1
|
Bharadwaj R, Kushwaha T, Ahmad A, Inampudi KK, Nozaki T. An atypical EhGEF regulates phagocytosis in Entamoeba histolytica through EhRho1. PLoS Pathog 2021; 17:e1010030. [PMID: 34807955 PMCID: PMC8648123 DOI: 10.1371/journal.ppat.1010030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/06/2021] [Accepted: 10/13/2021] [Indexed: 01/09/2023] Open
Abstract
The parasite Entamoeba histolytica is the etiological agent of amoebiasis, a major cause of morbidity and mortality due to parasitic diseases in developing countries. Phagocytosis is an essential mode of obtaining nutrition and has been associated with the virulence behaviour of E. histolytica. Signalling pathways involved in activation of cytoskeletal dynamics required for phagocytosis remains to be elucidated in this parasite. Our group has been studying initiation of phagocytosis and formation of phagosomes in E. histolytica and have described some of the molecules that play key roles in the process. Here we showed the involvement of non-Dbl Rho Guanine Nucleotide Exchange Factor, EhGEF in regulation of amoebic phagocytosis by regulating activation of EhRho1. EhGEF was found in the phagocytic cups during the progression of cups, until closure of phagosomes, but not in the phagosomes themselves. Our observation from imaging, pull down experiments and down regulating expression of different molecules suggest that EhGEF interacts with EhRho1 and it is required during initiation of phagocytosis and phagosome formation. Also, biophysical, and computational analysis reveals that EhGEF mediates GTP exchange on EhRho1 via an unconventional pathway. In conclusion, we describe a non-Dbl EhGEF of EhRho1 which is involved in endocytic processes of E. histolytica.
Collapse
Affiliation(s)
- Ravi Bharadwaj
- Division of Infectious Diseases, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Tushar Kushwaha
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Azhar Ahmad
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Krishna K. Inampudi
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- * E-mail: (TN); , (S)
| |
Collapse
|
2
|
Chadha A, Moreau F, Wang S, Dufour A, Chadee K. Entamoeba histolytica activation of caspase-1 degrades cullin that attenuates NF-κB dependent signaling from macrophages. PLoS Pathog 2021; 17:e1009936. [PMID: 34499701 PMCID: PMC8454965 DOI: 10.1371/journal.ppat.1009936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/21/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022] Open
Abstract
While Entamoeba histolytica (Eh)-induced pro-inflammatory responses are critical in disease pathogenesis, the downstream signaling pathways that subsequently dampens inflammation and the immune response remains unclear. Eh in contact with macrophages suppresses NF-κB signaling while favoring NLRP3-dependent pro-inflammatory cytokine production by an unknown mechanism. Cullin-1 and cullin-5 (cullin-1/5) assembled into a multi-subunit RING E3 ubiquitin ligase complex are substrates for neddylation that regulates the ubiquitination pathway important in NF-κB activity and pro-inflammatory cytokine production. In this study, we showed that upon live Eh contact with human macrophages, cullin-1/4A/4B/5 but not cullin-2/3, were degraded within 10 minutes. Similar degradation of cullin-1/5 were observed from colonic epithelial cells and proximal colonic loops tissues of mice inoculated with live Eh. Degradation of cullin-1/5 was dependent on Eh-induced activation of caspase-1 via the NLRP3 inflammasome. Unlike cullin-4B, the degradation of cullin-4A was partially dependent on caspase-1 and was inhibited with a pan caspase inhibitor. Cullin-1/5 degradation was dependent on Eh cysteine proteinases EhCP-A1 and EhCP-A4, but not EhCP-A5, based on pharmacological inhibition of the cysteine proteinases and EhCP-A5 deficient parasites. siRNA silencing of cullin-1/5 decreased the phosphorylation of pIκ-Bα in response to Eh and LPS stimulation and downregulated NF-κB-dependent TNF-α mRNA expression and TNF-α and MCP-1 pro-inflammatory cytokine production. These results unravel a unique outside-in strategy employed by Eh to attenuate NF-κB-dependent pro-inflammatory responses via NLRP3 activation of caspase-1 that degraded cullin-1/5 from macrophages. The protozoan parasite Entamoeba histolytica (Eh) is the etiologic agent for the disease amebiasis. It is a potent pathogen that deploys an arsenal of virulence factors to trigger and subvert host immune defenses. One of the hallmark features of the disease is amebic colitis and in extreme cases, it can lead to abscesses of the liver and brain. For unknown reasons, the parasite breaches colonic mucosal barriers and invade underlying tissues. The host immune system plays a decisive role in determining the outcome of the disease. At the molecular level, the interaction of Eh with macrophage is a turning point in shaping pro-inflammatory responses. Understanding host-pathogen intricacies at the molecular level is key in determining the complexity of the disease. In the context of amebiasis, the underlying molecular events that occur at the Eh-macrophage intercellular junction are partly unravelled. Here we sought to interrogate the mechanisms by which NF-κB signaling is aborted following Eh-macrophage contact and found two regulatory scaffold proteins, cullin-1 and -5 (cullin-1/5) of the multiple E3 ligase complex, are degraded leading to dampening of NF-κB signaling. During Eh-macrophage contact, cullin-1/4A/4B/5 were rapidly degraded whereas cullin-2/3 were not. The degradation of cullin-1/5 was highly dependent on Eh-induced caspase-1 activation via the NLRP3 inflammasome. In contrast, the degradation of cullin-4A but not cullin-4B, was partially dependent on caspase-1 and was inhibited with a cell-permeable pan caspase inhibitor. Intriguingly, we found that Eh virulence factor EhCP-A1 and EhCP-A4, but not EhCP-A5, played an important role in mediating the degradation of these proteins. Silencing cullin-1/5 decreased the phosphorylation of Iκ-Bα in response to Eh and LPS stimulation that markedly downregulated NF-κB-dependent TNF-α mRNA expression and TNF-α and MCP-1 pro-inflammatory cytokine production. This study unravelled a novel role for Eh-induced NLRP3 inflammasome activation of caspase-1 that intersected with the NF-κB pathway leading to the degradation of the novel substrates cullin-1/5 that regulates NF-κB-dependent pro-inflammatory cytokine production.
Collapse
Affiliation(s)
- Attinder Chadha
- Departments of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - France Moreau
- Departments of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Shanshan Wang
- Departments of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Antoine Dufour
- Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Kris Chadee
- Departments of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
3
|
Bharadwaj R, Bhattacharya A, Somlata. Coordinated activity of amoebic formin and profilin are essential for phagocytosis. Mol Microbiol 2021; 116:974-995. [PMID: 34278607 DOI: 10.1111/mmi.14787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 10/24/2022]
Abstract
For the protist parasite Entamoeba histolytica, endocytic processes, such as phagocytosis, are essential for its survival in the human gut. The actin cytoskeleton is involved in the formation of pseudopods and phagosomal vesicles by incorporating a number of actin-binding and modulating proteins along with actin in a temporal manner. The actin dynamics, which comprises polymerization, branching, and depolymerization is very tightly regulated and takes place directionally at the sites of initiation of phagocytosis. Formin and profilin are two actin-binding proteins that are known to regulate actin cytoskeleton dynamics and thereby, endocytic processes. In this article, we report the participation of formin and profilin in E. histolytica phagocytosis and propose that these two proteins interact with each other and their sequential recruitment at the site is required for the successful completion of phagocytosis. The evidence is based on detailed microscopic, live imaging, interaction studies, and expression downregulation. The cells downregulated for expression of formin show absence of profilin at the site of phagocytosis, whereas downregulation of profilin does not affect formin localization.
