1
|
Yang Q, Zhang X, Solairaj D, Fu Y, Zhang H. Molecular Response of Meyerozyma guilliermondii to Patulin: Transcriptomic-Based Analysis. J Fungi (Basel) 2023; 9:jof9050538. [PMID: 37233249 DOI: 10.3390/jof9050538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Patulin (PAT), mainly produced by Penicillium expansum, is a potential threat to health. In recent years, PAT removal using antagonistic yeasts has become a hot research topic. Meyerozyma guilliermondii, isolated by our group, produced antagonistic effects against the postharvest diseases of pears and could degrade PAT in vivo or in vitro. However, the molecular responses of M. guilliermondii over PAT exposure and its detoxification enzymes are not apparent. In this study, transcriptomics is used to unveil the molecular responses of M. guilliermondii on PAT exposure and the enzymes involved in PAT degradation. The functional enrichment of differentially expressed genes indicated that the molecular response mainly includes the up-regulated expression of genes related to resistance and drug-resistance, intracellular transport, growth and reproduction, transcription, DNA damage repair, antioxidant stress to avoid cell damage, and PAT detoxification genes such as short-chain dehydrogenase/reductases. This study elucidates the possible molecular responses and PAT detoxification mechanism of M. guilliermondii, which could be helpful to further accelerate the commercial application of antagonistic yeast toward mycotoxin decontamination.
Collapse
Affiliation(s)
- Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xi Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Dhanasekaran Solairaj
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yu Fu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
2
|
Diao E, Ma K, Qian S, Zhang H, Xie P, Mao R, Song H. Removal of patulin by thiol-compounds: A review. Toxicon 2022; 205:31-37. [PMID: 34822873 DOI: 10.1016/j.toxicon.2021.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 01/20/2023]
Abstract
Patulin (PAT) is a toxic mycotoxin usually contaminated apple juices, which leads to a serious food safety issue in the world. Thiol-compounds are a class of compounds containing the thiol (-SH) group themselves or obtained the -SH group by physical or chemical modification. They have the ability to efficiently remove patulin in apple juices with manifested negligible effects on juice quality. This review investigates the latest development in the removal of patulin using thiol-compounds, including the removal efficiencies and mechanisms of patulin, the factors influencing the removal efficiency of patulin, as well as the toxicities of thiol-compounds and safety of juices after detoxification. This review shows that thiol-compounds are promising materials for the removal or degradation of patulin in the contaminated juices.
Collapse
Affiliation(s)
- Enjie Diao
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huai'an, 223300, PR China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, PR China.
| | - Kun Ma
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, PR China; College of Food Science & Engineering, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Shiquan Qian
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huai'an, 223300, PR China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, PR China
| | - Hui Zhang
- College of Food Science & Engineering, Shandong Agricultural University, Tai'an, 271018, PR China.
| | - Peng Xie
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huai'an, 223300, PR China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, PR China
| | - Ruifeng Mao
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huai'an, 223300, PR China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, PR China
| | - Huwei Song
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huai'an, 223300, PR China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, PR China
| |
Collapse
|
3
|
Zhang B, Liang H, Huang K, Li J, Xu D, Huang C, Li Y. Cardiotoxicity of patulin was found in H9c2 cells. Toxicon 2021; 207:21-30. [PMID: 34929212 DOI: 10.1016/j.toxicon.2021.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/27/2022]
Abstract
Patulin (PAT) is a kind of mycotoxins that is universally found at rotten fruits, especially apples and apple products. Previous studies have shown that PAT has hepatotoxicity and nephrotoxicity. However, cardiotoxicity of PAT is rarely reported. Present study aimed at investigate the cardiotoxicity and relevant mechanisms of PAT on H9c2 cells. Cytotoxicity of PAT were evaluated by MTT assay and LDH. Hoechst 33258 staining was used to examine the nuclear morphology and AV/PI double staining was employed for apoptosis on H9c2 cells. Expression level of Caspase-3, Caspase-9, Bax, Bcl-2 were quantified to verify the potential mechanism of mitochondrial apoptosis pathway. The tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and interleukin 6 (IL-6) were quantified to determine the inflammatory response by using ELISA assay. ROS, SOD, MDA, GSH levels were measured to determine the oxidative stress status. Results demonstrated that PAT significantly induced cell injury, as evidenced by the down-regulated of cell viability, and the increase of LDH release. Hoesst33258 staining and flow cytometry showed that apoptosis rate was elevated by PAT. PAT treatment up-regulated the expression of Caspase-3, Caspase-9, Bax level and down-regulated the expression of Bcl-2 level. TNF-α, IL-1β, IL-6 levels showed that PAT increased the pro-inflammatory response. As PAT concentration increased, intracellular MDA, ROS content were elevated, while GSH content and the activity of SOD were significantly decreased. Thus, it is concluded that PAT may induce apoptosis of H9c2 cells through oxidative stress.
