1
|
Li J, Yu M, Liu W, Zheng Z, Liu J, Shi R, Zeb A, Wang Q, Wang J. Effects of compound immobilized bacteria on remediation and bacterial community of PAHs-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136941. [PMID: 39709818 DOI: 10.1016/j.jhazmat.2024.136941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/28/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Immobilized microorganism technology is expected to enhance microbial activity and stability and is considered an effective technique for removing soil polycyclic aromatic hydrocarbons (PAHs). However, there are limited high-efficiency and stable bacterial preparations available. In this study, alkali-modified biochar (Na@CBC700) was used as the adsorption carrier, sodium alginate (SA) and polyvinyl alcohol (PVA) as embedding agents, and CaCl2 as the cross-linking agent to prepare immobilized Acinetobacter (CoIMB) through a composite immobilization method. The CoIMB preparation was optimized using response surface methodology and applied to PAH-contaminated soil remediation. Results indicated that CoIMB exhibited improved mechanical strength and microbial activity, achieving degradation rates of 2-5 rings PAHs up to 82.41 %, averaging 1.5 times higher than CK. High dose CoIMB treatment enhanced soil microbial community diversity, enriching Acinetobacter, and increased the abundance of functional genes related to fatty acid metabolism and energy metabolism (K00249, K01897, K00059). This composite immobilized bacterial particle provides a novel, broad-spectrum, and cost-effective solution for remediating organic pollutants in soil environments.
Collapse
Affiliation(s)
- Jiantao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Miao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| | - Zeqi Zheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| |
Collapse
|
2
|
Huang Q, Dai Y, Yang G, Zhuang L, Luo C, Li J, Zhang G. New insights into autochthonous fungal bioaugmentation mechanisms for recalcitrant petroleum hydrocarbon components using stable isotope probing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178082. [PMID: 39700984 DOI: 10.1016/j.scitotenv.2024.178082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Autochthonous fungal bioaugmentation (AFB) is a promising strategy for the microbial remediation of petroleum hydrocarbon (PH)-contaminated soils. However, the mechanisms underlying AFB, particularly for degrading recalcitrant PH components, are not fully understood. This study employed stable isotope probing (SIP) and high-throughput sequencing to investigate the AFB mechanisms of two hydrocarbon-degrading fungi, Fusarium solani LJD-11 and Aspergillus fumigatus LJD-29, focusing on three challenging PH components: n-Hexadecane (n-Hex), Benzo[a]pyrene (BaP), and Dibenzothiophene (DBT). Our findings indicate that both fungal strains significantly enhanced pollutant removal rates, with combined application yielding optimal results. AFB treatment reduced the microbial diversity index and altered the soil microbial community, especially affecting fungal populations. A significant correlation between the microbial diversity index and degradation efficiency suggests that greater diversity enhances pollutant removal. SIP analysis showed that LJD-11 and LJD-29 could directly assimilate n-Hex and DBT, but not BaP. Correlation analyses between functional microorganisms and other biological indicators suggest that the removal of pollutants is also attributable to indigenous functional bacteria. Additionally, non-inoculated functional fungi present in the soil play a crucial role in BaP degradation. These findings reveal distinct degradation pathways for the three pollutants. The addition of carrier substrate reduced the complexity of the network, while AFB treatment restored it. In addition, the combined fungal treatment resulted in higher network parameters, leading to a more complex and stable network structure. These results provide insights into the mechanisms of AFB for degrading recalcitrant PH components, underscoring its potential for in situ bioremediation of petroleum-contaminated soils.
Collapse
Affiliation(s)
- Qihui Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China; State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yeliang Dai
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Ningbo Research Institute of Ecological and Environmental Sciences, Ningbo 315000, China
| | - Guiqin Yang
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China
| | - Li Zhuang
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China.
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
3
|
Silva Monteiro JP, da Silva AF, Delgado Duarte RT, José Giachini A. Exploring Novel Fungal-Bacterial Consortia for Enhanced Petroleum Hydrocarbon Degradation. TOXICS 2024; 12:913. [PMID: 39771128 PMCID: PMC11728489 DOI: 10.3390/toxics12120913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025]
Abstract
Bioremediation, involving the strategic use of microorganisms, has proven to be a cost-effective alternative for restoring areas impacted by persistent contaminants such as polycyclic aromatic hydrocarbons (PAHs). In this context, the aim of this study was to explore hydrocarbon-degrading microbial consortia by prospecting native species from soils contaminated with blends of diesel and biodiesel (20% biodiesel/80% diesel). After enrichment in a minimal medium containing diesel oil as the sole carbon source and based on 16S rRNA, Calmodulin and β-tubulin gene sequencing, seven fungi and 12 bacteria were identified. The drop collapse test indicated that all fungal and four bacterial strains were capable of producing biosurfactants with a surface tension reduction of ≥20%. Quantitative analysis of extracellular laccase production revealed superior enzyme activity among the bacterial strains, particularly for Stenotrophomonas maltophilia P05R11. Following antagonistic testing, four compatible consortia were formulated. The degradation analysis of PAHs and TPH (C5-C40) present in diesel oil revealed a significantly higher degradation capacity for the consortia compared to isolated strains. The best results were observed for a mixed bacterial-fungal consortium, composed of Trichoderma koningiopsis P05R2, Serratia marcescens P10R19 and Burkholderia cepacia P05R9, with a degradation spectrum of ≥91% for all eleven PAHs analyzed, removing 93.61% of total PAHs, and 93.52% of TPH (C5-C40). Furthermore, this study presents the first report of T. koningiopsis as a candidate for bioremediation of petroleum hydrocarbons.
Collapse
Affiliation(s)
- João Paulo Silva Monteiro
- Postgraduate Program in Biotechnology and Biosciences, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina—Campus Reitor João David Ferreira Lima, Florianópolis 88040-900, SC, Brazil; (R.T.D.D.); (A.J.G.)
| | - André Felipe da Silva
- Bioprocess and Biotechnology Engineering Undergraduate Program, Federal University of Tocantins, Gurupi 77402-970, TO, Brazil;
| | - Rubens Tadeu Delgado Duarte
- Postgraduate Program in Biotechnology and Biosciences, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina—Campus Reitor João David Ferreira Lima, Florianópolis 88040-900, SC, Brazil; (R.T.D.D.); (A.J.G.)
| | - Admir José Giachini
- Postgraduate Program in Biotechnology and Biosciences, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina—Campus Reitor João David Ferreira Lima, Florianópolis 88040-900, SC, Brazil; (R.T.D.D.); (A.J.G.)
| |
Collapse
|
4
|
Padilla-Garfias F, Araiza-Villanueva M, Calahorra M, Sánchez NS, Peña A. Advances in the Degradation of Polycyclic Aromatic Hydrocarbons by Yeasts: A Review. Microorganisms 2024; 12:2484. [PMID: 39770687 PMCID: PMC11728250 DOI: 10.3390/microorganisms12122484] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/20/2024] [Accepted: 11/30/2024] [Indexed: 01/16/2025] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are toxic organic compounds produced during the incomplete combustion of organic materials and are commonly found in the environment due to anthropogenic activities such as industrial and vehicular emissions as well as natural sources, mainly volcanic eruptions and forest fires. PAHs are well known for their bioaccumulative capacity and environmental persistence, raising concerns due to their adverse effects on human health, including their carcinogenic potential. In recent years, bioremediation has emerged as a promising, effective, and sustainable solution for the degradation of PAHs in contaminated environments. In this context, yeasts have proven to be key microorganisms in the degradation of these compounds, owing to their ability to metabolize them through a series of enzymatic pathways. This review explores the advancements in yeast-mediated degradation of PAHs, with a particular focus on the role of enzymes such as cytochrome P450 (CYPs), epoxide hydrolases (EHs), and glutathione S-transferases (GSTs), which facilitate the breakdown of these compounds. The review also discusses the applications of genetic engineering to enhance the efficiency of yeasts in PAH degradation and the use of omics technologies to predict the catabolic potential of these organisms. Additionally, it examines studies addressing the degradation of benzo[a]pyrene (BaP) by yeasts such as Debaryomyces hansenii, and the potential future implications of omics sciences for developing new bioremediation.
Collapse
Affiliation(s)
- Francisco Padilla-Garfias
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Mexico City 04510, Mexico; (M.A.-V.); (M.C.); (N.S.S.)
| | | | | | | | - Antonio Peña
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Mexico City 04510, Mexico; (M.A.-V.); (M.C.); (N.S.S.)
| |
Collapse
|
5
|
Davletgildeeva AT, Kuznetsov NA. Bioremediation of Polycyclic Aromatic Hydrocarbons by Means of Bacteria and Bacterial Enzymes. Microorganisms 2024; 12:1814. [PMID: 39338488 PMCID: PMC11434427 DOI: 10.3390/microorganisms12091814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread, persistent, and toxic environmental pollutants. Many anthropogenic and some natural factors contribute to the spread and accumulation of PAHs in aquatic and soil systems. The effective and environmentally friendly remediation of these chemical compounds is an important and challenging problem that has kept scientists busy over the last few decades. This review briefly summarizes data on the main sources of PAHs, their toxicity to living organisms, and physical and chemical approaches to the remediation of PAHs. The basic idea behind existing approaches to the bioremediation of PAHs is outlined with an emphasis on a detailed description of the use of bacterial strains as individual isolates, consortia, or cell-free enzymatic agents.
Collapse
Affiliation(s)
- Anastasiia T. Davletgildeeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
6
|
Ge H, Peng Z, Lu D, Yang Z, Li H. Biodegradation of high molecular weight polycyclic aromatic hydrocarbons by Sarocladium terricola strain PYR-233 isolated from petrochemical contaminated sediment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121419. [PMID: 38852405 DOI: 10.1016/j.jenvman.2024.121419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/03/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) were frequently found in sediment and were primarily treated through microbial degradation. Thus, efficient management of PAH pollution requires exploring the molecular degradation mechanisms of PAHs and expanding the pool of available microbial resources. A fungus (identified as Sarocladium terricola strain RCEF778) with the remarkable ability to degrade pyrene was screened from sediment near a petrochemical plant, and its growth and pyrene degradation characteristics were comprehensively investigated. The results showed that the fungus exhibited great effectiveness in pyrene degradation, with a degradation ratio of 88.97% at 21 days at the conditions: 35 °C, pH 7, 10 mg L-1 initially pyrene concentration, 3% supplementary salt, and glucose supplementation. The generation and concentration variation of the intermediate products were identified, and the results revealed that the fungus degraded pyrene through two pathways: by salicylic acid and by phthalic acid. Three sediments (M1, M2, M3), each exhibiting different levels of PAH pollution, were employed to examine the effectiveness of fungal degradation of PAHs in practical sediment samples. These data showed that with the fungus, the degradation ratios ranged from 13.64% to 23.50% for 2-3 rings PAHs, 40.93%-49.41% for 4 rings PAHs, and 39.59%-48.07% for 5-6 rings PAHs, which were significantly higher than those for the sediment without the fungus and confirmed the excellent performance of the fungal. Moreover, the Gompertz model was employed to analyze the degradation kinetics of 4-rings and 5-6 rings PAHs in these sediments, and the results demonstrated that the addition of the fungus could significantly increase the maximum degradation ratio, degradation start-up rate and maximum degradation rate of 4-rings and 5-6 rings PAHs and shorten the time required to reach the maximum degradation rate. This study not only supplied fungal materials but also established crucial theoretical foundations for the development of bioremediation technologies aimed at high molecular weight PAH-contaminated sediments.
