1
|
Fatima M, Al-Keridis LA, Adnan M, Alshammari N, Sulieman AME, Khan MR. Jasminum humile extract mitigates carrageenan-induced paw oedema in rats by modulating inflammatory and antioxidant signalling pathways. Inflammopharmacology 2025; 33:1907-1920. [PMID: 40042724 DOI: 10.1007/s10787-025-01692-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/31/2025] [Indexed: 04/13/2025]
Abstract
BACKGROUND Jasminum humile is widely used in traditional medicines to treat hard lumps, mouth inflammation, ringworms, and other infections. Leaf decoction of the plant is known to be effective in treating various skin conditions. In addition, root juice is traditionally utilized as a remedy for ringworm infections. Studies have reported that J. humile contains various antioxidant metabolites with analgesic and anti-inflammatory properties. In this study, J. humile chloroform extract (JHC) was investigated for anti-inflammatory effects against carrageenan-induced paw oedema in rat models. METHODS High-performance liquid chromatography was used to examine phenolic compounds present in JHC. The in-vivo anti-inflammatory activities were investigated using carrageenan-induced paw oedema rat models, while indomethacin was referred to as positive control. Therapeutic properties of JHC were examined by assessing paw volumes, motility score, and inflammatory proteins in serum. The anti-inflammatory nature of JHC was further investigated by biochemical and hematological profiles along with genetic expression of inflammatory and antioxidant genes through qRT-PCR analysis. RESULTS Indomethacin at 10 mg/kg and JHC at 100, 200, and 300 mg/kg doses decreased the concentration of C-reactive protein (CRP) while upregulating the concentration of albumin and myeloperoxidase (MPO). Moreover, JHC administration reduced the expression levels of inflammatory markers, cyclooxygenase-2 (COX2), and inducible nitric oxide synthase (iNOS) compared to the Carr-treated control. However, a significant rise was induced in nuclear factor erythroid 2-related factor 2 (Nrf-2) and heme oxygenase 1 (HO-1) levels after JHC treatment as compared to Carr-treated rats. CONCLUSION These results showed significant anti-inflammatory potential of J. humile by increasing the activity levels of enzymatic antioxidants and lowering inflammatory markers. These results confirm the beneficial use of natural plants in the development of new anti-inflammatory drugs.
Collapse
Affiliation(s)
- Mehreen Fatima
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, P.O. Box 45320, Islamabad, Pakistan.
| | - Lamya Ahmed Al-Keridis
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | | | - Muhammad Rashid Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, P.O. Box 45320, Islamabad, Pakistan
| |
Collapse
|
2
|
An Y, Sun JX, Ma SY, Xu MY, Xu JZ, Liu CQ, Wang SG, Xia QD. From Plant Based Therapy to Plant-Derived Vesicle-Like Nanoparticles for Cancer Treatment: Past, Present and Future. Int J Nanomedicine 2025; 20:3471-3491. [PMID: 40125436 PMCID: PMC11927496 DOI: 10.2147/ijn.s499893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/21/2025] [Indexed: 03/25/2025] Open
Abstract
Cancer stands as a formidable malady profoundly impacting human health. Throughout history, plant-based therapies have remained pivotal in the arsenal against cancer, evolving alongside the epochs. Presently, challenges such as the arduous extraction of active components and potential safety concerns impede the progression of plant-based anticancer therapies. The isolation of plant-derived vesicle-like nanoparticles (PDVLNs), a kind of lipid bilayer capsules isolated from plants, has brought plant-based anticancer therapy into a novel realm and has led to decades of research on PDVLNs. Accumulating evidence indicates that PDVLNs can deliver plant-derived active substances to human cells and regulate cellular functions. Regulating immunity, inducing cell cycle arrest, and promoting apoptosis in cancer cells are the most commonly reported mechanisms of PDVLNs in tumor suppression. Low immunogenicity and lack of tumorigenicity make PDVLNs a good platform for drug delivery. The molecules within the PDVLNs are all from source plants, so the selection of source plants is crucial. In recent years, there has been a clear trend that the source plants have changed from vegetables or fruits to medicinal plants. This review highlights the mechanisms of medicinal plant-based cancer therapies to identify candidate source plants. More importantly, the current research on PDVLN-based cancer therapy and the applications of PDVLNs for drug delivery are systematically discussed.
Collapse
Affiliation(s)
- Ye An
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jian-Xuan Sun
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Si-Yang Ma
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Meng-Yao Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jin-Zhou Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Chen-Qian Liu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Shao-Gang Wang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Qi-Dong Xia
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
3
|
Fernandes R, Medrano-Padial C, Dias-Costa R, Domínguez-Perles R, Botelho C, Fernandes R, Barros AN. Grape stems as sources of tryptophan and selenium: Functional properties and antioxidant potential. Food Chem X 2025; 26:102260. [PMID: 39995406 PMCID: PMC11848443 DOI: 10.1016/j.fochx.2025.102260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
The Douro Demarcated Region's winery industry produces million tonnes of by-products annually, making their reuse essential to minimize environmental impact. Grape stems, rich in bioactive compounds and nutrients, have demonstrated potential health benefits. This study analysed four red grape stems from the Douro region to assess their nutritional value and potential health benefit. Tryptophan, selenium, and phenolic compounds, which regulate cognitive functions, protein and enzyme synthesis, and antioxidant processes, were analysed. Among the varieties, Touriga Nacional exhibited the highest levels of selenium, phenolics, and antioxidant capacity. Tinta Amarela and Touriga Nacional exhibited higher tryptophan levels. Moreover, proanthocyanidins, phenolic acids, flavonols, and anthocyanins were identified in all the varieties analysed. These findings highlight grape stems, particularly Touriga Nacional, as valuable sources of amino acids and bioactive compounds, offering potential in mood regulation, protein synthesis, and antioxidant defence. This research emphasizes their value to reduce waste, generating revenue, and promoting environmental sustainability.
Collapse
Affiliation(s)
- Raquel Fernandes
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, Universidade Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Concepción Medrano-Padial
- Phytochemistry and Healthy Foods Lab (LabFAS), CEBAS-CSIC, Campus Universitario de Espinardo, Edif. 25, 30100 Murcia, Spain
| | - Rui Dias-Costa
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, Universidade Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Raúl Domínguez-Perles
- Phytochemistry and Healthy Foods Lab (LabFAS), CEBAS-CSIC, Campus Universitario de Espinardo, Edif. 25, 30100 Murcia, Spain
| | - Cláudia Botelho
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS-Associate Laboratory, University of Minho, 4710-057 Braga, Portugal
| | - Rúben Fernandes
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
| | - Ana Novo Barros
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, Universidade Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| |
Collapse
|
4
|
Lopes JDC, Madureira J, Margaça FMA, Cabo Verde S. Grape Pomace: A Review of Its Bioactive Phenolic Compounds, Health Benefits, and Applications. Molecules 2025; 30:362. [PMID: 39860231 PMCID: PMC11767471 DOI: 10.3390/molecules30020362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
The wine industry generates high amounts of waste, posing current environmental and economic sustainability challenges. Grape pomace, mainly composed of seeds, skins, and stalks, contains significant amounts of bioactive compounds and constitutes the main solid residue of this industry. Various strategies are being explored for its valorization, from a circular economy perspective. This review provides an updated overview of the composition of grape pomace from winemaking, highlighting sustainable methodologies for extracting phenolic compounds and their potential health benefits, including antioxidant, antimicrobial, antidiabetic, cardioprotective, antiproliferative, anti-aging, and gut health properties. Furthermore, this review explores the potential applications of this agro-industrial waste and its extractable compounds across the food, cosmetic, and pharmaceutical sectors.
Collapse
Affiliation(s)
- Janice da Conceição Lopes
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139.7, 2695-066 Bobadela LRS, Portugal; (J.d.C.L.); (J.M.); (F.M.A.M.)
| | - Joana Madureira
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139.7, 2695-066 Bobadela LRS, Portugal; (J.d.C.L.); (J.M.); (F.M.A.M.)
- Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139.7, 2695-066 Bobadela LRS, Portugal
| | - Fernanda M. A. Margaça
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139.7, 2695-066 Bobadela LRS, Portugal; (J.d.C.L.); (J.M.); (F.M.A.M.)
- Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139.7, 2695-066 Bobadela LRS, Portugal
| | - Sandra Cabo Verde
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139.7, 2695-066 Bobadela LRS, Portugal; (J.d.C.L.); (J.M.); (F.M.A.M.)
- Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139.7, 2695-066 Bobadela LRS, Portugal
| |
Collapse
|
5
|
Dias-Costa R, Medrano-Padial C, Fernandes R, Domínguez-Perles R, Gouvinhas I, Barros AN. Valorisation of Winery By-Products: Revealing the Polyphenolic Profile of Grape Stems and Their Inhibitory Effects on Skin Aging-Enzymes for Cosmetic and Pharmaceutical Applications. Molecules 2024; 29:5437. [PMID: 39598826 PMCID: PMC11597129 DOI: 10.3390/molecules29225437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/09/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Grape (Vitis vinifera L.) stems, a by-product of winemaking, possess significant potential value due to their rich polyphenolic composition, which allows their exploitation for cosmetic and pharmaceutical applications. This presents a promising opportunity for valorisation aimed at developing innovative products with potential health-promoting effects. In this study, the polyphenolic profile of extracts from grape stems of seven white grape varieties was determined using spectrophotometric and chromatographic methods, specifically high-performance liquid chromatography coupled with a photodiode array detector and electrospray ionization multi-stage mass spectrometry (HPLC-PDA-ESI-MSn), as well as on their ferric-reducing antioxidant power (FRAP) and radical scavenging capacity, using 2,2-diphenyl-1-picrylhydrazyl (DPPH●) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS●+) radicals. This study also evaluated the anti-aging activity and skin depigmenting activity of these extracts. These findings revealed a diverse polyphenolic profile, encompassing proanthocyanidins and catechin derivatives (PCDs), phenolic acids, and flavonols. Among the varieties studied, 'Códega do Larinho' exhibited the highest concentrations of six distinct polyphenols and the highest total phenolic content. It also demonstrated the highest results for antioxidant capacity and elastase and tyrosinase inhibition. Pearson's correlation analysis showed a significant positive correlation between certain PCDs with both FRAP and DPPH assays, as well as between the identified flavonols and anti-elastase activity. These results underscore the potential health benefits of grape stem extracts and emphasize the importance of their polyphenolic composition in enhancing antioxidant and anti-aging properties, thus supporting their application in different industries.
