1
|
Effects of negative air ions (NAIs) on Leishmania major: A novel tool for treatment of zoonotic cutaneous leishmaniasis (ZCL). PLoS One 2022; 17:e0274124. [PMID: 36074764 PMCID: PMC9455840 DOI: 10.1371/journal.pone.0274124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/22/2022] [Indexed: 01/10/2023] Open
Abstract
Background Cutaneous leishmaniasis (CL) is a Neglected Tropical Disease (NTD) that causes high morbidity in the tropics and sub-tropics. Despite the remarkable advancements in the treatment of CL, the available therapeutics are far from ideal and also cause serious adverse side effects. Negative air ions (NAIs) generators are widely available for domestic and industrial uses. Several studies have reported on positive effects of NAIs therapy on human health as a non-pharmaceutical treatment for respiratory disease, allergy, or stress-related health conditions, including infectious diseases. To our knowledge, no studies have examined the effectiveness of the NAIs therapy against Leishmania parasites. The aims of this study were to investigate the effect of NAIs therapy on Leishmania major (L. major) the causative agent of CL in in vitro and in a murine model. Methodology/Principal findings In vitro anti-leishmanial effects of NAIs therapy were measured by parasitological methods. NAIs therapy was assessed in vivo in L. major infected BALB/c mice by measuring the footpad (FP) lesion size and parasite load using metric caliper tool and qPCR, respectively. Immune responses in treated and non-treated mice were assessed by measuring the levels of IFN-γ, IL-4, NO and arginase activity. In vitro NAIs therapy significantly decreased the viability of Leishmania promastigotes and of amastigotes cultured in macrophages, but did not affect the host cells. NAIs therapy of L. major infected BALB/c mice resulted in reduced FP lesion size, diminished parasite burden, and importantly decreased induction of IL-4 and arginase activity in the presence of NAIs. In contrast IFN-γ and NO levels were significantly enhanced. NAIs therapy significantly diminished the progression of disease compared to the control group, but was less effective than amphotericin B treatment. Conclusions Our study shows that NAIs treatment was effective in vitro and in Leishmania-infected mice, elicited a T-helper 1 (Th1) response and increased efficient cellular immunity, resulting in a diminished parasite load. Therefore, NAIs therapy can be considered as a useful and safe tool that can contribute to clearing L. major infections without inducing toxicity in host cells. The applications and mechanisms of NAIs therapy warrant further investigation especially in humans suffering from CL.
Collapse
|
2
|
The Deadly Dance of B Cells with Trypanosomatids. Trends Parasitol 2017; 34:155-171. [PMID: 29089182 DOI: 10.1016/j.pt.2017.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/29/2017] [Accepted: 10/06/2017] [Indexed: 01/18/2023]
Abstract
B cells are notorious actors for the host's protection against several infectious diseases. So much so that early vaccinology seated its principles upon their long-term protective antibody secretion capabilities. Indeed, there are many examples of acute infectious diseases that are combated by functional humoral responses. However, some chronic infectious diseases actively induce immune deregulations that often lead to defective, if not deleterious, humoral immune responses. In this review we summarize how Leishmania and Trypanosoma spp. directly manipulate B cell responses to induce polyclonal B cell activation, hypergammaglobulinemia, low-specificity antibodies, limited B cell survival, and regulatory B cells, contributing therefore to immunopathology and the establishment of persistent infections.
