aspect of pain initiation and maintenance. In this narrative review, we discuss several mechanisms and putative targets for novel treatment strategies. Cells such as pericytes, local mediators like netrin-1 and specialized proresolving mediators (SPMs), will be covered as well as circulating factors including the hormones cortisol and oestrogen and microRNAs. They are crucial in either the BNB or similar barriers and associated with pain. While clinical studies are still scarce, these findings might provide valuable insight into mechanisms and nurture development of therapeutic approaches.
Collapse
Affiliation(s)
- Ann-Kristin Reinhold
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| | - Beate Hartmannsberger
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| | - Malgorzata Burek
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| | - Heike L Rittner
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Oberdürrbacher Str. 6, 97080 Würzburg, Germany.
| |
Collapse
|
20
|
Navickaitė I, Ališauskienė M, Petrauskienė S, Žemgulytė G. Sarcoidosis-Associated Sensory Ganglionopathy and Harlequin Syndrome: A Case Report. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1495. [PMID: 37629785 PMCID: PMC10456357 DOI: 10.3390/medicina59081495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Background and Objectives: Sensory ganglionopathy is a rare neurological disorder caused by degeneration of the neurons composing the dorsal root ganglia. It manifests as various sensory disturbances in the trunk, proximal limbs, face, or mouth in a patchy and asymmetrical pattern. Harlequin syndrome is characterized by unilateral flushing and sweating of the face, neck, and upper chest, concurrent with contralateral anhidrosis. Here, we present and discuss a clinical case of sarcoidosis-associated ganglionopathy and Harlequin syndrome. Case presentation: A 31-year-old woman complained of burning pain in the right side of the upper chest and the feet. She also experienced episodes of intense flushing and sweating on the right side of her face, neck, and upper chest. Three years before these symptoms began, the patient was diagnosed with pulmonary sarcoidosis. On neurological examination, sensory disturbances were present. In the trunk, the patient reported pronounced hyperalgesia and allodynia in the upper part of the right chest and some patches on the right side of the upper back. In the extremities, hypoalgesia in the tips of the fingers and hyperalgesia in the feet were noted. An extensive diagnostic workup was performed to eliminate other possible causes of these disorders. A broad range of possible metabolic, immunological, and structural causes were ruled out. Thus, the final clinical diagnosis of sarcoidosis-induced sensory ganglionopathy, small-fiber neuropathy, and Harlequin syndrome was made. Initially, the patient was treated with pregabalin and amitriptyline, but the effect was inadequate for the ganglionopathy-induced pain. Therefore, therapeutic plasma exchange as an immune-modulating treatment was selected, leading to partial pain relief. Conclusions: This case report demonstrates the possible autoimmune origin of both sensory ganglionopathy and Harlequin syndrome. It suggests that an autoimmune etiology for these disorders should be considered and the diagnostic workup should include screening for the most common autoimmune conditions.
Collapse
Affiliation(s)
- Ieva Navickaitė
- Department of Neurology, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (M.A.); (G.Ž.)
| | - Miglė Ališauskienė
- Department of Neurology, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (M.A.); (G.Ž.)
| | - Sandra Petrauskienė
- Department of Preventive and Paediatric Dentistry, Lithuanian University of Health Sciences, Luksos-Daumanto Str. 6, LT-50106 Kaunas, Lithuania;
| | - Gintarė Žemgulytė
- Department of Neurology, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (M.A.); (G.Ž.)
| |
Collapse
|
21
|
Bennet BM, Pardo ID, Assaf BT, Buza E, Cramer SD, Crawford LK, Engelhardt JA, Galbreath EJ, Grubor B, Morrison JP, Osborne TS, Sharma AK, Bolon B. Scientific and Regulatory Policy Committee Technical Review: Biology and Pathology of Ganglia in Animal Species Used for Nonclinical Safety Testing. Toxicol Pathol 2023; 51:278-305. [PMID: 38047294 DOI: 10.1177/01926233231213851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Dorsal root ganglia (DRG), trigeminal ganglia (TG), other sensory ganglia, and autonomic ganglia may be injured by some test article classes, including anti-neoplastic chemotherapeutics, adeno-associated virus-based gene therapies, antisense oligonucleotides, nerve growth factor inhibitors, and aminoglycoside antibiotics. This article reviews ganglion anatomy, cytology, and pathology (emphasizing sensory ganglia) among common nonclinical species used in assessing product safety for such test articles (TAs). Principal histopathologic findings associated with sensory ganglion injury include neuron degeneration, necrosis, and/or loss; increased satellite glial cell and/or Schwann cell numbers; and leukocyte infiltration and/or inflammation. Secondary nerve fiber degeneration and/or glial reactions may occur in nerves, dorsal spinal nerve roots, spinal cord (dorsal and occasionally lateral funiculi), and sometimes the brainstem. Ganglion findings related to TA administration may result from TA exposure and/or trauma related to direct TA delivery into the central nervous system or ganglia. In some cases, TA-related effects may need to be differentiated from a spectrum of artifactual and/or spontaneous background changes.
Collapse
Affiliation(s)
| | | | | | - Elizabeth Buza
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | - James P Morrison
- Charles River Laboratories, Inc., Shrewsbury, Massachusetts, USA
| | | | | | | |
Collapse
|
22
|
Bennet BM, Pardo ID, Assaf BT, Buza E, Cramer S, Crawford LK, Engelhardt JA, Grubor B, Morrison JP, Osborne TS, Sharma AK, Bolon B. Scientific and Regulatory Policy Committee Points to Consider: Sampling, Processing, Evaluation, Interpretation, and Reporting of Test Article-Related Ganglion Pathology for Nonclinical Toxicity Studies. Toxicol Pathol 2023; 51:176-204. [PMID: 37489508 DOI: 10.1177/01926233231179707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Certain biopharmaceutical products consistently affect dorsal root ganglia, trigeminal ganglia, and/or autonomic ganglia. Product classes targeting ganglia include antineoplastic chemotherapeutics, adeno-associated virus-based gene therapies, antisense oligonucleotides, and anti-nerve growth factor agents. This article outlines "points to consider" for sample collection, processing, evaluation, interpretation, and reporting of ganglion findings; these points are consistent with published best practices for peripheral nervous system evaluation in nonclinical toxicity studies. Ganglion findings often occur as a combination of neuronal injury (e.g., degeneration, necrosis, and/or loss) and/or glial effects (e.g., increased satellite glial cell cellularity) with leukocyte accumulation (e.g., mononuclear cell infiltration or inflammation). Nerve fiber degeneration and/or glial reactions may be seen in nerves, dorsal spinal nerve roots, spinal cord, and occasionally brainstem. Interpretation of test article (TA)-associated effects may be confounded by incidental background changes or experimental procedure-related changes and limited historical control data. Reports should describe findings at these sites, any TA relationship, and the criteria used for assigning severity grades. Contextualizing adversity of ganglia findings can require a weight-of-evidence approach because morphologic changes of variable severity occur in ganglia but often are not accompanied by observable overt in-life functional alterations detectable by conventional behavioral and neurological testing techniques.
