1
|
Shaban SF, Khattab MA, Abd El Hameed SH, Abdelrahman SA. Evaluating the histomorphological and biochemical changes induced by Tributyltin Chloride on pituitary-testicular axis of adult albino rats and the possible ameliorative role of hesperidin. Ultrastruct Pathol 2023; 47:304-323. [PMID: 36988127 DOI: 10.1080/01913123.2023.2195489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
This study was performed to explore in detail the toxic effects of Tributyltin Chloride (TBT) on the pituitary-testicular axis and the possible amelioration with Hesperidin. Seventy-two adult male albino rats were divided into four groups: Control group (I), TBT-treated group (II), TBT+Hesperidin group (III), and Recovery group (IV). Body and testicular weights were measured. Blood samples were taken to estimate serum levels of testosterone, FSH and LH hormones by enzyme-linked immunosorbent assay (ELISA). Malondialdehyde (MDA) level was measured in testes homogenates. Tissue samples from the pituitary glands and testes were processed for light, electron microscope examination, and immunohistochemical detection of anti-FSH, and Ki67 proteins. Results showed a statistically significant decrease in testicular weight, serum testosterone, FSH and LH levels and a significant increase in tissue MDA in the TBT group when compared to the control group. TBT treatment caused severe histopathological changes with decreased area percent of PAS-stained basophils, and anti FSH immuno-stained gonadotrophs in the pituitary gland. The testes of group II also showed marked tissue damage, cell loss with decreased epithelial height and decreased number of proliferating spermatogenic cells. Hesperidin supplementation with TBT proved significant amelioration of the previously mentioned parameters in both glands which could improve male fertility. In conclusion: The flavonoid Hesperidin has the potential to protect against the reproductive damage induced by TBT in susceptible individuals.
Collapse
Affiliation(s)
- Sahar F Shaban
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Maha A Khattab
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samar H Abd El Hameed
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Shaimaa A Abdelrahman
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
2
|
Elsammak GA, Talaat A, Reda S. The possible ameliorative role of Lycopene on Tributyltin induced thyroid damage in adult male albino rats (histological, immunohistochemical and biochemical study). Ultrastruct Pathol 2023; 47:324-338. [PMID: 37125846 DOI: 10.1080/01913123.2023.2205922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
Tributyltin is used in industrial applications. This current research aimed to study the effect of Tributyltin on the thyroid gland structure and function of adult male albino rats and the protective effect of Lycopene. Twenty-one male adult albino rats were classified into three groups: Control, treated that received Tributyltin, and protective that received Lycopene with Tributyltin. At the end of the experiment, blood samples were collected and T4, T3, and (TSH) were measured. Tissue superoxide dismutase (SOD) and malondialdehyde (MDA) were estimated. Thyroid gland specimens were processed for histological and immunohistochemical examination. Then morphometric and statistical analyses were done. The treated group showed affection in thyroid function and histological structure as vacuolated colloid and cytoplasm and dark nuclei. Ultrastructurally, follicular cells showed irregular shrunken nuclei, atrophied apical microvilli, vacuoles, multiple lysosomal granules, mitochondria with destructed cristae, and extensively dilated rough endoplasmic reticulum. There was increase in Caspase-3 immunoexpression and decrease in Beclin-1 immunoexpression. The thyroid structure and biochemical markers improved after Lycopene administration. The thyroid gland damage caused by Tributyltin is ameliorated by Lycopene.