Collapse
Affiliation(s)
- Rui Dias-Costa
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (R.F.); (I.G.)
| | - Concepción Medrano-Padial
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Centro de Edafología y Biología Aplicada del Segura-Spanish Council for Scientific Research (EBAS-CSIC), University Campus of Espinardo 25, 30100 Murcia, Spain; (C.M.-P.); (R.D.-P.)
| | - Raquel Fernandes
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (R.F.); (I.G.)
| | - Raúl Domínguez-Perles
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Centro de Edafología y Biología Aplicada del Segura-Spanish Council for Scientific Research (EBAS-CSIC), University Campus of Espinardo 25, 30100 Murcia, Spain; (C.M.-P.); (R.D.-P.)
| | - Irene Gouvinhas
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (R.F.); (I.G.)
| | - Ana Novo Barros
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (R.F.); (I.G.)
| |
Collapse
|
6
|
Samreen S, Khan E, Ahmad IZ. Molecular docking and molecular dynamics simulation analysis of bioactive compounds of Cichorium intybus L. seed against hepatocellular carcinoma. J Biomol Struct Dyn 2024; 42:9133-9144. [PMID: 37621217 DOI: 10.1080/07391102.2023.2250465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 08/12/2023] [Indexed: 08/26/2023]
Abstract
In this article, bioactive compounds present in Cichorium intybus L. seeds were collected from literature review and analyzed for probable remedy for hepatocellular carcinoma. Cichorium intybus L. is a traditional plant used all over the world mainly in hepatic disorders and renal diseases. This therapeutic plant has many bioactive compounds like chicoric acid, chlorogenic acid, sesquiterpne lactones, stigmasterols etc are found in seeds. Here, the target protein p53 (PDB ID: 2OCJ) which is involved in many cancerous pathways, is chosen. The preADMET study filtered out some compounds which were then subjected to molecular docking studies by Autodock tool 4.2. Afterwards, two best compounds (Esculetin and Isochlorogenic acid) were screened out on the basis of binding energy as compared to the standard compound (Doxorubicin). All these complexes were then analyzed for stability by molecular dynamics using online GROMACS tool. In the comparative simulation study, the compound Esculetin shows a stable interaction with the p53 over the 100 ns trajectory. Hepatocellular carcinoma accounts for high mortality of cancer related death worldwide. These findings suggest that these compound can be used to treat the hepatocellular carcinoma.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sadiyah Samreen
- Natural Products Laboratory, Department of Bioengineering, Integral University, Lucknow, India
| | - Elhan Khan
- Natural Products Laboratory, Department of Bioengineering, Integral University, Lucknow, India
| | - Iffat Zareen Ahmad
- Natural Products Laboratory, Department of Bioengineering, Integral University, Lucknow, India
| |
Collapse
|
7
|
Mukherjee S, Chopra H, Goyal R, Jin S, Dong Z, Das T, Bhattacharya T. Therapeutic effect of targeted antioxidant natural products. DISCOVER NANO 2024; 19:144. [PMID: 39251461 PMCID: PMC11383917 DOI: 10.1186/s11671-024-04100-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024]
Abstract
The exploration of targeted therapy has proven to be a highly promising avenue in the realm of drug development research. The human body generates a substantial amount of free radicals during metabolic processes, and if not promptly eliminated, these free radicals can lead to oxidative stress, disrupting homeostasis and potentially contributing to chronic diseases and cancers. Before the development of contemporary medicine with synthetic pharmaceuticals and antioxidants, there was a long-standing practice of employing raw, natural ingredients to cure a variety of illnesses. This practice persisted even after the active antioxidant molecules were known. The ability of natural antioxidants to neutralise excess free radicals in the human body and so prevent and cure a wide range of illnesses. The term "natural antioxidant" refers to compounds derived from plants or other living organisms that have the ability to control the production of free radicals, scavenge them, stop free radical-mediated chain reactions, and prevent lipid peroxidation. These compounds have a strong potential to inhibit oxidative stress. Phytochemicals (antioxidants) derived from plants, such as polyphenols, carotenoids, vitamins, and others, are central to the discussion of natural antioxidants. Not only may these chemicals increase endogenous antioxidant defenses, affect communication cascades, and control gene expression, but they have also shown strong free radical scavenging properties. This study comprehensively summarizes the primary classes of natural antioxidants found in different plant and animal source that contribute to the prevention and treatment of diseases. Additionally, it outlines the research progress and outlines future development prospects. These discoveries not only establish a theoretical groundwork for pharmacological development but also present inventive ideas for addressing challenges in medical treatment.
Collapse
Affiliation(s)
- Sohini Mukherjee
- Department of Environmental Science, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Rajat Goyal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Sihao Jin
- Department of Nursing, School of Medicine, Shaoxing Vocational and Technical College, Shaoxing, 312000, China
| | - Zhenzhen Dong
- Department of Nursing, School of Medicine, Shaoxing Vocational and Technical College, Shaoxing, 312000, China
| | - Tanmoy Das
- Faculty of Engineering, Lincoln University College, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Tanima Bhattacharya
- Faculty of Applied Science, Lincoln University College, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
8
|
Zahra M, Abrahamse H, George BP. Green nanotech paradigm for enhancing sesquiterpene lactone therapeutics in cancer. Biomed Pharmacother 2024; 173:116426. [PMID: 38471274 DOI: 10.1016/j.biopha.2024.116426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024] Open
Abstract
In the field of cancer therapy, sesquiterpene lactones (SLs) derived from diverse Dicoma species demonstrate noteworthy bioactivity. However, the translation of their full therapeutic potential into clinical applications encounters significant challenges, primarily related to solubility, bioavailability, and precise drug targeting. Despite these obstacles, our comprehensive review introduces an innovative paradigm shift that integrates the inherent therapeutic properties of SLs with the principles of green nanotechnology. To overcome issues of solubility, bioavailability, and targeted drug delivery, eco-friendly strategies are proposed for synthesizing nanocarriers. Green nanotechnology has emerged as a focal point in addressing environmental and health concerns linked to conventional treatments. This progressive approach of green nanotechnology holds promise for the development of safe and sustainable nanomaterials, particularly in the field of drug delivery. This groundbreaking methodology signifies a pioneering advancement in the creation of novel and effective anticancer therapeutics. It holds substantial potential for transforming cancer treatment and advancing the landscape of natural product research.
Collapse
Affiliation(s)
- Mehak Zahra
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa
| | - Blassan P George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa.
| |
Collapse
|
9
|
Shah MA, Faheem HI, Hamid A, Yousaf R, Haris M, Saleem U, Shah GM, Alhasani RH, Althobaiti NA, Alsharif I, Silva AS. The entrancing role of dietary polyphenols against the most frequent aging-associated diseases. Med Res Rev 2024; 44:235-274. [PMID: 37486109 DOI: 10.1002/med.21985] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 01/27/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
Aging, a fundamental physiological process influenced by innumerable biological and genetic pathways, is an important driving factor for several aging-associated disorders like diabetes mellitus, osteoporosis, cancer, and neurodegenerative diseases including Alzheimer's and Parkinson's diseases. In the modern era, the several mechanisms associated with aging have been deeply studied. Treatment and therapeutics for age-related diseases have also made considerable advances; however, for the effective and long-lasting treatment, nutritional therapy particularly including dietary polyphenols from the natural origin are endorsed. These dietary polyphenols (e.g., apigenin, baicalin, curcumin, epigallocatechin gallate, kaempferol, quercetin, resveratrol, and theaflavin), and many other phytochemicals target certain molecular, genetic mechanisms. The most common pathways of age-associated diseases are mitogen-activated protein kinase, reactive oxygen species production, nuclear factor kappa light chain enhancer of activated B cells signaling pathways, metal chelation, c-Jun N-terminal kinase, and inflammation. Polyphenols slow down the course of aging and help in combatting age-linked disorders. This exemplified in the form of clinical trials on specific dietary polyphenols in various aging-associated diseases. With this context in mind, this review reveals the new insights to slow down the aging process, and consequently reduce some classic diseases associated with age such as aforementioned, and targeting age-associated diseases by the activities of dietary polyphenols of natural origin.
Collapse
Affiliation(s)
| | - Hafiza Ishmal Faheem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Ayesha Hamid
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Rimsha Yousaf
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Haris
- Faculty of Pharmaceutical Sciences, Universiteit Gent, Ghent, Belgium
| | - Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Ghulam Mujtaba Shah
- Department of Botany, Faculty of Health and Biological Sciences, Hazara University, Mansehra, Pakistan
| | - Reem H Alhasani
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Norah A Althobaiti
- Department of Biology, College of Science and Humanities, Shaqra University, Al-Quwaiiyah, Saudi Arabia
| | - Ifat Alsharif
- Department of Biology, Jamoum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ana Sanches Silva
- National Institute for Agrarian and Veterinary Research (INIAV), I.P., Rua dos Lágidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal
- University of Coimbra, Faculty of Pharmacy, Polo III, Azinhaga de St Comba, Coimbra, Portugal
- Centre for Animal Science Studies (CECA), ICETA, University of Porto, Porto, Portugal
| |
Collapse
|
10
|
Schuh L, Reginato M, Florêncio I, Falcao L, Boron L, Gris EF, Mello V, Báo SN. From Nature to Innovation: The Uncharted Potential of Natural Deep Eutectic Solvents. Molecules 2023; 28:7653. [PMID: 38005377 PMCID: PMC10675409 DOI: 10.3390/molecules28227653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
This review discusses the significance of natural deep eutectic solvents (NaDESs) as a promising green extraction technology. It employs the consolidated meta-analytic approach theory methodology, using the Web of Science and Scopus databases to analyze 2091 articles as the basis of the review. This review explores NaDESs by examining their properties, challenges, and limitations. It underscores the broad applications of NaDESs, some of which remain unexplored, with a focus on their roles as solvents and preservatives. NaDESs' connections with nanocarriers and their use in the food, cosmetics, and pharmaceutical sectors are highlighted. This article suggests that biomimicry could inspire researchers to develop technologies that are less harmful to the human body by emulating natural processes. This approach challenges the notion that green science is inferior. This review presents numerous successful studies and applications of NaDESs, concluding that they represent a viable and promising avenue for research in the field of green chemistry.
Collapse
Affiliation(s)
- Luísa Schuh
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasília 70910-900, Brazil; (L.S.); (M.R.); (I.F.); (V.M.)
- Cooil Cosmetics, Brasília 71070-524, Brazil
- Nanocycle Group, Brasília 72622-401, Brazil
| | - Marcella Reginato
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasília 70910-900, Brazil; (L.S.); (M.R.); (I.F.); (V.M.)
- Cooil Cosmetics, Brasília 71070-524, Brazil
- Nanocycle Group, Brasília 72622-401, Brazil
| | - Isadora Florêncio
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasília 70910-900, Brazil; (L.S.); (M.R.); (I.F.); (V.M.)
- Cooil Cosmetics, Brasília 71070-524, Brazil
- Nanocycle Group, Brasília 72622-401, Brazil
| | - Leila Falcao
- Inaturals SAS, 2 Bis, Impasse Henri Mouret, 84000 Avignon, France;
| | - Luana Boron
- Inaturals BR, Rua Gerson Luís Piovesan 200, Concórdia 89701-012, Brazil;
| | - Eliana Fortes Gris
- Department of Bromatology, Faculty of Ceilândia, University of Brasília, Ceilândia 72220-275, Brazil;
| | - Victor Mello
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasília 70910-900, Brazil; (L.S.); (M.R.); (I.F.); (V.M.)
- Cooil Cosmetics, Brasília 71070-524, Brazil
- Nanocycle Group, Brasília 72622-401, Brazil
| | - Sônia Nair Báo
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasília 70910-900, Brazil; (L.S.); (M.R.); (I.F.); (V.M.)