Collapse
Affiliation(s)
- Ravi Bharadwaj
- Department of Medicine, UMass Medical School, Worcester, MA, USA
| | | | - Somlata
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
4
|
Abstract
Calcium signaling plays a key role in many essential processes in almost all eukaryotic systems. It is believed that it may also be an important signaling system of the protist parasite Entamoeba histolytica. Motility, adhesion, cytolysis, and phagocytosis/trogocytosis are important steps in invasion and pathogenesis of E. histolytica, and Ca2+ signaling is thought to be associated with these processes leading to tissue invasion. There are a large number of Ca2+-binding proteins (CaBPs) in E. histolytica, and a number of these proteins appear to be associated with different steps in pathogenesis. The genome encodes 27 EF-hand–containing CaBPs in addition to a number of other Ca2+-binding domain/motif-containing proteins, which suggest intricate calcium signaling network in this parasite. Unlike other eukaryotes, a typical calmodulin-like protein has not been seen in E. histolytica. Though none of the CaBPs display sequence similarity with a typical calmodulin, extensive structural similarity has been seen in spite of lack of significant functional overlap with that of typical calmodulins. One of the unique features observed in E. histolytica is the identification of CaBPs (EhCaBP1, EhCaBP3) that have the ability to directly bind actin and modulate actin dynamics. Direct interaction of CaBPs with actin has not been seen in any other system. Pseudopod formation and phagocytosis are some of the processes that require actin dynamics, and some of the amoebic CaBPs (EhC2Pk, EhCaBP1, EhCaBP3, EhCaBP5) participate in this process. None of these E. histolytica CaBPs have any homolog in organisms other than different species of Entamoeba, suggesting a novel Ca2+ signaling pathway that has evolved in this genus.
Collapse
Affiliation(s)
- Mrigya Babuta
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Alok Bhattacharya
- Department of Biology, Ashoka University, Sonepat, Haryana, India
- * E-mail:
| |
Collapse
|
5
|
Sharma S, Agarwal S, Bharadwaj R, Somlata, Bhattacharya S, Bhattacharya A. Novel regulatory roles of PtdIns(4,5)P2generating enzyme EhPIPKI in actin dynamics and phagocytosis ofEntamoeba histolytica. Cell Microbiol 2019; 21:e13087. [DOI: 10.1111/cmi.13087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/03/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Shalini Sharma
- School of Life SciencesJawaharlal Nehru University New Delhi India
| | - Shalini Agarwal
- School of Life SciencesJawaharlal Nehru University New Delhi India
| | - Ravi Bharadwaj
- School of MedicineUMASS Medical School Worcester Massachusetts USA
| | - Somlata
- Multidisciplinary Centre for Advance Research and StudiesJamia Milia Islamia New Delhi India
| | - Sudha Bhattacharya
- School of Environmental SciencesJawaharlal Nehru University New Delhi India
| | | |
Collapse
|
6
|
Sharma S, Bhattacharya S, Bhattacharya A. PtdIns(4,5)P 2 is generated by a novel phosphatidylinositol 4-phosphate 5-kinase in the protist parasite Entamoeba histolytica. FEBS J 2019; 286:2216-2234. [PMID: 30843363 DOI: 10.1111/febs.14804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 02/03/2019] [Accepted: 03/05/2019] [Indexed: 01/02/2023]
Abstract
Entamoeba histolytica is an intestinal protist parasite that causes amoebiasis, a major source of morbidity and mortality in developing countries. Phosphoinositides are involved in signalling systems that have a role in invasion and pathogenesis of this parasite. Phosphatidylinositol 4-phosphate 5-kinase (PIP5K) catalyses the generation of phosphatidylinositol(4,5)bisphosphate (PtdIns(4,5)P2 ), a key species of phosphoinositide that regulates various cellular processes. However, phosphatidylinositol phosphate kinase (PIPK) family of enzymes have not been characterized in E. histolytica. Here, we report the identification and characterization of type I PIPK (EhPIPKI) of E. histolytica. Computational analysis revealed homologs of type I and III PIPK family in E. histolytica and the absence of type II PIPK. In spite of low overall sequence identity, the kinase domain was found to be highly conserved. Interestingly, a unique insertion of a tandem repeat motif was observed in EhPIPKI distinguishing it from existing PIPKs of other organisms. Substrate profiling showed that EhPIPKI could phosphorylate at third and fifth hydroxyl positions of phosphatidylinositols, though the predominant substrate was phosphatidylinositol 4-phosphate (PtdIns(4)P). Furthermore, EhPIPKI underwent intracellular cleavage close to the amino-terminal, generating two distinct fragments Nter-EhPIPKI (27p) and Cter-EhPIPKI (47p). Immunofluorescence and cellular fractionation revealed that the full-length EhPIPKI and the Cter-EhPIPKI containing carboxyl-terminal activation loop were present in the plasma membrane while the Nter-EhPIPKI was observed in the cytosolic region. In conclusion, E. histolytica has a single EhPIPKI gene that displays novel properties of post-translational processing, the presence of a repeat domain and substrate specificity not observed in any PIPK enzyme so far.
Collapse
Affiliation(s)
- Shalini Sharma
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
7
|
Iyer LR, Verma AK, Paul J, Bhattacharya A. Phagocytosis of Gut Bacteria by Entamoeba histolytica. Front Cell Infect Microbiol 2019; 9:34. [PMID: 30863724 PMCID: PMC6399400 DOI: 10.3389/fcimb.2019.00034] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/04/2019] [Indexed: 11/23/2022] Open
Abstract
The protist parasite Entamoeba histolytica causes amoebiasis, a major public health problem in developing countries. Only a small fraction of patients infected with the parasite display invasive disease involving colon or extra intestinal tissues such as liver. E. histolytica exists as two distinct forms, cysts, the infective form, and trophozoites, that are responsible for disease pathology. The latter multiply in the large intestine occasionally causing disease. The large intestine in humans is populated by a number of different bacterial communities and amoebic cells grow in their midst using some as food material. Several studies have shown relationship between bacteria and E. histolytica growth and virulence. However, an understanding of this relationship in human gut environment is not clear. We have investigated the possibility that there may be specific interaction of amoeba with different bacteria present in the gut environment by using a metagenomic pipe line. This was done by incubating bacteria isolated from human fecal material with E. histolytica and then identifying the bacterial population isolated from amoebic cells using a rRNA based metagenomic approach. Our results show that the parasite prefers a few bacterial species. One of these species is Lactobacillus ruminus which has never shown to be associated with E. histolytica.
Collapse
Affiliation(s)
- Lakshmi Rani Iyer
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Anil Kumar Verma
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Jaishree Paul
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
8
|
Shahi P, Moreau F, Chadee K. Entamoeba histolytica Cyclooxygenase-Like Protein Regulates Cysteine Protease Expression and Virulence. Front Cell Infect Microbiol 2019; 8:447. [PMID: 30687644 PMCID: PMC6333869 DOI: 10.3389/fcimb.2018.00447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/17/2018] [Indexed: 12/19/2022] Open
Abstract
The intestinal protozoan parasite Entamoeba histolytica (Eh) causes amebiasis associated with severe diarrhea and/or liver abscess. Eh pathogenesis is multifactorial requiring both parasite virulent molecules and host-induced innate immune responses. Eh-induced host pro-inflammatory responses plays a critical role in disease pathogenesis by causing damage to tissues allowing parasites access to systemic sites. Eh cyclooxygenase (EhCox) derived prostaglandin E2 stimulates the chemokine IL-8 from mucosal epithelial cells that recruits neutrophils to the site of infection to exacerbate disease. At present, it is not known how EhCox is regulated or whether it affects the expression of other proteins in Eh. In this study, we found that gene silencing of EhCox (EhCoxgs) markedly increased endogenous cysteine protease (CP) protein expression and virulence without altering CP gene transcripts. Live virulent Eh pretreated with arachidonic acid substrate to enhance PGE2 production or aspirin to inhibit EhCox enzyme activity or addition of exogenous PGE2 to Eh had no effect on EhCP activity. Increased CP enzyme activity in EhCoxgs was stable and significantly enhanced erythrophagocytosis, cytopathic effects on colonic epithelial cells and elicited pro-inflammatory cytokines in mice colonic loops. Acute infection with EhCoxgs in colonic loops increased inflammation associated with high levels of myeloperoxidase activity. This study has identified EhCox protein as one of the important endogenous regulators of cysteine protease activity. Alterations of CP activity in response to Cox gene silencing may be a negative feedback mechanism in Eh to limit proteolytic activity during colonization that can inadvertently trigger inflammation in the gut.