Collapse
Affiliation(s)
- Ghada A Elsammak
- Medical Histology and cell biology Department, Zagazig University Faculty of Human Medicine, Zagazig, Egypt
| | - Aliaa Talaat
- Medical Biochemistry Department, Zagazig University Faculty of Human Medicine, Zagazig, Egypt
| | - Samar Reda
- Medical Histology and cell biology Department, Zagazig University Faculty of Human Medicine, Zagazig, Egypt
| |
Collapse
|
3
|
Andrade MN, Melo-Paiva FD, Teixeira MP, Lima-Junior NCD, Soares P, Graceli JB, Carvalho DPD, Morris EAR, Ferreira ACF, Miranda-Alves L. Environmentally relevant dose of the endocrine disruptor tributyltin disturbs redox balance in female thyroid gland. Mol Cell Endocrinol 2022; 553:111689. [PMID: 35690288 DOI: 10.1016/j.mce.2022.111689] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 10/18/2022]
Abstract
Tributyltin (TBT) is an endocrine disruptor used as a biocide in nautical paints. Even though many TBT effects in marine species are known, data in mammals are scarce, especially regarding the thyroid gland. The present study aimed to evaluate the effect of a subchronic exposure to TBT on thyroid oxidative stress of female Wistar rats. Rats received vehicle (control group), 200 or 1000 ng TBT/kg body weight/day for 40 days. After euthanasia, one part of the thyroids were collected in order to assess iodide uptake; activity and/or mRNA expression of thyroperoxidase (TPO) and dual oxidases (DUOXs); activity and/or mRNA expression of catalase, glutathione peroxidase, superoxide dismutase and NADPH oxidase 4 (CAT, GPx, SOD and NOX4); 4-hydroxynonenal (4-HNE) expression and total thiol groups levels; and mRNA expression of estrogen receptors alpha and beta (ERα and ERβ). The remaining part of the thyroid was processed for morphological analysis of estrogen receptor alpha (ERα) and for collagen deposition. Iodide uptake was not changed with treatments. TPO activity and expression were increased in the TBT1000 group (259.81% and 95.17%). The activity, but not mRNA, of CAT (17.36% TBT200; 27.10% TBT1000) and GPx (29.24% TBT200; 28.97% TBT1000) were decreased by TBT. SOD and NADPH oxidase activity, as well as thiol group and 4-HNE levels remained unchanged. Interstitial collagen deposition increased in the TBT200 group (39.54%). The mRNA expression of ERα increased in TBT-treated rats (44.87% TBT200; 36.43% TBT1000), while protein expression was increased but not reaching significance (TBT1000, p = 0.056) by TBT. Therefore, our results show that TBT increases TPO expression and reduces antioxidant enzyme activities in the thyroid gland leading to oxidative stress. Some of these effects could be mediated by the ERα pathway.
Collapse
Affiliation(s)
- Marcelle Novaes Andrade
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Francisca Diana Melo-Paiva
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
| | - Mariana Pires Teixeira
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
| | - Niedson Correia de Lima-Junior
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Paula Soares
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal; Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal; Departamento de Patologia, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| | - Jones Bernardes Graceli
- Laboratório de Endocrinologia e Toxicologia Celular, Departamento de Morfologia, Universidade Federal do Espírito Santo, Espírito Santo, Brazil
| | - Denise Pires de Carvalho
- Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Eduardo Andrès Rios Morris
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
| | - Andrea Claudia Freitas Ferreira
- Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil; Núcleo Multidisciplinar em Pesquisa em Biologia Experimental - NUMPEX-Bio, Campus Duque de Caxias, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leandro Miranda-Alves
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-graduação em Ciências Morfológicas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Stanic B, Samardzija Nenadov D, Fa S, Pogrmic-Majkic K, Andric N. Integration of data from the cell-based ERK1/2 ELISA and the Comparative Toxicogenomics Database deciphers the potential mode of action of bisphenol A and benzo[a]pyrene in lung neoplasm. CHEMOSPHERE 2021; 285:131527. [PMID: 34329126 DOI: 10.1016/j.chemosphere.2021.131527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/22/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Chemicals can activate a variety of signaling pathways, initiating changes in gene expression and cellular functions. Here, we combined experimental data on the chemical-induced extracellular signal-regulated kinase 1/2 (ERK1/2) activation with the Comparative Toxicogenomics Database (CTD) to connect signaling, genes, and phenotypes to reveal the potential chemical's mode of action (MOA) responsible for the disease state. Experimental data on ERK1/2 activation were derived from the cell-based phospho-ERK1/2 ELISA on human alveolar epithelial cells A549. A549 cells were exposed to bisphenol A (BPA), benzo[a]pyrene (BaP), tributyltin (TBT), and ibuprofen from 10-12 M to 10-5 M. Results show that BPA, BaP, and TBT can activate ERK1/2 in A549 cells. We selected BPA and BaP to elucidate the molecular events connecting chemical exposure, ERK1/2 signaling, phenotypes, and lung neoplasm (LN) using CTD. CTD analysis showed that BPA and BaP share 26 mitogen-activated protein kinase 1/3 (MAPK1/3) signaling genes associated with LN. Phenotype prioritization revealed 37 BPA, 10 BaP, and 11 shared key phenotypes associated with LN. Alignment of MAPK1/3 signaling genes and phenotypes showed that ERK1/2 and oxidative stress, EGFR gene, and positive regulation of cell proliferation and migration could be the shared key events (KE) for BPA and BaP. This analysis also identified protein kinase B and ERK1/2 signaling, FGF9, FGFR1 and FGFR2 genes, positive regulation of cell proliferation and angiogenesis as KE in MOA for BPA, whereas ERK1/2 signaling, IL6 and DAB2IP genes, negative regulation of cell proliferation and inflammatory response were identified as KE in MOA for BaP.