Collapse
Affiliation(s)
| | | | | | - Elizabeth Buza
- University of Pennsylvania, Gene Therapy Program, Philadelphia, Pennsylvania, USA
| | | | - LaTasha K Crawford
- University of Wisconsin-Madison, School of Veterinary Medicine, Madison, Wisconsin, USA
| | | | | | - James P Morrison
- Charles River Laboratories, Inc., Shrewsbury, Massachusetts, USA
| | | | | | | |
Collapse
|
23
|
Sargent S, Brennan A, Clark JK. Regenerative potential and limitations in a zebrafish model of hyperglycemia-induced nerve degeneration. Dev Dyn 2023. [PMID: 36879394 DOI: 10.1002/dvdy.583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/04/2023] [Accepted: 02/25/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Previous work from our lab has described a model of motor nerve degeneration in hyperglycemic zebrafish larvae which resembles mammalian models of diabetic peripheral neuropathy (DPN). Here, we optimized the hyperglycemic-induction protocol, characterized deficits in nerve structure and behavioral function, and then examined the regenerative potential following recovery from the hyperglycemic state. RESULTS In agreement with our previous work, hyperglycemia induced motor nerve degeneration and behavioral deficits. However, the optimized protocol initiated disruption of tight junctions within the blood-nerve barrier, a phenotype apparent in mammalian models of DPN. Following a 10-day recovery period, regeneration of motor nerve components was apparent, but behavioral deficits persisted. We next examined the effect of hyperglycemia on the musculoskeletal system and found subtle deficits in muscle that resolved following recovery, and robust deficits in the skeletal system which persisted following recovery. CONCLUSION Here we optimized our previous model of hyperglycemia-induced motor nerve degeneration to more closely align with that observed in mammalian models and then characterized the regenerative potential following recovery from hyperglycemia. Notably, we observed striking impairments to skeletal development, which underscores the global impact hyperglycemia has across systems, and provides a framework for elucidating molecular mechanisms responsible for regenerative events moving forward.
Collapse
Affiliation(s)
- Sheridan Sargent
- Department of Biological Sciences, Salisbury University, Salisbury, Maryland, USA
| | - Anna Brennan
- Department of Biological Sciences, Salisbury University, Salisbury, Maryland, USA
| | | |
Collapse
|
24
|
McKinnon R, Lupinski I, Liang A. Security breach: peripheral nerves provide unrestricted access for toxin delivery into the central nervous system. Neural Regen Res 2023; 18:64-67. [PMID: 35799510 PMCID: PMC9241397 DOI: 10.4103/1673-5374.345472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We explore the hypothesis that a potential explanation for the initiation of motor neuron disease is an unappreciated vulnerability in central nervous system defense, the direct delivery of neurotoxins into motor neurons via peripheral nerve retrograde transport. This further suggests a mechanism for focal initiation of neuro-degenerative diseases in general, with subsequent spread by network degeneration as suggested by the Frost-Diamond hypothesis. We propose this vulnerability may be a byproduct of vertebrate evolution in a benign aquatic environment, where external surfaces were not exposed to concentrated neurotoxins.
Collapse
|
25
|
Murakami N, Kurogi A, Suzuki SO, Akitake N, Shimogawa T, Mukae N, Yoshimoto K, Morioka T. Ectopic dorsal root ganglion in cauda equina mimicking schwannoma in a child. Surg Neurol Int 2023; 14:33. [PMID: 36895208 PMCID: PMC9990762 DOI: 10.25259/sni_1089_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
Background A heterotopic dorsal root ganglion (DRG) is sometimes observed in the vicinity of dysplastic neural structures during surgery for open spinal dysraphism; however, it is rarely associated with closed spinal dysraphism. Distinguish from neoplasms by preoperative imaging study is difficult. Although the embryopathogenesis of a heterotopic DRG has been speculated to be migration disorder of neural crest cells from primary neural tube, its details remain unelucidated. Case Description We report a pediatric case with an ectopic DRG in cauda equina associated with a fatty terminal filum and bifid sacrum. The DRG mimicked a schwannoma in the cauda equina on preoperative magnetic resonance imaging. Laminotomy at L3 revealed that the tumor was entangled in the nerve roots, and small parts of the tumor were resected for biopsy. Histopathologically, the tumor consisted of ganglion cells and peripheral nerve fibers. Ki-67 immunopositive cells were observed at the periphery of the ganglion cells. These findings indicate the tumor comprised DRG tissue. Conclusion We report detailed neuroradiological, intraoperative and histological findings and discuss the embryopathogenesis of the ectopic DRG. One should be aware of the possibility of ectopic or heterotopic DRGs when cauda equina tumors are observed in pediatric patients with neurulation disorders.
Collapse
Affiliation(s)
- Nobuya Murakami
- Department of Neurosurgery, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Ai Kurogi
- Department of Neurosurgery, Fukuoka Children's Hospital, Fukuoka, Japan
| | | | - Naoko Akitake
- Department of Urology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Takafumi Shimogawa
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobutaka Mukae
- Department of Neurosurgery, Iizuka Hospital, Iizuka, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takato Morioka
- Department of Neurosurgery, Hachisuga Hospital, Munakata, Japan
| |
Collapse
|
26
|
Wang P, Liu B, Rong T, Wu B. Is diabetes the risk factor for poor neurological recovery after cervical spine surgery? A review of the literature. Eur J Med Res 2022; 27:263. [PMID: 36419189 PMCID: PMC9686083 DOI: 10.1186/s40001-022-00879-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/01/2022] [Indexed: 11/25/2022] Open
Abstract
The poor prognosis of cervical spine surgery is mainly manifested as poor neurological recovery and the presence of new upper extremity dysfunction that promotes significant psychological and physiological burdens on patients. Many factors influence the prognosis of cervical spine surgery, including the age of patients, the time and mode of surgery, and the surgical technique used. However, in clinical studies, it has been observed that patients with diabetes have a higher probability of poor prognosis after surgery. Therefore, we review the pathophysiology of diabetic neuropathies and discuss its impact on cervical nerve system function, especially in cervical nerve roots and upper limb peripheral nerve conduction.
Collapse
|
27
|
Fukui T, Tateno H, Nakamura T, Yamada Y, Sato Y, Iwasaki N, Harashima H, Kadoya K. Retrograde Axonal Transport of Liposomes from Peripheral Tissue to Spinal Cord and DRGs by Optimized Phospholipid and CTB Modification. Int J Mol Sci 2022; 23:6661. [PMID: 35743104 PMCID: PMC9223829 DOI: 10.3390/ijms23126661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
Despite recent advancements in therapeutic options for disorders of the central nervous system (CNS), the lack of an efficient drug-delivery system (DDS) hampers their clinical application. We hypothesized that liposomes could be optimized for retrograde transport in axons as a DDS from peripheral tissues to the spinal cord and dorsal root ganglia (DRGs). Three types of liposomes consisting of DSPC, DSPC/POPC, or POPC in combination with cholesterol (Chol) and polyethylene glycol (PEG) lipid were administered to sciatic nerves or the tibialis anterior muscle of mature rats. Liposomes in cell bodies were detected with infrared fluorescence of DiD conjugated to liposomes. Three days later, all nerve-administered liposomes were retrogradely transported to the spinal cord and DRGs, whereas only muscle-administered liposomes consisting of DSPC reached the spinal cord and DRGs. Modification with Cholera toxin B subunit improved the transport efficiency of liposomes to the spinal cord and DRGs from 4.5% to 17.3% and from 3.9% to 14.3% via nerve administration, and from 2.6% to 4.8% and from 2.3% to 4.1% via muscle administration, respectively. Modification with octa-arginine (R8) improved the transport efficiency via nerve administration but abolished the transport capability via muscle administration. These findings provide the initial data for the development of a novel DDS targeting the spinal cord and DRGs via peripheral administration.