Collapse
Affiliation(s)
- Huanying Ge
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China.
| | - Zhaoxia Peng
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China
| | - Denglong Lu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China.
| |
Collapse
|
7
|
Si H, Wang R, Zhao Y, Hao H, Zhao C, Xing S, Yu H, Liang X, Lu J, Chen X, Wang B. Large-scale soil application of hydrochar: Reducing its polycyclic aromatic hydrocarbon content and toxicity by heating. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134467. [PMID: 38691930 DOI: 10.1016/j.jhazmat.2024.134467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
The beneficial roles of hydrochar in carbon sequestration and soil improvement are widely accepted. Despite few available reports regarding polycyclic aromatic hydrocarbons (PAHs) generated during preparation, their potential negative impacts on ecosystems remain a concern. A heating treatment method was employed in this study for rapidly removing PAHs and reducing the toxicity of corn stover-based hydrochar (CHC). The result showed total PAHs content (∑PAH) decreased and then sharply increased within the temperature range from 150 °C to 400 °C. The ∑PAH and related toxicity in CHC decreased by more than 80% under 200 °C heating temperature, compared with those in the untreated sample, representing the lowest microbial toxicity. Benzo(a)pyrene produced a significant influence on the ecological toxicity of the hydrochar among the 16 types of PAHs. The impact of thermal treatment on the composition, content, and toxicity of PAHs was significantly influenced by the adsorption, migration, and desorption of PAHs within hydrochar pores, as well as the disintegration and aggregation of large molecular polymers. The combination of hydrochar with carbonized waste heat and exhaust gas collection could be a promising method to efficiently and affordably reduce hydrochar ecological toxicity.
Collapse
Affiliation(s)
- Hongyu Si
- Shandong Provincial Key Laboratory of Biomass Gasification Technology, Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Rui Wang
- Shandong Provincial Key Laboratory of Biomass Gasification Technology, Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Yuqing Zhao
- Shandong Provincial Key Laboratory of Biomass Gasification Technology, Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Han Hao
- Jinan Xinhang Experimental Foreign Language School, Jinan 250014, China
| | - Changkai Zhao
- Shandong Provincial Key Laboratory of Biomass Gasification Technology, Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Sen Xing
- Shandong Provincial Key Laboratory of Biomass Gasification Technology, Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Hewei Yu
- Shandong Provincial Key Laboratory of Biomass Gasification Technology, Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xiaohui Liang
- School of Life Sciences, Qilu Normal University, Jinan 250200, China
| | - JiKai Lu
- Shandong Provincial Key Laboratory of Biomass Gasification Technology, Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xiuxiu Chen
- Shandong Provincial Key Laboratory of Biomass Gasification Technology, Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Bing Wang
- Shandong Provincial Key Laboratory of Biomass Gasification Technology, Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; School of Environment and Resources, Taiyuan University of Science and Technology, 66 Wa-liu Road, Taiyuan 030024, Shanxi, China.
| |
Collapse
|
8
|
Li X, Zhang S, Guo R, Xiao X, Liu B, Mahmoud RK, Abukhadra MR, Qu R, Wang Z. Transformation and Degradation of PAH Mixture in Contaminated Sites: Clarifying Their Interactions with Native Soil Organisms. TOXICS 2024; 12:361. [PMID: 38787140 PMCID: PMC11126024 DOI: 10.3390/toxics12050361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Soil contamination of polycyclic aromatic hydrocarbons (PAHs), especially caused by the mixture of two or more PAHs, raised great environmental concerns. However, research on the migration and transformation processes of PAHs in soils and their interactions with native communities is limited. In this work, soil samples from uncontaminated sites around the industrial parks in Handan, Hengshui, and Shanghai were artificially supplemented with three concentrations of anthracene (Ant), 9-chloroanthracene (9-ClAnt), benzopyrene (BaP), and chrysene (Chr). Ryegrass was planted to investigate the degradation of PAHs and its interaction with native soil organisms in the constructed ryegrass-microbe-soil microcosmic system. The bacterial and fungal communities in soil were affected by PAHs; their species diversity and relative abundance changed after exposure to different concentrations of PAHs, among which Lysobacter, Bacillus, Pseudomonas, and Massilia bacteria were correlated to the degradation of PAHs. On the 56th day, the contents of BaP, Chr, and Ant decreased with the degradation process, while the degradation of 9-ClAnt was limited. Nineteen intermediates, including hydroxylation and carboxylated compounds, were identified. The present research would help clarify the potential interactions between PAHs and native organisms in contaminated sites, providing fundamental information for evaluating the transformation risks of PAHs in the natural environment.
Collapse
Affiliation(s)
- Xiaoyu Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shengnan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ruixue Guo
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xuejing Xiao
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Boying Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | | | - Mostafa R Abukhadra
- Materials Technologies and Their Applications Lab, Faculty of Science, Beni Suef University, Beni Suef 62521, Egypt
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
Torbati S, Atashbar Kangarloei B, Asalpisheh Z. Fluoranthene biotreatment using prominent freshwater microalgae: physiological responses of microalgae and artificial neural network modeling of the bioremoval process. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1038-1048. [PMID: 38084668 DOI: 10.1080/15226514.2023.2288900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Due to the intensified industrial activities and other anthropogenic actions, contamination of polycyclic aromatic hydrocarbons (PAHs) has been growing at an alarming rate, turning in to a serious environmental concern. Bioremediation, as an eco-friendly and sustainable removal technology, can be used by organisms to reduce the resulting contaminations. In the present study, the ability of Tetradesmus obliquus to remove of fluoranthene (FLA) was evaluated. It was confirmed that FLA removal efficiency was managed by various environmental parameters and pH was found to be one of the most important influencial factors. The reusability of the algae in long-term repetitive operations confirmed the occurrence of biodegradation along with other natural attenuation and 10 intermediate compounds were identified in the FLA biodegradation pathway by GC-MS. As a result of physiological assays, induced antioxidant enzymes activities and augmentation of phenol and flavonoids contents, after the treatment of the microalgae by a high concentration of FLA, confirmed the ability of the microalgae to upregulate its antioxidant defense system in response to the toxic effects of FLA. An artificial neural network (ANN) model was then developed to predict FLA biodegradation efficiency and the appropriate predictive performance of ANN was confirmed by comparing the experimental FLA removal efficiency with its predicted amounts (R2 = 0.99).
Collapse
Affiliation(s)
- Samaneh Torbati
- Department of Ecology and Aquatic Stocks Management, Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran
| | - Behrouz Atashbar Kangarloei
- Department of Ecology and Aquatic Stocks Management, Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran
| | - Zahra Asalpisheh
- Department of Ecology and Aquatic Stocks Management, Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran
| |
Collapse
|
10
|
Cáceres-Zambrano JZ, Rodríguez-Córdova LA, Sáez-Navarrete CA, Rives YC. Biodegradation capabilities of filamentous fungi in high-concentration heavy crude oil environments. Arch Microbiol 2024; 206:123. [PMID: 38407586 DOI: 10.1007/s00203-024-03835-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 02/27/2024]
Abstract
In this comprehensive study, we delved into the capabilities of five fungal strains: Aspergillus flavus, Aspergillus niger, Penicillium chrysogenum, Penicillium glabrum, and Penicillium rubens (the latter isolated from heavy crude oil [HCO]) in metabolizing HCO as a carbon source. Employing a meticulously designed experimental approach, conducted at room temperature (25 °C), we systematically explored various culture media and incubation periods. The results unveiled the exceptional resilience of all these fungi to HCO, with A. flavus standing out as the top performer. Notably, A. flavus exhibited robust growth, achieving a remarkable 59.1% expansion across the medium's surface, accompanied by distinctive macroscopic traits, including a cottony appearance and vibrant coloration. In an effort to further scrutinize its biotransformation prowess, we conducted experiments in a liquid medium, quantifying CO2 production through gas chromatography, which reached its zenith at day 30, signifying substantial bioconversion with a 38% increase in CO2 production. Additionally, we monitored changes in surface tension using the Du Noüy ring method, revealing a reduction in aqueous phase tension from 72.3 to 47 mN/m. This compelling evidence confirms that A. flavus adeptly metabolizes HCO to fuel its growth, while concurrently generating valuable biosurfactants. These findings underscore the immense biotechnological potential of A. flavus in addressing challenges related to HCO, thereby offering promising prospects for bioremediation and crude oil bioupgrading endeavors.