Collapse
Affiliation(s)
- Bojana Stanic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | | | - Svetlana Fa
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | | | - Nebojsa Andric
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia.
| |
Collapse
|
5
|
Sakr S, A Rashad W, Abaza MT. The ameliorative effect of Moringa oleifera oil on tributyltin-induced brain toxicity in albino rats. ENVIRONMENTAL TOXICOLOGY 2021; 36:2025-2039. [PMID: 34227745 DOI: 10.1002/tox.23320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 04/30/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Tributyltin (TBT) is an organotin compound widely used as a biocide in antifouling paints. Moringa oleifera oil (MOO) has a promising antioxidant potential, which necessitates further exploration. This study was conducted to investigate the potential protective effect of MOO against TBT-induced brain toxicity. The 30 rats were grouped into five groups (six each), Group I negative control, Group II positive control (vehicle), Group III MOO (5 ml/kg body weight [b.wt.]), Group IV TBT (10 mg/kg b.wt.), and Group V TBT & MOO. All treatments were given orally for 28 days. Thereafter, brains were exposed to oxidative stress and neurological parameters analyses. Histopathological and immunohistochemical (caspase-3, Bax, Bcl-2) examinations were also carried out. In rats administered TBT, increased malondialdehyde level, decreased reduced glutathione, and low total antioxidant capacity levels were in support of oxidative stress mechanism. Neurotoxicity was indicated by high nitric oxide level and increased acetylcholinestrase activity. Along with the histopathological alterations, the dysregulated expression of caspase-3, Bax, and Bcl-2 were indicative of the apoptotic mechanism mediated by TBT. Co-administration of MOO with TBT ameliorated the aforementioned toxic effects. In conclusion, TBT causes brain toxicity via oxidative, nitrosative, and apoptotic mechanisms. MOO demonstrates protective effect against TBT-induced brain toxicity mostly via potent antioxidant and antiapoptotic properties.
Collapse
Affiliation(s)
- Samar Sakr
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Walaa A Rashad
- Department of Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Marwa T Abaza
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
6
|
Jiang P, Yuan GH, Jiang BR, Zhang JY, Wang YQ, Lv HJ, Zhang Z, Wu JL, Wu Q, Li L. Effects of microplastics (MPs) and tributyltin (TBT) alone and in combination on bile acids and gut microbiota crosstalk in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112345. [PMID: 34020283 DOI: 10.1016/j.ecoenv.2021.112345] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) and tributyltin (TBT) are both potential environmental pollutants that enter organisms through the food chain and affect bodily functions. However, the effects and mechanisms of MPs and TBT exposure (especially the co-exposure of both pollutants) on mammals remain unclear. In this study, Ф5μm MPs (5MP) was administered alone or in combination with TBT to investigate the health risk of oral exposure in mice. All three treatments induced inflammation in the liver, altered gut microbiota composition and disturbed fecal bile acids profiles. In addition to decreasing triglyceride (TG) and increasing aspartate aminotransferase (AST) and macrophage-expressed gene 1 (Mpeg1), 5MP induced hepatic cholestasis by stimulating the expression of the cholesterol hydroxylase enzymes CYP8B1 and CYP27A1, and inhibiting multidrug resistance-associated protein 2 and 3 (MRP2, MRP3), and bile-salt export pump (BSEP) to prevent bile acids for entering the blood and bile. Correspondingly, 5MP treatment decreased 7-ketolithocholic acid (7-ketoLCA) and taurocholic acid (TCA), which were positively correlated with decreased Bacteroides and Marvinbryantia and negatively correlated with increased Bifidobacterium. In addition, TBT increased interferon γ (IFNγ) and Mpeg1 levels to induce inflammation, accompanied by decreased 7-ketoLCA, tauro-alpha-muricholic acid (T-alpha-MCA) and alpha-muricholic acid (alpha-MCA) levels, which were negatively related to Coriobacteriaceae_UCG-002 and Bifidobacterium. Co-exposure to 5MP and TBT also decreased TG and induced bile acids accumulation in the liver due to inhibited BSEP, which might be attributed to the co-regulation of decreased T-alpha-MCA and Harryflintia. In conclusion, the administration of 5MP and TBT alone and in combination could cause gut microbiome dysbiosis and subsequently alter bile acids profiles, while the combined exposure of 5MP and TBT weakened the toxic effects of 5MP and TBT alone.