Collapse
Affiliation(s)
- Baigang Zhang
- Life Science and Engineering, Lanzhou University of Technology, Gansu, Lanzhou, 730050, China
| | - Hairong Liang
- Life Science and Engineering, Lanzhou University of Technology, Gansu, Lanzhou, 730050, China
| | - Ke Huang
- School of Basic Medical Sciences, Lanzhou University, Gansu, Lanzhou, 730050, China; School/Hospital of Stomatology, Lanzhou University, Gansu, Lanzhou, 730050, China
| | - Jinliang Li
- Life Science and Engineering, Lanzhou University of Technology, Gansu, Lanzhou, 730050, China
| | - Dongmei Xu
- Life Science and Engineering, Lanzhou University of Technology, Gansu, Lanzhou, 730050, China
| | - Chenghui Huang
- Life Science and Engineering, Lanzhou University of Technology, Gansu, Lanzhou, 730050, China
| | - Yi Li
- School/Hospital of Stomatology, Lanzhou University, Gansu, Lanzhou, 730050, China.
| |
Collapse
|
4
|
Zhong L, Carere J, Mats L, Lu Z, Lu F, Zhou T. Formation of glutathione patulin conjugates associated with yeast fermentation contributes to patulin reduction. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Janik E, Niemcewicz M, Ceremuga M, Stela M, Saluk-Bijak J, Siadkowski A, Bijak M. Molecular Aspects of Mycotoxins-A Serious Problem for Human Health. Int J Mol Sci 2020; 21:E8187. [PMID: 33142955 PMCID: PMC7662353 DOI: 10.3390/ijms21218187] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 01/09/2023] Open
Abstract
Mycotoxins are toxic fungal secondary metabolities formed by a variety of fungi (moulds) species. Hundreds of potentially toxic mycotoxins have been already identified and are considered a serious problem in agriculture, animal husbandry, and public health. A large number of food-related products and beverages are yearly contaminated by mycotoxins, resulting in economic welfare losses. Mycotoxin indoor environment contamination is a global problem especially in less technologically developed countries. There is an ongoing effort in prevention of mould growth in the field and decontamination of contaminated food and feed in order to protect human and animal health. It should be emphasized that the mycotoxins production by fungi (moulds) species is unavoidable and that they are more toxic than pesticides. Human and animals are exposed to mycotoxin via food, inhalation, or contact which can result in many building-related illnesses including kidney and neurological diseases and cancer. In this review, we described in detail the molecular aspects of main representatives of mycotoxins, which are serious problems for global health, such as aflatoxins, ochratoxin A, T-2 toxin, deoxynivalenol, patulin, and zearalenone.
Collapse
Affiliation(s)
- Edyta Janik
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Marcin Niemcewicz
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Michal Ceremuga
- Military Institute of Armament Technology, Prymasa Stefana Wyszyńskiego 7, 05-220 Zielonka, Poland
| | - Maksymilian Stela
- CBRN Reconnaissance and Decontamination Department, Military Institute of Chemistry and Radiometry, Antoniego Chrusciela "Montera" 105, 00-910 Warsaw, Poland
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Adrian Siadkowski
- Department of Security and Crisis Menagement, Faculty of Applied Sciences, University of Dabrowa Gornicza, Zygmunta Cieplaka 1c, 41-300 Dabrowa Gornicza, Poland
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
6
|
Pfliegler WP, Pócsi I, Győri Z, Pusztahelyi T. The Aspergilli and Their Mycotoxins: Metabolic Interactions With Plants and the Soil Biota. Front Microbiol 2020; 10:2921. [PMID: 32117074 PMCID: PMC7029702 DOI: 10.3389/fmicb.2019.02921] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/04/2019] [Indexed: 01/06/2023] Open
Abstract
Species of the highly diverse fungal genus Aspergillus are well-known agricultural pests, and, most importantly, producers of various mycotoxins threatening food safety worldwide. Mycotoxins are studied predominantly from the perspectives of human and livestock health. Meanwhile, their roles are far less known in nature. However, to understand the factors behind mycotoxin production, the roles of the toxins of Aspergilli must be understood from a complex ecological perspective, taking mold-plant, mold-microbe, and mold-animal interactions into account. The Aspergilli may switch between saprophytic and pathogenic lifestyles, and the production of secondary metabolites, such as mycotoxins, may vary according to these fungal ways of life. Recent studies highlighted the complex ecological network of soil microbiotas determining the niches that Aspergilli can fill in. Interactions with the soil microbiota and soil macro-organisms determine the role of secondary metabolite production to a great extent. While, upon infection of plants, metabolic communication including fungal secondary metabolites like aflatoxins, gliotoxin, patulin, cyclopiazonic acid, and ochratoxin, influences the fate of both the invader and the host. In this review, the role of mycotoxin producing Aspergillus species and their interactions in the ecosystem are discussed. We intend to highlight the complexity of the roles of the main toxic secondary metabolites as well as their fate in natural environments and agriculture, a field that still has important knowledge gaps.