Collapse
Affiliation(s)
- Jessica Zerimar Cáceres-Zambrano
- Doctorado en Ciencias de La Ingeniería, Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Macul, Chile.
| | - Leonardo Andrés Rodríguez-Córdova
- Escuela de Ingeniería, Facultad de Ingeniería, Universidad Santo Tomás, Avenida Ejército Libertador 146, Santiago, Región Metropolitana, Chile
| | - César Antonio Sáez-Navarrete
- Departamento de Ingeniería Química y Bioprocesos, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Región Metropolitana, Chile
- Centro de Investigación en Nanotecnología y Materiales Avanzados (CIEN-UC), Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Región Metropolitana, Chile
| | - Yoandy Coca Rives
- Doctorado en Ciencias de La Ingeniería, Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Macul, Chile
| |
Collapse
|
11
|
Umar A, Mubeen M, Ali I, Iftikhar Y, Sohail MA, Sajid A, Kumar A, Solanki MK, Kumar Divvela P, Zhou L. Harnessing fungal bio-electricity: a promising path to a cleaner environment. Front Microbiol 2024; 14:1291904. [PMID: 38352061 PMCID: PMC10861785 DOI: 10.3389/fmicb.2023.1291904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/20/2023] [Indexed: 02/16/2024] Open
Abstract
Integrating fungi into fuel cell systems presents a promising opportunity to address environmental pollution while simultaneously generating energy. This review explores the innovative concept of constructing wetlands as fuel cells for pollutant degradation, offering a practical and eco-friendly solution to pollution challenges. Fungi possess unique capabilities in producing power, fuel, and electricity through metabolic processes, drawing significant interest for applications in remediation and degradation. Limited data exist on fungi's ability to generate electricity during catalytic reactions involving various enzymes, especially while remediating pollutants. Certain species, such as Trametes versicolor, Ganoderma lucidum, Galactomyces reessii, Aspergillus spp., Kluyveromyce smarxianus, and Hansenula anomala, have been reported to generate electricity at 1200 mW/m3, 207 mW/m2, 1,163 mW/m3, 438 mW/m3, 850,000 mW/m3, and 2,900 mW/m3, respectively. Despite the eco-friendly potential compared to conventional methods, fungi's role remains largely unexplored. This review delves into fungi's exceptional potential as fuel cell catalysts, serving as anodic or cathodic agents to mitigate land, air, and water pollutants while simultaneously producing fuel and power. Applications cover a wide range of tasks, and the innovative concept of wetlands designed as fuel cells for pollutant degradation is discussed. Cost-effectiveness may vary depending on specific contexts and applications. Fungal fuel cells (FFCs) offer a versatile and innovative solution to global challenges, addressing the increasing demand for alternative bioenergy production amid population growth and expanding industrial activities. The mechanistic approach of fungal enzymes via microbial combinations and electrochemical fungal systems facilitates the oxidation of organic substrates, oxygen reduction, and ion exchange membrane orchestration of essential reactions. Fungal laccase plays a crucial role in pollutant removal and monitoring environmental contaminants. Fungal consortiums show remarkable potential in fine-tuning FFC performance, impacting both power generation and pollutant degradation. Beyond energy generation, fungal cells effectively remove pollutants. Overall, FFCs present a promising avenue to address energy needs and mitigate pollutants simultaneously.
Collapse
Affiliation(s)
- Aisha Umar
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Mustansar Mubeen
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Iftikhar Ali
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, United States
| | - Yasir Iftikhar
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Aamir Sohail
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ashara Sajid
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Manoj Kumar Solanki
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, Madhya Pradesh, India
- Plant Cytogenetics and Molecular Biology Group, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | | | - Lei Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
12
|
Zainab R, Hasnain M, Ali F, Dias DA, El-Keblawy A, Abideen Z. Exploring the bioremediation capability of petroleum-contaminated soils for enhanced environmental sustainability and minimization of ecotoxicological concerns. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:104933-104957. [PMID: 37718363 DOI: 10.1007/s11356-023-29801-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023]
Abstract
The bioremediation of soils contaminated with petroleum hydrocarbons (PHCs) has emerged as a promising approach, with its effectiveness contingent upon various types of PHCs, i.e., crude oil, diesel, gasoline, and other petroleum products. Strategies like genetically modified microorganisms, nanotechnology, and bioaugmentation hold potential for enhancing remediation of polycyclic aromatic hydrocarbon (PAH) contamination. The effectiveness of bioremediation relies on factors such as metabolite toxicity, microbial competition, and environmental conditions. Aerobic degradation involves enzymatic oxidative reactions, while bacterial anaerobic degradation employs reductive reactions with alternative electron acceptors. Algae employ monooxygenase and dioxygenase enzymes, breaking down PAHs through biodegradation and bioaccumulation, yielding hydroxylated and dihydroxylated intermediates. Fungi contribute via mycoremediation, using co-metabolism and monooxygenase enzymes to produce CO2 and oxidized products. Ligninolytic fungi transform PAHs into water-soluble compounds, while non-ligninolytic fungi oxidize PAHs into arene oxides and phenols. Certain fungi produce biosurfactants enhancing degradation of less soluble, high molecular-weight PAHs. Successful bioremediation offers sustainable solutions to mitigate petroleum spills and environmental impacts. Monitoring and assessing strategy effectiveness are vital for optimizing biodegradation in petroleum-contaminated soils. This review presents insights and challenges in bioremediation, focusing on arable land safety and ecotoxicological concerns.
Collapse
Affiliation(s)
- Rida Zainab
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Maria Hasnain
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Faraz Ali
- School of Engineering and Technology, Central Queensland University, Sydney, Australia
| | - Daniel Anthony Dias
- CASS Food Research Centre, School of Exercise and Nutrition Sciences Deakin University, Melbourne, VIC, 3125, Australia
| | - Ali El-Keblawy
- Department of Applied Biology, College of Sciences, University of Sharjah, PO Box 27272, Sharjah, UAE
| | - Zainul Abideen
- Department of Applied Biology, College of Sciences, University of Sharjah, PO Box 27272, Sharjah, UAE.
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
13
|
Wijayawardene NN, Boonyuen N, Ranaweera CB, de Zoysa HKS, Padmathilake RE, Nifla F, Dai DQ, Liu Y, Suwannarach N, Kumla J, Bamunuarachchige TC, Chen HH. OMICS and Other Advanced Technologies in Mycological Applications. J Fungi (Basel) 2023; 9:688. [PMID: 37367624 PMCID: PMC10302638 DOI: 10.3390/jof9060688] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
Fungi play many roles in different ecosystems. The precise identification of fungi is important in different aspects. Historically, they were identified based on morphological characteristics, but technological advancements such as polymerase chain reaction (PCR) and DNA sequencing now enable more accurate identification and taxonomy, and higher-level classifications. However, some species, referred to as "dark taxa", lack distinct physical features that makes their identification challenging. High-throughput sequencing and metagenomics of environmental samples provide a solution to identifying new lineages of fungi. This paper discusses different approaches to taxonomy, including PCR amplification and sequencing of rDNA, multi-loci phylogenetic analyses, and the importance of various omics (large-scale molecular) techniques for understanding fungal applications. The use of proteomics, transcriptomics, metatranscriptomics, metabolomics, and interactomics provides a comprehensive understanding of fungi. These advanced technologies are critical for expanding the knowledge of the Kingdom of Fungi, including its impact on food safety and security, edible mushrooms foodomics, fungal secondary metabolites, mycotoxin-producing fungi, and biomedical and therapeutic applications, including antifungal drugs and drug resistance, and fungal omics data for novel drug development. The paper also highlights the importance of exploring fungi from extreme environments and understudied areas to identify novel lineages in the fungal dark taxa.
Collapse
Affiliation(s)
- Nalin N. Wijayawardene
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China;
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka; (H.K.S.d.Z.); (F.N.); (T.C.B.)
- Section of Genetics, Institute for Research and Development in Health and Social Care, No: 393/3, Lily Avenue, Off Robert Gunawardane Mawatha, Battaramulla 10120, Sri Lanka
| | - Nattawut Boonyuen
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand;
| | - Chathuranga B. Ranaweera
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, General Sir John Kotelawala Defence University Sri Lanka, Kandawala Road, Rathmalana 10390, Sri Lanka;
| | - Heethaka K. S. de Zoysa
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka; (H.K.S.d.Z.); (F.N.); (T.C.B.)
| | - Rasanie E. Padmathilake
- Department of Plant Sciences, Faculty of Agriculture, Rajarata University of Sri Lanka, Pulliyankulama, Anuradhapura 50000, Sri Lanka;
| | - Faarah Nifla
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka; (H.K.S.d.Z.); (F.N.); (T.C.B.)
| | - Dong-Qin Dai
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China;
| | - Yanxia Liu
- Guizhou Academy of Tobacco Science, No.29, Longtanba Road, Guanshanhu District, Guiyang 550000, China;
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (J.K.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (J.K.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thushara C. Bamunuarachchige
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka; (H.K.S.d.Z.); (F.N.); (T.C.B.)
| | - Huan-Huan Chen
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China;
- Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Agricultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
14
|
Vijayanand M, Ramakrishnan A, Subramanian R, Issac PK, Nasr M, Khoo KS, Rajagopal R, Greff B, Wan Azelee NI, Jeon BH, Chang SW, Ravindran B. Polyaromatic hydrocarbons (PAHs) in the water environment: A review on toxicity, microbial biodegradation, systematic biological advancements, and environmental fate. ENVIRONMENTAL RESEARCH 2023; 227:115716. [PMID: 36940816 DOI: 10.1016/j.envres.2023.115716] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/04/2023] [Accepted: 03/16/2023] [Indexed: 05/08/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are considered a major class of organic contaminants or pollutants, which are poisonous, mutagenic, genotoxic, and/or carcinogenic. Due to their ubiquitous occurrence and recalcitrance, PAHs-related pollution possesses significant public health and environmental concerns. Increasing the understanding of PAHs' negative impacts on ecosystems and human health has encouraged more researchers to focus on eliminating these pollutants from the environment. Nutrients available in the aqueous phase, the amount and type of microbes in the culture, and the PAHs' nature and molecular characteristics are the common factors influencing the microbial breakdown of PAHs. In recent decades, microbial community analyses, biochemical pathways, enzyme systems, gene organization, and genetic regulation related to PAH degradation have been intensively researched. Although xenobiotic-degrading microbes have a lot of potential for restoring the damaged ecosystems in a cost-effective and efficient manner, their role and strength to eliminate the refractory PAH compounds using innovative technologies are still to be explored. Recent analytical biochemistry and genetically engineered technologies have aided in improving the effectiveness of PAHs' breakdown by microorganisms, creating and developing advanced bioremediation techniques. Optimizing the key characteristics like the adsorption, bioavailability, and mass transfer of PAH boosts the microorganisms' bioremediation performance, especially in the natural aquatic water bodies. This review's primary goal is to provide an understanding of recent information about how PAHs are degraded and/or transformed in the aquatic environment by halophilic archaea, bacteria, algae, and fungi. Furthermore, the removal mechanisms of PAH in the marine/aquatic environment are discussed in terms of the recent systemic advancements in microbial degradation methodologies. The review outputs would assist in facilitating the development of new insights into PAH bioremediation.