Collapse
Affiliation(s)
- Ping Jiang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Ge-Hui Yuan
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Bao-Rong Jiang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Jing-Yi Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Yu-Qian Wang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Hui-Jie Lv
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Zhan Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Jia-Lin Wu
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Qian Wu
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Lei Li
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China.
| |
Collapse
|
7
|
Magara G, Elia AC, Dörr AJM, Abete MC, Brizio P, Caldaroni B, Righetti M, Pastorino P, Scoparo M, Prearo M. Metal load and oxidative stress driven by organotin compounds on rainbow trout. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:35012-35022. [PMID: 33665696 PMCID: PMC8275540 DOI: 10.1007/s11356-021-12984-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/11/2021] [Indexed: 05/17/2023]
Abstract
Tributyltin-based (TBT) antifouling paints, widely used for the treatment of flooded surfaces, have been banned in 2008 for their high environmental persistence and bioaccumulation in aquatic organisms. Although it is still present in aquatic ecosystems, oxidative stress driven by TBT has been still poorly investigated in fish. The aim of the study was to examine the time-course stress responses in liver of rainbow trout that received a single intraperitoneal injection of tributyltin chloride (TBTC) or tributyltin ethoxide (TBTE), both at a dose of 0.05 and 0.5 mg/kg. Levels of metallothioneins, total glutathione, malondialdehyde, superoxide dismutase, catalase, glutathione peroxidase and glutathione S-transferase were evaluated at 3 and 6 days post-injection. Tin load was measured in the muscle of the same fish. Differences were observed in the time-course accumulation of tin with a clear dose-response relationship. Although individual oxidative stress biomarkers varied, the biomarker profile indicated different stress mechanisms caused by both TBTC and TBTE. The weak induction of metal-trapping metallothioneins and the changes of oxidative stress biomarkers suggested a stress-pressure in both TBT-treated trout, advising for an ecotoxicological risk for freshwater ecosystems.
Collapse
Affiliation(s)
- Gabriele Magara
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123, Perugia, Italy
| | - Antonia Concetta Elia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123, Perugia, Italy.
| | - Ambrosius Josef Martin Dörr
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123, Perugia, Italy
| | - Maria Cesarina Abete
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, via Bologna 148, 10154, Torino, Italy
| | - Paola Brizio
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, via Bologna 148, 10154, Torino, Italy
| | - Barbara Caldaroni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123, Perugia, Italy
| | - Marzia Righetti
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, via Bologna 148, 10154, Torino, Italy
| | - Paolo Pastorino
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, via Bologna 148, 10154, Torino, Italy
| | - Melissa Scoparo
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123, Perugia, Italy
| | - Marino Prearo
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, via Bologna 148, 10154, Torino, Italy
| |
Collapse
|
8
|
Li ZH, Li P. Effects of the tributyltin on the blood parameters, immune responses and thyroid hormone system in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115707. [PMID: 33007597 DOI: 10.1016/j.envpol.2020.115707] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Tributyltin (TBT) is a widely used organotin compound around the world and was frequently detected in surface waters, which would pose risk to aquatic organisms. However, the mechanisms of TBT-induced toxicity is not full clear. The present study investigated the effects of the tributyltin (TBT) on the blood parameters, immune responses and thyroid hormone system in zebrafish. Fish were exposed to sublethal concentrations of TBT (10 ng/L, 100 ng/L and 300 ng/L) for 6 weeks. The effects of long-term exposure to TBT on blood parameters (NH3, ammonia; GLU, glucose; TP, total proteins; CK, creatine kinase; ALT, alanine aminotransferase; AST, aspartate aminotransferase), immune responses (Lys, lysozyme; IgM, immunoglobulin M) and some indexes related thyroid hormone system (T3, 3,5,3'-triiodothyronine; T4, thyroxine) were measured in zebrafish, as well as the expression of genes related to immune responses and thyroid hormone system. Based on the results, the physiological-biochemical responses was significantly enhanced with an increase in TBT concentration, reflected by the abnormal blood indices, dysregulation of endocrine system and immunotoxicity in zebrafish under TBT stress. The present study greatly extends our understanding of adverse effects of TBT on aquatic organisms.