- Nanocycle Group, Brasília 72622-401, Brazil
| |
Collapse
|
11
|
Skaperda Z, Tekos F, Vardakas P, Nechalioti PM, Kourti M, Patouna A, Makri S, Gkasdrogka M, Kouretas D. Development of a Holistic In Vitro Cell-Free Approach to Determine the Redox Bioactivity of Agricultural Products. Int J Mol Sci 2023; 24:16447. [PMID: 38003634 PMCID: PMC10671064 DOI: 10.3390/ijms242216447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, there has been a strong consumer demand for food products that provide nutritional benefits to human health. Therefore, the assessment of the biological activity is considered as an important parameter for the promotion of high-quality food products. Herein, we introduce a novel methodology comprising a complete set of in vitro cell-free screening techniques for the evaluation of the bioactivity of various food products on the basis of their antioxidant capacity. These assays examine the free radical scavenging activities, the reducing properties, and the protective ability against oxidative damage to biomolecules. The adoption of the proposed battery of antioxidant assays is anticipated to contribute to the holistic characterization of the bioactivity of the food product under examination. Consumer motivations and expectations with respect to nutritious food products with bio-functional properties drive the global food market toward food certification. Therefore, the development and application of scientific methodologies that examine the quality characteristics of food products could increase consumers' trust and promote their beneficial properties for human health.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece; (Z.S.); (F.T.); (P.V.); (M.K.); (A.P.); (S.M.); (M.G.)
| |
Collapse
|
12
|
Bailon-Moscoso N, Coronel-Hidalgo J, Duarte-Casar R, Guamán-Ortiz LM, Figueroa JG, Romero-Benavides JC. Exploring the Antioxidant Potential of Tragia volubilis L.: Mitigating Chemotherapeutic Effects of Doxorubicin on Tumor Cells. Antioxidants (Basel) 2023; 12:2003. [PMID: 38001856 PMCID: PMC10669231 DOI: 10.3390/antiox12112003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Several plants of the genus Tragia L. have shown antibacterial, fungicidal, and antiproliferative activity, among other types of activities; however, most species of the genus have not been investigated. Tragia volubilis L. is native to tropical America and Africa, and although it has been reported as medicinal in the literature, it has not been thoroughly investigated. In this study, the phytochemical screening, isolation, and identification of compounds and the determination of the antioxidant activity of the aqueous extract of Tragia volubilis L. and its partitions were carried out. Ethyl acetate and n-butanol partitions of the extract present high antioxidant activity according to the Antioxidant Activity Index. Due to their activity, these partitions were tested on RKO cells as a representative model, both individually and in combination with Doxorubicin. It was found that the partitions significantly reduced the effect of Doxorubicin, as well as the expression of proteins involved in DNA damage and cell death. While the reduction of the chemotherapeutic effect of Doxorubicin on tumor cells may not be a desired outcome in therapeutic settings, the findings of the study are valuable in revealing the antioxidant potential of Tragia volubilis L. and its partitions. This highlights the importance of carefully regulating the application of antioxidants, especially in the context of cancer chemotherapy.
Collapse
Affiliation(s)
- Natalia Bailon-Moscoso
- Departamento de Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador; (J.C.-H.); (L.M.G.-O.)
| | - José Coronel-Hidalgo
- Departamento de Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador; (J.C.-H.); (L.M.G.-O.)
- Carrera de Bioquímica y Farmacia, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador
| | - Rodrigo Duarte-Casar
- Maestría en Química Aplicada, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador;
- Tecnología Superior en Gestión Culinaria, Pontificia Universidad Católica del Ecuador—Sede Manabí, Portoviejo 130103, Ecuador
| | - Luis Miguel Guamán-Ortiz
- Departamento de Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador; (J.C.-H.); (L.M.G.-O.)
| | - Jorge G. Figueroa
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador; (J.G.F.); (J.C.R.-B.)
| | - Juan Carlos Romero-Benavides
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador; (J.G.F.); (J.C.R.-B.)
| |
Collapse
|
13
|
Abreu T, Jasmins G, Bettencourt C, Teixeira J, Câmara JS, Perestrelo R. Tracing the volatilomic fingerprint of grape pomace as a powerful approach for its valorization. Curr Res Food Sci 2023; 7:100608. [PMID: 37840700 PMCID: PMC10570008 DOI: 10.1016/j.crfs.2023.100608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023] Open
Abstract
The huge amount of grape pomace (GP) generated every year worldwide, particularly in Europe, creates negative impacts at the economic and environmental levels. As far as we know, scarce research has been done on the volatilomic fingerprint of GP. To meet consumer demand for healthy foods, there is a growing interest in the characterization of particular volatile organic metabolites (VOMS) in GP that can be used for industrial applications, including the food industry. In this study, the volatilomic fingerprint of GP obtained from different Vitis vinifera L. grapes was established by solid phase microextraction (HS-SPME) combined to gas chromatography-mass spectrometry (GC-MS), to explore the properties of most dominant VOMs in a context of its application on marketable products. A total of 52 VOMs belonging to different chemical families were identified. Alcohols, carbonyl compounds, and esters, are the most dominant, representing 38.8, 29.3, and 24.2% of the total volatile profile of the investigated GP, respectively. Esters (e.g., isoamyl acetate, hexyl acetate, ethyl hexanoate) and alcohols (e.g., 3-methyl butan-2-ol, hexan-1-ol) can be used as flavoring agents with potential use in the food industry, and in the cosmetic industry, for fragrances production. In addition, the identified terpenoids (e.g., menthol, ylangene, limonene) exhibit antioxidant, antimicrobial, and anticancer, biological properties, among others, boosting their potential application in the pharmaceutical industry. The obtained results revealed the potential of some VOMs from GP to replace synthetic antioxidants, colorants, and antimicrobials used in the food industry, and in the cosmetic and pharmaceutical industry, meeting the increasing consumer demand for natural alternative compounds.
Collapse
Affiliation(s)
- Teresa Abreu
- CQM – Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Gonçalo Jasmins
- CQM – Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Catarina Bettencourt
- CQM – Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Juan Teixeira
- Justino's Madeira Wines, S.A., Parque Industrial Da Cancela, Caniço, 9125-042, Santa Cruz, Portugal
| | - José S. Câmara
- CQM – Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Rosa Perestrelo
- CQM – Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| |
Collapse
|
14
|
Ferreyra S, Bottini R, Fontana A. Background and Perspectives on the Utilization of Canes' and Bunch Stems' Residues from Wine Industry as Sources of Bioactive Phenolic Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37267502 DOI: 10.1021/acs.jafc.3c01635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Viticulture activity produces a significant amount of grapevine woody byproducts, such as bunch stems and canes, which constitute potential sources of a wide range of phenolic compounds (PCs) with purported applications. Recently, the study of these byproducts has been increased as a source of health-promoting phytochemicals. Antioxidant, antimicrobial, antifungal, and antiaging properties have been reported, with most of these effects being linked to the high content of PCs with antioxidant properties. This Review summarizes the data related to the qualitative and quantitative composition of PCs recovered from canes and bunch stems side streams of the wine industry, the influence that the different environmental and storage conditions have on the final concentration of PCs, and the current reported applications in specific technological fields. The objective is to give a complete valuation of the key factors to consider, starting from the field to the final extracts, to attain the most suitable and stable characterized product.
Collapse
Affiliation(s)
- Susana Ferreyra
- Grupo de Bioquímica Vegetal, Instituto de Biología Agrícola de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Cuyo, Almirante Brown 500, M5528AHB Chacras de Coria, Argentina
| | - Rubén Bottini
- Instituto de Veterinaria Ambiente y Salud, Universidad Juan A. Maza, Lateral Sur del Acceso Este 2245, 5519 Guaymallén, Argentina
| | - Ariel Fontana
- Grupo de Bioquímica Vegetal, Instituto de Biología Agrícola de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Cuyo, Almirante Brown 500, M5528AHB Chacras de Coria, Argentina
| |
Collapse
|
15
|
Vélez MD, Llano-Ramirez MA, Ramón C, Rojas J, Bedoya C, Arango-Varela S, Santa-González GA, Gil M. Antioxidant capacity and cytotoxic effect of an optimized extract of isabella grape ( Vitis labrusca) on breast cancer cells. Heliyon 2023; 9:e16540. [PMID: 37260897 PMCID: PMC10227348 DOI: 10.1016/j.heliyon.2023.e16540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 05/09/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023] Open
Abstract
The phenolic profile of Isabella grape (Vitis labrusca) offers beneficial properties to human health and makes it a functional food product. In order to better understand the phenolic compounds found in this grape variety and the biological effect they induce on breast cancer cells, an ultrasound-assisted extraction was carried out. During the extraction of polyphenols from Isabella grapes organically grown in Antioquia (Colombia), parameters such as frequency (33 kHz and 40 kHz), time and solvent were optimized to finally obtain a crude extract with antioxidant properties (Oxygen Radical Absorbance Capacity, ORAC: 293.22 ± 34.73 μmol of Trolox/g of sample), associated with a total polyphenol content (TPC) of 43.14 ± 5.00 mg GAE/g sample and a total anthocyanin content composed of 17.69 ± 2.59 mg of malvidin-3-glucoside/100 g of sample. MCF-7 breast cancer cells were treated with different concentrations of the optimized extract, and results show a decrease in cell viability related to mitochondrial membrane depolarization, ROS increase, and chromatin condensation. To determine the possible death induction mechanism, molecular docking was simulated to predict the molecular interactions between the most abundant phenolic compounds in Isabella grape and the main apoptosis-related proteins. The results obtained from in silico and in vitro experiments were consistent with each other, suggesting that the phenolic compounds found in Isabella grape can be considered potential adjuvant chemopreventive agents for the treatment of breast cancer.
Collapse
Affiliation(s)
- M. Daniela Vélez
- Grupo de Investigación e Innovación Biomédica, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050034, Colombia
| | - María A. Llano-Ramirez
- Grupo de Investigación e Innovación Biomédica, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050034, Colombia
| | - Carolina Ramón
- Química Básica, Aplicada y Ambiente Alquimia, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050034, Colombia
| | - Jessica Rojas
- Didáctica y Modelamiento en Ciencias Exactas y Aplicadas (DAVINCI), Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050034, Colombia
| | - Carolina Bedoya
- Food Engineering Research Group, Unilasallista Corporación Universitaria, Caldas 055440, Colombia
| | - Sandra Arango-Varela
- Grupo de Investigación e Innovación Biomédica, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050034, Colombia
| | - Gloria A. Santa-González
- Grupo de Investigación e Innovación Biomédica, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050034, Colombia
| | - Maritza Gil
- Química Básica, Aplicada y Ambiente Alquimia, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050034, Colombia
| |
Collapse
|
16
|
Fatima M, Khan MR. Jasminum humile (Linn) ameliorates CCl 4-induced oxidative stress by regulating ER stress, inflammatory, and fibrosis markers in rats. Inflammopharmacology 2023; 31:1405-1421. [PMID: 37103691 DOI: 10.1007/s10787-023-01230-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/08/2023] [Indexed: 04/28/2023]
Abstract
Jasminum humile (Linn) is highly valued for its medicinal properties. The pulp and decoction made from its leaves are effective for skin diseases. Juice prepared from roots is used against ringworm illness. Our current study aims to illustrate the non-toxicity and protective potential of methanol extract of Jasminum humile (JHM) against CCl4-induced oxidative stress in the liver of rats. Qualitative phytochemical screening, total flavonoids (TFC), and total phenolic content (TPC) assays were performed with JHM. The toxicity of the plant was estimated by treating female rats at different JHM doses while to assess anti-inflammatory potential of plant nine groups of male rats (six rats/group) received different treatments such as: CCl4 only (1 ml/kg mixed with olive oil in a ratio of 3:7), silymarin (200 mg/kg) + CCl4, different doses of JHM alone at a ratio of 1:2:4, and JHM (at a ratio of 1:2:4) + CCl4, and were examined for different antioxidant enzymes, serum markers, and histological changes, while mRNA expression of stress, inflammatory and fibrosis markers were assessed by real-time polymerase chain reaction analysis. Different phytochemicals were found in JHM. A high amount of total phenolic and flavonoid content was found (89.71 ± 2.79 mg RE/g and 124.77 ± 2.41 mg GAE/g) in the methanolic extract of the plant. Non-toxicity of JHM was revealed even at higher doses of JHM. Normal levels of serum markers in blood serum and antioxidant enzymes in tissue homogenates were found after co-administration of JHM along with CCl4. However, CCl4 treatment caused oxidative stress in the liver by enhancing the levels of stress and inflammatory markers and reducing antioxidant enzyme levels, while JHM treatment showed significant (P < 0.05) downregulation was in mRNA expression of those markers. Investigation of mechanism of specific signaling pathways related to apoptosis and clinical trials to assess safety and efficacy of optimal dosage of Jasminum humile will be helpful to develop FDA-approved drug.