Collapse
Affiliation(s)
- Walter P. Pfliegler
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Zoltán Győri
- Institute of Nutrition, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Tünde Pusztahelyi
- Central Laboratory of Agricultural and Food Products, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
7
|
Das S, Czuni L, Báló V, Papp G, Gazdag Z, Papp N, Kőszegi T. Cytotoxic Action of Artemisinin and Scopoletin on Planktonic Forms and on Biofilms of Candida Species. Molecules 2020; 25:E476. [PMID: 31979177 PMCID: PMC7038054 DOI: 10.3390/molecules25030476] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/08/2020] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
We investigated the antifungal activities of purified plant metabolites artemisinin (Ar) and scopoletin (Sc) including inhibition, effects on metabolic activities, viability, and oxidative stress on planktonic forms and on preformed biofilms of seven Candida species. The characteristic minimum inhibitory concentration (MIC90) of Ar and Sc against Candida species ranged from 21.83-142.1 µg/mL and 67.22-119.4 µg/mL, respectively. Drug concentrations causing ≈10% CFU decrease within 60 minutes of treatments were also determined (minimum effective concentration, MEC10) using 100-fold higher CFUs than in the case of MIC90 studies. Cytotoxic effects on planktonic and on mature biofilms of Candida species at MEC10 concentrations were further evaluated with fluorescent live/dead discrimination techniques. Candida glabrata, Candida guilliermondii, and Candida parapsilosis were the species most sensitive to Ar and Sc. Ar and Sc were also found to promote the accumulation of intracellular reactive oxygen species (ROS) by increasing oxidative stress at their respective MEC10 concentrations against the tested planktonic Candida species. Ar and Sc possess dose-dependent antifungal action but the underlying mechanism type (fungistatic and fungicidal) is not clear yet. Our data suggest that Ar and Sc found in herbal plants might have potential usage in the fight against Candida biofilms.
Collapse
Affiliation(s)
- Sourav Das
- Department of Laboratory Medicine, University of Pécs, Medical School, 7624 Pécs, Ifjúság u. 13., Hungary;
- János Szentágothai Research Center, University of Pécs, 7624 Pécs, Ifjúság u. 20., Hungary
| | - Lilla Czuni
- Department of General and Environmental Microbiology, Institute of Biology, University of Pécs, 7624 Pécs, Ifjúság u. 6., Hungary; (L.C.); (V.B.); (G.P.); (Z.G.)
- Microbial Biotechnology Research Group, János Szentágothai Research Center, University of Pécs, 7624 Pécs, Ifjúság u. 20., Hungary
| | - Viktória Báló
- Department of General and Environmental Microbiology, Institute of Biology, University of Pécs, 7624 Pécs, Ifjúság u. 6., Hungary; (L.C.); (V.B.); (G.P.); (Z.G.)
| | - Gábor Papp
- Department of General and Environmental Microbiology, Institute of Biology, University of Pécs, 7624 Pécs, Ifjúság u. 6., Hungary; (L.C.); (V.B.); (G.P.); (Z.G.)
- Microbial Biotechnology Research Group, János Szentágothai Research Center, University of Pécs, 7624 Pécs, Ifjúság u. 20., Hungary
| | - Zoltán Gazdag
- Department of General and Environmental Microbiology, Institute of Biology, University of Pécs, 7624 Pécs, Ifjúság u. 6., Hungary; (L.C.); (V.B.); (G.P.); (Z.G.)