Collapse
Affiliation(s)
- Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
9
|
Yuan GH, Zhang Z, Gao XS, Zhu J, Guo WH, Wang L, Ding P, Jiang P, Li L. Gut microbiota-mediated tributyltin-induced metabolic disorder in rats. RSC Adv 2020; 10:43619-43628. [PMID: 35519721 PMCID: PMC9058259 DOI: 10.1039/d0ra07502g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/13/2020] [Indexed: 12/28/2022] Open
Abstract
Tributyltin (TBT), an environmental pollutant widely used in antifouling coatings, can cause multiple-organ toxicity and gut microbiome dysbiosis in organisms, and can even cause changes in the host metabolomic profiles. However, little is known about the underlying effects and links of TBT-induced metabolic changes and gut microbiome dysbiosis. In this study, rats were exposed to TBT at a dose of 100 μg kg-1 body weight (BW) for 38 days, followed by multi-omics analysis, including microbiome, metabolomics, and metallomics. Results showed that TBT exposure reduced rat weight gain and decreased the serum triglyceride (TG) level. Metabolic analysis revealed that TBT fluctuated linoleic acid metabolism and glycerophospholipid metabolism in the liver; the tricarboxylic acid cycle (TCA cycle), nicotinate and nicotinamide metabolism, and arachidonic acid metabolism in serum; glycine, serine, and threonine metabolism, the one carbon pool by folate, nicotinate, and nicotinamide metabolism; and tryptophan metabolism in feces. Furthermore, TBT treatment dictated liver inflammation due to enhancing COX-2 expression by activating protein kinase R-like ER kinase (PERK) and C/EBP homologous protein (CHOP) to induce endoplasmic reticulum (ER) stress instead of stimulating arachidonic acid metabolism. Meanwhile, alteration of the intestinal flora [Acetivibrio]_ethanolgignens_group, Acetatifactor, Eisenbergiella, Lachnospiraceae_UCG-010, Enterococcus, Anaerovorax, and Bilophila under TBT exposure were found to be involved in further mediating liver inflammation, causing lipid metabolism abnormalities, such as TG, linoleic acid, and glycerophospholipids, and interfering with the energy supply process. Among these, [Acetivibrio]_ethanolgignens_group, Enterococcus, and Bilophila could be considered as potential biomarkers for TBT exposure based on receiver operator characteristic (ROC) curve analysis.