Collapse
Affiliation(s)
- Takafumi Fukui
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo 060-8638, Japan; (T.F.); (N.I.)
| | - Hironao Tateno
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan; (H.T.); (Y.Y.); (Y.S.); (H.H.)
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan; (H.T.); (Y.Y.); (Y.S.); (H.H.)
| | - Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan; (H.T.); (Y.Y.); (Y.S.); (H.H.)
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan; (H.T.); (Y.Y.); (Y.S.); (H.H.)
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo 060-8638, Japan; (T.F.); (N.I.)
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan; (H.T.); (Y.Y.); (Y.S.); (H.H.)
| | - Ken Kadoya
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo 060-8638, Japan; (T.F.); (N.I.)
| |
Collapse
|
28
|
Ye Z, Wei J, Zhan C, Hou J. Role of Transforming Growth Factor Beta in Peripheral Nerve Regeneration: Cellular and Molecular Mechanisms. Front Neurosci 2022; 16:917587. [PMID: 35769702 PMCID: PMC9234557 DOI: 10.3389/fnins.2022.917587] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/11/2022] [Indexed: 11/24/2022] Open
Abstract
Peripheral nerve injury (PNI) is one of the most common concerns in trauma patients. Despite significant advances in repair surgeries, the outcome can still be unsatisfactory, resulting in morbidities such as loss of sensory or motor function and reduced quality of life. This highlights the need for more supportive strategies for nerve regrowth and adequate recovery. Multifunctional cytokine transforming growth factor-β (TGF-β) is essential for the development of the nervous system and is known for its neuroprotective functions. Accumulating evidence indicates its involvement in multiple cellular and molecular responses that are critical to peripheral nerve repair. Following PNI, TGF-β is released at the site of injury where it can initiate a series of phenotypic changes in Schwann cells (SCs), modulate immune cells, activate neuronal intrinsic growth capacity, and regulate blood nerve barrier (BNB) permeability, thus enhancing the regeneration of the nerves. Notably, TGF-β has already been applied experimentally in the treatment of PNI. These treatments with encouraging outcomes further demonstrate its regeneration-promoting capacity. Herein, we review the possible roles of TGF-β in peripheral nerve regeneration and discuss the underlying mechanisms, thus providing new cues for better treatment of PNI.
Collapse
Affiliation(s)
- Zhiqian Ye
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junbin Wei
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chaoning Zhan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Hou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Jin Hou,
| |
Collapse
|
29
|
Reinhold AK, Salvador E, Förster CY, Birklein F, Rittner HL. Microvascular Barrier Protection by microRNA-183 via FoxO1 Repression: A Pathway Disturbed in Neuropathy and Complex Regional Pain Syndrome. THE JOURNAL OF PAIN 2022; 23:967-980. [PMID: 34974173 DOI: 10.1016/j.jpain.2021.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Blood nerve barrier disruption and edema are common in neuropathic pain as well as in complex regional pain syndrome (CRPS). MicroRNAs (miRNA) are epigenetic multitarget switches controlling neuronal and non-neuronal cells in pain. The miR-183 complex attenuates hyperexcitability in nociceptors, but additional non-neuronal effects via transcription factors could contribute as well. This study explored exosomal miR-183 in CRPS and murine neuropathy, its effect on the microvascular barrier via transcription factor FoxO1 and tight junction protein claudin-5, and its antihyperalgesic potential. Sciatic miR-183 decreased after CCI. Substitution with perineural miR-183 mimic attenuated mechanical hypersensitivity and restored blood nerve barrier function. In vitro, serum from CCI mice und CRPS patients weakened the microvascular barrier of murine cerebellar endothelial cells, increased active FoxO1 and reduced claudin-5, concomitant with a lack of exosomal miR-183 in CRPS patients. Cellular stress also compromised the microvascular barrier which was rescued either by miR-183 mimic via FoxO1 repression or by prior silencing of Foxo1. PERSPECTIVE: Low miR-183 leading to barrier impairment via FoxO1 and subsequent claudin-5 suppression is a new aspect in the pathophysiology of CRPS and neuropathic pain. This pathway might help untangle the wide symptomatic range of CRPS and nurture further research into miRNA mimics or FoxO1 inhibitors.
Collapse
Affiliation(s)
- Ann-Kristin Reinhold
- University Hospital Würzburg, Department of Anesthesiology, Intensive Care, Emergency Care and Pain Management, Center for Interdisciplinary Pain Medicine, Würzburg, Germany
| | - Ellaine Salvador
- University Hospital Würzburg, Department of Anesthesiology, Intensive Care, Emergency Care and Pain Management, Center for Interdisciplinary Pain Medicine, Würzburg, Germany; University Hospital Würzburg, Department of Neurosurgery, Tumorbiology Laboratory, Würzburg, Germany
| | - Carola Y Förster
- University Hospital Würzburg, Department of Anesthesiology, Intensive Care, Emergency Care and Pain Management, Center for Interdisciplinary Pain Medicine, Würzburg, Germany
| | - Frank Birklein
- Mainz University Hospitals, Department of Neurology, Mainz, Germany
| | - Heike L Rittner
- University Hospital Würzburg, Department of Anesthesiology, Intensive Care, Emergency Care and Pain Management, Center for Interdisciplinary Pain Medicine, Würzburg, Germany.