- Microbial Biotechnology Research Group, János Szentágothai Research Center, University of Pécs, 7624 Pécs, Ifjúság u. 20., Hungary
| | - Nóra Papp
- Department of Pharmacognosy, University of Pécs, Faculty of Pharmacy, 7624 Pécs, Rókus u. 2, Hungary
| | - Tamás Kőszegi
- Department of Laboratory Medicine, University of Pécs, Medical School, 7624 Pécs, Ifjúság u. 13., Hungary;
- János Szentágothai Research Center, University of Pécs, 7624 Pécs, Ifjúság u. 20., Hungary
| |
Collapse
|
8
|
Wang K, Zheng X, Yang Q, Zhang H, Apaliya MT, Dhanasekaran S, Zhang X, Zhao L, Li J, Jiang Z. S-Adenosylmethionine-Dependent Methyltransferase Helps Pichia caribbica Degrade Patulin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11758-11768. [PMID: 31577438 DOI: 10.1021/acs.jafc.9b05144] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Patulin contamination not only is a menace to human health but also causes serious environmental problems worldwide due to the synthetic fungicides that are used to control it. This study focused on investigating the patulin degradation mechanism in Pichia caribbica at the molecular level. According to the results, P. caribbica (2 × 106 cells/mL) was able to degrade patulin from 20 μg/mL to an undetectable level in 72 h. The RNA-seq data showed patulin-induced oxidative stress and responses in P. caribbica. The deletion of PcCRG1 led to a significant decrease in patulin degradation by P. caribbica, whereas the overexpression of PcCRG1 accelerated the degradation of patulin. The study identified that PcCRG1 protein had the ability to degrade patulin in vitro. Overall, we demonstrated that the patulin degradation process in P. caribbica was more than one way; PcCRG1 was an S-adenosylmethionine-dependent methyltransferase and played an important role in the patulin degradation process in P. caribbica.
Collapse
Affiliation(s)
| | - Xiangfeng Zheng
- School of Food Science and Engineering , Yangzhou University , Yangzhou 225009 , Jiangsu , People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhong L, Carere J, Lu Z, Lu F, Zhou T. Patulin in Apples and Apple-Based Food Products: The Burdens and the Mitigation Strategies. Toxins (Basel) 2018; 10:E475. [PMID: 30445713 PMCID: PMC6267208 DOI: 10.3390/toxins10110475] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 01/09/2023] Open
Abstract
Apples and apple-based products are among the most popular foods around the world for their delightful flavors and health benefits. However, the commonly found mold, Penicillium expansum invades wounded apples, causing the blue mold decay and ensuing the production of patulin, a mycotoxin that negatively affects human health. Patulin contamination in apple products has been a worldwide problem without a satisfactory solution yet. A comprehensive understanding of the factors and challenges associated with patulin accumulation in apples is essential for finding such a solution. This review will discuss the effects of the pathogenicity of Penicillium species, quality traits of apple cultivars, and environmental conditions on the severity of apple blue mold and patulin contamination. Moreover, beyond the complicated interactions of the three aforementioned factors, patulin control is also challenged by the lack of reliable detection methods in food matrices, as well as unclear degradation mechanisms and limited knowledge about the toxicities of the metabolites resulting from the degradations. As apple-based products are mainly produced with stored apples, pre- and post-harvest strategies are equally important for patulin mitigation. Before storage, disease-resistance breeding, orchard-management, and elicitor(s) application help control the patulin level by improving the storage qualities of apples and lowering fruit rot severity. From storage to processing, patulin mitigation strategies could benefit from the optimization of apple storage conditions, the elimination of rotten apples, and the safe and effective detoxification or biodegradation of patulin.
Collapse
Affiliation(s)
- Lei Zhong
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing 210095, China.
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada.
| | - Jason Carere
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada.
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing 210095, China.
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing 210095, China.
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada.
| |
Collapse
|
10
|
Yang Q, Li Y, Apaliya MT, Zheng X, Serwah BNA, Zhang X, Zhang H. The Response of Rhodotorula mucilaginosa to Patulin Based on Lysine Crotonylation. Front Microbiol 2018; 9:2025. [PMID: 30233516 PMCID: PMC6129574 DOI: 10.3389/fmicb.2018.02025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/09/2018] [Indexed: 12/26/2022] Open
Abstract
Patulin (PAT) is a mycotoxin produced by some Penicillium, Aspergillus, and Byssochlamys species. Rhodotorula mucilaginosa is able to degrade PAT in vivo as well as in vitro, up till date, the process and molecular mechanism(s) involved patulin degradation still remains unknown. Protein lysine crotonylation (Kcr) plays an important role in regulating chromatin dynamics, gene expression, and metabolic pathways in mammals and eukaryotes. Investigation of the Kcr changes accompanying degradation of patulin in R. mucilaginosa were observed to investigate the mechanisms of patulin inhibition. Tandem mass tag (TMT) labeling and Kcro affinity enrichment, followed by high-resolution LC-MS/MS analysis, were used to perform quantitative lysine crotonylome analysis on R. mucilaginosa. Consequently, 1691 lysine crotonylation sites in 629 protein groups were identified, among which we quantified 1457 sites in 562 proteins. Among the quantified proteins, 79 and 46 crotonylated proteins were up-regulated and down-regulated, respectively. The differentially up expressed modified proteins were mainly involved in tricarboxylic acid cycle and gluconeogenic pathway. The differentially down expressed Kcr proteins were mainly classified to ribosome and carbohydrate transport and metabolism. Bioinformatic analyses were performed to annotate the quantifiable lysine crotonylated targets. Moreover, interaction networks and high confidence domain architectures of crotonylated proteins were investigated with the aid of bioinformatic tools, and these results showed that there was an increase in the number of yeasts with crotonylated proteins. The results also provided information on the various roles of crotonylation, which are involved in PAT degradation.