Collapse
Affiliation(s)
- Ge-Hui Yuan
- Center for Global Health, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 China +86-25-8686-8499 +86-25-8686-8402 +86-25-8686-8404 +86-25-8686-8402
| | - Zhan Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 China +86-25-8686-8499 +86-25-8686-8402 +86-25-8686-8404 +86-25-8686-8402.,Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 P. R. China
| | - Xing-Su Gao
- Center for Global Health, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 China +86-25-8686-8499 +86-25-8686-8402 +86-25-8686-8404 +86-25-8686-8402
| | - Jun Zhu
- Center for Global Health, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 China +86-25-8686-8499 +86-25-8686-8402 +86-25-8686-8404 +86-25-8686-8402
| | - Wen-Hui Guo
- Center for Global Health, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 China +86-25-8686-8499 +86-25-8686-8402 +86-25-8686-8404 +86-25-8686-8402.,Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 P. R. China
| | - Li Wang
- Center for Global Health, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 China +86-25-8686-8499 +86-25-8686-8402 +86-25-8686-8404 +86-25-8686-8402.,Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 P. R. China
| | - Ping Ding
- Xiang Ya School of Public Health, Central South University Changsha 410078 P. R. China
| | - Ping Jiang
- Center for Global Health, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 China +86-25-8686-8499 +86-25-8686-8402 +86-25-8686-8404 +86-25-8686-8402.,Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 P. R. China
| | - Lei Li
- Center for Global Health, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 China +86-25-8686-8499 +86-25-8686-8402 +86-25-8686-8404 +86-25-8686-8402.,Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 P. R. China
| |
Collapse
|
10
|
Ahmed MG, Ibrahim MED, El Sayed HR, Ahmed SM. Short term chronic toxicity of tributyltin on the testes of adult albino rats and the possible protective role of omega-3. Hum Exp Toxicol 2020; 40:214-230. [PMID: 32783468 DOI: 10.1177/0960327120947451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The declining rate of male fertility is a growing concern. Tributyltin (TBT) is a well-known endocrine disruptor (ED), that induces imposex in female gastropods and is widely used in various industrial applications. The aim of this study was to evaluate the toxic effects of TBT on the testes of adult albino rats and the possible role of omega-3. Forty two adult male albino rats were divided into five groups; control group (Group I) and four experimental groups: omega-3 treated group, TBT treated group, TBT & omega-3 treated group and follow up group. At the end of the study, the rats were subjected to biochemical, histological, immunohistochemical staining for Ki-67 and seminal examinations. Our results clarfied that TBT induced a significant decrease in testosterone, FSH, LH and serum glutathione peroxidase levels and a significant increase in the serum Malondialdehyde as compared to the control group. Tributyltin induced disorganization and shrinkage of seminiferous tubules, apoptosis, cellular damage and marked reduction in the germinal epithelium. A significant decrease in the cell proliferation and arrested spermatogenesis were also detected. Seminal analysis of TBT group showed a significant affection of all parameters as compared to other groups. Omega-3 ameliorated all of these hazardous effects. Follow up group still showed toxic effects. In conclusion, TBT has a toxic effect on the testis. Increased testicular oxidative stress, cellular damage and arrest of spermatogenesis with attenuation in antioxidant defenses are all contributing factors. Omega-3 can protect against TBT induced reproductive toxicity.
Collapse
Affiliation(s)
- Marwa G Ahmed
- Department of Forensic Medicine and Clinical Toxicology, 68865Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mona El-Demerdash Ibrahim
- Department of Forensic Medicine and Clinical Toxicology, 68865Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Hoda R El Sayed
- Department of Forensic Medicine and Clinical Toxicology, 68865Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samah M Ahmed
- Department of Histology & Cell Biology, 68865Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
11
|
Rodrigues-Pereira P, Macedo S, Gaspar TB, Canberk S, Selmi-Ruby S, Máximo V, Soares P, Miranda-Alves L. Relevant dose of the environmental contaminant, tributyltin, promotes histomorphological changes in the thyroid gland of male rats. Mol Cell Endocrinol 2020; 502:110677. [PMID: 31821856 DOI: 10.1016/j.mce.2019.110677] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/25/2019] [Accepted: 12/04/2019] [Indexed: 02/02/2023]
Abstract
Organotin compounds, such as tributyltin (TBT), are common environmental contaminants and suspected endocrine-disrupting chemicals. Tributyltin is found in antifouling paints, widely used in ships and other vessels. The present study evaluated whether a 15-day treatment with TBT at a dose of 100 ng/kg/day could induce histomorphological changes in the thyroid gland of rats. TBT promoted relevant alterations in the thyroid architecture, being the most relevant histological findings the presence of increased number of small-size follicles in the treated group. In qualitative analyses, colloid vacuolization, papillary budging structures, cystic degeneration and chronic thyroiditis, were observed. Moreover, histomorphometric analysis showed statistically significant changes in the follicular architecture of TBT-treated rats, mainly a decrease in the follicle area (colloid) and an increased epithelial height that resulted in an increased epithelial height/colloid ratio. Augmented collagen deposition was also seen in the thyroids of treated groups. In immunohistochemical (IHC) analyses, the localization of NIS protein was described and a significant increased proliferation index (evaluated by Ki67 positive cells) in the treated group was reported. As an indirect measurement of oxidative stress, mitochondrial protein SDHA was also analyzed by IHC analysis. Although the cytoplasmic expression of SDHA was observed in both groups, the staining intensity score was higher in TBT-treated group. Our results suggest that besides causing histomorphological changes, environmental relevant dose of TBT treatment can also induce oxidative alterations.