| |
Collapse
|
30
|
Nichols JM, Crelli CV, Liu L, Pham HV, Janjic JM, Shepherd AJ. Tracking macrophages in diabetic neuropathy with two-color nanoemulsions for near-infrared fluorescent imaging and microscopy. J Neuroinflammation 2021; 18:299. [PMID: 34949179 PMCID: PMC8697472 DOI: 10.1186/s12974-021-02365-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/17/2021] [Indexed: 02/08/2023] Open
Abstract
Background The incidence of diabetes and diabetic peripheral neuropathy continues to rise, and studies have shown that macrophages play an important role in their pathogenesis. To date, macrophage tracking has largely been achieved using genetically-encoded fluorescent proteins. Here we present a novel two-color fluorescently labeled perfluorocarbon nanoemulsion (PFC-NE) designed to monitor phagocytic macrophages in diabetic neuropathy in vitro and in vivo using non-invasive near-infrared fluorescent (NIRF) imaging and fluorescence microscopy. Methods Presented PFC-NEs were formulated with perfluorocarbon oil surrounded by hydrocarbon shell carrying two fluorescent dyes and stabilized with non-ionic surfactants. In vitro assessment of nanoemulsions was performed by measuring fluorescent signal stability, colloidal stability, and macrophage uptake and subsequent viability. The two-color PFC-NE was administered to Leprdb/db and wild-type mice by tail vein injection, and in vivo tracking of the nanoemulsion was performed using both NIRF imaging and confocal microscopy to assess its biodistribution within phagocytic macrophages along the peripheral sensory apparatus of the hindlimb. Results In vitro experiments show two-color PFC-NE demonstrated high fluorescent and colloidal stability, and that it was readily incorporated into RAW 264.7 macrophages. In vivo tracking revealed distribution of the two-color nanoemulsion to macrophages within most tissues of Leprdb/db and wild-type mice which persisted for several weeks, however it did not cross the blood brain barrier. Reduced fluorescence was seen in sciatic nerves of both Leprdb/db and wild-type mice, implying that the nanoemulsion may also have difficulty crossing an intact blood nerve barrier. Additionally, distribution of the nanoemulsion in Leprdb/db mice was reduced in several tissues as compared to wild-type mice. This reduction in biodistribution appears to be caused by the increased number of adipose tissue macrophages in Leprdb/db mice. Conclusions The nanoemulsion in this study has the ability to identify phagocytic macrophages in the Leprdb/db model using both NIRF imaging and fluorescence microscopy. Presented nanoemulsions have the potential for carrying lipophilic drugs and/or fluorescent dyes, and target inflammatory macrophages in diabetes. Therefore, we foresee these agents becoming a useful tool in both imaging inflammation and providing potential treatment in diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- James M Nichols
- Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, TX, 77030, USA
| | - Caitlin V Crelli
- School of Pharmacy, Duquesne University, 600 Forbes Ave., Pittsburgh, PA, 15282, USA
| | - Lu Liu
- School of Pharmacy, Duquesne University, 600 Forbes Ave., Pittsburgh, PA, 15282, USA
| | - Hoang Vu Pham
- Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, TX, 77030, USA
| | - Jelena M Janjic
- School of Pharmacy, Duquesne University, 600 Forbes Ave., Pittsburgh, PA, 15282, USA.
| | - Andrew J Shepherd
- Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, TX, 77030, USA.
| |
Collapse
|
31
|
Abdalbary SA, Abdel-Wahed M, Amr S, Mahmoud M, El-Shaarawy EAA, Salaheldin S, Fares A. The Myth of Median Nerve in Forearm and Its Role in Double Crush Syndrome: A Cadaveric Study. Front Surg 2021; 8:648779. [PMID: 34621777 PMCID: PMC8490666 DOI: 10.3389/fsurg.2021.648779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 08/19/2021] [Indexed: 01/10/2023] Open
Abstract
Purpose: This study aims to histologically compare the median nerve in the arm, forearm, and wrist, to help understand how cervical radiculopathy in a double crush phenomenon causes distal nerve dysfunction at the carpal tunnel and median nerve with concurrent absence of symptoms at the forearm. Methods: The study was performed on 12 fresh cadaveric upper limbs free from any injury or operation. Male cadavers in the age range of 35–40 years were used. The dissection of the median nerve and the histological examination of the specimens from the arm, forearm, and wrist were conducted to evaluate variations in the epineurium thickness (μm), perineurium thickness (μm), number of fascicles per nerve trunk, area percent of myelin covering, and area percent of neurolemmal sheath. Results: Morphometric and statistical results of the cadaveric median nerve trunk revealed that the mean epineurium and perineurium thickness measured in H&E-stained sections in the forearm were significantly greater than those in the arm and wrist specimens. Further, the mean percent area of the myelin covering in the forearm was significantly lower than that in the arm and wrist specimens in the sections stained with osmium oxide (p < 0.001). There were, however, no significant differences in the neurolemmal sheath among the arm, forearm, and wrist specimens in the silver-stained sections. Conclusion: The histological differences explained the high concomitant occurrence of carpal tunnel syndrome (CTS) and cervical radiculopathy and the concurrent absence of symptoms at the forearm. Hence, we suggest cautious evaluation of patients with upper limb symptoms, since the management of these conditions requires a different approach.
Collapse
Affiliation(s)
- Sahar A Abdalbary
- Department of Orthopaedic Physical Therapy, Faculty of Physical Therapy, Nahda University in Beni Suef, Beni Suef, Egypt
| | - Mohamed Abdel-Wahed
- Department of Orthopaedic Surgery, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Sherif Amr
- Department of Orthopaedic Surgery, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Mostafa Mahmoud
- Department of Orthopaedic Surgery, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Ehab A A El-Shaarawy
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Safinaz Salaheldin
- Department of Histology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Amal Fares
- Department of Histology, Faculty of Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
32
|
Rawat A, Morrison BM. Metabolic Transporters in the Peripheral Nerve-What, Where, and Why? Neurotherapeutics 2021; 18:2185-2199. [PMID: 34773210 PMCID: PMC8804006 DOI: 10.1007/s13311-021-01150-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 12/18/2022] Open
Abstract
Cellular metabolism is critical not only for cell survival, but also for cell fate, function, and intercellular communication. There are several different metabolic transporters expressed in the peripheral nervous system, and they each play important roles in maintaining cellular energy. The major source of energy in the peripheral nervous system is glucose, and glucose transporters 1 and 3 are expressed and allow blood glucose to be imported and utilized by peripheral nerves. There is also increasing evidence that other sources of energy, particularly monocarboxylates such as lactate that are transported primarily by monocarboxylate transporters 1 and 2 in peripheral nerves, can be efficiently utilized by peripheral nerves. Finally, emerging evidence supports an important role for connexins and possibly pannexins in the supply and regulation of metabolic energy. In this review, we will first define these critical metabolic transporter subtypes and then examine their localization in the peripheral nervous system. We will subsequently discuss the evidence, which comes both from experiments in animal models and observations from human diseases, supporting critical roles played by these metabolic transporters in the peripheral nervous system. Despite progress made in understanding the function of these transporters, many questions and some discrepancies remain, and these will also be addressed throughout this review. Peripheral nerve metabolism is fundamentally important and renewed interest in these pathways should help to answer many of these questions and potentially provide new treatments for neurologic diseases that are partly, or completely, caused by disruption of metabolism.
Collapse
Affiliation(s)
- Atul Rawat
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brett M Morrison
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
33
|
Chen JTC, Schmidt L, Schürger C, Hankir MK, Krug SM, Rittner HL. Netrin-1 as a Multitarget Barrier Stabilizer in the Peripheral Nerve after Injury. Int J Mol Sci 2021; 22:ijms221810090. [PMID: 34576252 PMCID: PMC8466625 DOI: 10.3390/ijms221810090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
The blood–nerve barrier and myelin barrier normally shield peripheral nerves from potentially harmful insults. They are broken down during nerve injury, which contributes to neuronal damage. Netrin-1 is a neuronal guidance protein with various established functions in the peripheral and central nervous systems; however, its role in regulating barrier integrity and pain processing after nerve injury is poorly understood. Here, we show that chronic constriction injury (CCI) in Wistar rats reduced netrin-1 protein and the netrin-1 receptor neogenin-1 (Neo1) in the sciatic nerve. Replacement of netrin-1 via systemic or local administration of the recombinant protein rescued injury-induced nociceptive hypersensitivity. This was prevented by siRNA-mediated knockdown of Neo1 in the sciatic nerve. Mechanistically, netrin-1 restored endothelial and myelin, but not perineural, barrier function as measured by fluorescent dye or fibrinogen penetration. Netrin-1 also reversed the decline in the tight junction proteins claudin-5 and claudin-19 in the sciatic nerve caused by CCI. Our findings emphasize the role of the endothelial and myelin barriers in pain processing after nerve damage and reveal that exogenous netrin-1 restores their function to mitigate CCI-induced hypersensitivity via Neo1. The netrin-1-neogenin-1 signaling pathway may thus represent a multi-target barrier protector for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Jeremy Tsung-Chieh Chen
- Center for Interdisciplinary Pain Medicine, Department of Anesthesiology, Intensive Care, Emergency Medicine and Pain Therapy, University Hospital of Würzburg, 97080 Würzburg, Germany; (J.T.-C.C.); (L.S.); (C.S.)