Collapse
Affiliation(s)
- Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, China
| | - Yulin Li
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, China
| | - Maurice T. Apaliya
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xiangfeng Zheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | | | - Xiaoyun Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
11
|
Zheng X, Yang Q, Zhao L, Apaliya MT, Zhang X, Zhang H. Crosstalk between proteins expression and lysine acetylation in response to patulin stress in Rhodotorula mucilaginosa. Sci Rep 2017; 7:13490. [PMID: 29044224 PMCID: PMC5647337 DOI: 10.1038/s41598-017-14078-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/06/2017] [Indexed: 12/25/2022] Open
Abstract
The proteomic and lysine acetylation (Kac) changes, accompanying degradation of patulin in Rhodotorula mucilaginosa were analyzed using tandem mass tagging and N6-acetyllysine affinity enrichment followed by LC-MS/MS. Proteomic results showed that expression level of short-chain reductase protein and glutathione S-transferase involved in detoxification was significantly up-regulated. In addition, the expression levels of zinc-binding oxidoreductase and quinone oxidoreductase that are involved in antioxidant process, ABC transport and MFS transport responsible for chemical transport were activated when treated with patulin. The quantitative real time PCR (qRT-PCR) result also indicated these genes expression levels were increased when treated with patulin. Kac changes accompanying degradation of patulin in R. mucilaginosa were also observed. Totally, 130 Kac sites in 103 proteins were differentially expressed under patulin stress. The differentially up expressed modified proteins were mainly involved in tricarboxylic acid cycle and nuclear acid biosynthesis. The differentially down expressed Kac proteins were mainly classified to ribosome, oxidative phosphorylation, protein synthesis and defense to stress process. Our results suggest that patulin exposure prompt R. mucilaginosa to produce a series of actions to resist or degrade patulin, including Kac. In addition, the Kac information in R. mucilaginosa and Kac in response to patulin stress was firstly revealed.
Collapse
Affiliation(s)
- Xiangfeng Zheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Lina Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Maurice Tibiru Apaliya
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Xiaoyun Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
12
|
Jayashree GV, Krupashree K, Rachitha P, Khanum F. Patulin Induced Oxidative Stress Mediated Apoptotic Damage in Mice, and its Modulation by Green Tea Leaves. J Clin Exp Hepatol 2017; 7:127-134. [PMID: 28663677 PMCID: PMC5478942 DOI: 10.1016/j.jceh.2017.01.113] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/29/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The present study demonstrates the antioxidant and hepatic protective effects of Green tea leaves (GTL). METHODS The serum level of aspartate aminotransferase and alanine aminotransferase was analyzed. The liver antioxidant enzymes such as SOD, CAT, GPx, GR, GSH, lipid peroxidation and protein carbonyls, ROS content were estimated. The histology of liver tissue was observed and the protein expression of SOD, CAT, Caspase-3 and p53 was investigated by Western blotting. RESULTS Effectiveness of GTL extract in preventing patulin induced liver damage showed significant reduction in serum ALT and AST to 19% and 85% respectively, the increase in antioxidant levels and lipid peroxidation products with patulin treatment were also reduced with GTL supplementation. The patulin induced increase in hepatic protein carbonyls was significantly reduced by 141-111% with 100 and 200 mg/kg b.wt GTL and in ROS was significantly reduced by 171-140% with 100 and 200 mg/kg b.wt GTL administration respectively. Also showed protection against hepatic tissue damage and protein expression in mice. CONCLUSION This study showed remarkable antioxidant and hepatic protective effects of GTL.