Collapse
Affiliation(s)
- Mehreen Fatima
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan.
| | - Muhammad Rashid Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| |
Collapse
|
17
|
Goutzourelas N, Kevrekidis DP, Barda S, Malea P, Trachana V, Savvidi S, Kevrekidou A, Assimopoulou AN, Goutas A, Liu M, Lin X, Kollatos N, Amoutzias GD, Stagos D. Antioxidant Activity and Inhibition of Liver Cancer Cells' Growth of Extracts from 14 Marine Macroalgae Species of the Mediterranean Sea. Foods 2023; 12:foods12061310. [PMID: 36981236 PMCID: PMC10048654 DOI: 10.3390/foods12061310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Macroalgae exhibit beneficial bioactivities for human health. Thus, the aim of the present study was to examine the antioxidant and anticancer potential of 14 macroalgae species' extracts, namely, Gigartina pistillata, Gigartina teedei, Gracilaria gracilis, Gracilaria sp., Gracilaria bursa pastoris, Colpomenia sinuosa, Cystoseira amentacea, Cystoseira barbata, Cystoseira compressa, Sargassum vulgare, Padina pavonica, Codium fragile, Ulva intestinalis, and Ulva rigida, from the Aegean Sea, Greece. The antioxidant activity was assessed using DPPH, ABTS•+, •OH, and O2•- radicals' scavenging assays, reducing power (RP), and protection from ROO•-induced DNA plasmid damage assays. Moreover, macroalgae extracts' total polyphenol contents (TPCs) were assessed. Extracts' inhibition against liver HepG2 cancer cell growth was assessed using the XTT assay. The results showed that G. teedei extract's IC50 was the lowest in DPPH (0.31 ± 0.006 mg/mL), ABTS•+ (0.02 ± 0.001 mg/mL), •OH (0.10 ± 0.007 mg/mL), O2•- (0.05 ± 0.003 mg/mL), and DNA plasmid breakage (0.038 ± 0.002 mg/mL) and exhibited the highest RP (RP0.5AU 0.24 ± 0.019 mg/mL) and TPC (12.53 ± 0.88 mg GAE/g dw). There was also a significant correlation between antioxidant activity and TPC. P. pavonica (IC50 0.93 ± 0.006 mg/mL) exhibited the highest inhibition against HepG2 cell growth. Conclusively, some of the tested extracts exhibited significant chemopreventive properties, and so they may be used for food products.
Collapse
Affiliation(s)
- Nikolaos Goutzourelas
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Dimitrios Phaedon Kevrekidis
- Laboratory of Forensic Medicine and Toxicology, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Sofia Barda
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Paraskevi Malea
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Varvara Trachana
- Department of Biology, Faculty of Medicine, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Stavroula Savvidi
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Alkistis Kevrekidou
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Andreana N Assimopoulou
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Andreas Goutas
- Department of Biology, Faculty of Medicine, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Ming Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, 319 Zhongshan Road, Luzhou 646000, China
| | - Nikolaos Kollatos
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Grigorios D Amoutzias
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Dimitrios Stagos
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece
| |
Collapse
|
18
|
Batool R, Khan MR, Ijaz MU, Naz I, Batool A, Ali S, Zahra Z, Gul S, Uddin MN, Kazi M, Khan R. Linum corymbulosum Protects Rats against CCl 4-Induced Hepatic Injuries through Modulation of an Unfolded Protein Response Pathway and Pro-Inflammatory Intermediates. Molecules 2023; 28:2257. [PMID: 36903503 PMCID: PMC10004795 DOI: 10.3390/molecules28052257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 03/05/2023] Open
Abstract
Liver fibrosis is a major pathological feature of chronic liver disease and effective therapies are limited at present. The present study focuses on the hepatoprotective potential of L. corymbulosum against carbon tetrachloride (CCl4)-induced liver damage in rats. Analysis of Linum corymbulosum methanol extract (LCM) using high-performance liquid chromatography (HPLC) revealed the presence of rutin, apigenin, catechin, caffeic acid and myricetin. CCl4 administration lowered (p < 0.01) the activities of antioxidant enzymes and reduced glutathione (GSH) content as well as soluble proteins, whereas the concentration of H2O2, nitrite and thiobarbituric acid reactive substances was higher in hepatic samples. In serum, the level of hepatic markers and total bilirubin was elevated followed by CCl4 administration. The expression of glucose-regulated protein (GRP78), x-box binding protein-1 total (XBP-1 t), x-box binding protein-1 spliced (XBP-1 s), x-box binding protein-1 unspliced (XBP-1 u) and glutamate-cysteine ligase catalytic subunit (GCLC) was enhanced in CCl4-administered rats. Similarly, the expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and monocyte chemo attractant protein-1 (MCP-1) was strongly increased with CCl4 administration to rats. Co-administration of LCM along with CCl4 to rats lowered (p < 0.05) the expression of the above genes. Histopathology of the liver showed hepatocyte injury, leukocyte infiltration and damaged central lobules in CCl4-treated rats. However, LCM administration to CCl4-intoxicated rats restored the altered parameters towards the levels of control rats. These outcomes indicate the existence of antioxidant and anti-inflammatory constituents in the methanol extract of L. corymbulosum.
Collapse
Affiliation(s)
- Riffat Batool
- Directorate of BASR, Allama Iqbal Open University, Islamabad 44310, Pakistan
| | - Muhammad Rashid Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad 38040, Pakistan
| | - Irum Naz
- Department of Biochemistry, Institute of Biochemistry, Biotechnology and Bioinformatics, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Afsheen Batool
- Faculty RMU & Allied Hospitals, Rawalpindi Medical University and Allied Hospital, Rawalpindi 46000, Pakistan
| | - Saima Ali
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Zartash Zahra
- Gujrat Institute of Management Sciences, Peer Mehar Ali Shah Arid Agriculture University, Gujrat 50700, Pakistan
| | - Safia Gul
- Department of Botany, Sardar Bahadur Khan Women’s University Quetta, Quetta 87300, Pakistan
| | - Mohammad N. Uddin
- College of Pharmacy, Mercer University, 3001 Mercer University Drive, Atlanta, GA 30341, USA
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Raees Khan
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
19
|
Metabolomic Profiling and Assessment of Phenolic Compounds Derived from Vitis davidii Foex Cane and Stem Extracts. Int J Mol Sci 2022; 23:ijms232314873. [PMID: 36499201 PMCID: PMC9735678 DOI: 10.3390/ijms232314873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Phenolic extracts from berry seeds have been extensively studied for their health benefits. However, few studies have been conducted on the effects of phenolic extracts from Vitis L. canes and berry stems. The Chinese spine grape (V. davidii Foex) is an important and widely distributed wild species of Vitis L. The present study explored the metabolomic profile and evaluated the antioxidant activity of phenolic compounds in extracts from V. davidii Foex. canes and stems, with a focus on their role in preventing DNA damage caused by free radicals and inhibiting the growth of breast (MCF-7) and cervical (HeLa) cancer cells. Total phenolic compounds in the dried berry stems of spine grapes were higher than that in vine canes. Analysis of the extracts showed that proanthocyanins, epicatechin, catechin, and phenolic acid were the main phenolic compounds in V. davidii Foex, but in higher quantities in berry stems than in vine canes. However, trans-resveratrol and kaempferol 3-O-glucoside were present in the vine canes but not in the berry stems. Antioxidant analysis by FRAP and ABTS showed that extracts from berry stems and vine canes had a higher antioxidant activity than thinned young fruit shoots before flowering, leaves, peel, pulp, and seeds in V. davidii Foex. Moreover, the antioxidant activity of extracts from berry stems was higher than that in other grape species, except for muscadine. In vitro analyses further showed that the extracts significantly increased H2O2 scavenging ability and conferred a protective effect against DNA damage. Furthermore, a low concentration of phenolic compounds in extracts from the vine canes and berry stems of spine grapes inhibited the proliferation of the MCF-7 and Hela cancer cells. These research results provided some important useful information for the exploitation of V. davidii Foex canes and berry stems and indicated that canes and stems of V. davidii Foex had good antioxidant properties, anticancer activity and prevented DNA damage, providing evidence for medical utilization of V. davidii Foex.
Collapse
|
20
|
Rodrigues RP, Gando-Ferreira LM, Quina MJ. Increasing Value of Winery Residues through Integrated Biorefinery Processes: A Review. Molecules 2022; 27:molecules27154709. [PMID: 35897883 PMCID: PMC9331683 DOI: 10.3390/molecules27154709] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/04/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
The wine industry is one of the most relevant socio-economic activities in Europe. However, this industry represents a growing problem with negative effects on the environment since it produces large quantities of residues that need appropriate valorization or management. From the perspective of biorefinery and circular economy, the winery residues show high potential to be used for the formulation of new products. Due to the substantial quantities of phenolic compounds, flavonoids, and anthocyanins with high antioxidant potential in their matrix, these residues can be exploited by extracting bioactive compounds before using the remaining biomass for energy purposes or for producing fertilizers. Currently, there is an emphasis on the use of new and greener technologies in order to recover bioactive molecules from solid and liquid winery residues. Once the bio compounds are recovered, the remaining residues can be used for the production of energy through bioprocesses (biogas, bioethanol, bio-oil), thermal processes (pyrolysis, gasification combustion), or biofertilizers (compost), according to the biorefinery concept. This review mainly focuses on the discussion of the feasibility of the application of the biorefinery concept for winery residues. The transition from the lab-scale to the industrial-scale of the different technologies is still lacking and urgent in this sector.
Collapse
|
21
|
Attempts to Create Products with Increased Health-Promoting Potential Starting with Pinot Noir Pomace: Investigations on the Process and Its Methods. Foods 2022; 11:foods11141999. [PMID: 35885242 PMCID: PMC9323902 DOI: 10.3390/foods11141999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 12/12/2022] Open
Abstract
A process for using grape (Pinot noir) pomace to produce products with improved health-promoting effects was investigated. This process integrated a solid–liquid extraction (SLE) method and a method to acylate the polyphenolics in the extract. This report describes and discusses the methods used, including the rationale and considerations behind them, and the results obtained. The study begins with the work to optimize the SLE method for extracting higher quantities of (+)-catechin, (−)-epicatechin and quercetin by trialing 28 different solvent systems on small-scale samples of Pinot noir pomace. One of these systems was then selected and used for the extraction of the same flavonoids on a large-scale mass of pomace. It was found that significantly fewer quantities of flavonoids were observed. The resultant extract was then subject to a method of derivatization using three different fatty acylating agents. The antiproliferative activities of these products were measured; however, the resulting products did not display activity against the chosen cancer cells. Limitations and improvements to the methods in this process are also discussed.
Collapse
|
22
|
Pan Y, Li H, Zhang B, Deng Z, Shahidi F. Antioxidant interactions among hydrophilic and lipophilic dietary phytochemicals based on inhibition of low-density lipoprotein and DNA damage. J Food Biochem 2022; 46:e14267. [PMID: 35674209 DOI: 10.1111/jfbc.14267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 11/27/2022]
Abstract
Antioxidant interaction among hydrophilic phytochemicals (caffeic acid, p-coumaric acid) and lipophilic phytochemicals (β-carotene, lycopene) in different mole ratios (n/n, 1:9, 3:7, 5:5, 7:3, 9:1) was evaluated. Assays performed were based on the scavenging activity of hydrogen peroxide (H2 O2 ), the inhibition of low-density lipoprotein oxidation (ox-LDL) and DNA damage in vitro, using isobological analysis, synergistic rate (SR), and combination index (CI). Results showed that groups containing higher ratios of hydrophilic phytochemicals exhibited synergism while those containing higher ratios of lipophilic phytochemicals showed antagonism. Meanwhile, groups containing caffeic acid (e.g., caffeic acid:β-carotene, 9:1) with more hydroxyl groups showed higher synergism (SR = 0.76 ± 0.02, CI = 0.77 ± 0.03) than groups containing p-coumaric acid (e.g., p-coumaric acid:β-carotene, 9:1, SR = 0.88 ± 0.04, CI = 0.82 ± 0.05) on the scavenging activity of H2 O2 . Groups that contained lycopene (caffeic acid: lycopene, 9:1) with a higher ability of regeneration by phenolic acids showed more significant synergism (SR = 0.70 ± 0.02, CI = 0.79 ± 0.03) than groups containing β-carotene (e.g., caffeic acid:β-carotene, 9:1, SR = 1.00 ± 0.03, CI = 0.98 ± 0.04) on the inhibition of DNA damage. This study provided a basis for antioxidant interactions among phytochemicals against ox-LDL and DNA damage in vivo. In addition, the choice of appropriate ratios and structures of hydrophilic and lipophilic phytochemicals should be considered in the diet and formulation of functional foods.