Collapse
Affiliation(s)
- Madhumitha Vijayanand
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Abiraami Ramakrishnan
- Department of Civil Engineering, Christian College of Engineering and Technology Oddanchatram, 624619,Dindigul District, Tamilnadu, India
| | - Ramakrishnan Subramanian
- Department of Civil Engineering, Sri Krishna College of Engineering and Technology, Kuniamuthur, Coimbatore, 641008, Tamilnadu, India
| | - Praveen Kumar Issac
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India.
| | - Mahmoud Nasr
- Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, 21934, Egypt; Sanitary Engineering Department, Faculty of Engineering, Alexandria University, 21544, Alexandria, Egypt
| | - Kuan Shiong Khoo
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Material Science, Yuan Ze University, Taoyuan, Taiwan
| | - Rajinikanth Rajagopal
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC J1M 0C8, Canada
| | - Babett Greff
- Department of Food Science, Albert Casimir Faculty at Mosonmagyaróvár, Széchenyi István University, 15-17 Lucsony Street, 9200, Mosonmagyaróvár, Hungary
| | - Nur Izyan Wan Azelee
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310, UTM Skudai, Johor Bahru, Johor Darul Takzim, Malaysia
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Soon Woong Chang
- Department of Environmental Energy & Engineering, Kyonggi University, Suwon-si, Gyeonggi-do, 16227, South Korea
| | - Balasubramani Ravindran
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India; Department of Environmental Energy & Engineering, Kyonggi University, Suwon-si, Gyeonggi-do, 16227, South Korea.
| |
Collapse
|
15
|
Bokade P, Bajaj A. Molecular advances in mycoremediation of polycyclic aromatic hydrocarbons: Exploring fungal bacterial interactions. J Basic Microbiol 2023; 63:239-256. [PMID: 36670077 DOI: 10.1002/jobm.202200499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/15/2022] [Accepted: 12/18/2022] [Indexed: 01/22/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous high global concern environmental pollutants and tend to bioaccumulate due to hydrophobic properties. These xenobiotics, having variable concentrations along different matrices, gradually undergo various physical, chemical, and biological transformation processes. Myco-remediation aids accelerated degradation by effectively transforming complex ring structures to oxidized/hydroxylated intermediates, which can further funnel to bacterial degradation pathways. Exploitation of such complementing fungal-bacterial enzymatic activity can overcome certain limitations of incomplete bioremediation process. Furthermore, high-throughput molecular methods can be employed to unveil community structure, taxon abundance, coexisting community interactions, and metabolic pathways under stressed conditions. The present review critically discusses the role of different fungal phyla in PAHs biotransformation and application of fungal-bacterial cocultures for enhanced mineralization. Moreover, recent advances in bioassays for PAH residue detection, monitoring, developing xenobiotics stress-tolerant strains, and application of fungal catabolic enzymes are highlighted. Application of next-generation sequencing methods to reveal complex ecological networks based on microbial community interactions and data analysis bias in performing such studies is further discussed in detail. Conclusively, the review underscores the application of mixed-culture approach by critically highlighting in situ fungal-bacterial community nexus and its role in complete mineralization of PAHs for the management of contaminated sites.
Collapse
Affiliation(s)
- Priyanka Bokade
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Abhay Bajaj
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
16
|
Mitchell CJ, Jayakaran AD, McIntyre JK. Biochar and fungi as bioretention amendments for bacteria and PAH removal from stormwater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 327:116915. [PMID: 36462489 DOI: 10.1016/j.jenvman.2022.116915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 11/21/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Bioretention has been widely used to mitigate hydrologic impacts of stormwater runoff and is increasingly being relied upon to treat chemical and biological pollutants transported by stormwater. Despite this reliance, we still lack an understanding of treatment performance for certain organic and biological contaminants which may interact with biotic and abiotic components of bioretention systems. We evaluated the treatment of fecal indicator bacteria (FIB) and polycyclic aromatic hydrocarbons (PAHs) in stormwater runoff by bioretention. We compared treatment performance by Washington's standard bioretention mix of 60% sand: 40% compost (by volume), and by three other mixtures amended with biochar, fungi (Stropharia rugosoannulata), or both. All bioretention columns were conditioned with clean water and then dosed with collected roadway runoff at a rate equivalent to a 6 month, 24 h storm in this region during 8 events over a 14-month period. Effluents for each column were analyzed for 23 PAHs, Escherichia coli, fecal coliform, dissolved organic carbon (DOC), and total suspended solids (TSS). The fate and transport of PAHs within the bioretention columns was tracked by measuring soil PAHs in media cores taken from the columns. ΣPAH were almost completely removed by all treatments across all storms, with removal rates ranging from 97 to 100% for 94 out of 96 samples. Compost appeared to be a source of PAHs in bioretention media, as biochar-amended media initially contained half the ΣPAHs as treatments with the standard 60:40 sand:compost mixture. We observed a net loss of ΣPAHs (19-73%) in bioretention media across the study, which could not be explained by PAHs in the effluent, suggesting that bioremediation by microbes and/or plants attenuated media PAHs. E. coli and fecal coliform were exported in the first dosing event, but all columns achieved some treatment in subsequent dosing events. Overall, these findings suggest that PAHs in stormwater can be remediated with bioretention, are unlikely to accumulate in bioretention media, and that biochar amendments can improve the treatment of E. coli.
Collapse
Affiliation(s)
- Chelsea J Mitchell
- Washington State University-Puyallup, 2606 W Pioneer Ave, Puyallup, WA, 98371, USA
| | - Anand D Jayakaran
- Washington State University-Puyallup, 2606 W Pioneer Ave, Puyallup, WA, 98371, USA.
| | - Jenifer K McIntyre
- Washington State University-Puyallup, 2606 W Pioneer Ave, Puyallup, WA, 98371, USA
| |
Collapse
|
17
|
Zain Ul Arifeen M, Ma Y, Wu T, Chu C, Liu X, Jiang J, Li D, Xue YR, Liu CH. Anaerobic biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungi isolated from anaerobic coal-associated sediments at 2.5 km below the seafloor. CHEMOSPHERE 2022; 303:135062. [PMID: 35618067 DOI: 10.1016/j.chemosphere.2022.135062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Fungi represent the dominant eukaryotic group in the deep biosphere and well-populated in the anaerobic coal-bearing sediments up to ∼2.5 km below seafloor (kmbsf). But whether fungi are able to degrade and utilize coal to sustain growth in the anaerobic sub-seafloor environment remains unknown. Based on biodegradation investigation, we found that fungi isolated from sub-seafloor sediments at depths of ∼1.3-∼2.5 kmbsf showed a broad range of polycyclic aromatic hydrocarbons (PAHs) anaerobic degradation rates (3-25%). Among them, the white-rot fungus Schizophyllium commune 20R-7-F01 exhibited the highest degradation, 25%, 18% and 13%, of phenanthrene (Phe), pyrene (Pyr) and benzo[a]pyrene (BaP); respectively, after 10 days of anaerobic incubation. Phe was utilized well and about 40.4% was degraded by the fungus, after 20 days of anaerobic incubation. Moreover, the ability of fungi to degrade PAHs was positively correlated with the anaerobic growth of fungi, indicating that fungi can use PAHs as a sole carbon source under anoxic conditions. In addition, fungal degradation of PAHs was found to be related to the activity of carboxylases, but little or nothing to do with the activity of lignin modifying enzymes such as laccase (Lac), manganese peroxidase (MnP) and lignin peroxidase (LiP). These results suggest that sub-seafloor fungi possess a special mechanism to degrade and utilize PAHs as a carbon and energy source under anaerobic conditions. Furthermore, fungi living in sub-seafloor sediments may not only play an important role in carbon cycle in the anaerobic environments of the deep biosphere, but also be able to persist in deep sediment below seafloor for millions of years by using PAHs or related compounds as carbon and energy source. This anaerobic biodegradation ability could make these fungi suitable candidates for bioremediation of toxic pollutants such as PAHs from anoxic environments.
Collapse
Affiliation(s)
- Muhammad Zain Ul Arifeen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yunan Ma
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Tianshang Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chen Chu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xuan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Junpeng Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Dongxu Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ya-Rong Xue
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chang-Hong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
18
|
Haque S, Srivastava N, Pal DB, Alkhanani MF, Almalki AH, Areeshi MY, Naidu R, Gupta VK. Functional microbiome strategies for the bioremediation of petroleum-hydrocarbon and heavy metal contaminated soils: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155222. [PMID: 35421499 DOI: 10.1016/j.scitotenv.2022.155222] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 05/21/2023]
Abstract
Petroleum hydrocarbons and heavy metals are the two major soil contaminants that are released into the environment in the forms of industrial effluents. These contaminants exert serious impacts on human health and the sustainability of the environment. In this context, remediation of these pollutants via a biological approach can be effective, low-cost, and eco-friendly approach. The implementation of microorganisms and metagenomics are regarded as the advanced solution for remediating such pollutants. Further, microbiomes can overcome this issue via adopting specific structural, functional and metabolic pathways involved in the microbial community to degrade these pollutants. Genomic sequencing and library can effectively channelize the degradation of these pollutants via microbiomes. Nevertheless, more advanced technology and reliable strategies are required to develop. The present review provides insights into the role of microbiomes to effectively remediate/degrade petroleum hydrocarbons and heavy metals in contaminated soil. The possible degradation mechanisms of these pollutants have also been discussed in detail along with their existing limitations. Finally, prospects of the bioremediation strategies using microbiomes are discussed.
Collapse
Affiliation(s)
- Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan-45142, Saudi Arabia
| | - Neha Srivastava
- Department of Chemical Engineering & Technology, IIT (BHU), Varanasi 221005, India
| | - Dan Bahadur Pal
- Department of Chemical Engineering, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Mustfa F Alkhanani
- Emergency Service Department, College of Applied Sciences, AlMaarefa University, Riyadh 11597, Saudi Arabia
| | - Atiah H Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; Addiction and Neuroscience Research Unit, College of Pharmacy, Taif University, Al-Hawiah, Taif 21944, Saudi Arabia
| | - Mohammed Y Areeshi
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan-45142, Saudi Arabia; Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| |
Collapse
|
19
|
Maqsood Q, Hussain N, Mumtaz M, Bilal M, Iqbal HMN. Novel strategies and advancement in reducing heavy metals from the contaminated environment. Arch Microbiol 2022; 204:478. [PMID: 35831495 DOI: 10.1007/s00203-022-03087-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/20/2022] [Indexed: 11/27/2022]
Abstract
The most contemporary ecological issues are the dumping of unprocessed factories' effluent. As a result, there is an increasing demand for creative, practical, environmentally acceptable, and inexpensive methodologies to remediate inorganic metals (Hg, Cr, Pb, and Cd) liquidated into the atmosphere, protecting ecosystems. Latest innovations in biological metals have driven natural treatment as a viable substitute for traditional approaches in this area. To eliminate pesticide remains from soil/water sites, technologies such as oxidation, burning, adsorption, and microbial degradation have been established. Bioremediation is a more cost-effective and ecologically responsible means of removing heavy metals than conventional alternatives. As a result, microorganisms have emerged as a necessary component of methyl breakdown and detoxification via metabolic reactions and hereditary characteristics. The utmost operative variant for confiscating substantial metals commencing contaminated soil was A. niger, which had a maximum bioaccumulation efficiency of 98% (Cd) and 43% (Cr). Biosensor bacteria are both environmentally sustainable and cost-effective. As a result, microbes have a range of metal absorption processes that allow them to have higher metal biosorption capabilities. Additionally, the biosorption potential of bacterium, fungus, biofilm, and algae, inherently handled microorganisms that immobilized microbial cells for the elimination of heavy metals, was reviewed in this study. Furthermore, we discuss some of the challenges and opportunities associated with producing effective heavy metal removal techniques, such as those that employ different types of nanoparticles.