Collapse
Affiliation(s)
| | | | - Kris Chadee
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
9
|
Entamoeba histolytica Alters Ileal Paneth Cell Functions in Intact and Muc2 Mucin Deficiency. Infect Immun 2018; 86:IAI.00208-18. [PMID: 29685982 DOI: 10.1128/iai.00208-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/14/2018] [Indexed: 12/19/2022] Open
Abstract
Enteric α-defensins, termed cryptdins (Crps) in mice, and lysozymes secreted by Paneth cells contribute to innate host defense in the ileum. Antimicrobial factors, including lysozymes and β-defensins, are often embedded in luminal glycosylated colonic Muc2 mucin secreted by goblet cells that form the protective mucus layer critical for gut homeostasis and pathogen invasion. In this study, we investigated ileal innate immunity against Entamoeba histolytica, the causative agent of intestinal amebiasis, by inoculating parasites in closed ileal loops in Muc2+/+ and Muc2-/- littermates and quantifying Paneth cell localization (lysozyme expression) and function (Crp secretion). Relative to Muc2+/+ littermates, Muc2-/- littermates showed a disorganized mislocalization of Paneth cells that was diffusely distributed, with elevated lysozyme secretion in the crypts and on villi in response to E. histolytica Inhibition of E. histolytica Gal/GalNAc lectin (Gal-lectin) binding with exogenous galactose and Entamoeba histolytica cysteine proteinase 5 (EhCP5)-negative E. histolytica had no effect on parasite-induced erratic Paneth cell lysozyme synthesis. Although the basal ileal expression of Crp genes was unaffected in Muc2-/- mice in response to E. histolytica, there was a robust release of proinflammatory cytokines and Crp peptide secretions in luminal exudates that was also present in the colon. Interestingly, E. histolytica-secreted cysteine proteinases cleaved the proregion of Crp4 but not the active form. These findings define Muc2 mucin as an essential component of ileal barrier function that regulates the localization and function of Paneth cells critical for host defense against microbes.
Collapse
|
10
|
St-Pierre J, Moreau F, Cornick S, Quach J, Begum S, Aracely Fernandez L, Gorman H, Chadee K. The macrophage cytoskeleton acts as a contact sensor upon interaction with Entamoeba histolytica to trigger IL-1β secretion. PLoS Pathog 2017; 13:e1006592. [PMID: 28837696 PMCID: PMC5587335 DOI: 10.1371/journal.ppat.1006592] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/06/2017] [Accepted: 08/18/2017] [Indexed: 01/09/2023] Open
Abstract
Entamoeba histolytica (Eh) is the causative agent of amebiasis, one of the major causes of dysentery-related morbidity worldwide. Recent studies have underlined the importance of the intercellular junction between Eh and host cells as a determinant in the pathogenesis of amebiasis. Despite the fact that direct contact and ligation between Eh surface Gal-lectin and EhCP-A5 with macrophage α5β1 integrin are absolute requirements for NLRP3 inflammasome activation and IL-1β release, many other undefined molecular events and downstream signaling occur at the interface of Eh and macrophage. In this study, we investigated the molecular events at the intercellular junction that lead to recognition of Eh through modulation of the macrophage cytoskeleton. Upon Eh contact with macrophages key cytoskeletal-associated proteins were rapidly post-translationally modified only with live Eh but not with soluble Eh proteins or fragments. Eh ligation with macrophages rapidly activated caspase-6 dependent cleavage of the cytoskeletal proteins talin, Pyk2 and paxillin and caused robust release of the pro-inflammatory cytokine, IL-1β. Macrophage cytoskeletal cleavages were dependent on Eh cysteine proteinases EhCP-A1 and EhCP-A4 but not EhCP-A5 based on pharmacological blockade of Eh enzyme inhibitors and EhCP-A5 deficient parasites. These results unravel a model where the intercellular junction between macrophages and Eh form an area of highly interacting proteins that implicate the macrophage cytoskeleton as a sensor for Eh contact that leads downstream to subsequent inflammatory immune responses. The protozoan parasite Entamoeba histolytica can establish an enteric infection in human hosts that leads to symptoms ranging from diarrhea to abscesses in the liver and the brain. Host susceptibility to amebic infection is in part determined by the quality and potency of the host immune response that occurs once the parasite overcomes the mucus bilayers and colonic epithelial barriers, and invades underlying tissues. At the cellular level, one of the key events that shape the inflammatory response occurs during direct parasite interaction with host macrophages via surface proteins. The ensuing cascades of intracellular signaling events have only partly been uncovered. Interestingly, only direct interaction between live parasites and macrophages, as opposed to soluble factors or dead parasites, is a prerequisite to the generation of a prompt raging pro-inflammatory response. We have sought to further elucidate the mechanisms by which macrophages distinguish live parasites and found that the macrophage cell skeleton undergoes rapid significant alteration upon Eh contact. Furthermore, we uncovered a previously unknown role for two Eh enzymes in triggering macrophage pro-inflammatory responses. Through this work, we gain a better understanding of the molecular interactions that occur at the macrophage-ameba interface that regulate host inflammatory responses.
Collapse
Affiliation(s)
- Joëlle St-Pierre
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - France Moreau
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Steve Cornick
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Jeanie Quach
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Sharmin Begum
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Luz Aracely Fernandez
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Hayley Gorman
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Kris Chadee
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
11
|
Babuta M, Mansuri MS, Bhattacharya S, Bhattacharya A. The Entamoeba histolytica, Arp2/3 Complex Is Recruited to Phagocytic Cups through an Atypical Kinase EhAK1. PLoS Pathog 2015; 11:e1005310. [PMID: 26646565 PMCID: PMC4672914 DOI: 10.1371/journal.ppat.1005310] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/04/2015] [Indexed: 12/11/2022] Open
Abstract
The parasite Entamoeba histolytica is the etiological agent of amoebiasis and phagocytosis plays a key role in virulence of this organism. Signaling pathways involved in activation of cytoskeletal dynamics required for phagocytosis remain to be elucidated. Phagocytosis is initiated with sequential recruitment of EhC2PK, EhCaBP1, EhCaBP3 and an atypical kinase EhAK1 after particle attachment. Here we show that EhARPC1, an essential subunit of the actin branching complex Arp 2/3 is recruited to the phagocytic initiation sites by EhAK1. Imaging, expression knockdown of different molecules and pull down experiments suggest that EhARPC1 interacts with EhAK1 and that it is required during initiation of phagocytosis and phagosome formation. Moreover, recruitment of EhARPC2 at the phagocytosis initiation by EhAK1 is also observed, indicating that the Arp 2/3 complex is recruited. In conclusion, these results suggests a novel mechanism of recruitment of Arp 2/3 complex during phagocytosis in E. histolytica. E. histolytica is the causative agent of amoebiasis and leads to morbidity and mortality in developing countries. It is known to phagocytose immune and non-immune cells, epithelial tissue, erythrocytes and commensal bacteria. The high rate of phagocytosis in this protist parasite provides a unique system to study the signaling cascade that is activated after attachment of the particle to the cell surface. The major objective of the signaling pathway is to generate force for uptake of the particle and this is done through stimulating cytoskeleton to form appropriate structures. However, the molecular mechanism of the same is still largely unknown in E. histolytica, though this pathway has been characterized in many other systems. We have been investigating this pathway by using red blood cells as a particle and have identified different molecules required during the initial stages of phagocytosis. In this study we demonstrate the mechanism by which actin cytoskeleton branching complex EhARP2/3 is recruited at the site of erythrophagocytosis and show that the recruitment is through an atypical alpha kinase EhAK1. A number of different approaches, such as pull down assay, conditional suppression of EhAK1 expression and imaging were used to decipher this pathway. Therefore this study provides a mechanism by which actin dynamics couples to the initial signaling system, activated on attachment of RBC to the cell receptors.