Collapse
Affiliation(s)
- Yao Pan
- School of Public Health, University of Nanchang, Nanchang, China.,Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.,State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang, China.,Institute for Advanced Study, University of Nanchang, Nanchang, China
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
23
|
Ben Khadher T, Aydi S, Mars M, Bouajila J. Study on the Chemical Composition and the Biological Activities of Vitis vinifera Stem Extracts. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103109. [PMID: 35630586 PMCID: PMC9144250 DOI: 10.3390/molecules27103109] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022]
Abstract
Vitis vinifera (V. vinifera) is a herbaceous plant, cultivated worldwide and known for its biological benefits. The aim of this study is the investigation of the chemical composition as well as the determination of the biological potential of different grape stem extracts obtained by maceration and accelerated solvent extraction (ASE). The HPLC analysis of the tested extracts led to the identification of 28 compounds of which 17 were identified for the first time in grape plants, in addition to seven revealed in the stem part for the first time. Twenty-nine volatile molecules have been detected by GC-MS in the grape stem part; among them seven were identified for the first time in the grape plant. For the biological analysis, the ethyl acetate extract (EtOAc) obtained by maceration showed a significant potential regarding antioxidant activity (IC50 = 42.5 µg/mL), anti-Alzheimer (IC50 = 14.1 µg/mL), antidiabetic (IC50 = 13.4 µg/mL), cytotoxic with HCT-116 (IC50 = 12.5 µg/mL), and anti-inflammatory (IC50 = 26.6 µg/mL) activities, as well as showing the highest polyphenol content (207.9 mg GAE/g DW).
Collapse
Affiliation(s)
- Talel Ben Khadher
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, F-31062 Toulouse, France;
- Laboratory of Biodiversity and Valorization of Bioressources in Arid Zones, Faculty of Sciences, The University of Gabes, Zrig, Gabes 6072, Tunisia; (S.A.); (M.M.)
| | - Samir Aydi
- Laboratory of Biodiversity and Valorization of Bioressources in Arid Zones, Faculty of Sciences, The University of Gabes, Zrig, Gabes 6072, Tunisia; (S.A.); (M.M.)
| | - Mohamed Mars
- Laboratory of Biodiversity and Valorization of Bioressources in Arid Zones, Faculty of Sciences, The University of Gabes, Zrig, Gabes 6072, Tunisia; (S.A.); (M.M.)
| | - Jalloul Bouajila
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, F-31062 Toulouse, France;
- Correspondence: ; Tel./Fax: +33-562256885
| |
Collapse
|
24
|
Natural plant extracts mediated expression regulation of TGF-β receptors and SMAD genes in human cancer cell lines. Mol Biol Rep 2022; 49:4171-4178. [PMID: 35301659 DOI: 10.1007/s11033-022-07250-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 02/09/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Transforming growth factor beta (TGF-β) superfamily has key role in cell proliferation which leads to tumor promoting activities at metastatic stage of cancer. Inhibition of transforming growth factor beta receptor (TGFβR) signaling pathway can provide better therapeutic strategy to control cancer. Natural products are best known for their safety, less toxic nature, antioxidant characteristics making them a promising candidate to inhibit TGFβR signaling pathway. METHODS AND RESULTS Crude methanolic extracts (CMEs) of 16 selected plants were prepared by using maceration method and subjected to phytochemical assays for identification of major phytometabolites particularly cancer chemopreventive antioxidant constituents. Total flavonoid content of all plants CME was > 0.6 mg/ml exhibiting the Cichorium intybus contains comparatively highest amount of total flavonoid content (0.53 mg/ml). Scanvenging activity of all plants was determined having IC50 ranges between 2 and 88 (µg/ml) while Moringa oleifera revealed the maximum scavenging activity (IC50 2.03 µg/ml). Comparative cytotoxicity of plant extracts was evaluated in HUH and MCF-7 cell lines using 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide (MTT) colorimetric assay. The nine active plant extracts i.e. Fagonia cretica, Argemone Mexicana, Rubus fruticosus, M. oleifera, Punica granatum, Cichorium intybus, Xanthium strumarium, Carissa opaca, Cyperus rotundus were identified based on their high antiproliferative activity > 50% against cancer cell lines and subjected to relative expression studies. Modulation of TGFβ signaling molecules (i.e.TGFβR1, 2 & 3, SMAD3, SMAD5) and ubiquitous proteins i.e. SMURF1 and SMURF2 genetic expression by potent extracts was determined by RT-PCR using GAPDH (housekeeping gene) as gene of reference. CONCLUSIONS This present study revealed that CME of Fagonia cretica and Argemone mexicana significantly inhibit TGF beta mediated signaling cascade by downregulating the gene expression fold change > 1 of TGFβR 1, 2 & 3 and receptor associated complex protein SMAD3 as compared to control.
Collapse
|
25
|
Study of Stability, Cytotoxic and Antimicrobial Activity of Chios Mastic Gum Fractions (Neutral, Acidic) after Encapsulation in Liposomes. Foods 2022; 11:foods11030271. [PMID: 35159423 PMCID: PMC8834444 DOI: 10.3390/foods11030271] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Mastic gum is a resinous sap produced by Pistacia lentiscus growing in the island of Chios (Greece) and has been recognized since Antiquity for its distinctive aroma as well as medical properties (antimicrobial, antioxidant, anti-inflammatory ones). The oral absorption of Chios Mastic gum (an insoluble polymer of poly-β-myrcene is among the most abundant contents) is poor due to its low water-solubility. We report in this study, two different Chios mastic gum extracts, the acidic mastic gum extract—AMGE—and the neutral one—NMGE, both prepared after removal of the contained polymer in order to ameliorate solubility and enhance in vivo activity. Liposomes are presented as a promising delivery system due to their physicochemical and biophysical properties to increase stability and absorption efficiency of the mastic gum extracts within the gastrointestinal (GI) tract. The aim of this study was to evaluate the stability in GI simulated conditions together with cytotoxic and antimicrobial activity of the two extracts (AMGE and NMGE) after encapsulation in a well characterized liposome formulation. Liposomes-AMGE complex showed an improved stability behavior in GI simulated conditions. Both assayed extracts showed significant dose dependent inhibition against the growth of liver cancer HepG2 cells and an interesting antimicrobial activity against several microorganisms. Conclusively, encapsulation could be evaluated as a beneficial procedure for further applications of mastic resin.
Collapse
|
26
|
Lopes NB, Almeida IV, Lucchetta L, Düsman E, Vicentini VEP. Cytotoxicity of iodine-131 radiopharmaceutical in tumor and non-tumor human cells and radioprotection by integral juices of Vitis labrusca L. BRAZ J BIOL 2022; 82:e253206. [DOI: 10.1590/1519-6984.253206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 03/24/2022] [Indexed: 12/23/2022] Open
Abstract
Abstract Iodine-131 (I-131) radioisotope it causes the formation of free radicals, which lead to the formation of cell lesions and the reduction of cell viability. Thus, the use of radioprotectors, especially those from natural sources, which reduce the effects of radiation to healthy tissues, while maintaining the sensitivity of tumor cells, stands out. The objective of the present study was to evaluate the cytoprotective/radioprotective effects of whole grape juices manufactured from the conventional or organic production systems, whether or not exposed to ultraviolet (UV-C) light irradiation. The results showed that I-131 presented a cytotoxic effect on human hepatocellular cells (HepG2/C3A) at concentrations above 1.85 MBq/mL, after 24 and 48 hours of treatment, though all concentrations (0.0037 to 7.40 MBq/mL) were cytotoxic to non-tumor human lung fibroblast (MCR-5) cells, after 48 hours. However, grape juices (10 and 20 µL/mL) did not interfere with the cytotoxic effect of the therapeutic dose of I-131 on tumor cells within 48 hours of treatment, while protecting the non-tumor cells, probably due to its high antioxidant activity. In accordance with their nutraceutical potential, antioxidant and radioprotective activity, these data stimulate in vivo studies on the use of natural products as radioprotectants, such as grape juice, in order to confirm the positive beneficial potential in living organisms.
Collapse
Affiliation(s)
| | | | - L. Lucchetta
- Universidade Tecnológica Federal do Paraná, Brasil
| | - E. Düsman
- Universidade Tecnológica Federal do Paraná, Brasil
| | | |
Collapse
|
27
|
Filippi K, Papapostolou H, Alexandri M, Vlysidis A, Myrtsi ED, Ladakis D, Pateraki C, Haroutounian SA, Koutinas A. Integrated biorefinery development using winery waste streams for the production of bacterial cellulose, succinic acid and value-added fractions. BIORESOURCE TECHNOLOGY 2022; 343:125989. [PMID: 34695693 DOI: 10.1016/j.biortech.2021.125989] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
An integrated biorefinery has been developed using winery wastes (grape pomace-GP, stalks-GS, wine lees-WL). Bacterial cellulose was produced from GP extracted free sugars. Grape-seed oil and polyphenols were extracted from GP. Experimental design was employed to optimize lignin removal (50.8%) from mixtures of remaining GP solids and GS via NaOH (1.19% w/v) treatment at 70°C for 30 min. Delignification liquid contained condensed tannins with 76% Stiasny number. Enzymatic hydrolysis produced a sugar-rich hydrolysate (40.2 g/L sugars). Ethanol, antioxidants, tartaric acid and nutrient-rich hydrolysate were produced from WL. The crude hydrolysates were used in fed-batch Actinobacillus succinogenes cultures for 37.2 g/L succinic acid production. The biorefinery produces 42.65 g bacterial cellulose, 24.3 g oil, 40.3 g phenolic-rich extract with 1.41 Antioxidant Activity Index, 80.2 g ethanol, 624.8 g crude tannin extract, 20.03 g tartaric acid and 157.8 g succinic acid from 1 kg of each waste stream.
Collapse
Affiliation(s)
- Katiana Filippi
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Harris Papapostolou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece.
| | - Maria Alexandri
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Anestis Vlysidis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Eleni D Myrtsi
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Dimitrios Ladakis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Chrysanthi Pateraki
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Serkos A Haroutounian
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Apostolis Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| |
Collapse
|
28
|
Amrati FEZ, Bourhia M, Slighoua M, Mohammad Salamatullah A, Alzahrani A, Ullah R, Bari A, Bousta D. Traditional medicinal knowledge of plants used for cancer treatment by communities of mountainous areas of Fez-Meknes-Morocco. Saudi Pharm J 2021; 29:1185-1204. [PMID: 34703372 PMCID: PMC8523330 DOI: 10.1016/j.jsps.2021.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/11/2021] [Indexed: 02/08/2023] Open
Abstract
Since their existence on earth, humans have used herbal medicine to meet their requirements for medication. The aim of the study: This work refers to a study conducted to carry out an ethnopharmacological survey of medicinal plants used for the treatment of cancer in Fez-Meknes region of Morocco. Material and Methods: To achieve this goal, 300 informants including 237 local people and 63 herbalists. They were requested to fill a survey related questionnaire aiming at the collection of data about the addressed objective. Informants were asked about the vernacular names, parts of medicinal plants used, mode of preparation, route of administration, reference area as well as the ecological distribution. The Relative Frequency of Citation (RFC) and Fidelity Level (FL) were calculated to identify the most effective plants recommended by informants for disease treatment. Results: The findings obtained in the present survey revealed that 94 species belonging to 47 families have been used for cancer treatment in the region of Fez-Meknes. Fruits, leaves, and seeds are the most commonly used plant parts, by the time powder and infusion arethe most common methods used fordrug preparations. Conclusion: This work may contribute towards the society as it provides interesting data on traditional medicinal knowledge of medicinal plantsused to fight cancer.