| | - Lea Schmidt
- Center for Interdisciplinary Pain Medicine, Department of Anesthesiology, Intensive Care, Emergency Medicine and Pain Therapy, University Hospital of Würzburg, 97080 Würzburg, Germany; (J.T.-C.C.); (L.S.); (C.S.)
| | - Christina Schürger
- Center for Interdisciplinary Pain Medicine, Department of Anesthesiology, Intensive Care, Emergency Medicine and Pain Therapy, University Hospital of Würzburg, 97080 Würzburg, Germany; (J.T.-C.C.); (L.S.); (C.S.)
| | - Mohammed K. Hankir
- Department of Experimental Surgery, University Hospital of Würzburg, 97080 Würzburg, Germany;
| | - Susanne M. Krug
- Clinical Physiology/Nutritional Medicine, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany;
| | - Heike L. Rittner
- Center for Interdisciplinary Pain Medicine, Department of Anesthesiology, Intensive Care, Emergency Medicine and Pain Therapy, University Hospital of Würzburg, 97080 Würzburg, Germany; (J.T.-C.C.); (L.S.); (C.S.)
- Correspondence: ; Tel.: +49-931-201-30251
| |
Collapse
|
34
|
Dang X, Williams SB, Devanathan S, Franco A, Fu L, Bernstein PR, Walters D, Dorn GW. Pharmacophore-Based Design of Phenyl-[hydroxycyclohexyl] Cycloalkyl-Carboxamide Mitofusin Activators with Improved Neuronal Activity. J Med Chem 2021; 64:12506-12524. [PMID: 34415150 PMCID: PMC8632069 DOI: 10.1021/acs.jmedchem.1c00163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mitochondrial fragmentation from defective fusion or unopposed fission contributes to many neurodegenerative diseases. Small molecule mitofusin activators reverse mitochondrial fragmentation in vitro, promising a novel therapeutic approach. The first-in-class mitofusin activator, 2, has a short plasma t1/2 and limited neurological system bioavailability, conferring "burst activation". Here, pharmacophore-based rational redesign generated analogues of 2 incorporating cycloalkyl linker groups. A cyclopropyl-containing linker, 5, improved plasma and brain t1/2, increased nervous system bioavailability, and prolonged neuron pharmacodynamic effects. Functional and single-crystal X-ray diffraction studies of stereoisomeric analogues of 5 containing sulfur as a "heavy atom", 14A and 14B, showed that 5 biological activity resides in the trans-R/R configuration, 5B. Structural analysis revealed stereoselective interactions of 5 associated with its mimicry of MFN2 Val372, Met376, and His380 side chains. Modification of murine ALS phenotypes in vitro and in vivo supports advancement of 5B for neurological conditions that may benefit from sustained mitofusin activation.
Collapse
Affiliation(s)
- Xiawei Dang
- Department of Cardiology, The First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, Shaanxi 710061, China
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Sidney B. Williams
- Mitochondria in Motion, Inc., 4340 Duncan Avenue, Suite 216, St. Louis, Missouri 63110, USA
| | - Sriram Devanathan
- Mitochondria in Motion, Inc., 4340 Duncan Avenue, Suite 216, St. Louis, Missouri 63110, USA
| | - Antonietta Franco
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Lijun Fu
- WuXi AppTec Co., Ltd. 666 Gaoxin Rd, East Lake High-tech Development Zone, Wuhan, Hubei 430075, China
| | | | - Daniel Walters
- Crystal Pharmatech Inc., 3000 Eastpark Blvd., Ste 500B, Cranbury, New Jersey 08512, USA
| | - Gerald W Dorn
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Mitochondria in Motion, Inc., 4340 Duncan Avenue, Suite 216, St. Louis, Missouri 63110, USA
| |
Collapse
|
35
|
Ben-Kraiem A, Sauer RS, Norwig C, Popp M, Bettenhausen AL, Atalla MS, Brack A, Blum R, Doppler K, Rittner HL. Selective blood-nerve barrier leakiness with claudin-1 and vessel-associated macrophage loss in diabetic polyneuropathy. J Mol Med (Berl) 2021; 99:1237-1250. [PMID: 34018017 PMCID: PMC8367905 DOI: 10.1007/s00109-021-02091-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/26/2021] [Accepted: 05/10/2021] [Indexed: 12/19/2022]
Abstract
Diabetic polyneuropathy (DPN) is the most common complication in diabetes and can be painful in up to 26% of all diabetic patients. Peripheral nerves are shielded by the blood-nerve barrier (BNB) consisting of the perineurium and endoneurial vessels. So far, there are conflicting results regarding the role and function of the BNB in the pathophysiology of DPN. In this study, we analyzed the spatiotemporal tight junction protein profile, barrier permeability, and vessel-associated macrophages in Wistar rats with streptozotocin-induced DPN. In these rats, mechanical hypersensitivity developed after 2 weeks and loss of motor function after 8 weeks, while the BNB and the blood-DRG barrier were leakier for small, but not for large molecules after 8 weeks only. The blood-spinal cord barrier remained sealed throughout the observation period. No gross changes in tight junction protein or cytokine expression were observed in all barriers to blood. However, expression of Cldn1 mRNA in perineurium was specifically downregulated in conjunction with weaker vessel-associated macrophage shielding of the BNB. Our results underline the role of specific tight junction proteins and BNB breakdown in DPN maintenance and differentiate DPN from traumatic nerve injury. Targeting claudins and sealing the BNB could stabilize pain and prevent further nerve damage. KEY MESSAGES: • In diabetic painful neuropathy in rats: • Blood nerve barrier and blood DRG barrier are leaky for micromolecules. • Perineurial Cldn1 sealing the blood nerve barrier is specifically downregulated. • Endoneurial vessel-associated macrophages are also decreased. • These changes occur after onset of hyperalgesia thereby maintaining rather than inducing pain.