Collapse
Affiliation(s)
- Mrigya Babuta
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - M Shahid Mansuri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- School of Natural Sciences, Department of life Sciences, Shiv Nadar University, Uttar Pradesh, India
- * E-mail: ,
| |
Collapse
|
12
|
Mansuri MS, Bhattacharya S, Bhattacharya A. A novel alpha kinase EhAK1 phosphorylates actin and regulates phagocytosis in Entamoeba histolytica. PLoS Pathog 2014; 10:e1004411. [PMID: 25299184 PMCID: PMC4192601 DOI: 10.1371/journal.ppat.1004411] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/19/2014] [Indexed: 01/09/2023] Open
Abstract
Phagocytosis plays a key role in nutrient uptake and virulence of the protist parasite Entamoeba histolytica. Phagosomes have been characterized by proteomics, and their maturation in the cells has been studied. However, there is so far not much understanding about initiation of phagocytosis and formation of phagosomes at the molecular level. Our group has been studying initiation of phagocytosis and formation of phagosomes in E. histolytica, and have described some of the molecules that play key roles in the process. Here we show the involvement of EhAK1, an alpha kinase and a SH3 domain containing protein in the pathway that leads to formation of phagosomes using red blood cell as ligand particle. A number of approaches, such as proteomics, biochemical, confocal imaging using specific antibodies or GFP tagged molecules, expression down regulation by antisense RNA, over expression of wild type and mutant proteins, were used to understand the role of EhAK1 in phagocytosis. EhAK1 was found in the phagocytic cups during the progression of cups, until closure of phagosomes, but not in the phagosomes themselves. It is recruited to the phagosomes through interaction with the calcium binding protein EhCaBP1. A reduction in phagocytosis was observed when EhAK1 was down regulated by antisense RNA, or by over expression of the kinase dead mutant. G-actin was identified as one of the major substrates of EhAK1. Phosphorylated actin preferentially accumulated at the phagocytic cups and over expression of a phosphorylation defective actin led to defects in phagocytosis. In conclusion, we describe an important component of the pathway that is initiated on attachment of red blood cells to E. histolytica cells. The main function of EhAK1 is to couple signalling events initiated after accumulation of EhC2PK to actin dynamics.
Collapse
Affiliation(s)
- M. Shahid Mansuri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail:
| |
Collapse
|
13
|
Peroxynitrite and peroxiredoxin in the pathogenesis of experimental amebic liver abscess. BIOMED RESEARCH INTERNATIONAL 2014; 2014:324230. [PMID: 24822193 PMCID: PMC4009108 DOI: 10.1155/2014/324230] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 03/12/2014] [Indexed: 12/21/2022]
Abstract
The molecular mechanisms by which Entamoeba histolytica causes amebic liver abscess (ALA) are still not fully understood. Amebic mechanisms of adherence and cytotoxic activity are pivotal for amebic survival but apparently do not directly cause liver abscess. Abundant evidence indicates that chronic inflammation (resulting from an inadequate immune response) is probably the main cause of ALA. Reports referring to inflammatory mechanisms of liver damage mention a repertoire of toxic molecules by the immune response (especially nitric oxide and reactive oxygen intermediates) and cytotoxic substances released by neutrophils and macrophages after being lysed by amoebas (e.g., defensins, complement, and proteases). Nevertheless, recent evidence downplays these mechanisms in abscess formation and emphasizes the importance of peroxynitrite (ONOO−). It seems that the defense mechanism of amoebas against ONOO−, namely, the amebic thioredoxin system (including peroxiredoxin), is superior to that of mammals. The aim of the present text is to define the importance of ONOO− as the main agent of liver abscess formation during amebic invasion, and to explain the superior capacity of amoebas to defend themselves against this toxic agent through the peroxiredoxin and thioredoxin system.
Collapse
|
14
|
Evidence for a bacterial lipopolysaccharide-recognizing G-protein-coupled receptor in the bacterial engulfment by Entamoeba histolytica. EUKARYOTIC CELL 2013; 12:1433-8. [PMID: 23975887 DOI: 10.1128/ec.00150-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Entamoeba histolytica is the causative agent of amoebic dysentery, a worldwide protozoal disease that results in approximately 100,000 deaths annually. The virulence of E. histolytica may be due to interactions with the host bacterial flora, whereby trophozoites engulf colonic bacteria as a nutrient source. The engulfment process depends on trophozoite recognition of bacterial epitopes that activate phagocytosis pathways. E. histolytica GPCR-1 (EhGPCR-1) was previously recognized as a putative G-protein-coupled receptor (GPCR) used by Entamoeba histolytica during phagocytosis. In the present study, we attempted to characterize EhGPCR-1 by using heterologous GPCR expression in Saccharomyces cerevisiae. We discovered that bacterial lipopolysaccharide (LPS) is an activator of EhGPCR-1 and that LPS stimulates EhGPCR-1 in a concentration-dependent manner. Additionally, we demonstrated that Entamoeba histolytica prefers to engulf bacteria with intact LPS and that this engulfment process is sensitive to suramin, which prevents the interactions of GPCRs and G-proteins. Thus, EhGPCR-1 is an LPS-recognizing GPCR that is a potential drug target for treatment of amoebiasis, especially considering the well-established drug targeting to GPCRs.
Collapse
|
15
|
Cysteine protease-binding protein family 6 mediates the trafficking of amylases to phagosomes in the enteric protozoan Entamoeba histolytica. Infect Immun 2013; 81:1820-9. [PMID: 23509141 DOI: 10.1128/iai.00915-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Phagocytosis plays a pivotal role in nutrient acquisition and evasion from the host defense systems in Entamoeba histolytica, the intestinal protozoan parasite that causes amoebiasis. We previously reported that E. histolytica possesses a unique class of a hydrolase receptor family, designated the cysteine protease-binding protein family (CPBF), that is involved in trafficking of hydrolases to lysosomes and phagosomes, and we have also reported that CPBF1 and CPBF8 bind to cysteine proteases or β-hexosaminidase α-subunit and lysozymes, respectively. In this study, we showed by immunoprecipitation that CPBF6, one of the most highly expressed CPBF proteins, specifically binds to α-amylase and γ-amylase. We also found that CPBF6 is localized in lysosomes, based on immunofluorescence imaging. Immunoblot and proteome analyses of the isolated phagosomes showed that CPBF6 mediates transport of amylases to phagosomes. We also demonstrated that the carboxyl-terminal cytosolic region of CPBF6 is engaged in the regulation of the trafficking of CPBF6 to phagosomes. Our proteome analysis of phagosomes also revealed new potential phagosomal proteins.