Collapse
Affiliation(s)
- Quratulain Maqsood
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Nazim Hussain
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Mehvish Mumtaz
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico.
| |
Collapse
|
20
|
Delangiz N, Aliyar S, Pashapoor N, Nobaharan K, Asgari Lajayer B, Rodríguez-Couto S. Can polymer-degrading microorganisms solve the bottleneck of plastics' environmental challenges? CHEMOSPHERE 2022; 294:133709. [PMID: 35074325 DOI: 10.1016/j.chemosphere.2022.133709] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/27/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Increasing world population and industrial activities have enhanced anthropogenic pollution, plastic pollution being especially alarming. So, plastics should be recycled and/or make them biodegradable. Chemical and physical remediating methods are usually energy consuming and costly. In addition, they are not ecofriendly and usually produce toxic byproducts. Bioremediation is a proper option as it is cost-efficient and environmentally friendly. Plastic production and consumption are increasing daily, and, as a consequence, more microorganisms are exposed to these nonbiodegradable polymers. Therefore, investigating new efficient microorganisms and increasing the knowledge about their biology can pave the way for efficient and feasible plastic bioremediation processes. In this sense, omics, systems biology and bioinformatics are three important fields to analyze the biodegradation pathways in microorganisms. Based on the above-mentioned technologies, researchers can engineer microorganisms with specific desired properties to make bioremediation more efficient.
Collapse
Affiliation(s)
- Nasser Delangiz
- Department of Plant Biotechnology and Breeding, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Sajad Aliyar
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Neda Pashapoor
- Department of Soil Science, Faculty of Agriculture, Urmia University, Urmia, Iran
| | | | - Behnam Asgari Lajayer
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Susana Rodríguez-Couto
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| |
Collapse
|
21
|
Li S, Deng Y, Lian S, Dai C, Ma Q, Qu Y. Succession of diversity, functions, and interactions of the fungal community in activated sludge under aromatic hydrocarbon stress. ENVIRONMENTAL RESEARCH 2022; 204:112143. [PMID: 34600881 DOI: 10.1016/j.envres.2021.112143] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Although fungi are regarded as the important degraders of aromatic hydrocarbons (AHs) in various environments, the dynamic succession and interaction of their community under aromatic hydrocarbon stress has been rarely reported. In this study, we systematically investigated the responses of the fungal community and the associations among fungal species when facing the continuous stress of two typical AHs, benzene and naphthalene. Using high-throughput sequencing technology, we demonstrated that fungal diversity displayed a significant downward trend during six weeks of continuous aromatic hydrocarbon treatment. Community succession was observed during the operational period, and the relative abundance of some typical degraders, such as Exophiala sp. and Candida sp., increased during the later period of operation. Meanwhile, by predicting the functions of the fungal community through PICRUSt2, we found that some relevant enzymes, such as peroxidase, dioxygenase, and monooxygenase, may play an important role in the degradation process and maintaining overall community multifunctionality. Furthermore, the measurement of modified normalized stochasticity ratio (MST) indicated that continuous aromatic hydrocarbon stress resulted in a stronger deterministic process in community assembly over time, suggesting environmental selection dominated succession of the fungal community in activated sludge. Finally, molecular ecological network analysis (MENA) demonstrated that, the cooperative behaviors among members, the network keystone genera related to biodegradation, such as Exophiala sp. and Haglerozyma sp., and a well-organized topological structure, together, maintained the structural stability of the fungal community under AH stress. Our study provides new insights for understanding the stability of fungal communities during the degradation of contaminants in activated sludge.
Collapse
Affiliation(s)
- Shuzhen Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China; CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Shengyang Lian
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Chunxiao Dai
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Qiao Ma
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
22
|
Alao MB, Adebayo EA. Fungi as veritable tool in bioremediation of polycyclic aromatic hydrocarbons‐polluted wastewater. J Basic Microbiol 2022; 62:223-244. [DOI: 10.1002/jobm.202100376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Micheal B. Alao
- Microbiology and Biotechnology Laboratory, Department of Pure and Applied Biology Ladoke Akintola University of Technology Ogbomoso Nigeria
| | - Elijah A. Adebayo
- Microbiology and Biotechnology Laboratory, Department of Pure and Applied Biology Ladoke Akintola University of Technology Ogbomoso Nigeria
- Microbiology Unit, Department of Pure and Applied Biology Ladoke Akintola University of Technology Ogbomoso Nigeria
| |
Collapse
|
23
|
Zhang Y, Xiao X, Zhu X, Chen B. Self-assembled fungus-biochar composite pellets (FBPs) for enhanced co-sorption-biodegradation towards phenanthrene. CHEMOSPHERE 2022; 286:131887. [PMID: 34426279 DOI: 10.1016/j.chemosphere.2021.131887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/04/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Sorption and biodegradation are two major applicable techniques for organic pollutants removal. However, the desorption risk following the sorption process and the low bioavailability of trace pollutants to microbes are still hindering the efficient removal of pollutants. To take full advantages of both sorption (for contaminant accumulation) and microbial degradation, here we introduce a self-assembly method combining carbonaceous sorbents (i.e., biochars: RS350, RS500, and RS700) with fungal hyphae (Phanerochaete chrysosporium) which can efficiently degrade phenanthrene (PHE), one of the typical polycyclic aromatic hydrocarbons. By cultivating Phanerochaete chrysosporium in biochar-containing medium, fungus-biochar composite pellets (FBPs) were successfully synthesized with a 3D macrostructure of abundant hyphae and uniform pellet size (~2.5 mm in diameter). Benefiting from the high sorption ability of biochars, such FBPs showed up to triple sorption ability and 70 folds faster biodegradation rate than pure fungal pellets. The PHE concentration remaining in solution receiving co-sorption-degradation treatment after 22 d was only one third of that receiving sorption treatment alone. Continuous removal experiment indicated that these composite pellets could hold their removal ability of above 90 % in the first 4 cycles. This study points out a simple and promising self-assembly approach that could be easily scaled up to manufacture FBPs with high removal efficiency, fast biodegradation rate, easy separation ability and long-term stability.
Collapse
Affiliation(s)
- Yuecan Zhang
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
| | - Xin Xiao
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, United States
| | - Xiaomin Zhu
- College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China.
| |
Collapse
|
24
|
Zhuk TS, Babkina VV, Zorn H. Aerobic C−C Bond Cleavage Catalyzed by Whole‐Cell Cultures of the White‐Rot Fungus
Dichomitus albidofuscus. ChemCatChem 2021. [DOI: 10.1002/cctc.202101408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tatyana S. Zhuk
- Institute of Food Chemistry and Food Biotechnology Justus Liebig University Giessen Heinrich-Buff-Ring, 17 35392 Giessen Germany
- Department of Organic Chemistry Igor Sikorsky Kyiv Polytechnic Institute Peremogy Ave., 37 03056 Kyiv Ukraine
| | - Valeriia V. Babkina
- Department of Organic Chemistry Igor Sikorsky Kyiv Polytechnic Institute Peremogy Ave., 37 03056 Kyiv Ukraine
| | - Holger Zorn
- Institute of Food Chemistry and Food Biotechnology Justus Liebig University Giessen Heinrich-Buff-Ring, 17 35392 Giessen Germany
- Fraunhofer Institute of Molecular Biology and Applied Ecology Ohlebergsweg 12 35392 Giessen Germany
| |
Collapse
|
25
|
Singh NK, Choudhary S. Bacterial and archaeal diversity in oil fields and reservoirs and their potential role in hydrocarbon recovery and bioprospecting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:58819-58836. [PMID: 33410029 DOI: 10.1007/s11356-020-11705-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Hydrocarbon is a primary source of energy in the current urbanized society. Considering the increasing demand, worldwide oil productions are declining due to maturity of oil fields and because of difficulty in discovering new oil fields to substitute the exploited ones. To meet current and future energy demands, further exploitation of oil resources is highly required. Microorganisms inhabiting in these areas exhibit highly diverse catabolic activities to degrade, transform, or accumulate various hydrocarbons. Enrichment of hydrocarbon-utilizing bacteria in oil basin is caused by continuous long duration and low molecular weight hydrocarbon microseepage which plays a very important role as an indicator for petroleum prospecting. The important microbial metabolic processes in most of the oil reservoir are sulfate reduction, fermentation, acetogenesis, methanogenesis, NO3- reduction, and Fe (III) and Mn (IV) reduction. The microorganisms residing in these sites have critical control on petroleum composition, recovery, and production methods. Physical characteristics of heavy oil are altered by microbial biotransformation and biosurfactant production. Considering oil to be one of the most vital energy resources, it is important to have a comprehensive understanding of petroleum microbiology. This manuscript reviews the recent research work referring to the diversity of bacteria in oil field and reservoir sites and their applications for enhancing oil transformation in the target reservoir and geomicrobial prospecting scope for petroleum exploration.
Collapse
Affiliation(s)
- Nishi Kumari Singh
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Vanasthali, Rajasthan, 304022, India
| | - Sangeeta Choudhary
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Vanasthali, Rajasthan, 304022, India.
| |
Collapse
|
26
|
Kumar M, Bolan NS, Hoang SA, Sawarkar AD, Jasemizad T, Gao B, Keerthanan S, Padhye LP, Singh L, Kumar S, Vithanage M, Li Y, Zhang M, Kirkham MB, Vinu A, Rinklebe J. Remediation of soils and sediments polluted with polycyclic aromatic hydrocarbons: To immobilize, mobilize, or degrade? JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126534. [PMID: 34280720 DOI: 10.1016/j.jhazmat.2021.126534] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/09/2021] [Accepted: 06/26/2021] [Indexed: 05/22/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are generated due to incomplete burning of organic substances. Use of fossil fuels is the primary anthropogenic cause of PAHs emission in natural settings. Although several PAH compounds exist in the natural environmental setting, only 16 of these compounds are considered priority pollutants. PAHs imposes several health impacts on humans and other living organisms due to their carcinogenic, mutagenic, or teratogenic properties. The specific characteristics of PAHs, such as their high hydrophobicity and low water solubility, influence their active adsorption onto soils and sediments, affecting their bioavailability and subsequent degradation. Therefore, this review first discusses various sources of PAHs, including source identification techniques, bioavailability, and interactions of PAHs with soils and sediments. Then this review addresses the remediation technologies adopted so far of PAHs in soils and sediments using immobilization techniques (capping, stabilization, dredging, and excavation), mobilization techniques (thermal desorption, washing, electrokinetics, and surfactant assisted), and biological degradation techniques. The pros and cons of each technology are discussed. A detailed systematic compilation of eco-friendly approaches used to degrade PAHs, such as phytoremediation, microbial remediation, and emerging hybrid or integrated technologies are reviewed along with case studies and provided prospects for future research.