Collapse
|
3
|
De Luca PM, Macedo ABB. Cutaneous Leishmaniasis Vaccination: A Matter of Quality. Front Immunol 2016; 7:151. [PMID: 27148270 PMCID: PMC4838622 DOI: 10.3389/fimmu.2016.00151] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/07/2016] [Indexed: 11/25/2022] Open
Abstract
There have been exhaustive efforts to develop an efficient vaccine against leishmaniasis. Factors like host and parasite genetic characteristics, virulence, epidemiological scenarios, and, mainly, diverse immune responses triggered by Leishmania species make the achievement of this aim a complex task. It is already clear that the induction of a Th1, pro-inflammatory response, is important in the protection against Leishmania infection. However, many questions must still be answered to fully understand Leishmania immunopathology, especially regarding Leishmania-specific Th1 response induction, regulation, and persistence. A large number of Leishmania antigens able to induce pro-inflammatory response have been selected so far, but none of them demonstrated efficiency in protection assays. A possible explanation is that CD4 T cells display marked heterogeneity at a single-cell level especially regarding the production of Th1-defining cytokines and multifunctionality. It has been established in the literature that Th1 cells undergo a differentiation process, which can generate cells with diverse phenotypes and survival capabilities. Despite that, only a few studies evaluate this heterogenic response and the amount of multifunctional CD4 T cells induced by Leishmania vaccine candidates, missing what can be a crucial point in defining a correlate of protection after vaccination. Moreover, most of the knowledge involving the development of cutaneous leishmaniasis (CL) vaccines comes from the mouse model of infection with Leishmania major, which cannot be fully applied to New World Leishmaniasis. For this reason, the immune response triggered by infection with New World Leishmania species, as well as vaccine candidates, need further studies. In this review, we will reinforce the importance of evaluating the quality of immune response against Leishmania, using a multiparametric analysis in order to understand better this complex host-parasite interaction, discussing the differences in the responses triggered by different New World Leishmania species, as well as the impact on the development of an effective vaccine against CL.
Collapse
Affiliation(s)
- Paula Mello De Luca
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, FIOCRUZ , Rio de Janeiro , Brazil
| | - Amanda Beatriz Barreto Macedo
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine , Salt Lake City, UT , USA
| |
Collapse
|
4
|
Cardillo F, de Pinho RT, Antas PRZ, Mengel J. Immunity and immune modulation in Trypanosoma cruzi infection. Pathog Dis 2015; 73:ftv082. [PMID: 26438729 DOI: 10.1093/femspd/ftv082] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2015] [Indexed: 12/28/2022] Open
Abstract
Chagas disease is caused by the protozoan Trypanosoma cruzi. The parasite reaches the secondary lymphoid organs, the heart, skeletal muscles, neurons in the intestine and esophagus among other tissues. The disease is characterized by mega syndromes, which may affect the esophagus, the colon and the heart, in about 30% of infected people. The clinical manifestations associated with T. cruzi infection during the chronic phase of the disease are dependent on complex interactions between the parasite and the host tissues, particularly the lymphoid system that may either result in a balanced relationship with no disease or in an unbalanced relationship that follows an inflammatory response to parasite antigens and associated tissues in some of the host organs and/or by an autoimmune response to host antigens. This review discusses the findings that support the notion of an integrated immune response, considering the innate and adaptive arms of the immune system in the control of parasite numbers and also the mechanisms proposed to regulate the immune response in order to tolerate the remaining parasite load, during the chronic phase of infection. This knowledge is fundamental to the understanding of the disease progression and is essential for the development of novel therapies and vaccine strategies.
Collapse
Affiliation(s)
- Fabíola Cardillo
- Oswaldo Cruz Foundation, Bahia, Rua Waldemar Falcão 121, Salvador 40295-001, Brazil
| | - Rosa Teixeira de Pinho
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Paulo Renato Zuquim Antas
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - José Mengel
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil Faculty of Medicine of Petropolis, FMP-FASE, 25680-120, Petrópolis, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Gibson-Corley KN, Bockenstedt MM, Li H, Boggiatto PM, Phanse Y, Petersen CA, Bellaire BH, Jones DE. An in vitro model of antibody-enhanced killing of the intracellular parasite Leishmania amazonensis. PLoS One 2014; 9:e106426. [PMID: 25191842 PMCID: PMC4156363 DOI: 10.1371/journal.pone.0106426] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/30/2014] [Indexed: 11/21/2022] Open
Abstract
Footpad infection of C3HeB/FeJ mice with Leishmania amazonensis leads to chronic lesions accompanied by large parasite loads. Co-infecting these animals with L. major leads to induction of an effective Th1 immune response that can resolve these lesions. This cross-protection can be recapitulated in vitro by using immune cells from L. major-infected animals to effectively activate L. amazonensis-infected macrophages to kill the parasite. We have shown previously that the B cell population and their IgG2a antibodies are required for effective cross-protection. Here we demonstrate that, in contrast to L. major, killing L. amazonensis parasites is dependent upon FcRγ common-chain and NADPH oxidase-generated superoxide from infected macrophages. Superoxide production coincided with killing of L. amazonensis at five days post-activation, suggesting that opsonization of the parasites was not a likely mechanism of the antibody response. Therefore we tested the hypothesis that non-specific immune complexes could provide a mechanism of FcRγ common-chain/NADPH oxidase dependent parasite killing. Macrophage activation in response to soluble IgG2a immune complexes, IFN-γ and parasite antigen was effective in significantly reducing the percentage of macrophages infected with L. amazonensis. These results define a host protection mechanism effective during Leishmania infection and demonstrate for the first time a novel means by which IgG antibodies can enhance killing of an intracellular pathogen.