Collapse
|
16
|
Proteases from Entamoeba spp. and Pathogenic Free-Living Amoebae as Virulence Factors. J Trop Med 2013; 2013:890603. [PMID: 23476670 PMCID: PMC3582061 DOI: 10.1155/2013/890603] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/28/2012] [Indexed: 02/01/2023] Open
Abstract
The standard reference for pathogenic and nonpathogenic amoebae is the human parasite Entamoeba histolytica; a direct correlation between virulence and protease expression has been demonstrated for this amoeba. Traditionally, proteases are considered virulence factors, including those that produce cytopathic effects in the host or that have been implicated in manipulating the immune response. Here, we expand the scope to other amoebae, including less-pathogenic Entamoeba species and highly pathogenic free-living amoebae. In this paper, proteases that affect mucin, extracellular matrix, immune system components, and diverse tissues and cells are included, based on studies in amoebic cultures and animal models. We also include proteases used by amoebae to degrade iron-containing proteins because iron scavenger capacity is currently considered a virulence factor for pathogens. In addition, proteases that have a role in adhesion and encystation, which are essential for establishing and transmitting infection, are discussed. The study of proteases and their specific inhibitors is relevant to the search for new therapeutic targets and to increase the power of drugs used to treat the diseases caused by these complex microorganisms.
Collapse
|
17
|
Bosch DE, Kimple AJ, Manning AJ, Muller RE, Willard FS, Machius M, Rogers SL, Siderovski DP. Structural determinants of RGS-RhoGEF signaling critical to Entamoeba histolytica pathogenesis. Structure 2012; 21:65-75. [PMID: 23260656 DOI: 10.1016/j.str.2012.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Revised: 11/20/2012] [Accepted: 11/20/2012] [Indexed: 10/27/2022]
Abstract
G protein signaling pathways, as key components of physiologic responsiveness and timing, are frequent targets for pharmacologic intervention. Here, we identify an effector for heterotrimeric G protein α subunit (EhGα1) signaling from Entamoeba histolytica, the causative agent of amoebic colitis. EhGα1 interacts with this effector and guanosine triphosphatase-accelerating protein, EhRGS-RhoGEF, in a nucleotide state-selective fashion. Coexpression of EhRGS-RhoGEF with constitutively active EhGα1 and EhRacC leads to Rac-dependent spreading in Drosophila S2 cells. EhRGS-RhoGEF overexpression in E. histolytica trophozoites leads to reduced migration toward serum and lower cysteine protease activity, as well as reduced attachment to, and killing of, host cells. A 2.3 Å crystal structure of the full-length EhRGS-RhoGEF reveals a putative inhibitory helix engaging the Dbl homology domain Rho-binding surface and the pleckstrin homology domain. Mutational analysis of the EhGα1/EhRGS-RhoGEF interface confirms a canonical "regulator of G protein signaling" domain rather than a RhoGEF-RGS ("rgRGS") domain, suggesting a convergent evolution toward heterotrimeric and small G protein cross-talk.
Collapse
Affiliation(s)
- Dustin E Bosch
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Adam J Kimple
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alyssa J Manning
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Robin E Muller
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Francis S Willard
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mischa Machius
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephen L Rogers
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David P Siderovski
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Robert C. Byrd Health Sciences Center, Morgantown, WV 26506, USA.
| |
Collapse
|
18
|
Bosch DE, Kimple AJ, Muller RE, Giguère PM, Machius M, Willard FS, Temple BRS, Siderovski DP. Heterotrimeric G-protein signaling is critical to pathogenic processes in Entamoeba histolytica. PLoS Pathog 2012; 8:e1003040. [PMID: 23166501 PMCID: PMC3499586 DOI: 10.1371/journal.ppat.1003040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 10/03/2012] [Indexed: 01/08/2023] Open
Abstract
Heterotrimeric G-protein signaling pathways are vital components of physiology, and many are amenable to pharmacologic manipulation. Here, we identify functional heterotrimeric G-protein subunits in Entamoeba histolytica, the causative agent of amoebic colitis. The E. histolytica Gα subunit EhGα1 exhibits conventional nucleotide cycling properties and is seen to interact with EhGβγ dimers and a candidate effector, EhRGS-RhoGEF, in typical, nucleotide-state-selective fashions. In contrast, a crystal structure of EhGα1 highlights unique features and classification outside of conventional mammalian Gα subfamilies. E. histolytica trophozoites overexpressing wildtype EhGα1 in an inducible manner exhibit an enhanced ability to kill host cells that may be wholly or partially due to enhanced host cell attachment. EhGα1-overexpressing trophozoites also display enhanced transmigration across a Matrigel barrier, an effect that may result from altered baseline migration. Inducible expression of a dominant negative EhGα1 variant engenders the converse phenotypes. Transcriptomic studies reveal that modulation of pathogenesis-related trophozoite behaviors by perturbed heterotrimeric G-protein expression includes transcriptional regulation of virulence factors and altered trafficking of cysteine proteases. Collectively, our studies suggest that E. histolytica possesses a divergent heterotrimeric G-protein signaling axis that modulates key aspects of cellular processes related to the pathogenesis of this infectious organism.
Collapse
Affiliation(s)
- Dustin E. Bosch
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Adam J. Kimple
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Robin E. Muller
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Patrick M. Giguère
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Mischa Machius
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Francis S. Willard
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Brenda R. S. Temple
- Department of Biochemistry & Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- R. L. Juliano Structural Bioinformatics Core, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - David P. Siderovski
- Department of Physiology & Pharmacology, West Virginia University School of Medicine, Robert C. Byrd Health Sciences Center, Morgantown, West Virginia, United States of America
| |
Collapse
|
19
|
RETRACTED: Evaluation of the efficacy of a recombinant Entamoeba histolytica cysteine proteinase (EhCP112) antigen in minipig. Exp Parasitol 2012; 131:258-60. [DOI: 10.1016/j.exppara.2012.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 04/06/2012] [Indexed: 11/24/2022]
|
20
|
He GZ. WITHDRAWN: Use of a recombinant Entamoeba histolytica cysteine proteinase antigen to evaluation of the efficacy of immune protective responses in miniature pigs. Exp Parasitol 2012:S0014-4894(12)00119-1. [PMID: 22522180 DOI: 10.1016/j.exppara.2012.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 04/01/2012] [Indexed: 11/26/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Guang-Zhi He
- Guiyang College of Traditional Chinese Medicine, Guiyang 550002, Guizhou Province, China
| |
Collapse
|
21
|
He GZ, Feng Y, Deng SX, An CW. RETRACTED: Cloning, expression and evaluation of the efficacy of a recombinant Entamoeba histolytica cysteine proteinase (EhCP4) antigen in minipig. Exp Parasitol 2012; 130:412-5. [DOI: 10.1016/j.exppara.2012.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 01/19/2012] [Accepted: 01/25/2012] [Indexed: 10/14/2022]
|
22
|
Furukawa A, Nakada-Tsukui K, Nozaki T. Novel transmembrane receptor involved in phagosome transport of lysozymes and β-hexosaminidase in the enteric protozoan Entamoeba histolytica. PLoS Pathog 2012; 8:e1002539. [PMID: 22383874 PMCID: PMC3285589 DOI: 10.1371/journal.ppat.1002539] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 01/05/2012] [Indexed: 11/30/2022] Open
Abstract
Lysozymes and hexosaminidases are ubiquitous hydrolases in bacteria and eukaryotes. In phagocytic lower eukaryotes and professional phagocytes from higher eukaryotes, they are involved in the degradation of ingested bacteria in phagosomes. In Entamoeba histolytica, which is the intestinal protozoan parasite that causes amoebiasis, phagocytosis plays a pivotal role in the nutrient acquisition and the evasion from the host defense systems. While the content of phagosomes and biochemical and physiological roles of the major phagosomal proteins have been established in E. histolytica, the mechanisms of trafficking of these phagosomal proteins, in general, remain largely unknown. In this study, we identified and characterized for the first time the putative receptor/carrier involved in the transport of the above-mentioned hydrolases to phagosomes. We have shown that the receptor, designated as cysteine protease binding protein family 8 (CPBF8), is localized in lysosomes and mediates transport of lysozymes and β-hexosaminidase α-subunit to phagosomes when the amoeba ingests mammalian cells or Gram-positive bacillus Clostridium perfringens. We have also shown that the binding of CPBF8 to the cargos is mediated by the serine-rich domain, more specifically three serine residues of the domain, which likely contains trifluoroacetic acid-sensitive O-phosphodiester-linked glycan modifications, of CPBF8. We further showed that the repression of CPBF8 by gene silencing reduced the lysozyme and β-hexosaminidase activity in phagosomes and delayed the degradation of C. perfringens. Repression of CPBF8 also resulted in decrease in the cytopathy against the mammalian cells, suggesting that CPBF8 may also be involved in, besides the degradation of ingested bacteria, the pathogenesis against the mammalian hosts. This work represents the first case of the identification of a transport receptor of hydrolytic enzymes responsible for the degradation of microorganisms in phagosomes. Phagocytosis is the cellular process of engulfing solid particles to form an internal phagosome in protozoa, algae, and professional phagocytes of multicellular eukaryotic organisms. In phagocytic protozoa, phagocytosis is involved in the acquisition of nutrients, and the evasion from the host immune system and inflammation. While hydrolytic enzymes that are essential for the efficient and regulated degradation of phagocytosed particles, such as bacteria, fungi, and eukaryotic organisms, have been characterized, the mechanisms of the transport of these proteins are poorly understood. In the present study, we have demonstrated, for the first time, the molecular mechanisms of how the digestive enzymes are transported to phagosomes. Understanding of such mechanisms of the transport of phagosomal proteins at the molecular level may lead to the identification of a novel target for the development of new preventive measures against parasitic infections caused by phagocytic protozoa.