Collapse
Affiliation(s)
- Manish Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Nanthi S Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; College of Engineering, Science and Environment, University of Newcastle, Callaghan NSW, 2308, Australia
| | - Son A Hoang
- College of Engineering, Science and Environment, University of Newcastle, Callaghan NSW, 2308, Australia
| | - Ankush D Sawarkar
- Department of Computer Science and Engineering, Visvesvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra, 440 010, India
| | - Tahereh Jasemizad
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Bowen Gao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - S Keerthanan
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Yang Li
- Department of Environmental Engineering, China Jiliang University, Zhejiang, Hangzhou 310018, China
| | - Ming Zhang
- Department of Environmental Engineering, China Jiliang University, Zhejiang, Hangzhou 310018, China
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, United States of America
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
27
|
Terzano R, Rascio I, Allegretta I, Porfido C, Spagnuolo M, Khanghahi MY, Crecchio C, Sakellariadou F, Gattullo CE. Fire effects on the distribution and bioavailability of potentially toxic elements (PTEs) in agricultural soils. CHEMOSPHERE 2021; 281:130752. [PMID: 34015649 DOI: 10.1016/j.chemosphere.2021.130752] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
In the last years, uncontrolled fires are frequently occurring in forest and agricultural areas as an indirect effect of the rising aridity and global warming or caused by intentional illegal burnings. In addition, controlled burning is still largely used by farmers as an agricultural practice in many parts of the world. During fire events, soil can reach very high temperatures at the soil surface, causing dramatic changes of soil properties and elements biogeochemistry. Among soil elements, also potentially toxic elements (PTEs) can be affected by fires, becoming more or less mobile and bioavailable, depending on fire severity and soil characteristics. Such transformations could be particularly relevant in agricultural soils used for crop productions since fire events could modify PTEs speciation and uptake by plants and associated (micro)organisms thus endangering the whole food-chain. In this review, after describing the effects of fire on soil minerals and organic matter, the impact of fires on PTEs distribution and speciation in soils is presented, as well as their influence on soil microorganisms and plants uptake. The most common experimental methods used to simulate fires at the laboratory and field scale are briefly illustrated, and finally the impact that traditional and innovative agricultural practices can have on PTEs availability in burned agricultural soils is discussed in a future research perspective.
Collapse
Affiliation(s)
- Roberto Terzano
- Department of Soil, Plant and Food Sciences, University of Bari, Via Amendola 165/A, 70126, Bari, Italy.
| | - Ida Rascio
- Department of Soil, Plant and Food Sciences, University of Bari, Via Amendola 165/A, 70126, Bari, Italy.
| | - Ignazio Allegretta
- Department of Soil, Plant and Food Sciences, University of Bari, Via Amendola 165/A, 70126, Bari, Italy.
| | - Carlo Porfido
- Department of Soil, Plant and Food Sciences, University of Bari, Via Amendola 165/A, 70126, Bari, Italy.
| | - Matteo Spagnuolo
- Department of Soil, Plant and Food Sciences, University of Bari, Via Amendola 165/A, 70126, Bari, Italy.
| | | | - Carmine Crecchio
- Department of Soil, Plant and Food Sciences, University of Bari, Via Amendola 165/A, 70126, Bari, Italy.
| | - Fani Sakellariadou
- Department of Maritime Studies, Piraeus University, Grigoriou Lampraki 21 & Distomou, 18533, Piraeus, Greece.
| | - Concetta Eliana Gattullo
- Department of Soil, Plant and Food Sciences, University of Bari, Via Amendola 165/A, 70126, Bari, Italy.
| |
Collapse
|
28
|
Sonwani RK, Kim KH, Zhang M, Tsang YF, Lee SS, Giri BS, Singh RS, Rai BN. Construction of biotreatment platforms for aromatic hydrocarbons and their future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125968. [PMID: 34492879 DOI: 10.1016/j.jhazmat.2021.125968] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 04/05/2021] [Accepted: 04/22/2021] [Indexed: 06/13/2023]
Abstract
Aromatic hydrocarbons (AHCs) are one of the major environmental pollutants introduced from both natural and anthropogenic sources. Many AHCs are well known for their toxic, carcinogenic, and mutagenic impact on human health and ecological systems. Biodegradation is an eco-friendly and cost-effective option as microorganisms (e.g., bacteria, fungi, and algae) can efficiently breakdown or transform such pollutants into less harmful and simple metabolites (e.g., carbon dioxide (aerobic), methane (anaerobic), water, and inorganic salts). This paper is organized to offer a state-of-the-art review on the biodegradation of AHCs (monocyclic aromatic hydrocarbons (MAHs) and polycyclic aromatic hydrocarbons (PAHs)) and associated mechanisms. The recent progress in biological treatment using suspended and attached growth bioreactors for the biodegradation of AHCs is also discussed. In addition, various substrate growth and inhibition models are introduced along with the key factors governing their biodegradation kinetics. The growth and inhibition models have helped gain a better understanding of substrate inhibition in biodegradation. Techno-economic analysis (TEA) and life cycle assessment (LCA) aspects are also described to assess the technical, economical, and environmental impacts of the biological treatment system.
Collapse
Affiliation(s)
- Ravi Kumar Sonwani
- Department of Chemical Engineering & Technology Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| | - Ming Zhang
- Department of Environmental Engineering, China Jiliang University, Hangzhou 310018, China
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong
| | - Sang Soo Lee
- Department of Environmental Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Balendu Shekher Giri
- Department of Chemical Engineering & Technology Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Ram Sharan Singh
- Department of Chemical Engineering & Technology Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Birendra Nath Rai
- Department of Chemical Engineering & Technology Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
29
|
Zhou H, Li X, Hu B, Wu M, Zhang Y, Yi X, Liu Y. Assembly of fungal mycelium-carbon nanotube composites and their application in pyrene removal. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125743. [PMID: 34088202 DOI: 10.1016/j.jhazmat.2021.125743] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have been known for decades to threaten human health. Various physical, chemical and biological methods have been developed to remove PAHs from different matrices. Microbial biodegradation processes are thought to be effective and environmentally friendly, but the low bioavailability of PAHs and their slow removal rate often limit the application of biodegradation. In this study, novel self-assembled PAH-degrading fungal mycelium (Penicillium oxalicum SYJ-1)-carbon nanotube (CNT) composites were applied for pyrene removal. The addition of CNTs did not affect the growth of strain SYJ-1 and promoted the total PAH removal efficiency. The composite could completely remove pyrene at 20 mg L-1 within 48 h, while the sole fungus and CNTs alone could only remove 72% and 80% of pyrene at 72 h, respectively. A cytochrome P450 inhibition experiment, together with degradation product identification and transcriptomic analysis, suggested that an intracellular PAH transformation pathway was employed by strain SYJ-1. The versatility of this assembly approach was also confirmed by adding different nanomaterials and using them to remove different pollutants. This study provides a strategy of coupling the chemical adsorption and biodegradation capacity of inorganic nanomaterials and microorganisms as composites to treat hydrophobic substrates in restricted bioreactor.
Collapse
Affiliation(s)
- Hao Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China.
| | - Xueling Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China
| | - Bingxin Hu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China
| | - Minghuo Wu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China
| | - Yue Zhang
- School of Biological Engineering, Dalian Polytechnic University, China
| | - Xianliang Yi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China
| | - Yang Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China
| |
Collapse
|
30
|
Elyamine AM, Kan J, Meng S, Tao P, Wang H, Hu Z. Aerobic and Anaerobic Bacterial and Fungal Degradation of Pyrene: Mechanism Pathway Including Biochemical Reaction and Catabolic Genes. Int J Mol Sci 2021; 22:8202. [PMID: 34360967 PMCID: PMC8347714 DOI: 10.3390/ijms22158202] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/19/2021] [Accepted: 07/27/2021] [Indexed: 12/21/2022] Open
Abstract
Microbial biodegradation is one of the acceptable technologies to remediate and control the pollution by polycyclic aromatic hydrocarbon (PAH). Several bacteria, fungi, and cyanobacteria strains have been isolated and used for bioremediation purpose. This review paper is intended to provide key information on the various steps and actors involved in the bacterial and fungal aerobic and anaerobic degradation of pyrene, a high molecular weight PAH, including catabolic genes and enzymes, in order to expand our understanding on pyrene degradation. The aerobic degradation pathway by Mycobacterium vanbaalenii PRY-1 and Mycobactetrium sp. KMS and the anaerobic one, by the facultative bacteria anaerobe Pseudomonas sp. JP1 and Klebsiella sp. LZ6 are reviewed and presented, to describe the complete and integrated degradation mechanism pathway of pyrene. The different microbial strains with the ability to degrade pyrene are listed, and the degradation of pyrene by consortium is also discussed. The future studies on the anaerobic degradation of pyrene would be a great initiative to understand and address the degradation mechanism pathway, since, although some strains are identified to degrade pyrene in reduced or total absence of oxygen, the degradation pathway of more than 90% remains unclear and incomplete. Additionally, the present review recommends the use of the combination of various strains of anaerobic fungi and a fungi consortium and anaerobic bacteria to achieve maximum efficiency of the pyrene biodegradation mechanism.
Collapse
Affiliation(s)
- Ali Mohamed Elyamine
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou 515063, China; (A.M.E.); (J.K.); (S.M.); (P.T.); (H.W.)