Collapse
Affiliation(s)
- Adel Ben-Kraiem
- Center for Interdisciplinary Pain Medicine, Department of Anesthesiology, University Hospital of Würzburg, 97080, Würzburg, Germany
| | - Reine-Solange Sauer
- Center for Interdisciplinary Pain Medicine, Department of Anesthesiology, University Hospital of Würzburg, 97080, Würzburg, Germany
| | - Carla Norwig
- Center for Interdisciplinary Pain Medicine, Department of Anesthesiology, University Hospital of Würzburg, 97080, Würzburg, Germany
| | - Maria Popp
- Center for Interdisciplinary Pain Medicine, Department of Anesthesiology, University Hospital of Würzburg, 97080, Würzburg, Germany
| | - Anna-Lena Bettenhausen
- Center for Interdisciplinary Pain Medicine, Department of Anesthesiology, University Hospital of Würzburg, 97080, Würzburg, Germany
| | - Mariam Sobhy Atalla
- Center for Interdisciplinary Pain Medicine, Department of Anesthesiology, University Hospital of Würzburg, 97080, Würzburg, Germany
| | - Alexander Brack
- Center for Interdisciplinary Pain Medicine, Department of Anesthesiology, University Hospital of Würzburg, 97080, Würzburg, Germany
| | - Robert Blum
- Institute of Clinical Neurobiology, University Hospital of Würzburg, 97078, Würzburg, Germany
- Department of Neurology, University Hospital of Würzburg, 97080, Würzburg, Germany
| | - Kathrin Doppler
- Department of Neurology, University Hospital of Würzburg, 97080, Würzburg, Germany
| | - Heike Lydia Rittner
- Center for Interdisciplinary Pain Medicine, Department of Anesthesiology, University Hospital of Würzburg, 97080, Würzburg, Germany.
| |
Collapse
|
36
|
Grüner J, Stengel H, Werner C, Appeltshauser L, Sommer C, Villmann C, Doppler K. Anti-contactin-1 Antibodies Affect Surface Expression and Sodium Currents in Dorsal Root Ganglia. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/5/e1056. [PMID: 34429341 PMCID: PMC8407150 DOI: 10.1212/nxi.0000000000001056] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 05/17/2021] [Indexed: 01/13/2023]
Abstract
Background and Objectives As autoantibodies to contactin-1 from patients with chronic inflammatory demyelinating polyradiculoneuropathy not only bind to the paranodes where they are supposed to cause conduction failure but also bind to other neuronal cell types, we aimed to investigate the effect of anti–contactin-1 autoantibodies on contactin-1 surface expression in cerebellar granule neurons, dorsal root ganglion neurons, and contactin-1–transfected human embryonic kidney 293 cells. Methods Immunocytochemistry including structured illumination microscopy and immunoblotting was used to determine expression levels of contactin-1 and/or sodium channels after long-term exposure to autoantibodies from 3 seropositive patients. For functional analysis of sodium channels, whole-cell recordings of sodium currents were performed on dorsal root ganglion neurons incubated with anti–contactin-1 autoantibodies. Results We found a reduction in contactin-1 expression levels on dorsal root ganglion neurons, cerebellar granule neurons, and contactin-1–transfected human embryonic kidney 293 cells and decreased dorsal root ganglion sodium currents after long-term exposure to anti–contactin-1 autoantibodies. Sodium channel density did not decrease. Discussion Our results demonstrate a direct effect of anti–contactin-1 autoantibodies on the surface expression of contactin-1 and sodium currents in dorsal root ganglion neurons. This may be the pathophysiologic correlate of sensory ataxia reported in these patients.
Collapse
Affiliation(s)
- Julia Grüner
- From the Department of Neurology (J.G., H.S., L.A., C.S., K.D.), University Hospital Würzburg, Germany; Department of Biotechnology and Biophysics (C.W.), Julius-Maximilians-University of Würzburg; and Institute of Clinical Neurobiology (C.V.), University Hospital, Julius-Maximilians-University of Würzburg, Germany
| | - Helena Stengel
- From the Department of Neurology (J.G., H.S., L.A., C.S., K.D.), University Hospital Würzburg, Germany; Department of Biotechnology and Biophysics (C.W.), Julius-Maximilians-University of Würzburg; and Institute of Clinical Neurobiology (C.V.), University Hospital, Julius-Maximilians-University of Würzburg, Germany
| | - Christian Werner
- From the Department of Neurology (J.G., H.S., L.A., C.S., K.D.), University Hospital Würzburg, Germany; Department of Biotechnology and Biophysics (C.W.), Julius-Maximilians-University of Würzburg; and Institute of Clinical Neurobiology (C.V.), University Hospital, Julius-Maximilians-University of Würzburg, Germany
| | - Luise Appeltshauser
- From the Department of Neurology (J.G., H.S., L.A., C.S., K.D.), University Hospital Würzburg, Germany; Department of Biotechnology and Biophysics (C.W.), Julius-Maximilians-University of Würzburg; and Institute of Clinical Neurobiology (C.V.), University Hospital, Julius-Maximilians-University of Würzburg, Germany
| | - Claudia Sommer
- From the Department of Neurology (J.G., H.S., L.A., C.S., K.D.), University Hospital Würzburg, Germany; Department of Biotechnology and Biophysics (C.W.), Julius-Maximilians-University of Würzburg; and Institute of Clinical Neurobiology (C.V.), University Hospital, Julius-Maximilians-University of Würzburg, Germany
| | - Carmen Villmann
- From the Department of Neurology (J.G., H.S., L.A., C.S., K.D.), University Hospital Würzburg, Germany; Department of Biotechnology and Biophysics (C.W.), Julius-Maximilians-University of Würzburg; and Institute of Clinical Neurobiology (C.V.), University Hospital, Julius-Maximilians-University of Würzburg, Germany
| | - Kathrin Doppler
- From the Department of Neurology (J.G., H.S., L.A., C.S., K.D.), University Hospital Würzburg, Germany; Department of Biotechnology and Biophysics (C.W.), Julius-Maximilians-University of Würzburg; and Institute of Clinical Neurobiology (C.V.), University Hospital, Julius-Maximilians-University of Würzburg, Germany.
| |
Collapse
|
37
|
Waltz TB, Burand AJ, Sadler KE, Stucky CL. Sensory-specific peripheral nerve pathology in a rat model of Fabry disease. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2021; 10:100074. [PMID: 34541380 PMCID: PMC8437817 DOI: 10.1016/j.ynpai.2021.100074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 05/27/2023]
Abstract
Fabry disease (FD) causes life-long pain, the mechanisms of which are unclear. Patients with FD have chronic pain that mirrors symptoms of other painful peripheral neuropathies. However, it is unclear what underlying damage occurs in FD peripheral nerves that may contribute to chronic pain. Here, we characterized myelinated and unmyelinated fiber pathology in peripheral nerves of a rat model of FD. Decreased nerve fiber density and increased nerve fiber pathology were noted in unmyelinated and myelinated fibers from FD rats; both observations were dependent on sampled nerve fiber modality and anatomical location. FD myelinated axons exhibited lipid accumulations that were determined to be the FD-associated lipid globotriaosylceramide (Gb3), and to a lesser extent lysosomes. These findings suggest that axonal Gb3 accumulation may drive peripheral neuron dysfunction and subsequent pain in FD.