Collapse
Affiliation(s)
| | | | | | - Farhath Khanum
- Address for correspondence: Farhath Khanum, Department of Biochemistry and Nanosciences Discipline, Defence Food Research Laboratory, Siddarthanagara, Mysuru, Karnataka 570 011, India. Tel.: +91 821 2473064; fax: +91 821 2473283.Department of Biochemistry and Nanosciences Discipline, Defence Food Research LaboratorySiddarthanagara, MysuruKarnataka570 011India
| |
Collapse
|
13
|
Chen Y, Peng HM, Wang X, Li BQ, Long MY, Tian SP. Biodegradation Mechanisms of Patulin in Candida guilliermondii: An iTRAQ-Based Proteomic Analysis. Toxins (Basel) 2017; 9:E48. [PMID: 28208714 PMCID: PMC5331428 DOI: 10.3390/toxins9020048] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 01/15/2017] [Accepted: 01/20/2017] [Indexed: 01/26/2023] Open
Abstract
Patulin, a potent mycotoxin, contaminates fruits and derived products worldwide, and is a serious health concern. Several yeast strains have shown the ability to effectively degrade patulin. However, the mechanisms of its biodegradation still remain unclear at this time. In the present study, biodegradation and involved mechanisms of patulin by an antagonistic yeast Candida guilliermondii were investigated. The results indicated that C. guilliermondii was capable of not only multiplying to a high population in medium containing patulin, but also effectively reducing patulin content in culture medium. Degradation of patulin by C. guilliermondii was dependent on the yeast cell viability, and mainly occurred inside cells. E-ascladiol was the main degradation product of patulin. An iTRAQ-based proteomic analysis revealed that the responses of C. guilliermondii to patulin were complex. A total of 30 differential proteins involved in 10 biological processes were identified, and more than two-thirds of the differential proteins were down-accumulated. Notably, a short-chain dehydrogenase (gi|190348612) was markedly induced by patulin at both the protein and mRNA levels. Our findings will provide a foundation to help enable the commercial development of an enzyme formulation for the detoxification of patulin in fruit-derived products.
Collapse
Affiliation(s)
- Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Huai-Min Peng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiao Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Bo-Qiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Man-Yuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA.
| | - Shi-Ping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
Blaskó Á, Gazdag Z, Gróf P, Máté G, Sárosi S, Krisch J, Vágvölgyi C, Makszin L, Pesti M. Effects of clary sage oil and its main components, linalool and linalyl acetate, on the plasma membrane of Candida albicans: an in vivo EPR study. Apoptosis 2016; 22:175-187. [DOI: 10.1007/s10495-016-1321-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
Ianiri G, Idnurm A, Castoria R. Transcriptomic responses of the basidiomycete yeast Sporobolomyces sp. to the mycotoxin patulin. BMC Genomics 2016; 17:210. [PMID: 26956724 PMCID: PMC4784387 DOI: 10.1186/s12864-016-2550-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/28/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Patulin is a mycotoxin produced by Penicillium expansum, the causal agent of blue mold of stored pome fruits, and several other species of filamentous fungi. This mycotoxin has genotoxic, teratogenic and immunotoxic effects in mammals, and its presence in pome fruits and derived products represents a serious health hazard. Biocontrol agents in the Pucciniomycotina, such as the yeasts Sporobolomyces sp. strain IAM 13481 and Rhodosporidium kratochvilovae strain LS11, are able to resist patulin and degrade it into the less toxic compounds desoxypatulinic acid and ascladiol. RESULTS In this investigation we applied a transcriptomic approach based on RNAseq to annotate the genome of Sporobolomyces sp. IAM 13481 and then study the changes of gene expression in Sporobolomyces sp. exposed to patulin. Patulin treatment leads to ROS production and oxidative stress that result in the activation of stress response mechanisms controlled by transcription factors. Upregulated Sporobolomyces genes were those involved in oxidation-reduction and transport processes, suggesting the activation of defense mechanisms to resist patulin toxicity and expel the mycotoxin out of the cells. Other upregulated genes encoded proteins involved in metabolic processes such as those of the glutathione and thioredoxin systems, which are essential to restore the cellular redox homeostasis. Conversely, patulin treatment decreased the expression of genes involved in the processes of protein synthesis and modification, such as transcription, RNA processing, translation, protein phosphorylation and biosynthesis of amino acids. Also, genes encoding proteins involved in transport of ions, cell division and cell cycle were downregulated. This indicates a reduction of metabolic activity, probably due to the high energy requirement by the cells or metabolic arrest while recovering from the insult caused by patulin toxicity. CONCLUSIONS Complex mechanisms are activated in a biocontrol yeast in response to patulin. The genes identified in this study can pave the way to develop i) a biodetoxification process of patulin in juices and ii) a biosensor for the rapid and cost-effective detection of this mycotoxin.
Collapse
Affiliation(s)
- Giuseppe Ianiri
- Dipartimento di Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, Via F. De Sanctis snc, 86100, Campobasso, Italy.
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, 64110, USA.
- Present address: Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Alexander Idnurm
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, 64110, USA.