Collapse
Affiliation(s)
- Atsushi Furukawa
- Department of Parasitology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
- Department of Parasitology, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Japan
| | - Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
23
|
He GZ. RETRACTED: Entamoeba histolytica: Cloning, expression and evaluation of the efficacy of a recombinant amebiasis cysteine proteinase gene (ACP1) antigen in minipig. Exp Parasitol 2012; 130:126-9. [DOI: 10.1016/j.exppara.2011.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 11/23/2011] [Accepted: 11/24/2011] [Indexed: 12/28/2022]
|
24
|
He GZ, Deng SX, Tian WY, Feng Y. Evaluation of the efficacy of a recombinant Entamoeba histolytica cysteine proteinase gene (EhCP5) antigen in Minipig. Exp Parasitol 2011; 130:253-6. [PMID: 22202181 DOI: 10.1016/j.exppara.2011.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 12/09/2011] [Accepted: 12/13/2011] [Indexed: 12/31/2022]
Abstract
Entamoeba histolytica cysteine proteinase gene 5(EhCP5) is one of the major proteinase genes of all EhCP-transcripts. The amebiasis cysteine proteinase gene encoding an antigen from E. histolytica, as well as the recombinant EhCP5, obtained by cloning and expression of the EhCP5 gene in heterologous host Escherichia coli BL-21 (DE3), were used to evaluate their ability to induce immune protective responses in Minipig against challenge infection in a minipig-E. histolytica model. There was a 52.27% reduction (P<0.001) in the group of recovery of challenged E. histolytica compared with that in the control group. Specific anti-EhCP5 antibodies from immune protected minipig had significantly higher levels of immunoglobulin G (IgG) (P<0.0001). Our data will help to know the mechanism of vaccinal protection of E. histolytica.
Collapse
Affiliation(s)
- Guang-Zhi He
- Guiyang College of Traditional Chinese Medicine, Guiyang 550002, Guizhou Province, China.
| | | | | | | |
Collapse
|
25
|
Christy NCV, Petri WA. Mechanisms of adherence, cytotoxicity and phagocytosis modulate the pathogenesis of Entamoeba histolytica. Future Microbiol 2011; 6:1501-19. [DOI: 10.2217/fmb.11.120] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The unicellular parasite Entamoeba histolytica, the causative agent of the human disease amebiasis, has traditionally been distinguished from its nonpathogenic cousin Entamoeba dispar by its propensity for the ingestion of erythrocytes. This classic feature, along with the parasite’s ability to cause extensive host cell death, are critical mechanisms of pathogenesis during human infection. Recent advances have led to a greater understanding of the molecular components that allow E. histolytica to kill and phagocytose extracellular targets during human infection and include detailed studies of the role of the parasite’s cysteine proteinases and other effectors of cytotoxicity, as well as the mechanisms of ligand recognition, signaling and intracellular trafficking during phagocytosis.
Collapse
Affiliation(s)
- Nathaniel CV Christy
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, 22908, USA
| | | |
Collapse
|
26
|
Serrano-Luna J, Gutiérrez-Meza M, Mejía-Zepeda R, Galindo-Gómez S, Tsutsumi V, Shibayama M. Effect of phosphatidylcholine-cholesterol liposomes on Entamoeba histolytica virulence. Can J Microbiol 2011; 56:987-95. [PMID: 21164568 DOI: 10.1139/w10-088] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Trophozoites of Entamoeba histolytica HM-1:IMSS become less virulent after long-term maintenance in axenic cultures. The factors responsible for the loss of virulence during in vitro cultivation remain unclear. However, it is known that in vitro cultivation of amoeba in culture medium supplemented with cholesterol restores their virulence. In this study, we analyzed the effect of adding phosphatidylcholine-cholesterol (PC-Chol) liposomes to the culture medium and evaluated the effect of this lipid on various biochemical and biological functions of E. histolytica HM-1:IMSS in terms of its virulence. The addition of PC-Chol liposomes to the culture medium maintained the virulence of these parasites against hamster liver at the same level as the original virulent E. histolytica strain, even though these amoebae were maintained without passage through hamster liver for 18 months. The trophozoites also showed increased endocytosis, erythrophagocytosis, and carbohydrate residue expression on the amoebic surface. Protease activities were also modified by the presence of cholesterol in the culture medium. These findings indicate the capacity of cholesterol to preserve amoeba virulence and provide an alternative method for the maintenance of virulent E. histolytica trophozoites without the need for in vivo procedures.
Collapse
Affiliation(s)
- Jesús Serrano-Luna
- Department of Cell Biology, Center for Research and Advanced Studies, Av. Instituto Politécnico Nacional 2508, Zacatenco 07360, México D.F., City 07360, México.
| | | | | | | | | | | |
Collapse
|
27
|
Biller L, Schmidt H, Krause E, Gelhaus C, Matthiesen J, Handal G, Lotter H, Janssen O, Tannich E, Bruchhaus I. Comparison of two genetically related Entamoeba histolytica cell lines derived from the same isolate with different pathogenic properties. Proteomics 2009; 9:4107-20. [PMID: 19688750 DOI: 10.1002/pmic.200900022] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Entamoeba histolytica is known for its extraordinary capacity to destroy human tissues, leading to invasive diseases such as ulcerative colitis or extra-intestinal abscesses. In order to identify the virulence factors of this parasite phenotypes and proteomes of two recently identified genetically related cell lines (A and B), derived from the laboratory E. histolytica isolate HM-1:IMSS, were compared. Both cell lines are indistinguishable on the basis of highly polymorphic tandem repeat DNA sequences. However, cell line A is incapable to induce liver abscesses in experimentally infected rodents, whereas cell line B provokes considerable abscesses. Phenotypic analyses revealed increased hemolytic activity, lower growth rate, smaller cell size, reduced cysteine peptidase activity and lower resistance to nitric oxide stress for cell line A. In contrast, no differences between the two cell lines were found for cytopathic activity, erythrophagocytosis, digestion of erythrocytes or resistance to complement, hydrogen peroxide and superoxide radical anions. Proteomic comparison by 2-D DIGE followed by MS, identified a total of 21 proteins with higher abundance in cell line A and ten proteins with higher abundance in cell line B. Remarkably, three differentially up-regulated antioxidants were exclusively found in the pathogenic cell line B. Notably, only for two differentially regulated proteins, namely a Fe-hydrogenase and a C2 domain protein, a similar type was found at the level of transcription. Summarized, a defined set of different proteins could be identified between cell lines A and B. These molecules may have an important role in amoeba pathogenicity.