Collapse
Affiliation(s)
- Tyler B. Waltz
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Anthony J. Burand
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Katelyn E. Sadler
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Cheryl L. Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
38
|
Chiang JCB, Goldstein D, Park SB, Krishnan AV, Markoulli M. Corneal nerve changes following treatment with neurotoxic anticancer drugs. Ocul Surf 2021; 21:221-237. [PMID: 34144206 DOI: 10.1016/j.jtos.2021.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/20/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022]
Abstract
Survival rates of cancer has improved with the development of anticancer drugs including systemic chemotherapeutic agents. However, long-lasting side effects could impact treated patients. Neurotoxic anticancer drugs are specific agents which cause chemotherapy-induced peripheral neuropathy (CIPN), a debilitating condition that severely deteriorates quality of life of cancer patients and survivors. The ocular surface is also prone to neurotoxicity but investigation into the effects of neurotoxic chemotherapy on the ocular surface has been more limited compared to other systemic etiologies such as diabetes. There is also no standardized protocol for CIPN diagnosis with an absence of a reliable, objective method of observing nerve damage structurally. As the cornea is the most densely innervated region of the body, researchers have started to focus on corneal neuropathic changes that are associated with neurotoxic chemotherapy treatment. In-vivo corneal confocal microscopy enables rapid and objective structural imaging of ocular surface microscopic structures such as corneal nerves, while esthesiometers provide means of functional assessment by examining corneal sensitivity. The current article explores the current guidelines and gaps in our knowledge of CIPN diagnosis and the potential role of in-vivo corneal confocal microscopy as a diagnostic or prognostic tool. Corneal neuropathic changes with neurotoxic anticancer drugs from animal research progressing through to human clinical studies are also discussed, with a focus on how these data inform our understanding of CIPN.
Collapse
Affiliation(s)
- Jeremy Chung Bo Chiang
- School of Optometry & Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia.
| | - David Goldstein
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia; Department of Medical Oncology, Prince of Wales Hospital, Sydney, Australia
| | - Susanna B Park
- Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Arun V Krishnan
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Maria Markoulli
- School of Optometry & Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| |
Collapse
|
39
|
Abstract
PURPOSE OF THE REVIEW The neuromuscular complications of cancer therapy include chemotherapy-induced peripheral neurotoxicity (CIPN), immune-related neuromuscular complications to immune checkpoint inhibitors and radiation-induced neuropathy/plexopathy. With a wider focus on CIPN, we will discuss new pathogenetic insights, recent predictive biomarkers and emerging therapies for neuromuscular complications of cancer therapy. RECENT FINDINGS Findings from recent preclinical studies have improved our knowledge on new CIPN pathogenetic pathways, including the activation of senescence-like processes in neurons, axonal degeneration and neuroinflammation. Metabolomics and serum neurofilament light chain levels appear the most promising biomarkers to predict CIPN development and severity. There is some recent evidence of promising pharmacological compounds to prevent or treat CIPN, and new drugs are in early development and testing. SUMMARY A multimodal assessment, with neurophysiological, imaging and patient-reported outcome measures, coupled with the use of reliable blood or genetic biomarkers, may offer pathogenetic grounds for future preventive and symptomatic strategies for the multidisciplinary treatment of neuromuscular complications of cancer therapy.
Collapse
|
40
|
Keep RF, Jones HC, Drewes LR. Brain Barriers and brain fluids research in 2020 and the fluids and barriers of the CNS thematic series on advances in in vitro modeling of the blood-brain barrier and neurovascular unit. Fluids Barriers CNS 2021; 18:24. [PMID: 34020685 PMCID: PMC8138848 DOI: 10.1186/s12987-021-00258-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This editorial discusses advances in brain barrier and brain fluid research in 2020. Topics include: the cerebral endothelium and the neurovascular unit; the choroid plexus; the meninges; cerebrospinal fluid and the glymphatic system; disease states impacting the brain barriers and brain fluids; drug delivery to the brain. This editorial also highlights the recently completed Fluids Barriers CNS thematic series entitled, Advances in in vitro modeling of the bloodbrain barrier and neurovascular unit. Such in vitro modeling is progressing rapidly.
Collapse
Affiliation(s)
- Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, 48105, USA. .,Department of Neurosurgery, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, R5018 BSRB, MI, 48109-2200, USA.
| | - Hazel C Jones
- Gagle Brook House, Chesterton, Bicester, OX26 1UF, UK
| | - Lester R Drewes
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, MN, 55812, USA
| |
Collapse
|
41
|
Contribution of colony-stimulating factor 1 to neuropathic pain. Pain Rep 2021; 6:e883. [PMID: 33981926 PMCID: PMC8108585 DOI: 10.1097/pr9.0000000000000883] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 12/23/2022] Open
Abstract
Molecular and cellular interactions among spinal dorsal horn neurons and microglia, the resident macrophages of the central nervous system, contribute to the induction and maintenance of neuropathic pain after peripheral nerve injury. Emerging evidence also demonstrates that reciprocal interactions between macrophages and nociceptive sensory neurons in the dorsal root ganglion contribute to the initiation and persistence of nerve injury-induced mechanical hypersensitivity (allodynia). We previously reported that sensory neuron-derived colony-stimulating factor 1 (CSF1), by engaging the CSF1 receptor (CSF1R) that is expressed by both microglia and macrophages, triggers the nerve injury-induced expansion of both resident microglia in the spinal cord and macrophages in the dorsal root ganglion and induces their respective contributions to the neuropathic pain phenotype. Here, we review recent research and discuss unanswered questions regarding CSF1/CSF1R-mediated microglial and macrophage signaling in the generation of neuropathic pain.
Collapse
|
42
|
Zhao J, Li Y, Chang Q, Wang J, Sun H. Diabetic Oculomotor Nerve Palsy Displaying Enhancement of the Oculomotor Nerve in the Orbit and Cavernous Sinus on MRI. Eur Neurol 2021; 84:246-253. [PMID: 33975309 DOI: 10.1159/000514100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/17/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Imaging data were scarce on diabetic oculomotor nerve palsy (ONP). Our study explored the MRI features and their clinical implications for diabetic ONP. METHODS Fifty-nine patients with a clinical diagnosis of diabetic ONP were recruited from our department between January 2015 and December 2019. Orbital MRI was retrospectively analyzed, and follow-up scans were obtained for 5 patients. Based on the ocular motor nerve palsy scale, the difference in the scores on the first and last hospital days was defined as the improvement score and was used to assess the treatment effects in all. RESULTS Thirty-eight (64.41%) patients presented thickening and enhancement of the cavernous segment and inferior division of the intraorbital segment of the ipsilateral oculomotor nerve, with the cisternal segment spared in all. After complete resolution of symptoms, follow-up MRI in 5 patients revealed that the enhancement was less obvious compared with the previous images. 6 patients in the enhancement group and 4 patients in the nonenhancement group were treated with 80 mg of methylprednisolone. Significant differences were not detected in the median improvement scores between patients with and those without corticosteroid use (p = 0.240). CONCLUSION Thickening and enhancement of the unilateral oculomotor nerve were common imaging findings in diabetic ONP, and they persisted after complete resolution of symptoms in some patients. The cavernous segment and the inferior division of the intraorbital segment were simultaneously involved, and the cisternal segment was often spared. Refraining from corticosteroids was recommended even with nerve enhancement.