- School of BioSciences, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Raffaello Castoria
- Dipartimento di Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, Via F. De Sanctis snc, 86100, Campobasso, Italy.
| |
Collapse
|
16
|
Papp G, Máté G, Mike N, Gazdag Z, Pesti M. Regulation of the antioxidant system in cells of the fission yeast Schizosaccharomyces pombe after combined treatment with patulin and citrinin. Toxicon 2016; 111:100-7. [PMID: 26752674 DOI: 10.1016/j.toxicon.2015.12.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 12/10/2015] [Accepted: 12/29/2015] [Indexed: 10/25/2022]
Abstract
The effects of combined treatment with patulin (PAT) and citrinin (CTN) on Schizosaccharomyces pombe cells were investigated in acute toxicity tests. In comparison with the controls the exposure of fission yeast cells (10(7) cells ml(-1)) to PAT + CTN (250 μM each) for 1 h at a survival rate of 66.6% significantly elevated the concentration of total reactive oxygen species (ROS) via increased levels of peroxides without affecting the concentrations of superoxides or the hydroxyl radical. This treatment induced a 3.08-fold increase in the specific concentration of glutathione and elevated specific activities of catalase and glutathione S-transferase, while at the same time the activity of glutathione reductase decreased. The pattern of the ROS was the same as that induced by CTN (Máté et al., 2014), while the presence of PAT in the PAT + CTN combination treatment modified the activities of the antioxidant system (Papp et al., 2012) in comparison with the individual PAT or CTN treatment, suggesting toxin-specific regulation of glutathione and the enzymes of the antioxidant system and the possibility that the transcription factor (pap1 and atf1) -regulated processes might be influenced directly by ROS.
Collapse
Affiliation(s)
- Gábor Papp
- Department of General and Environmental Microbiology, Faculty of Sciences, University of Pécs, Pécs, Hungary; Microbial Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Pécs, Hungary.
| | - Gábor Máté
- Department of General and Environmental Microbiology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Nóra Mike
- Department of General and Environmental Microbiology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Zoltán Gazdag
- Department of General and Environmental Microbiology, Faculty of Sciences, University of Pécs, Pécs, Hungary; Microbial Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Miklós Pesti
- Department of General and Environmental Microbiology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| |
Collapse
|
17
|
Emri T, Szarvas V, Orosz E, Antal K, Park H, Han KH, Yu JH, Pócsi I. Core oxidative stress response in Aspergillus nidulans. BMC Genomics 2015; 16:478. [PMID: 26115917 PMCID: PMC4482186 DOI: 10.1186/s12864-015-1705-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/15/2015] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The b-Zip transcription factor AtfA plays a key role in regulating stress responses in the filamentous fungus Aspergillus nidulans. To identify the core regulons of AtfA, we examined genome-wide expression changes caused by various stresses in the presence/absence of AtfA using A. nidulans microarrays. We also intended to address the intriguing question regarding the existence of core environmental stress response in this important model eukaryote. RESULTS Examination of the genome wide expression changes caused by five different oxidative stress conditions in wild type and the atfA null mutant has identified a significant number of stereotypically regulated genes (Core Oxidative Stress Response genes). The deletion of atfA increased the oxidative stress sensitivity of A. nidulans and affected mRNA accumulation of several genes under both unstressed and stressed conditions. The numbers of genes under the AtfA control appear to be specific to a stress-type. We also found that both oxidative and salt stresses induced expression of some secondary metabolite gene clusters and the deletion of atfA enhanced the stress responsiveness of additional clusters. Moreover, certain clusters were down-regulated by the stresses tested. CONCLUSION Our data suggest that the observed co-regulations were most likely consequences of the overlapping physiological effects of the stressors and not of the existence of a general environmental stress response. The function of AtfA in governing various stress responses is much smaller than anticipated and/or other regulators may play a redundant or overlapping role with AtfA. Both stress inducible and stress repressive regulations of secondary metabolism seem to be frequent features in A. nidulans.
Collapse
Affiliation(s)
- Tamás Emri
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, P.O. Box 63, H-4032, Debrecen, Hungary.
| | - Vera Szarvas
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, P.O. Box 63, H-4032, Debrecen, Hungary.
| | - Erzsébet Orosz
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, P.O. Box 63, H-4032, Debrecen, Hungary.
| | - Károly Antal
- Department of Zoology, Faculty of Sciences, Eszterházy Károly College, Eszterházy út 1, H-3300, Eger, Hungary.
| | - HeeSoo Park
- Department of Bacteriology, University of Wisconsin, 1550 Linden Dr, Madison, WI, 53706, USA.
| | - Kap-Hoon Han
- Department of Pharmaceutical Engineering, Woosuk University, 565-701, Wanju, Republic of Korea.