Collapse
Affiliation(s)
- Fatima Ez-Zahra Amrati
- Laboratory of Biotechnology, Agrofood and environment (LBEAS), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Mohammed Bourhia
- Laboratory of Chemistry, Biochemistry, Nutrition, and Environment, Faculty of Medicine and Pharmacy, University Hassan II, Casablanca, Morocco
| | - Meryem Slighoua
- Laboratory of Biotechnology, Agrofood and environment (LBEAS), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Ahmad Mohammad Salamatullah
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, P. O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Abdulhakeem Alzahrani
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, P. O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Riaz Ullah
- Department of Pharmacognosy (Medicinal Aromatic and Poisonous Plants Research Center), College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Amina Bari
- Laboratory of Biotechnology, Agrofood and environment (LBEAS), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Dalila Bousta
- Laboratory of Biotechnology, Agrofood and environment (LBEAS), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| |
Collapse
|
29
|
Wang M, Zhang Y, Zhu C, Yao X, Zheng Z, Tian Z, Cai X. EkFLS overexpression promotes flavonoid accumulation and abiotic stress tolerance in plant. PHYSIOLOGIA PLANTARUM 2021; 172:1966-1982. [PMID: 33774830 DOI: 10.1111/ppl.13407] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/03/2021] [Accepted: 03/23/2021] [Indexed: 05/27/2023]
Abstract
Flavonoids with great medicinal value play an important role in plant individual growth and stress resistance. Flavonol synthetase (FLS) is one of the key enzymes to synthesize flavonoids. However, the role of the FLS gene in flavonoid accumulation and tolerance to abiotic stresses, as well as its mechanism has not yet been investigated systematically in plants. The aim of this research is to evaluate the effect of FLS overexpression on the accumulation of active ingredients and stress resistance in Euphorbia kansui Liou. The results showed that when the EkFLS gene was overexpressed in Arabidopsis thaliana, the accumulation of flavonoids was improved. In addition, when the wild-type and EkFLS overexpressed Arabidopsis plants were treated with ABA and MeJA, compared with WT Arabidopsis, EkFLS overexpressed Arabidopsis promoted stomatal aperture to influence photosynthesis of the plants, which in turn can promote stress resistance. Meanwhile, under MeJA, NaCl, and PEG treatment, EkFLS overexpressed in Arabidopsis induced higher accumulation of flavonoids, which significantly enhanced peroxidase (POD) and superoxide dismutase (SOD) activities that can scavenge reactive oxygen species in cells to protect the plant. These results indicated that EkFLS overexpression is strongly correlated to the increase of flavonoid synthesis and therefore the tolerance to abiotic stresses in plants, providing a theoretical basis for further improving the quality of medicinal plants and their resistance to abiotic stresses simultaneously.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Yue Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Chenyu Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Xiangyu Yao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Zhe Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Zheni Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Xia Cai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| |
Collapse
|
30
|
Myrtsi ED, Koulocheri SD, Iliopoulos V, Haroutounian SA. High-Throughput Quantification of 32 Bioactive Antioxidant Phenolic Compounds in Grapes, Wines and Vinification Byproducts by LC-MS/MS. Antioxidants (Basel) 2021; 10:antiox10081174. [PMID: 34439422 PMCID: PMC8388954 DOI: 10.3390/antiox10081174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
The well-established, health-benefitting effects of grapevines and derivatives (wines and vinification byproducts) are attributed to their antioxidant phenolic content. The dearth of an efficient method for the simultaneous quantitation of antioxidant phenolics prompted us to develop a novel method utilizing triple quadrupole LC-MS/MS for the accurate, fast, simultaneous quantitation of the 32 most abundant grapevine phenolics. The fully validated, novel method is capable to simultaneously record the quantitative presence of 12 phenolic acids, 19 polyphenols and coniferyl aldehyde (a phenolic compound extracted from cork stoppers into wines) and is applicable for the determination of antioxidant phenolics content of grape berries, pomace, stems and wines. Its utility was demonstrated for three native Greek grapevine varieties, two red (Mandilaria and Aidani mavro) and one white (Monemvassia). Results herein highlighted the stems of the Monemvassia white variety as particularly rich in antioxidant phenolics such as the flavonol monomer (+)-catechin (387 mg/kg) and the dimer procyanidin B1 (400 mg/kg) along with stilbene phytoalexin trans-resveratrol (24 mg/kg). These results are in line with the TPC, TFC and TTC content of stems and the determined antioxidant capacities, highlighting the stems of this Vitis vinifera variety as potentially exploitable source of antioxidant phenolics.
Collapse
|
31
|
Tekos F, Makri S, Skaperda ZV, Patouna A, Terizi K, Kyriazis ID, Kotseridis Y, Mikropoulou EV, Papaefstathiou G, Halabalaki M, Demetrios K. Assessment of Antioxidant and Antimutagenic Properties of Red and White Wine Extracts In Vitro. Metabolites 2021; 11:metabo11070436. [PMID: 34357330 PMCID: PMC8304343 DOI: 10.3390/metabo11070436] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 01/11/2023] Open
Abstract
Wine is an alcoholic beverage of complex composition obtained through the fermentation of grape must. The consumption of wine has already been associated with a multitude of beneficial effects due to its high polyphenolic content. In this study, four Greek emblematic wines from two red (i.e., Xinomavro and Agiorgitiko) and two white (i.e., Assyrtiko and Malagouzia) varieties were analyzed for the estimation of their antioxidant profiles. To address this question, we assessed their ability to scavenge both synthetic and endogenous free radicals, such as DPPH•, ABTS+•, OH•, O2−, their potential reducing power, and their antimutagenic and antigenotoxic properties. All varieties exhibited potent antioxidant activity, as indicated by the results of methods above, with the red wines appearing more effective than the white ones regarding antioxidant capacity. Our small-scale study is the first to reveal that these wine varieties may have the ability to scavenge the most reactive endogenous radicals. In the future, this finding must be accompanied by larger studies to fill a knowledge gap in the scientific literature concerning a holistic approach of the in vitro antioxidant action of plant polyphenolic compounds. Conclusively, we believe that wines possess high bioactivity that allow them to settle in the industry of food additives and medicinal products.
Collapse
Affiliation(s)
- Fotios Tekos
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece; (F.T.); (S.M.); (Z.-V.S.); (A.P.); (K.T.); (I.D.K.)
| | - Sotiria Makri
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece; (F.T.); (S.M.); (Z.-V.S.); (A.P.); (K.T.); (I.D.K.)
| | - Zoi-Vasiliki Skaperda
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece; (F.T.); (S.M.); (Z.-V.S.); (A.P.); (K.T.); (I.D.K.)
| | - Anastasia Patouna
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece; (F.T.); (S.M.); (Z.-V.S.); (A.P.); (K.T.); (I.D.K.)
| | - Kallirroi Terizi
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece; (F.T.); (S.M.); (Z.-V.S.); (A.P.); (K.T.); (I.D.K.)
| | - Ioannis D. Kyriazis
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece; (F.T.); (S.M.); (Z.-V.S.); (A.P.); (K.T.); (I.D.K.)
| | - Yorgos Kotseridis
- Laboratory of Oenology, Department of Food Science & Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece;
| | - Eleni Vaskani Mikropoulou
- Department of Pharmacy, Division of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece; (E.V.M.); (G.P.); (M.H.)
| | - Georgios Papaefstathiou
- Department of Pharmacy, Division of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece; (E.V.M.); (G.P.); (M.H.)
| | - Maria Halabalaki
- Department of Pharmacy, Division of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece; (E.V.M.); (G.P.); (M.H.)
| | - Kouretas Demetrios
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece; (F.T.); (S.M.); (Z.-V.S.); (A.P.); (K.T.); (I.D.K.)
- Correspondence: ; Tel.: +30-241-0565-277; Fax: +30-241-0565-293
| |
Collapse
|
32
|
Vardakas P, Skaperda Z, Tekos F, Trompeta AF, Tsatsakis A, Charitidis CA, Kouretas D. An integrated approach for assessing the in vitro and in vivo redox-related effects of nanomaterials. ENVIRONMENTAL RESEARCH 2021; 197:111083. [PMID: 33775680 DOI: 10.1016/j.envres.2021.111083] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Over the last few decades, nanotechnology has risen to the forefront of both the research and industrial interest, resulting in the manufacture and utilization of various nanomaterials, as well as in their integration into a wide range of fields. However, the consequent elevated exposure to such materials raises serious concerns regarding their effects on human health and safety. Existing scientific data indicate that the induction of oxidative stress, through the excessive generation of Reactive Oxygen Species (ROS), might be the principal mechanism of exerting their toxicity. Meanwhile, a number of nanomaterials exhibit antioxidant properties, either intrinsic or resulting from their functionalization with conventional antioxidants. Considering that their redox properties are implicated in the manifestation of their biological effects, we propose an integrated approach for the assessment of the redox-related activities of nanomaterials at three biological levels (in vitro-cell free systems, cell cultures, in vivo). Towards this direction, a battery of translational biomarkers is recommended, and a series of reliable protocols are presented in detail. The aim of the present approach is to acquire a better understanding with respect to the biological actions of nanomaterials in the interrelated fields of Redox Biology and Toxicology.
Collapse
Affiliation(s)
- Periklis Vardakas
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500, Larissa, Greece
| | - Zoi Skaperda
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500, Larissa, Greece
| | - Fotios Tekos
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500, Larissa, Greece
| | - Aikaterini-Flora Trompeta
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St. Zografos, 157 80, Athens, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology Science and Research, Medical School, University of Crete, 71003, Heraklion, Crete, Greece
| | - Constantinos A Charitidis
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St. Zografos, 157 80, Athens, Greece
| | - Demetrios Kouretas
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500, Larissa, Greece.
| |
Collapse
|
33
|
Dupak R, Kovac J, Kalafova A, Kovacik A, Tokarova K, Hascik P, Simonova N, Kacaniova M, Mellen M, Capcarova M. Supplementation of grape pomace in broiler chickens diets and its effect on body weight, lipid profile, antioxidant status and serum biochemistry. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00737-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
A Review on Stems Composition and Their Impact on Wine Quality. Molecules 2021; 26:molecules26051240. [PMID: 33669129 PMCID: PMC7956323 DOI: 10.3390/molecules26051240] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/21/2022] Open
Abstract
Often blamed for bringing green aromas and astringency to wines, the use of stems is also empirically known to improve the aromatic complexity and freshness of some wines. Although applied in different wine-growing regions, stems use remains mainly experimental at a cellar level. Few studies have specifically focused on the compounds extracted from stems during fermentation and maceration and their potential impact on the must and wine matrices. We identified current knowledge on stem chemical composition and inventoried the compounds likely to be released during maceration to consider their theoretical impact. In addition, we investigated existing studies that examined the impact of either single stems or whole clusters on the wine quality. Many parameters influence stems' effect on the wine, especially grape variety, stem state, how stems are incorporated, when they are added, and contact duration. Other rarely considered factors may also have an impact, including vintage and ripening conditions, which could affect the lignification of the stem.