- Department of Life Science, Faculty of Science and Technology, University of Comoros, Moroni 269, Comoros
| | - Jie Kan
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou 515063, China; (A.M.E.); (J.K.); (S.M.); (P.T.); (H.W.)
| | - Shanshan Meng
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou 515063, China; (A.M.E.); (J.K.); (S.M.); (P.T.); (H.W.)
| | - Peng Tao
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou 515063, China; (A.M.E.); (J.K.); (S.M.); (P.T.); (H.W.)
| | - Hui Wang
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou 515063, China; (A.M.E.); (J.K.); (S.M.); (P.T.); (H.W.)
| | - Zhong Hu
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou 515063, China; (A.M.E.); (J.K.); (S.M.); (P.T.); (H.W.)
| |
Collapse
|
31
|
Espinosa-Ortiz EJ, Rene ER, Gerlach R. Potential use of fungal-bacterial co-cultures for the removal of organic pollutants. Crit Rev Biotechnol 2021; 42:361-383. [PMID: 34325585 DOI: 10.1080/07388551.2021.1940831] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fungi and bacteria coexist in a wide variety of natural and artificial environments which can lead to their association and interaction - ranging from antagonism to cooperation - that can affect the survival, colonization, spatial distribution and stress resistance of the interacting partners. The use of polymicrobial cultivation approaches has facilitated a more thorough understanding of microbial dynamics in mixed microbial communities, such as those composed of fungi and bacteria, and their influence on ecosystem functions. Mixed (multi-domain) microbial communities exhibit unique associations and interactions that could result in more efficient systems for the degradation and removal of organic pollutants. Several previous studies have reported enhanced biodegradation of certain pollutants when using combined fungal-bacterial treatments compared to pure cultures or communities of either fungi or bacteria (single domain systems). This article reviews: (i) the mechanisms of pollutant degradation that can occur in fungal-bacterial systems (e.g.: co-degradation, production of secondary metabolites, enhancement of degradative enzyme production, and transport of bacteria by fungal mycelia); (ii) case studies using fungal-bacterial co-cultures for the removal of various organic pollutants (synthetic dyes, polycyclic aromatic hydrocarbons, pesticides, and other trace or volatile organic compounds) in different environmental matrices (e.g. water, gas/vapors, soil); (iii) the key aspects of engineering artificial fungal-bacterial co-cultures, and (iv) the current challenges and future perspectives of using fungal-bacterial co-cultures for environmental remediation.
Collapse
Affiliation(s)
- Erika J Espinosa-Ortiz
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA.,Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
| | - Eldon R Rene
- Department of Water Supply, Sanitary and Environmental Engineering, IHE Delft Institute for Water Education, 2601DA Delft, The Netherlands
| | - Robin Gerlach
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA.,Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
| |
Collapse
|
32
|
Patel AB, Shaikh S, Jain KR, Desai C, Madamwar D. Polycyclic Aromatic Hydrocarbons: Sources, Toxicity, and Remediation Approaches. Front Microbiol 2020; 11:562813. [PMID: 33224110 PMCID: PMC7674206 DOI: 10.3389/fmicb.2020.562813] [Citation(s) in RCA: 460] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread across the globe mainly due to long-term anthropogenic sources of pollution. The inherent properties of PAHs such as heterocyclic aromatic ring structures, hydrophobicity, and thermostability have made them recalcitrant and highly persistent in the environment. PAH pollutants have been determined to be highly toxic, mutagenic, carcinogenic, teratogenic, and immunotoxicogenic to various life forms. Therefore, this review discusses the primary sources of PAH emissions, exposure routes, and toxic effects on humans, in particular. This review briefly summarizes the physical and chemical PAH remediation approaches such as membrane filtration, soil washing, adsorption, electrokinetic, thermal, oxidation, and photocatalytic treatments. This review provides a detailed systematic compilation of the eco-friendly biological treatment solutions for remediation of PAHs such as microbial remediation approaches using bacteria, archaea, fungi, algae, and co-cultures. In situ and ex situ biological treatments such as land farming, biostimulation, bioaugmentation, phytoremediation, bioreactor, and vermiremediation approaches are discussed in detail, and a summary of the factors affecting and limiting PAH bioremediation is also discussed. An overview of emerging technologies employing multi-process combinatorial treatment approaches is given, and newer concepts on generation of value-added by-products during PAH remediation are highlighted in this review.
Collapse
Affiliation(s)
- Avani Bharatkumar Patel
- Post Graduate Department of Biosciences, UGC Centre of Advanced Study, Sardar Patel University, Anand, India
| | - Shabnam Shaikh
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Anand, India
| | - Kunal R. Jain
- Post Graduate Department of Biosciences, UGC Centre of Advanced Study, Sardar Patel University, Anand, India
| | - Chirayu Desai
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Anand, India
| | - Datta Madamwar
- Post Graduate Department of Biosciences, UGC Centre of Advanced Study, Sardar Patel University, Anand, India
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Anand, India
| |
Collapse
|
33
|
Henn C, Arakaki RM, Monteiro DA, Boscolo M, da Silva R, Gomes E. Degradation of the Organochlorinated Herbicide Diuron by Rainforest Basidiomycetes. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5324391. [PMID: 33083471 PMCID: PMC7559502 DOI: 10.1155/2020/5324391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 11/17/2022]
Abstract
The main organochlorinated compounds used on agricultural crops are often recalcitrant, affecting nontarget organisms and contaminating rivers or groundwater. Diuron (N-(3,4-dichlorophenyl)-N',N'-dimethylurea) is a chlorinated herbicide widely used in sugarcane plantations. Here, we evaluated the ability of 13 basidiomycete strains of growing in a contaminated culture medium and degrading the xenobiotic. Dissipation rates in culture medium with initial 25 mg/L of diuron ranged from 7.3 to 96.8%, being Pluteus cubensis SXS 320 the most efficient strain, leaving no detectable residues after diuron metabolism. Pycnoporus sanguineus MCA 16 removed 56% of diuron after 40 days of cultivation, producing three metabolites more polar than parental herbicide, two of them identified as being DCPU and DCPMU. Despite of the strong inductive effect of diuron upon laccase synthesis and secretion, the application of crude enzymatic extracts of P. sanguineus did not catalyzed the breakdown of the herbicide in vitro, indicating that diuron biodegradation was not related to this oxidative enzyme.
Collapse
Affiliation(s)
- Caroline Henn
- ITAIPU Binacional, Divisão de Reservatório-MARR.CD, PR, Brazil, Avenida Tancredo Neves, 6731, CEP 85856-970 Foz do Iguaçu, Paraná, Brazil
| | - Ricardo M. Arakaki
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, SP, Brazil, Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto, São Paulo CEP 15054-000, Brazil
| | - Diego Alves Monteiro
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, SP, Brazil, Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto, São Paulo CEP 15054-000, Brazil
| | - Mauricio Boscolo
- Departamento de Química e Ciências Ambientais, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, SP, Brazil, Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto, São Paulo CEP 15054-000, Brazil
| | - Roberto da Silva
- Departamento de Química e Ciências Ambientais, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, SP, Brazil, Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto, São Paulo CEP 15054-000, Brazil
| | - Eleni Gomes
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, SP, Brazil, Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto, São Paulo CEP 15054-000, Brazil
| |
Collapse
|
34
|
Qiao K, Tian W, Bai J, Wang L, Zhao J, Song T, Chu M. Removal of high-molecular-weight polycyclic aromatic hydrocarbons by a microbial consortium immobilized in magnetic floating biochar gel beads. MARINE POLLUTION BULLETIN 2020; 159:111489. [PMID: 32892922 DOI: 10.1016/j.marpolbul.2020.111489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
A bacterial consortium immobilized in magnetic floating biochar gel beads is proposed to remove high-molecular-weight polycyclic aromatic hydrocarbons. The microbial consortium performed better than single strains and consisted of four strains of marine bacteria for degrading pyrene (PYR), two strains for benzo(a)pyrene (BAP), and three strains for indeno(1,2,3-cd)pyrene (INP), which were isolated from oil-contaminated seawater. The immobilized cells could biodegrade 89.8%, 66.9% and 78.2% of PYR, BAP and INP, respectively, and had better tolerance to pH, temperature and salinity than free cells. The Andrews model was used to explore the biodegradation kinetics, and when the initial concentrations of PYR, BAP, and INP were 7.80, 3.05, and 3.41 mg/L, the specific biodegradation rates reached maximum values of 0.2507, 0.1286, and 0.1930 d-1, respectively. The immobilized microbial consortium had a high HMW-PAH removal ability and good floatability and magnetic properties and could be collected by an external magnetic field.
Collapse
Affiliation(s)
- Kaili Qiao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Weijun Tian
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China.
| | - Jie Bai
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China
| | - Liang Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jing Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Tiantian Song
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Meile Chu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
35
|
Li Q, Liu J, Gadd GM. Fungal bioremediation of soil co-contaminated with petroleum hydrocarbons and toxic metals. Appl Microbiol Biotechnol 2020; 104:8999-9008. [PMID: 32940735 PMCID: PMC7567682 DOI: 10.1007/s00253-020-10854-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/11/2020] [Accepted: 08/23/2020] [Indexed: 11/27/2022]
Abstract
Abstract Much research has been carried out on the bacterial bioremediation of soil contaminated with petroleum hydrocarbons and toxic metals but much less is known about the potential of fungi in sites that are co-contaminated with both classes of pollutants. This article documents the roles of fungi in soil polluted with both petroleum hydrocarbons and toxic metals as well as the mechanisms involved in the biotransformation of such substances. Soil characteristics (e.g., structural components, pH, and temperature) and intracellular or excreted extracellular enzymes and metabolites are crucial factors which affect the efficiency of combined pollutant transformations. At present, bioremediation of soil co-contaminated with petroleum hydrocarbons and toxic metals is mostly focused on the removal, detoxification, or degradation efficiency of single or composite pollutants of each type. Little research has been carried out on the metabolism of fungi in response to complex pollutant stress. To overcome current bottlenecks in understanding fungal bioremediation, the potential of new approaches, e.g., gradient diffusion film technology (DGT) and metabolomics, is also discussed. Key points • Fungi play important roles in soil co-contaminated with TPH and toxic metals. • Soil characteristics, enzymes, and metabolites are major factors in bioremediation. • DGT and metabolomics can be applied to overcome current bottlenecks.
Collapse
Affiliation(s)
- Qianwei Li
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China.
| | - Jicheng Liu
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Geoffrey Michael Gadd
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China.
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, Scotland, DD1 5EH, UK.
| |
Collapse
|
36
|
Bioremediation of PAH-Contaminated Soils: Process Enhancement through Composting/Compost. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10113684] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bioremediation of contaminated soils has gained increasing interest in recent years as a low-cost and environmentally friendly technology to clean soils polluted with anthropogenic contaminants. However, some organic pollutants in soil have a low biodegradability or are not bioavailable, which hampers the use of bioremediation for their removal. This is the case of polycyclic aromatic hydrocarbons (PAHs), which normally are stable and hydrophobic chemical structures. In this review, several approaches for the decontamination of PAH-polluted soil are presented and discussed in detail. The use of compost as biostimulation- and bioaugmentation-coupled technologies are described in detail, and some parameters, such as the stability of compost, deserve special attention to obtain better results. Composting as an ex situ technology, with the use of some specific products like surfactants, is also discussed. In summary, the use of compost and composting are promising technologies (in all the approaches presented) for the bioremediation of PAH-contaminated soils.