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin, 1550 Linden Dr, Madison, WI, 53706, USA.
| | - István Pócsi
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, P.O. Box 63, H-4032, Debrecen, Hungary.
| |
Collapse
|
18
|
Pfliegler WP, Pusztahelyi T, Pócsi I. Mycotoxins - prevention and decontamination by yeasts. J Basic Microbiol 2015; 55:805-18. [DOI: 10.1002/jobm.201400833] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/12/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Walter P. Pfliegler
- Department of Genetics and Applied Microbiology; Faculty of Science and Technology; University of Debrecen; Debrecen Hungary
- Department of Biotechnology and Microbiology; Faculty of Science and Technology; University of Debrecen; Debrecen Hungary
- Postdoctoral Fellowship Programme of the Hungarian Academy of Sciences (MTA); Hungary
| | - Tünde Pusztahelyi
- Faculty of Agricultural and Food Sciences and Environmental Management; Central Laboratory; University of Debrecen; Debrecen Hungary
| | - István Pócsi
- Department of Biotechnology and Microbiology; Faculty of Science and Technology; University of Debrecen; Debrecen Hungary
| |
Collapse
|
19
|
Regulation of oxidative stress-induced cytotoxic processes of citrinin in the fission yeast Schizosaccharomyces pombe. Toxicon 2014; 90:155-66. [DOI: 10.1016/j.toxicon.2014.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 08/05/2014] [Accepted: 08/07/2014] [Indexed: 12/22/2022]
|
20
|
Song E, Xia X, Su C, Dong W, Xian Y, Wang W, Song Y. Hepatotoxicity and genotoxicity of patulin in mice, and its modulation by green tea polyphenols administration. Food Chem Toxicol 2014; 71:122-7. [DOI: 10.1016/j.fct.2014.06.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 06/08/2014] [Accepted: 06/10/2014] [Indexed: 11/26/2022]
|
21
|
Regulation of cytotoxic, non-estrogenic, oxidative stress-induced processes of zearalenone in the fission yeast Schizosaccharomyces pombe. Toxicon 2013; 73:130-43. [DOI: 10.1016/j.toxicon.2013.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/15/2013] [Accepted: 07/18/2013] [Indexed: 02/02/2023]
|
22
|
Blaskó Á, Mike N, Gróf P, Gazdag Z, Czibulya Z, Nagy L, Kunsági-Máté S, Pesti M. Citrinin-induced fluidization of the plasma membrane of the fission yeast Schizosaccharomyces pombe. Food Chem Toxicol 2013; 59:636-42. [DOI: 10.1016/j.fct.2013.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/13/2013] [Accepted: 07/01/2013] [Indexed: 10/26/2022]
|
23
|
Gao JM, Li R, Zhang L, Jia LL, Ying XX, Dou DQ, Li JC, Li HB. Cuscuta chinensis seeds water extraction protecting murine osteoblastic MC3T3-E1 cells against tertiary butyl hydroperoxide induced injury. JOURNAL OF ETHNOPHARMACOLOGY 2013; 148:587-595. [PMID: 23702038 DOI: 10.1016/j.jep.2013.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 04/03/2013] [Accepted: 05/04/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cuscuta chinensis (C. chinensis) is a well-known traditional Chinese herb that has been used to treat heart disease, diabetes, liver injury, cancer, and aging. MATERIALS AND METHODS Murine osteoblastic MC3T3-E1 cells were treated with various concentrations of C. chinensis water extraction at different time intervals. The antioxidant effect of C. chinensis on MC3T3-E1 cells was evaluated using MTT and TUNEL assays. The effect of C. chinensis on cell cycle was analyzed by flow cytometry with propidium iodide. Lipid peroxidation was measured by the HPLC method. The cellular redox status was determined from the reduced glutathione to oxidized glutathione ratio (GSH/GSSG) and the enzymes involved in glutathione metabolism, including glutathione reductase (GR), Glutathione S-transferase (GST), and Glucose-6-phosphate dehydrogenase (G6PD). The changes in relative mitochondrial transmembrane potential (ΔΨm) in the MC3T3-E1 cells were analyzed with rhodamine 123 staining. Western blot analysis was used to evaluate the levels of cytochrome c (cyto c), Bax, Bcl-2, caspase 3, Sirt3, and IDH2 expressions. RESULTS The C. chinensis water extraction protects tertiary butyl hydroperoxide (TBHP)-treated MC3T3-E1 cells from death in a dose-dependent manner. C. chinensis treatment significantly inhibited the reactive oxygen species (ROS) generation, malondialdehyde (MDA) production, and increased the activity of superoxide dismutase (SOD), GR, GST, and G6PD. The release of cyto c from mitochondria was reduced by C. chinensis, which increased the expression of antiapoptotic IDH2, Sirt3, and Bcl-2 and decreased the expression of Bax, cyto c, and caspase 3. CONCLUSIONS C. chinensis modulated the oxidative stress-induced apoptosis in MC3T3-E1 cells, probably due to its antioxidant activity and functioning via mitochondria-dependent pathways.
Collapse
Affiliation(s)
- Jian-mei Gao
- Department of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | | | | | | | | | | | | | | |
Collapse
|