Collapse
Affiliation(s)
- Juan Zhao
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yong Li
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Qinglin Chang
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jiawei Wang
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Houliang Sun
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
43
|
Gerber D, Pereira JA, Gerber J, Tan G, Dimitrieva S, Yángüez E, Suter U. Transcriptional profiling of mouse peripheral nerves to the single-cell level to build a sciatic nerve ATlas (SNAT). eLife 2021; 10:e58591. [PMID: 33890853 PMCID: PMC8064760 DOI: 10.7554/elife.58591] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
Peripheral nerves are organ-like structures containing diverse cell types to optimize function. This interactive assembly includes mostly axon-associated Schwann cells, but also endothelial cells of supporting blood vessels, immune system-associated cells, barrier-forming cells of the perineurium surrounding and protecting nerve fascicles, and connective tissue-resident cells within the intra-fascicular endoneurium and inter-fascicular epineurium. We have established transcriptional profiles of mouse sciatic nerve-inhabitant cells to foster the fundamental understanding of peripheral nerves. To achieve this goal, we have combined bulk RNA sequencing of developing sciatic nerves up to the adult with focused bulk and single-cell RNA sequencing of Schwann cells throughout postnatal development, extended by single-cell transcriptome analysis of the full sciatic nerve both perinatally and in the adult. The results were merged in the transcriptome resource Sciatic Nerve ATlas (SNAT: https://www.snat.ethz.ch). We anticipate that insights gained from our multi-layered analysis will serve as valuable interactive reference point to guide future studies.
Collapse
Affiliation(s)
- Daniel Gerber
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Jorge A Pereira
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Joanne Gerber
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Ge Tan
- Functional Genomics Center Zurich, ETH Zurich/University of ZurichZurichSwitzerland
| | - Slavica Dimitrieva
- Functional Genomics Center Zurich, ETH Zurich/University of ZurichZurichSwitzerland
| | - Emilio Yángüez
- Functional Genomics Center Zurich, ETH Zurich/University of ZurichZurichSwitzerland
| | - Ueli Suter
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| |
Collapse
|
44
|
Uversky VN, Elrashdy F, Aljadawi A, Ali SM, Khan RH, Redwan EM. Severe acute respiratory syndrome coronavirus 2 infection reaches the human nervous system: How? J Neurosci Res 2021; 99:750-777. [PMID: 33217763 PMCID: PMC7753416 DOI: 10.1002/jnr.24752] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023]
Abstract
Without protective and/or therapeutic agents the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection known as coronavirus disease 2019 is quickly spreading worldwide. It has surprising transmissibility potential, since it could infect all ages, gender, and human sectors. It attacks respiratory, gastrointestinal, urinary, hepatic, and endovascular systems and can reach the peripheral nervous system (PNS) and central nervous system (CNS) through known and unknown mechanisms. The reports on the neurological manifestations and complications of the SARS-CoV-2 infection are increasing exponentially. Herein, we enumerate seven candidate routes, which the mature or immature SARS-CoV-2 components could use to reach the CNS and PNS, utilizing the within-body cross talk between organs. The majority of SARS-CoV-2-infected patients suffer from some neurological manifestations (e.g., confusion, anosmia, and ageusia). It seems that although the mature virus did not reach the CNS or PNS of the majority of patients, its unassembled components and/or the accompanying immune-mediated responses may be responsible for the observed neurological symptoms. The viral particles and/or its components have been specifically documented in endothelial cells of lung, kidney, skin, and CNS. This means that the blood-endothelial barrier may be considered as the main route for SARS-CoV-2 entry into the nervous system, with the barrier disruption being more logical than barrier permeability, as evidenced by postmortem analyses.
Collapse
Affiliation(s)
- Vladimir N. Uversky
- Biological Science DepartmentFaculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of MedicineUniversity of South FloridaTampaFLUSA
- Institute for Biological Instrumentation of the Russian Academy of SciencesFederal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”PushchinoRussia
| | - Fatma Elrashdy
- Department of Endemic Medicine and HepatogastroenterologyKasr Alainy School of MedicineCairo UniversityCairoEgypt
| | - Abdullah Aljadawi
- Biological Science DepartmentFaculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Syed Moasfar Ali
- Interdisciplinary Biotechnology UnitAligarh Muslim UniversityAligarhIndia
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology UnitAligarh Muslim UniversityAligarhIndia
| | - Elrashdy M. Redwan
- Biological Science DepartmentFaculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
| |
Collapse
|
45
|
Mohseni M, S A AR, H Shirazi F, Nemati NH. Preparation and characterization of self-electrical stimuli conductive gellan based nano scaffold for nerve regeneration containing chopped short spun nanofibers of PVDF/MCM41 and polyaniline/graphene nanoparticles: Physical, mechanical and morphological studies. Int J Biol Macromol 2021; 167:881-893. [PMID: 33186646 DOI: 10.1016/j.ijbiomac.2020.11.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 01/20/2023]
Abstract
Conductive self -electrical stimuli bioactive scaffolds could be used the potential for peripheral nerve regeneration with the maximum efficiency. To produce such conductive self-electrical stimuli bioactive scaffolds, chopped spun piezoelectric nanofibers of polyvinylidene fluoride/mesoporous silica nanoparticle (PVDF/MCM41) are prepared and incorporated in gellan/polyaniline/graphene (gellan/PAG) nanocomposites which have been previously prepared by incorporation of polyaniline/graphene (PAG) nanoparticles in gellan gel at 80 °C. Highly conductive binary doped polyaniline/graphene nanoparticles are prepared by chemical oxidative polymerization of aniline monomer using in-suite precipitation polymerization method in presence of graphene nanoparticles and sodium dodecyl sulfate. All intermediate and final products including spun PVDF/MCM41 nanofibers, PAG nanoparticles, and gellan-gelatin gel scaffolds containing PVDF/MCM41 nano spun fibers and PAG nanoparticles are characterized using different analysis methods. Chemical and structural analyses of PAG nanoparticles and PVDF/MCM41 nanofibers have been done using FTIR and XRD methods. The morphological structure of different samples is investigated using SEM. Morphological investigation and DLS results confirm fabrication of MCM41 nanoparticle with a completely spherical shape and the average size of 50 nm of which have been dispersed in electrospun PVDF nanofibers very well. Also, the preparation of PAG nanoparticle with high conductivity is verified with morphological and conductivity tests. MTT easy and biocompatibility test results indicate potential applicability of the prepared conductive self -stimuli nano-scaffold for nerve regeneration applications.
Collapse
Affiliation(s)
- Mojdeh Mohseni
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ahmad Ramazani S A
- Chemical & Petroleum Engineering Department, Sharif University of Technology, Tehran, Iran.
| | - Farshad H Shirazi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shaheed Beheshti University of Medical Sciences, Tehran, Iran
| | - Nahid Hassanzadeh Nemati
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
46
|
Sheikh KA, Lee JP. Editorial of special issue: Blood-CNS and blood-nerve barriers in health and diseases and potential therapy. Exp Neurol 2020; 334:113440. [PMID: 32890971 DOI: 10.1016/j.expneurol.2020.113440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Kazim A Sheikh
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.
| | - Jean-Pyo Lee
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA.
| |
Collapse
|