Collapse
|
37
|
Ten Veldhuis MC, Ananyev G, Dismukes GC. Symbiosis extended: exchange of photosynthetic O 2 and fungal-respired CO 2 mutually power metabolism of lichen symbionts. PHOTOSYNTHESIS RESEARCH 2020; 143:287-299. [PMID: 31893333 PMCID: PMC7052035 DOI: 10.1007/s11120-019-00702-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Lichens are a symbiosis between a fungus and one or more photosynthetic microorganisms that enables the symbionts to thrive in places and conditions they could not compete independently. Exchanges of water and sugars between the symbionts are the established mechanisms that support lichen symbiosis. Herein, we present a new linkage between algal photosynthesis and fungal respiration in lichen Flavoparmelia caperata that extends the physiological nature of symbiotic co-dependent metabolisms, mutually boosting energy conversion rates in both symbionts. Measurements of electron transport by oximetry show that photosynthetic O2 is consumed internally by fungal respiration. At low light intensity, very low levels of O2 are released, while photosynthetic electron transport from water oxidation is normal as shown by intrinsic chlorophyll variable fluorescence yield (period-4 oscillations in flash-induced Fv/Fm). The rate of algal O2 production increases following consecutive series of illumination periods, at low and with limited saturation at high light intensities, in contrast to light saturation in free-living algae. We attribute this effect to arise from the availability of more CO2 produced by fungal respiration of photosynthetically generated sugars. We conclude that the lichen symbionts are metabolically coupled by energy conversion through exchange of terminal electron donors and acceptors used in both photosynthesis and fungal respiration. Algal sugars and O2 are consumed by the fungal symbiont, while fungal delivered CO2 is consumed by the alga.
Collapse
Affiliation(s)
- Marie-Claire Ten Veldhuis
- Water Resources Section, Delft University of Technology, Stevinweg 1, 2628CN, Delft, The Netherlands.
- Waksman Institute of Microbiology, Rutgers University, 190 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
| | - Gennady Ananyev
- Waksman Institute of Microbiology, Rutgers University, 190 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Rd, Piscataway, NJ, 08854, USA
| | - G Charles Dismukes
- Waksman Institute of Microbiology, Rutgers University, 190 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Rd, Piscataway, NJ, 08854, USA
| |
Collapse
|
38
|
Baoune H, Aparicio JD, Acuña A, El Hadj-Khelil AO, Sanchez L, Polti MA, Alvarez A. Effectiveness of the Zea mays-Streptomyces association for the phytoremediation of petroleum hydrocarbons impacted soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109591. [PMID: 31514081 DOI: 10.1016/j.ecoenv.2019.109591] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Restoring polluted sites by petroleum hydrocarbons is a challenge because of their complexity and persistence in the environment. The main objective of the present study was to investigate the performance of plant-actinobacteria system for the remediation of crude petroleum and pure-polycyclic aromatic hydrocarbons (PAHs) contaminated soils. The endophytic strain Streptomyces sp. Hlh1 was tested for its ability to degrade model PAHs (phenanthrene, pyrene and anthracene) in liquid minimal medium. Streptomyces sp. Hlh1 demonstrated the ability to grow on PAHs as sole carbon and energy source, reaching hydrocarbons removal of 63%, 93% and 83% for phenanthrene, pyrene and anthracene, respectively. Maize plant was chosen to study the impact of Streptomyces sp. Hlh1 inoculation on the dissipation of contaminants and plant growth. Thus, maize seedlings grown in soils contaminated with crude petroleum and pure-PAHs were inoculated with Streptomyces sp. Hlh1. Results showed that the endophyte inoculation increased contaminants removal. Maximum hydrocarbons removal (70%) was achieved in inoculated and planted soil contaminated with crude oil, while 61%, 59%, and 46% of hydrocarbons dissipation were registered for phenanthrene, pyrene and anthracene, respectively. These degradations rates were significantly higher compared to non-inoculated systems in all the treatments evaluated. Further, it was revealed that hydrocarbons (C8-C30) were efficiently degraded in plant-Streptomyces Hlh1 system. Moreover, the inoculation with the actinobacteria resulted significant plant development and enhanced photosynthetic pigments compared to plants grown in the other experimental conditions. The present study provide evidence that the inoculation of maize plants with Streptomyces sp. Hlh1 play a remarkable role in the removal of petroleum hydrocarbons, enhancing plant development in contaminated soils.
Collapse
Affiliation(s)
- Hafida Baoune
- Laboratoire de Protection des écosystème en Zones Arides et Semi-arides, FNSV, Université Kasdi Merbah Ouragla, 30000, Algeria; Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET. Av. Belgrano y Pasaje Casero., 4000, Tucumán, Argentina.
| | - Juan Daniel Aparicio
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET. Av. Belgrano y Pasaje Casero., 4000, Tucumán, Argentina.
| | - Adrian Acuña
- Universidad Tecnológica Nacional, Av. de Los Inmigrantes 555, 9400, Santa Cruz, Argentina.
| | - Aminata Ould El Hadj-Khelil
- Laboratoire de Protection des écosystème en Zones Arides et Semi-arides, FNSV, Université Kasdi Merbah Ouragla, 30000, Algeria.
| | - Leandro Sanchez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET. Av. Belgrano y Pasaje Casero., 4000, Tucumán, Argentina.
| | - Marta Alejandra Polti
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET. Av. Belgrano y Pasaje Casero., 4000, Tucumán, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, 4000, Tucumán, Argentina.
| | - Analia Alvarez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET. Av. Belgrano y Pasaje Casero., 4000, Tucumán, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, 4000, Tucumán, Argentina.
| |
Collapse
|
39
|
Babu AG, Reja SI, Akhtar N, Sultana M, Deore PS, Ali FI. Bioremediation of Polycyclic Aromatic Hydrocarbons (PAHs): Current Practices and Outlook. MICROORGANISMS FOR SUSTAINABILITY 2019. [DOI: 10.1007/978-981-13-7462-3_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Ahmad M, Pataczek L, Hilger TH, Zahir ZA, Hussain A, Rasche F, Schafleitner R, Solberg SØ. Perspectives of Microbial Inoculation for Sustainable Development and Environmental Management. Front Microbiol 2018; 9:2992. [PMID: 30568644 PMCID: PMC6289982 DOI: 10.3389/fmicb.2018.02992] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/19/2018] [Indexed: 11/13/2022] Open
Abstract
How to sustainably feed a growing global population is a question still without an answer. Particularly farmers, to increase production, tend to apply more fertilizers and pesticides, a trend especially predominant in developing countries. Another challenge is that industrialization and other human activities produce pollutants, which accumulate in soils or aquatic environments, contaminating them. Not only is human well-being at risk, but also environmental health. Currently, recycling, land-filling, incineration and pyrolysis are being used to reduce the concentration of toxic pollutants from contaminated sites, but too have adverse effects on the environment, producing even more resistant and highly toxic intermediate compounds. Moreover, these methods are expensive, and are difficult to execute for soil, water, and air decontamination. Alternatively, green technologies are currently being developed to degrade toxic pollutants. This review provides an overview of current research on microbial inoculation as a way to either replace or reduce the use of agrochemicals and clean environments heavily affected by pollution. Microorganism-based inoculants that enhance nutrient uptake, promote crop growth, or protect plants from pests and diseases can replace agrochemicals in food production. Several examples of how biofertilizers and biopesticides enhance crop production are discussed. Plant roots can be colonized by a variety of favorable species and genera that promote plant growth. Microbial interventions can also be used to clean contaminated sites from accumulated pesticides, heavy metals, polyaromatic hydrocarbons, and other industrial effluents. The potential of and key processes used by microorganisms for sustainable development and environmental management are discussed in this review, followed by their future prospects.
Collapse
Affiliation(s)
- Maqshoof Ahmad
- Department of Soil Science, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Lisa Pataczek
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Stuttgart, Germany
| | - Thomas H. Hilger
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Stuttgart, Germany
| | - Zahir Ahmad Zahir
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Azhar Hussain
- Department of Soil Science, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Frank Rasche
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Stuttgart, Germany
| | | | - Svein Ø. Solberg
- World Vegetable Center, Tainan, China
- Inland Norway University of Applied Sciences, Elverum, Norway
| |
Collapse
|
41
|
Dangi AK, Sharma B, Hill RT, Shukla P. Bioremediation through microbes: systems biology and metabolic engineering approach. Crit Rev Biotechnol 2018; 39:79-98. [DOI: 10.1080/07388551.2018.1500997] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Arun Kumar Dangi
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Babita Sharma
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Russell T. Hill
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
42
|
|
43
|
Conceição AA, Cunha JRB, Vieira VO, Pelaéz RDR, Mendonça S, Almeida JRM, Dias ES, de Almeida EG, de Siqueira FG. Bioconversion and Biotransformation Efficiencies of Wild Macrofungi. Fungal Biol 2018. [DOI: 10.1007/978-3-030-02622-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
44
|
Delgadillo-Ordoñez NC, Posada-Suárez LR, Marcelo E, Cepeda-Hernández ML, Sánchez-Nieves J. Aislamiento e identificación de levaduras degradadoras de hidrocarburos aromáticos, presentes en tanques de gasolina de vehículos urbanos. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2017. [DOI: 10.15446/rev.colomb.biote.v19n2.70278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Se obtuvieron aislamientos de levaduras a partir de muestreos en tanques de combustible de vehículos urbanos, con el objeto de evaluar su potencial actividad de degradación de hidrocarburos aromáticos derivados del petróleo. Se realizaron ensayos de crecimiento en medio mínimo mineral sólido utilizando distintos hidrocarburos (benceno, tolueno, naftaleno, fenantreno, y pireno). Los aislamientos que presentaron crecimiento notorio en alguno de los hidrocarburos aromáticos policíclicos fueron identificados mediante secuenciación Sanger de los marcadores moleculares ITS1 e ITS2 del ARNr. Se obtuvieron 16 aislados de levaduras, de las cuales tres presentaron crecimiento conspicuo con hidrocarburos aromáticos como única fuente de carbono. Las cepas identificadas pertenecen al género Rhodotorula y corresponden a las especies Rhodotorula calyptogenae (99,8% de identidad) y Rhodotorula dairenensis (99,8% de identidad). Dichas cepas presentaron crecimiento en benceno, tolueno, naftaleno, fenantreno. En este estudio se reporta por primera vez la presencia de levaduras del género Rhodotorula que habitan los ductos y tanques de gasolina de vehículos urbanos, así como su capacidad para utilizar distintos hidrocarburos aromáticos que son contaminantes para el medio ambiente. Estos resultados sugieren que dichas levaduras constituyen potenciales candidatos para la degradación de éstos compuestos, como parte de estrategias de biorremediación.
Collapse
|