Collapse
Affiliation(s)
- Katherine N. Gibson-Corley
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Marie M. Bockenstedt
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Huijuan Li
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Paola M. Boggiatto
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Yashdeep Phanse
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Christine A. Petersen
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Bryan H. Bellaire
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Douglas E. Jones
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
6
|
Schwarz T, Remer KA, Nahrendorf W, Masic A, Siewe L, Müller W, Roers A, Moll H. T cell-derived IL-10 determines leishmaniasis disease outcome and is suppressed by a dendritic cell based vaccine. PLoS Pathog 2013; 9:e1003476. [PMID: 23825956 PMCID: PMC3694851 DOI: 10.1371/journal.ppat.1003476] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 05/20/2013] [Indexed: 12/17/2022] Open
Abstract
In the murine model of Leishmania major infection, resistance or susceptibility to the parasite has been associated with the development of a Th1 or Th2 type of immune response. Recently, however, the immunosuppressive effects of IL-10 have been ascribed a crucial role in the development of the different clinical correlates of Leishmania infection in humans. Since T cells and professional APC are important cellular sources of IL-10, we compared leishmaniasis disease progression in T cell-specific, macrophage/neutrophil-specific and complete IL-10-deficient C57BL/6 as well as T cell-specific and complete IL-10-deficient BALB/c mice. As early as two weeks after infection of these mice with L. major, T cell-specific and complete IL-10-deficient animals showed significantly increased lesion development accompanied by a markedly elevated secretion of IFN-γ or IFN-γ and IL-4 in the lymph nodes draining the lesions of the C57BL/6 or BALB/c mutants, respectively. In contrast, macrophage/neutrophil-specific IL-10-deficient C57BL/6 mice did not show any altered phenotype. During the further course of disease, the T cell-specific as well as the complete IL-10-deficient BALB/c mice were able to control the infection. Furthermore, a dendritic cell-based vaccination against leishmaniasis efficiently suppresses the early secretion of IL-10, thus contributing to the control of parasite spread. Taken together, IL-10 secretion by T cells has an influence on immune activation early after infection and is sufficient to render BALB/c mice susceptible to an uncontrolled Leishmania major infection. The clinical symptoms caused by infections with Leishmania parasites range from self-healing cutaneous to uncontrolled visceral disease and depend not only on the parasite species but also on the type of the host's immune response. It is estimated that 350 million people worldwide are at risk, with a global incidence of 1–1.5 million cases of cutaneous and 500,000 cases of visceral leishmaniasis. Murine leishmaniasis is the best-characterized model to elucidate the mechanisms underlying resistance or susceptibility to Leishmania major parasites in vivo. Using T cell-specific and macrophage-specific mutant mice, we demonstrate that abrogating the secretion of the immunosuppressive cytokine IL-10 by T cells is sufficient to render otherwise susceptible mice resistant to an infection with the pathogen. The healing phenotype is accompanied by an elevated specific inflammatory immune response very early after infection. We further show that dendritic cell-based vaccination against leishmaniasis suppresses the early secretion of IL-10 following challenge infection. Thus, our study unravels a molecular mechanism critical for host immune defense, aiding in the development of an effective vaccine against leishmaniasis.