Collapse
Affiliation(s)
- Laura Biller
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Trejos-Suárez J, Castaño-Osorio JC. Factores de virulencia del patógeno intestinal Entamoeba histolytica. INFECTIO 2009. [DOI: 10.1016/s0123-9392(09)70731-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
29
|
Irmer H, Tillack M, Biller L, Handal G, Leippe M, Roeder T, Tannich E, Bruchhaus I. Major cysteine peptidases ofEntamoeba histolyticaare required for aggregation and digestion of erythrocytes but are dispensable for phagocytosis and cytopathogenicity. Mol Microbiol 2009; 72:658-67. [DOI: 10.1111/j.1365-2958.2009.06672.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
30
|
Jain R, Kumar S, Gourinath S, Bhattacharya S, Bhattacharya A. N- and C-terminal domains of the calcium binding protein EhCaBP1 of the parasite Entamoeba histolytica display distinct functions. PLoS One 2009; 4:e5269. [PMID: 19384409 PMCID: PMC2668073 DOI: 10.1371/journal.pone.0005269] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Accepted: 03/18/2009] [Indexed: 11/23/2022] Open
Abstract
Entamoeba histolytica, a protozoan parasite, is the causative agent of amoebiasis, and calcium signaling is thought to be involved in amoebic pathogenesis. EhCaBP1, a Ca2+ binding protein of E. histolytica, is essential for parasite growth. High resolution crystal structure of EhCaBP1 suggested an unusual arrangement of the EF-hand domains in the N-terminal part of the structure, while C-terminal part of the protein was not traced. The structure revealed a trimer with amino terminal domains of the three molecules interacting in a head-to-tail manner forming an assembled domain at the interface with EF1 and EF2 motifs of different molecules coming close to each other. In order to understand the specific roles of the two domains of EhCaBP1, the molecule was divided into two halves, and each half was separately expressed. The domains were characterized with respect to their structure, as well as specific functional features, such as ability to activate kinase and bind actin. The domains were also expressed in E. histolytica cells along with green fluorescent protein. The results suggest that the N-terminal domain retains some of the properties, such as localization in phagocytic cups and activation of kinase. Crystal structure of EhCaBP1 with Phenylalanine revealed that the assembled domains, which are similar to Calmodulin N-terminal domain, bind to Phenylalanine revealing the binding mode to the target proteins. The C-terminal domain did not show any of the activities tested. However, over-expression in amebic cells led to a dominant negative phenotype. The results suggest that the two domains of EhCaBP1 are functionally and structurally different from each other. Both the domains are required for structural stability and full range of functional diversity.
Collapse
Affiliation(s)
- Ruchi Jain
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shivesh Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail:
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW To highlight the promise of parasite proteases as targets for development of new antiparasitic chemotherapy. Proteolytic enzymes play key roles in the life cycle of protozoan parasites or the pathogenesis of diseases they produce. These roles include processing of host or parasite surface proteins for invasion of host cells, digestion of host proteins for nutrition, and inactivation of host immune defense mediators. RECENT FINDINGS Drug development for other markets has shown that proteases are druggable targets, and protease inhibitors are now licensed or in clinical development to treat hypertension, diabetes, thrombosis, osteoporosis, infectious diseases, and cancer. Several protease targets have been validated by genetic or chemical knockout in protozoan parasites. Many other parasite proteases appear promising as targets, but require more work for validation, or to identify viable drug leads. Because homologous proteases function as key enzymes in several parasites, targeting these proteases may allow development of a single compound, or a set of similar compounds, that target multiple diseases including malaria, trypanosomiasis, leishmaniasis, toxoplasmosis, cryptosporidiosis, and amebiasis. SUMMARY Proteases have been validated as targets in a number of parasitic infections. Proteases are druggable targets as evidenced by effective antiprotease drugs for the treatment of many human diseases including hypertension and AIDS. Future drug development targeting parasite proteases will be aided by the strong foundation of biochemical, structural, and computational databases already published or available online.
Collapse
Affiliation(s)
- James H McKerrow
- Department of Pathology, University of California San Francisco, 1700 4th Street, San Francisco, CA 94158-2330, USA.
| | | | | | | |
Collapse
|
32
|
Mirelman D, Anbar M, Bracha R. Epigenetic transcriptional gene silencing in Entamoeba histolytica. IUBMB Life 2008; 60:598-604. [PMID: 18493998 DOI: 10.1002/iub.96] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The human intestinal pathogen Entamoeba histolytica has a number of virulence factors which can cause damage to the host. Transcriptional silencing of the gene coding for one of its major toxic molecules, the amoebapore (Ehap-a), occurred following the transfection of amoebic trophozoites with a plasmid containing the 5' promoter region of Ehap-a as well as a truncated segment of a neighboring, upstream SINE1 element that is transcribed from the opposite strand. Silencing was dependent on the presence of the truncated SINE1 sequences. Small amounts of short (approximately 140 n), ssRNA molecules with homology to SINE1 were detected in the silenced amoeba but no siRNA. The silenced Ehap-a gene domain had a chromatin modification indicating transcriptional inactivation without any DNA methylation. Removal of the plasmid did not restore transcription of Ehap-a. Transcription analysis by microarrays revealed that a number of additional genes were silenced and some were also up-regulated. Transfections of amoeba which already had a silenced Ehap-a, with a plasmid containing a second gene ligated to the 5' upstream region of Ehap-a, enabled the silencing, in-trans, of other genes of choice. The nonvirulent phenotype of the gene-silenced amoeba was demonstrated in various assays and the results suggest that they may have a potential use for vaccination.
Collapse
Affiliation(s)
- David Mirelman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | |
Collapse
|
33
|
Mirza H, Tan KSW. Blastocystis exhibits inter- and intra-subtype variation in cysteine protease activity. Parasitol Res 2008; 104:355-61. [PMID: 18846388 DOI: 10.1007/s00436-008-1203-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 09/12/2008] [Indexed: 12/11/2022]
Abstract
Blastocystis is an enteric protistan parasite of zoonotic potential and poorly understood pathogenesis. We have previously reported that Blastocystis cysteine proteases can degrade human secretory IgA and are also responsible for the induction of IL-8 response in colonic epithelial cells in vitro. Differences in virulence between Blastocystis subtypes have been reported recently in both animal models and clinical studies, although cellular mechanisms for these differences are currently unknown. Parasites such as Giardia intestinalis and Entamoeba histolytica have distinct virulent and non-virulent strains which may be attributable to variations in their cysteine proteases. In the present study, variations in cysteine protease activity was observed between avian (subtype 7) and rodent (subtype 4) isolates of Blastocystis with avian isolates exhibiting approximately two times higher peak cysteine protease activity than rodent isolates. Cysteine protease activity and parasite cell size varied over time within cultures of the same isolate. An association between parasite cell size and protease activity was observed.
Collapse
Affiliation(s)
- Haris Mirza
- Laboratory of Molecular and Cellular Parasitology, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Kent Ridge 117597, Singapore
| | | |
Collapse
|
34
|
Abstract
Rhomboid intramembrane proteases occur throughout the kingdoms of life. In this issue of Genes & Development, Baxt and colleagues (pp. 1636-1646) report that the single proteolytic rhomboid (EhROM1) from Entamoeba histolytica cleaves cell surface galactose-binding or N-acetylgalactosamine-binding (Gal/Gal-NAc) lectins. EhROM1 and lectins colocalize during phagocytosis and receptor capping. EhROM1 is found at the base of the cap rather than in the cap proper, suggesting a role in receptor shedding and implying that EhROM1 is crucial for amoebal infection.