Collapse
|
35
|
Medrano-Padial C, Prieto AI, Puerto M, Pichardo S. In vitro assessment of the mutagenic and genotoxic potential of a pure stilbene extract. Food Chem Toxicol 2021; 150:112065. [PMID: 33596453 DOI: 10.1016/j.fct.2021.112065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/28/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023]
Abstract
Stilbenes are secondary metabolites of great interest produced by many plant species due to their important bioactive properties. These phytochemicals have become of increasing interest in the wine industry as a natural alternative to sulphur dioxide, which has been associated with human health risks. However, there is still little toxicological information on stilbenes and the results thus far have been contradictory. Considering the key role of genotoxicity in risk assessment and the need to offer safe products in the market, the aim of this study was to assess the mutagenic and genotoxic potential of a stilbene extract with 99% purity (ST-99 extract). A complete series of different in vitro tests (Ames test, micronucleus (MN) test, and standard and enzyme-modified comet assays) was performed before its use as a preservative in wines. The ST-99 extract induces a significant increase of binucleated cells with micronuclei only in presence of the metabolic fraction S9 at the highest concentration assayed. Neither the Ames test nor the comet assay revealed the extract's genotoxic potential. Further studies are necessary, including in vivo assays, to ensure consumer safety before it can be used.
Collapse
Affiliation(s)
- C Medrano-Padial
- Area of Toxicology, School of Pharmacy, Universidad de Sevilla, Profesor García González nº2, 41012, Seville, Spain
| | - A I Prieto
- Area of Toxicology, School of Pharmacy, Universidad de Sevilla, Profesor García González nº2, 41012, Seville, Spain.
| | - M Puerto
- Area of Toxicology, School of Pharmacy, Universidad de Sevilla, Profesor García González nº2, 41012, Seville, Spain
| | - S Pichardo
- Area of Toxicology, School of Pharmacy, Universidad de Sevilla, Profesor García González nº2, 41012, Seville, Spain
| |
Collapse
|
36
|
Grape Stem Extracts with Potential Anticancer and Antioxidant Properties. Antioxidants (Basel) 2021; 10:antiox10020243. [PMID: 33562442 PMCID: PMC7915920 DOI: 10.3390/antiox10020243] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
The application of plant extracts for therapeutic purposes has been used in traditional medicine because plants contain bioactive compounds with beneficial properties for health. Currently, the use of these compounds that are rich in polyphenols for the treatment and prevention of diseases such as cancer, diabetes, and cardiovascular diseases, many of them related to oxidative stress, is gaining certain relevance. Polyphenols have been shown to have antimutagenic, antioxidant, and anti-inflammatory properties. Therefore, the objective of the present work was to study the potential effect of grape stem extracts (GSE), rich in phenolic compounds, in the treatment of cancer, as well as their role in the prevention of this disease associated with its antioxidant power. For that purpose, three cancer lines (Caco-2, MCF-7, and MDA-MB-231) were used, and the results showed that grape stem extracts were capable of showing an antiproliferative effect in these cells through apoptosis cell death associated with a modification of the mitochondrial potential and reactive oxygen species (ROS) levels. Additionally, grape stem extracts showed an antioxidant effect on differentiated intestinal cells that could protect the intestine from diseases related to oxidative stress. Therefore, grape extracts contain bioactive principles with important biological properties and could be used as bio-functional food ingredients to prevent diseases or even to improve certain aspects of human health.
Collapse
|
37
|
Naumowicz M, Zając M, Kusaczuk M, Gál M, Kotyńska J. Electrophoretic Light Scattering and Electrochemical Impedance Spectroscopy Studies of Lipid Bilayers Modified by Cinnamic Acid and Its Hydroxyl Derivatives. MEMBRANES 2020; 10:membranes10110343. [PMID: 33203075 PMCID: PMC7697760 DOI: 10.3390/membranes10110343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 01/05/2023]
Abstract
Pharmacological efficiency of active compounds is largely determined by their membrane permeability. Thus, identification of drug-membrane interactions seems to be a crucial element determining drug-like properties of chemical agents. Yet, knowledge of this issue is still lacking. Since chemoprevention based on natural compounds such as cinnamic acid (CinA), p-coumaric acid (p-CoA) and ferulic (FA) is becoming a strong trend in modern oncopharmacology, determination of physicochemical properties of these anticancer compounds is highly important. Here, electrophoretic light scattering and impedance spectroscopy were applied to study the effects of these phenolic acids on electrical properties of bilayers formed from 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-diacyl-sn-glycero-3-phospho-l-serine (PS) or DOPC-PS mixture. After phenolic acid treatment, the negative charge of membranes increased in alkaline pH solutions, but not in acidic ones. The impedance data showed elevated values of both the electrical capacitance and the electrical resistance. We concluded that at acidic pH all tested compounds were able to solubilize into the membrane and permeate it. At neutral and alkaline pH, the CinA could be partially inserted into the bilayers, whereas p-CoA and FA could be anchored at the bilayer surface. Our results indicate that the electrochemical methods might be crucial for predicting pharmacological activity and bioavailability of phenolic acids.
Collapse
Affiliation(s)
- Monika Naumowicz
- Department of Physical Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciolkowskiego 1K, 15-245 Bialystok, Poland;
- Correspondence: ; Tel.: +48-8573-880-71
| | - Marcin Zając
- Doctoral School of Exact and Natural Sciences, University of Bialystok, K. Ciolkowskiego 1K, 15-245 Bialystok, Poland;
| | - Magdalena Kusaczuk
- Department of Pharmaceutical Biochemistry, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland;
| | - Miroslav Gál
- Department of Inorganic Technology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia;
| | - Joanna Kotyńska
- Department of Physical Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciolkowskiego 1K, 15-245 Bialystok, Poland;
| |
Collapse
|
38
|
Coffee Consumption and Its Inverse Relationship with Gastric Cancer: An Ecological Study. Nutrients 2020; 12:nu12103028. [PMID: 33023243 PMCID: PMC7601092 DOI: 10.3390/nu12103028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 12/24/2022] Open
Abstract
Coffee is the second most popular drink worldwide, and it has various components with antioxidant and antitumor properties. Due to its chemical composition, it could act as an antitumor substance in the gastrointestinal tract. The objective of this study was to explore the relationship between coffee consumption and the incidence/mortality of stomach cancer in the highest-consuming countries. An ecological study using Spearman’s correlation coefficient was performed. The WorldAtlas’s dataset of coffee consumption and the incidence/mortality rates database of the International Agency for Research were used as sources of information. A total of 25 countries were entered to the study. There was an inverse linear correlation between coffee consumption in kg per person per year and estimated age-adjusted incidence (r = −0.5984, p = 0.0016) and mortality (r = −0.5877, p = 0.0020) of stomach cancer. Coffee may potentially have beneficial effects on the incidence and mortality of stomach cancer, as supported by the data from each country analyzed.
Collapse
|
39
|
Naz I, Khan MR, Zai JA, Batool R, Zahra Z, Tahir A. Pilea umbrosa ameliorate CCl 4 induced hepatic injuries by regulating endoplasmic reticulum stress, pro-inflammatory and fibrosis genes in rat. Environ Health Prev Med 2020; 25:53. [PMID: 32917140 PMCID: PMC7488709 DOI: 10.1186/s12199-020-00893-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 09/01/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Pilea umbrosa (Urticaceae) is used by local communities (district Abbotabad) for liver disorders, as anticancer, in rheumatism and in skin disorders. METHODS Methanol extract of P. umbrosa (PUM) was investigated for the presence of polyphenolic constituents by HPLC-DAD analysis. PUM (150 mg/kg and 300 mg/kg) was administered on alternate days for eight weeks in rats exposed with carbon tetrachloride (CCl4). Serum analysis was performed for liver function tests while in liver tissues level of antioxidant enzymes and biochemical markers were also studied. In addition, semi quantitative estimation of antioxidant genes, endoplasmic reticulum (ER) induced stress markers, pro-inflammatory cytokines and fibrosis related genes were carried out on liver tissues by RT-PCR analysis. Liver tissues were also studied for histopathological injuries. RESULTS Level of antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD), peroxidase (POD) and glutathione (GSH) decreased (p < 0.05) whereas level of thiobarbituric acid reactive substance (TBARS), H2O2 and nitrite increased in liver tissues of CCl4 treated rat. Likewise increase in the level of serum markers; alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP) and total bilirubin was observed. Moreover, CCl4 caused many fold increase in expression of ER stress markers; glucose regulated protein (GRP-78), x-box binding protein1-total (XBP-1 t), x-box binding protein1-unspliced (XBP-1 u) and x-box binding protein1-spliced (XBP-1 s). The level of inflammatory mediators such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) was aggregated whereas suppressed the level of antioxidant enzymes; γ-glutamylcysteine ligase (GCLC), protein disulfide isomerase (PDI) and nuclear erythroid 2 p45-related factor 2 (Nrf-2). Additionally, level of fibrosis markers; transforming growth factor-β (TGF-β), Smad-3 and collagen type 1 (Col1-α) increased with CCl4 induced liver toxicity. Histopathological scrutiny depicted damaged liver cells, neutrophils infiltration and dilated sinusoids in CCl4 intoxicated rats. PUM was enriched with rutin, catechin, caffeic acid and apigenin as evidenced by HPLC analysis. Simultaneous administration of PUM and CCl4 in rats retrieved the normal expression of these markers and prevented hepatic injuries. CONCLUSION Collectively these results suggest that PUM constituted of strong antioxidant chemicals and could be a potential therapeutic agent for stress related liver disorders.
Collapse
Affiliation(s)
- Irum Naz
- Faculty of Biological Sciences, Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Rashid Khan
- Faculty of Biological Sciences, Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jawaid Ahmed Zai
- Faculty of Biological Sciences, Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Riffat Batool
- Faculty of Biological Sciences, Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Zartash Zahra
- Faculty of Biological Sciences, Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Aemin Tahir
- Faculty of Biological Sciences, Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
40
|
Haas ICDS, Marmitt DJ, Fedrigo IMT, Goettert MI, Bordignon-Luiz MT. Evaluation of antiproliferative and anti-inflammatory effects of non-pomace sediment of red grape juices (Vitis labrusca L.) in healthy and cancer cells after in vitro gastrointestinal simulation. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
41
|
Fuchs C, Bakuradze T, Steinke R, Grewal R, Eckert GP, Richling E. Polyphenolic composition of extracts from winery by-products and effects on cellular cytotoxicity and mitochondrial functions in HepG2 cells. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
42
|
Liu Y, Chen Y, Wang Y, Chen J, Huang Y, Yan Y, Li L, Li Z, Ren Y, Xiao Y. Total phenolics, capsaicinoids, antioxidant activity, and α-glucosidase inhibitory activity of three varieties of pepper seeds. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1775646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Yida Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yulian Chen
- Department of Research and Development, Hunan Yancun Ecological Farming Technology Co., Ltd, Changsha, China
| | - Yuanliang Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Province Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Jiaxu Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yuxin Huang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yingzi Yan
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Luoming Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zongjun Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Province Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Youhua Ren
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yu Xiao
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
43
|
Diterpenoids from Plectranthus spp. as Potential Chemotherapeutic Agents via Apoptosis. Pharmaceuticals (Basel) 2020; 13:ph13060123. [PMID: 32560101 PMCID: PMC7344685 DOI: 10.3390/ph13060123] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 01/01/2023] Open
Abstract
Plectranthus spp. is widely known for its medicinal properties and bioactive metabolites. The cytotoxic and genotoxic properties of the four known abietane diterpenoids: 7α-Acetoxy-6β-hydroxyroyleanone (Roy), 6,7-dehydroroyleanone (Deroy), 7β,6β-dihydroxyroyleanone6 (Diroy), and Parvifloron D (Parv), isolated from P. madagascariensis (Roy, DeRoy, and Diroy) and P. ecklonii (Parv) were evaluated. The tested compounds showed cytotoxic effects against the human leukemia cell line CCRF-CEM and the lung adenocarcinoma cell line A549. All tested compounds induced apoptosis by altering the level of pro- and anti-apoptotic genes. The results show that from the tested diterpenoids, Roy and Parv demonstrated the strongest activity in both human cancer cell lines, changing the permeability mitochondrial membrane potential and reactive oxygen species (ROS) levels, and possibly inducing mtDNA or nDNA damage. In conclusion, the abietane diterpenoids tested may be used in the future as potential natural chemotherapeutic agents
Collapse
|
44
|
Research Advances in the Use of Bioactive Compounds from Vitis vinifera By-Products in Oral Care. Antioxidants (Basel) 2020; 9:antiox9060502. [PMID: 32521718 PMCID: PMC7346141 DOI: 10.3390/antiox9060502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023] Open
Abstract
Oral health is considered an important factor of general health and it contributes to the quality of life. Despite the raising awareness of preventive measures, the prevalence of oral health conditions continues to increase. In this context, a growing interest in investigating natural resources like Vitis vinifera (V. vinifera) phenolic compounds (PhCs) as oral health promoters has emerged. This paper aims to review the evidence about the bioactivities of V. vinifera by-products in oral health. Up to date, a high number of studies have thoroughly reported the antimicrobial and antiplaque activity of V. vinifera extracts against S. mutans or in multi-species biofilms. Moreover, the bioactive compounds from V. vinifera by-products have been shown to modulate the periodontal inflammatory response and the underlying oxidative stress imbalance induced by the pathogenic bacteria. Considering these beneficial effects, the utility of V. vinifera by-products in the maintaining of oral health and the necessary steps towards the development of oral care products were emphasized. In conclusion, the high potential of V. vinifera by-products could be valorized in the development of oral hygiene products with multi-target actions in the prevention and progression of several oral conditions.