Collapse
Affiliation(s)
- Tobias Schwarz
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Katharina A. Remer
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Wiebke Nahrendorf
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Anita Masic
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Lisa Siewe
- Department of Dermatology, University of Cologne, Cologne, Germany
| | - Werner Müller
- Department of Experimental Immunology, The Helmholtz Centre for Infection Research, Braunschweig, Germany
- Bill Ford Chair of Cellular Immunology, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Axel Roers
- Department of Dermatology, University of Cologne, Cologne, Germany
- Institute for Immunology, University of Dresden, Dresden, Germany
| | - Heidrun Moll
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
7
|
Petersen ALDOA, Guedes CES, Versoza CL, Lima JGB, de Freitas LAR, Borges VM, Veras PST. 17-AAG kills intracellular Leishmania amazonensis while reducing inflammatory responses in infected macrophages. PLoS One 2012; 7:e49496. [PMID: 23152914 PMCID: PMC3496716 DOI: 10.1371/journal.pone.0049496] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/09/2012] [Indexed: 12/19/2022] Open
Abstract
Background Leishmaniasis is a neglected endemic disease with a broad spectrum of clinical manifestations. Pentavalent antimonials have been the treatment of choice for the past 70 years and, due to the emergence of resistant cases, the efficacy of these drugs has come under scrutiny. Second-line drugs are less efficacious, cause a range of side effects and can be costly. The formulation of new generations of drugs, especially in developing countries, has become mandatory. Methodology/Principal Findings We investigated the anti-leishmanial effect of 17-(allylamino)-17-demethoxygeldanamycin (17-AAG), an HSP90 inhibitor, in vitro. This inhibitor is currently in clinical trials for cancer treatment; however, its effects against intracellular Leishmania remain untested. Macrophages infected with L. amazonensis were treated with 17-AAG (25–500 nM) and parasite load was quantified using optical microscopy. Parasite load declined in 17-AAG-treated macrophages in a dose- and time-dependent manner. Intracellular parasite death became irreversible after 4 h of treatment with 17-AAG, and occurred independent of nitric oxide (NO) and superoxide (O2−) production. Additionally, intracellular parasite viability was severely reduced after 48 h of treatment. Interestingly, treatment with 17-AAG reduced pro-inflammatory mediator production, including TNF-α, IL-6 and MCP-1, yet IL-12 remained unaffected. Electron microscopy revealed morphological alterations, such as double-membrane vacuoles and myelin figures at 24 and 48 h after 17-AAG treatment. Conclusions/Significance The HSP90 inhibitor, 17-AAG, possesses high potency under low dosage and reduces both pro-inflammatory and oxidative molecule production. Therefore, further studies are warranted to investigate this inhibitor’s potential in the development of new generations of anti-leishmanials.
Collapse
Affiliation(s)
- Antonio Luis de Oliveira Almeida Petersen
- Laboratório de Patologia e Biointervenção, Fundação Oswaldo Cruz-BA, Salvador, Bahia, Brazil
- Departamento de Anatomia Patológica e Medicina Legal, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | | | - Carolina Leite Versoza
- Laboratório de Patologia e Biointervenção, Fundação Oswaldo Cruz-BA, Salvador, Bahia, Brazil
| | - José Geraldo Bomfim Lima
- Laboratório de Patologia e Biointervenção, Fundação Oswaldo Cruz-BA, Salvador, Bahia, Brazil
- Departamento de Anatomia Patológica e Medicina Legal, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Luiz Antônio Rodrigues de Freitas
- Laboratório de Patologia e Biointervenção, Fundação Oswaldo Cruz-BA, Salvador, Bahia, Brazil
- Departamento de Anatomia Patológica e Medicina Legal, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Valéria Matos Borges
- Laboratório Integrado de Microbiologia e Imunoregulação, Fundação Oswaldo Cruz-BA, Salvador, Bahia, Brazil
| | | |
Collapse
|
8
|
Macedo ABB, Sánchez-Arcila JC, Schubach AO, Mendonça SCF, Marins-Dos-Santos A, de Fatima Madeira M, Gagini T, Pimentel MIF, De Luca PM. Multifunctional CD4⁺ T cells in patients with American cutaneous leishmaniasis. Clin Exp Immunol 2012; 167:505-13. [PMID: 22288594 DOI: 10.1111/j.1365-2249.2011.04536.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Leishmaniasis is a group of important parasitic diseases affecting millions worldwide. To understand more clearly the quality of T helper type 1 (Th1) response stimulated after Leishmania infection, we applied a multiparametric flow cytometry protocol to evaluate multifunctional T cells induced by crude antigen extracts obtained from promastigotes of Leishmania braziliensis (LbAg) and Leishmania amazonensis (LaAg) in peripheral blood mononuclear cells from healed cutaneous leishmaniasis patients. Although no significant difference was detected in the percentage of total interferon (IFN)-γ-producing CD4(+) T cells induced by both antigens, multiparametric flow cytometry analysis revealed clear differences in the quality of Th1 responses. LbAg induced an important proportion of multifunctional CD4(+) T cells (28% of the total Th1 response evaluated), whereas LaAg induced predominantly single-positive cells (68%), and 57% of those were IFN-γ single-positives. Multifunctional CD4(+) T cells showed the highest mean fluorescence intensity (MFI) for the three Th1 cytokines assessed and MFIs for IFN-γ and interleukin-2 from those cells stimulated with LbAg were significantly higher than those obtained after LaAg stimulation. These major differences observed in the generation of multifunctional CD4(+) T cells suggest that the quality of the Th1 response induced by L. amazonensis antigens can be involved in the mechanisms responsible for the high susceptibility observed in L. amazonensis-infected individuals. Ultimately, our results call attention to the importance of studying a Th1 response regarding its quality, not just its magnitude, and indicate that this kind of evaluation might help understanding of the complex and diverse immunopathogenesis of American tegumentary leishmaniasis.