Collapse
Affiliation(s)
- Robert B Rawson
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
35
|
Jain R, Santi-Rocca J, Padhan N, Bhattacharya S, Guillen N, Bhattacharya A. Calcium-binding protein 1 of Entamoeba histolytica transiently associates with phagocytic cups in a calcium-independent manner. Cell Microbiol 2008; 10:1373-89. [PMID: 18341598 DOI: 10.1111/j.1462-5822.2008.01134.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ruchi Jain
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | | | | | | |
Collapse
|
36
|
Boettner DR, Huston CD, Linford AS, Buss SN, Houpt E, Sherman NE, Petri WA. Entamoeba histolytica phagocytosis of human erythrocytes involves PATMK, a member of the transmembrane kinase family. PLoS Pathog 2008; 4:e8. [PMID: 18208324 PMCID: PMC2211552 DOI: 10.1371/journal.ppat.0040008] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 12/10/2007] [Indexed: 11/19/2022] Open
Abstract
Entamoeba histolytica is the cause of amebic colitis and liver abscess. This parasite induces apoptosis in host cells and utilizes exposed ligands such as phosphatidylserine to ingest the apoptotic corpses and invade deeper into host tissue. The purpose of this work was to identify amebic proteins involved in the recognition and ingestion of dead cells. A member of the transmembrane kinase family, phagosome-associated TMK96 (PATMK), was identified in a proteomic screen for early phagosomal proteins. Anti-peptide affinity-purified antibody produced against PATMK demonstrated that it was a type I integral membrane protein that was expressed on the trophozoite surface, and that co-localized with human erythrocytes at the site of contact. The role of PATMK in erythrophagocytosis in vitro was demonstrated by: (i) incubation of ameba with anti-PATMK antibodies; (ii) PATMK mRNA knock-down using a novel shRNA expression system; and (iii) expression of a carboxy-truncation of PATMK (PATMKΔ932). Expression of the carboxy-truncation of PATMKΔ932 also caused a specific reduction in the ability of E. histolytica to establish infection in the intestinal model of amebiasis, however these amebae retained the ability to cause hepatic abscesses when directly injected in the liver. In conclusion, PATMK was identified as a member of the TMK family that participates in erythrophagocytosis and is uniquely required for intestinal infection. There is a highly ordered process by which the parasite Entamoeba histolytica interacts with human cells. Adherence via a parasite lectin is followed in seconds by killing, with only the corpse and not a living cell ingested by the ameba. This process is so central to pathogenesis that clinicians use the presence of ingested erythrocytes to identify E. histolytica and distinguish it from harmless commensal amebae of the gut. We hypothesized that identification of molecules involved in the ingestion of the corpse might provide insight into how amebae cause colitis. We identified a member of the transmembrane kinase family as an early component of the phagosome. Inhibition of this kinase blocked red cell ingestion and prevented amebae from colonizing and invading the gut. There was no impact on dominant-negative parasites to cause liver abscess, suggesting the pathogenesis program differs between anatomic sites. Future studies of the transmembrane kinanse in erythrophagocytosis may provide insight into how amebae colonize and invade the gut, with the ultimate goal of preventing disease.
Collapse
Affiliation(s)
- Douglas R Boettner
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Christopher D Huston
- Department of Medicine, University of Vermont, Burlington, Vermont, United States of America
- Department of Microbiology, University of Vermont, Burlington, Vermont, United States of America
| | - Alicia S Linford
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Sarah N Buss
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Eric Houpt
- Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Nicholas E Sherman
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
| | - William A Petri
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
37
|
The Entamoeba histolytica genome: primary structure and expression of proteolytic enzymes. BMC Genomics 2007; 8:170. [PMID: 17567921 PMCID: PMC1913524 DOI: 10.1186/1471-2164-8-170] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Accepted: 06/14/2007] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND A number of studies have shown that peptidases and in particular cysteine peptidases constitute major pathogenicity factors in Entamoeba histolytica. Recent studies have suggested that a considerable number of genes coding for proteolytic enzymes are present within the E. histolytica genome and questions remain about the mode of expression of the various molecules. RESULTS By homology search within the recently published amoeba genome, we identified a total of 86 E. histolytica genes coding for putative peptidases, including 46 recently described peptidase genes. In total these comprise (i) 50 cysteine peptidases of different families but most of which belong to the C1 papain superfamily, (ii) 22 different metallo peptidases from at least 11 different families, (iii) 10 serine peptidases belonging to 3 different families, and (iv) 4 aspartic peptidases of only one family. Using an oligonucleotide microarray, peptidase gene expression patterns of 7 different E. histolytica isolates as well as of heat stressed cells were analysed. A total of 21 out of 79 amoeba peptidase genes analysed were found to be significantly expressed under standard axenic culture conditions whereas the remaining are not expressed or at very low levels only. In heat-stressed cells the expression of 2 and 3 peptidase genes, respectively, were either decreased or increased. Only minor differences were observed between the various isolates investigated, despite the fact that these isolates were originated from asymptomatic individuals or from patients with various forms of amoebic diseases. CONCLUSION Entamoeba histolytica possesses a large number of genes coding for proteolytic enzymes. Under standard culture conditions or upon heat-stress only a relatively small number of these genes is significantly expressed and only very few variations become apparent between various clinical E. histolytica isolates, calling into question the importance of these enzymes in E. histolytica pathogenicity. Further studies are required to define the precise role of most of the proteolytic enzyme for amoeba cell biology but in particular for E. histolytica virulence.
Collapse
|
38
|
Meléndez-López SG, Herdman S, Hirata K, Choi MH, Choe Y, Craik C, Caffrey CR, Hansell E, Chávez-Munguía B, Chen YT, Roush WR, McKerrow J, Eckmann L, Guo J, Stanley SL, Reed SL. Use of recombinant Entamoeba histolytica cysteine proteinase 1 to identify a potent inhibitor of amebic invasion in a human colonic model. EUKARYOTIC CELL 2007; 6:1130-6. [PMID: 17513563 PMCID: PMC1951106 DOI: 10.1128/ec.00094-07] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cysteine proteinases are key virulence factors of the protozoan parasite Entamoeba histolytica. We have shown that cysteine proteinases play a central role in tissue invasion and disruption of host defenses by digesting components of the extracellular matrix, immunoglobulins, complement, and cytokines. Analysis of the E. histolytica genome project has revealed more than 40 genes encoding cysteine proteinases. We have focused on E. histolytica cysteine proteinase 1 (EhCP1) because it is one of two cysteine proteinases unique to invasive E. histolytica and is highly expressed and released. Recombinant EhCP1 was expressed in Escherichia coli and refolded to an active enzyme with a pH optimum of 6.0. We used positional-scanning synthetic tetrapeptide combinatorial libraries to map the specificity of the P1 to P4 subsites of the active site cleft. Arginine was strongly preferred at P2, an unusual specificity among clan CA proteinases. A new vinyl sulfone inhibitor, WRR483, was synthesized based on this specificity to target EhCP1. Recombinant EhCP1 cleaved key components of the host immune system, C3, immunoglobulin G, and pro-interleukin-18, in a time- and dose-dependent manner. EhCP1 localized to large cytoplasmic vesicles, distinct from the sites of other proteinases. To gain insight into the role of secreted cysteine proteinases in amebic invasion, we tested the effect of the vinyl sulfone cysteine proteinase inhibitors K11777 and WRR483 on invasion of human colonic xenografts. The resultant dramatic inhibition of invasion by both inhibitors in this human colonic model of amebiasis strongly suggests a significant role of secreted amebic proteinases, such as EhCP1, in the pathogenesis of amebiasis.
Collapse
Affiliation(s)
- Samuel G Meléndez-López
- Department of Pathology, University of California, San Diego, San Diego, California 92103-8416, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|