Collapse
|
45
|
Ahmad B, Yadav V, Yadav A, Rahman MU, Yuan WZ, Li Z, Wang X. Integrated biorefinery approach to valorize winery waste: A review from waste to energy perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137315. [PMID: 32135320 DOI: 10.1016/j.scitotenv.2020.137315] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
The ever-increasing environmental crisis, depleting natural resources, and uncertainties in fossil fuel availability have rekindled researchers' attention to develop green and environmentally friendlier strategies. In this context, a biorefinery approach with a zero-waste theme has stepped-up as the method of choice for sustainable production of an array of industrially important products to address bio-economy challenges. Grape winery results in substantial quantities of solid organic and effluent waste, which epitomizes an increasing concentration of pollution problems with direct damage to human health, economy and nature. From the perspective of integrated biorefinery and circular economy, winery waste could be exploited for multiple purpose value-added products before using the biomass for energy security. This review covers state-of-the-art biorefinery opportunities beyond traditional methods as a solution to overcome many current challenges such as waste minimization in grape leaves, stems, seeds, pomace, wine lees, vinasse etc. and the biosynthesis of various high-value bioproducts viz., phenolic compounds, hydroxybenzoic acids, hydroxycinnamic acids, flavonoids, tartaric acids, lignocellulosic substrates etc.. The critical discussion on the valorization of winery waste (solid, liquid, or gaseous) and life cycle assessment was deployed to find a sustainable solution with value added energy products in an integrated biorefinery approach, keeping the environment and circular economy in the background.
Collapse
Affiliation(s)
- Bilal Ahmad
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Ashish Yadav
- ICAR-Central Institute for Sub Tropical Horticulture, Lucknow 226101, U.P., India
| | - Mati Ur Rahman
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Wang Zhong Yuan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China.
| |
Collapse
|
46
|
A Reference List of Phenolic Compounds (Including Stilbenes) in Grapevine ( Vitis vinifera L.) Roots, Woods, Canes, Stems, and Leaves. Antioxidants (Basel) 2020; 9:antiox9050398. [PMID: 32397203 PMCID: PMC7278806 DOI: 10.3390/antiox9050398] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 01/19/2023] Open
Abstract
Due to their biological activities, both in plants and in humans, there is a great interest in finding natural sources of phenolic compounds or ways to artificially manipulate their levels. During the last decade, a significant amount of these compounds has been reported in the vegetative organs of the vine plant. In the roots, woods, canes, stems, and leaves, at least 183 phenolic compounds have been identified, including 78 stilbenes (23 monomers, 30 dimers, 8 trimers, 16 tetramers, and 1 hexamer), 15 hydroxycinnamic acids, 9 hydroxybenzoic acids, 17 flavan-3-ols (of which 9 are proanthocyanidins), 14 anthocyanins, 8 flavanones, 35 flavonols, 2 flavones, and 5 coumarins. There is great variability in the distribution of these chemicals along the vine plant, with leaves and stems/canes having flavonols (83.43% of total phenolic levels) and flavan-3-ols (61.63%) as their main compounds, respectively. In light of the pattern described from the same organs, quercetin-3-O-glucuronide, quercetin-3-O-galactoside, quercetin-3-O-glucoside, and caftaric acid are the main flavonols and hydroxycinnamic acids in the leaves; the most commonly represented flavan-3-ols and flavonols in the stems and canes are catechin, epicatechin, procyanidin B1, and quercetin-3-O-galactoside. The main stilbenes (trans-ε-viniferin, trans-resveratrol, isohopeaphenol/hopeaphenol, vitisin B, and ampelopsins) accumulate primarily in the woods, followed by the roots, the canes, and the stems, whereas the leaves, which are more exposed to environmental stresses, have a low concentration of these compounds. Data provided in this review could be used as (i) a metabolomic tool for screening in targeted and untargeted analyses and (ii) a reference list in studies aimed at finding ways to induce naturally occurring polyphenols on an industrial scale for pant and human disease control.
Collapse
|
47
|
Leal C, Santos RA, Pinto R, Queiroz M, Rodrigues M, José Saavedra M, Barros A, Gouvinhas I. Recovery of bioactive compounds from white grape ( Vitis vinifera L.) stems as potential antimicrobial agents for human health. Saudi J Biol Sci 2020; 27:1009-1015. [PMID: 32256161 PMCID: PMC7105666 DOI: 10.1016/j.sjbs.2020.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/11/2020] [Accepted: 02/23/2020] [Indexed: 11/19/2022] Open
Abstract
The grape is a matrix rich in bioactive compounds and its production generates large quantities of by-products, such as grape stems, which, to date, present low commercial value. However, there is a growing interest in the application of this material as a source of phenolic compounds. Therefore, the present study aims at assessing the phytochemical profile of (poly)phenolic extracts of white Portuguese grape stem varieties produced in the Região Demarcada do Douro (Portugal). The antioxidant activity determined by several assays, as well as the antimicrobial activity using the disc diffusion method against human gastrointestinal pathogenic bacteria of the hydromethanolic extracts, were evaluated. This work presents very positive results as the rich composition in phenolic compounds (94.71–123.09 mg GA−1 and 0.02–73.79 mg g−1 for the total phenol content and for individual phenolics, respectively) presented by grape stems can explain the high antioxidant (0.37–1.17 mmol Trolox g−1) and antimicrobial activities against, essentially, Gram-positive bacteria, and in some cases with higher efficacy than commercial antibiotics. Thus, demonstrating that this wine by-product should deserve greater attention from the pharmaceutical industries due to its excellent biological properties and characteristics not yet applied.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Irene Gouvinhas
- Corresponding author at: Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, (CITAB-UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal.
| |
Collapse
|
48
|
Sangdee K, Sangdee A, Srihanam P. Enzyme Inhibition and Antimicrobial Activities of Fractionated Wild Grape ( Ampelocissus martinii Planch.) Seed Extracts. Pak J Biol Sci 2020; 23:1066-1074. [PMID: 32700858 DOI: 10.3923/pjbs.2020.1066.1074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVE Study on medicinal plant extract is gradually interested and distributed, especially their biological activities. The present study aimed to determine the enzyme inhibition and antimicrobial activities of the fractionated extracts of wild grape (Ampelocissus martinii Planch.) seeds. MATERIALS AND METHODS Wild grape seeds in different growth stages were extracted with methanol before fractionation by silica gel chromatography. The anti-glucosidase and anti-tyrosinase enzyme activities of the extracts were then tested by using UV-Vis spectrophotometry and antimicrobial activities were observed from MIC, MBC values and time killing assay. RESULTS The sub-fraction of immature stage eluted by ethyl acetate/methanol at 75/25 (%v/v) has the highest enzyme inhibition activity and the most potent efficiency for time kills profiles. The MIC values of the potent immature, mature and ripe fractioned extracts were ranging from 1.25-50.00, 1.25-50.00 and 1.56-25.00 mg mL-1, respectively, while the MBC values ranged from 3.12-6.25, 3.12-25.00 and 3.12-25.00 mg mL-1, respectively. CONCLUSION The wild grape seed composed of α-glucosidase and tyrosinase inhibition and antibacterial activities compounds. The wild grape seed extracts may be used as active ingredients sources of health-supporting products or cosmetics.
Collapse
|
49
|
Jiménez-Moreno N, Volpe F, Moler JA, Esparza I, Ancín-Azpilicueta C. Impact of Extraction Conditions on the Phenolic Composition and Antioxidant Capacity of Grape Stem Extracts. Antioxidants (Basel) 2019; 8:antiox8120597. [PMID: 31795232 PMCID: PMC6943662 DOI: 10.3390/antiox8120597] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022] Open
Abstract
The use of grape stems for the extraction of bioactive compounds to be used in the pharmaceutical, food, and cosmetic industries is a promising objective. The aim of this work is to determine the influence of the different extraction conditions (temperature, ethanol concentration, and ratio of sample/solvent) on phenolic composition and antioxidant capacity of Mazuelo stem extracts. In general, the ethanol concentration of the extraction solvent was the factor that had the greatest influence on the extraction of different bioactive compounds. The greatest content of total phenolic compounds and the highest antioxidant activity of the extracts were obtained with 50% ethanol and at 40 °C. The most abundant compound found in the different extracts obtained from Mazuelo grape stem was (+)-catechin, but appreciable concentrations of gallic acid, a quercetin derivative, and stilbenes (trans-resveratrol and trans-ε-viniferin) were also extracted. Quercetin and malvidin-3-glucoside showed the highest correlation with the antioxidant capacity of the extracts, while stilbenes did not present such relation. The maximum concentration of gallic acid was extracted with water but the extraction of most of the compounds was maximum on using 50% ethanol. Consequently, the selection of the extraction method to be used will depend on the particular compound to be extracted in greatest quantity.
Collapse
Affiliation(s)
- Nerea Jiménez-Moreno
- Department of Sciences, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006 Pamplona, Spain; (N.J.-M.); (F.V.)
| | - Francesca Volpe
- Department of Sciences, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006 Pamplona, Spain; (N.J.-M.); (F.V.)
| | - Jose Antonio Moler
- Department of Statistics and Operational Research, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006 Pamplona, Spain;
| | - Irene Esparza
- Department of Sciences, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006 Pamplona, Spain; (N.J.-M.); (F.V.)
- Institute for Advanced Materials (InaMat), Universidad Pública de Navarra, 31006 Pamplona, Spain
- Correspondence: (I.E.); (C.A.-A.); Tel.: +34-948-169596 (C.A.-A.)
| | - Carmen Ancín-Azpilicueta
- Department of Sciences, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006 Pamplona, Spain; (N.J.-M.); (F.V.)
- Institute for Advanced Materials (InaMat), Universidad Pública de Navarra, 31006 Pamplona, Spain
- Correspondence: (I.E.); (C.A.-A.); Tel.: +34-948-169596 (C.A.-A.)
| |
Collapse
|
50
|
Polyphenols: Major regulators of key components of DNA damage response in cancer. DNA Repair (Amst) 2019; 82:102679. [PMID: 31450085 DOI: 10.1016/j.dnarep.2019.102679] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/27/2019] [Accepted: 07/27/2019] [Indexed: 02/06/2023]
|