Collapse
Affiliation(s)
- A B B Macedo
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Akilov OE, Ustyugova IV, Zhi L, Hasan T, Wu MX. Enhanced susceptibility to Leishmania infection in resistant mice in the absence of immediate early response gene X-1. THE JOURNAL OF IMMUNOLOGY 2010; 183:7994-8003. [PMID: 19923449 DOI: 10.4049/jimmunol.0900866] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immediate early response gene X-1 (IEX-1) is a stress-inducible gene abundantly expressed in macrophages and T cells following various stimuli. To explore a potential role for IEX-1 in control of the susceptibility to Leishmania major infection, the inflammatory response during cutaneous leishmaniasis was evaluated in 129Sv/C57BL/6-resistant mice in the presence or absence of IEX-1. Null mutation of IEX-1 enhanced the susceptibility of the mice to L. major infection, and aggravated inflammatory responses in comparison with wild-type control mice. The excessive inflammation was not ascribed to a Th2-biased immune response or a defect in Th1 polarization, but rather to an elevated level of IL-17 production by both gammadelta T and CD4(+) cells, concomitant with an increase of the neutrophil recruitment early in the infection. The lack of IEX-1 also suppressed TNF-alpha production in both macrophages and T cells, resulting in a high intralesional load of parasites and delayed healing of the lesion, both of which were reversed by TNF-alpha treatment. These findings indicate the crucial role of IL-17 and TNF-alpha in determining the outcome of L. major infection beyond a balance between Th1- and Th2-mediated immune responses.
Collapse
Affiliation(s)
- Oleg E Akilov
- Department of Dermatology, Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | | | |
Collapse
|
10
|
Rodrigues CAT, Batista LFDS, Filho RST, Santos CDS, Pinheiro CG, Almeida TFD, Freitas LARD, Veras PST. IFN-gamma expression is up-regulated by peripheral blood mononuclear cells (PBMC) from non-exposed dogs upon Leishmania chagasi promastigote stimulation in vitro. Vet Immunol Immunopathol 2008; 127:382-8. [PMID: 19054575 PMCID: PMC7126995 DOI: 10.1016/j.vetimm.2008.10.324] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2008] [Revised: 09/17/2008] [Accepted: 10/20/2008] [Indexed: 11/28/2022]
Abstract
While the response to Leishmania spp. is well characterized in mice and humans, much less is known concerning the canine immune response, particularly soon after exposure to the parasite. Early events are considered to be a determinant of infection outcome. To investigate the dog's early immune response to L. chagasi, an in vitro priming system (PIV) using dog naïve PBMC was established. Until now, dog PIV immune response to L. chagasi has not been assessed. We co-cultivated PBMC primarily stimulated with L. chagasiin vitro with autologous infected macrophages and found that IFN-γ mRNA is up-regulated in these cells compared to control unstimulated cells. IL-4 and IL-10 mRNA expression by L. chagasi-stimulated PBMC was similar to control unstimulated PBMC when incubated with infected macrophages. Surprisingly, correlation studies showed that a lower IFN-γ/IL-4 expression ratio correlated with a lower percentage of infection. We propose that the direct correlation between IFN-γ/IL-4 ratio and parasite load is dependent on the higher correlation of both IFN-γ and IL-4 expression with lower parasite infection. This PIV system was shown to be useful in evaluating the dog immune response to L. chagasi, and results indicate that a balance between IFN-γ and IL-4 is associated with control of parasite infection in vitro.
Collapse
|