Collapse
Affiliation(s)
- Paula Rodrigues-Pereira
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
| | - Sofia Macedo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal; Departmento de Patologia, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| | - Tiago Bordeira Gaspar
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal; Departmento de Patologia, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| | - Sule Canberk
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal; Departmento de Patologia, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| | - Samia Selmi-Ruby
- Department of Tumoral Escape, Cancer Research Center of Lyon (CRCL)-UMR Inserm 1052-CNRS 5286, Lyon, France
| | - Valdemar Máximo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal; Departmento de Patologia, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| | - Paula Soares
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal; Departmento de Patologia, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| | - Leandro Miranda-Alves
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil.
| |
Collapse
|
12
|
Inhibitive Properties of Benzyldimethyldodecylammonium Chloride on Microbial Corrosion of 304 Stainless Steel in a Desulfovibrio desulfuricans-Inoculated Medium. MATERIALS 2019; 12:ma12020307. [PMID: 30669421 PMCID: PMC6356484 DOI: 10.3390/ma12020307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 01/19/2023]
Abstract
Biocides are frequently used to control sulfate-reducing bacteria (SRB) in biofouling. The increasing restrictions of environmental regulations and growing safety concerns on the use of biocides result in efforts to minimize the amount of biocide use and develop environmentally friendly biocides. In this study, the antimicrobial activity and corrosion inhibition effect of a low-toxic alternative biocide, benzyldimethyldodecylammonium chloride (BDMDAC), on a 304 stainless steel substrate immersed in a Desulfovibrio desulfuricans (D. desulfuricans)-inoculated medium was examined. Potentiodynamic polarization curves were used to analyze corrosion behavior. Biofilm formation and corrosion products on the surfaces of 304 stainless steel coupons were examined using scanning electron microscopy (SEM), energy-dispersive X-ray spectrum, and confocal laser scanning microscopy (CLSM). Results demonstrated that this compound exhibited satisfactory results against microbial corrosion by D. desulfuricans. The corrosion current density and current densities in the anodic region were lower in the presence of BDMDAC in the D. desulfuricans-inoculated medium. SEM and CLSM analyses revealed that the presence of BDMDAC mitigated formation of biofilm by D. desulfuricans.
Collapse
|
13
|
de Araújo JFP, Podratz PL, Sena GC, Merlo E, Freitas-Lima LC, Ayub JGM, Pereira AFZ, Santos-Silva AP, Miranda-Alves L, Silva IV, Graceli JB. The obesogen tributyltin induces abnormal ovarian adipogenesis in adult female rats. Toxicol Lett 2018; 295:99-114. [PMID: 29908848 DOI: 10.1016/j.toxlet.2018.06.1068] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/07/2018] [Accepted: 06/12/2018] [Indexed: 12/20/2022]
Abstract
Tributyltin chloride (TBT) is an obesogen associated with various metabolic and reproductive dysfunctions after in utero exposure. However, few studies have evaluated TBT's obesogenic effect on adult ovaries. In this study, we assessed whether TBT's obesogenic effects resulted in adult ovarian adipogenesis and other reproductive abnormalities. TBT was administered to adult female Wistar rats, and their reproductive tract morphophysiology was assessed. We further assessed the ovarian mRNA/protein expression of genes that regulate adipogenesis. Rats exposed to TBT displayed abnormal estrous cyclicity, ovarian sex hormone levels, ovarian follicular development and ovarian steroidogenic enzyme regulation. Rats exposed to TBT also demonstrated abnormal ovarian adipogenesis with increased cholesterol levels, lipid accumulation, and PPARγ, C/EBP-β and Lipin-1 expression. A negative correlation between the ovarian PPARγ expression and aromatase expression was observed in the TBT rats. Furthermore, TBT exposure resulted in reproductive tract atrophy, inflammation, oxidative stress and fibrosis. Ovarian dysfunctions also co-occurred with the uterine irregularities. Abnormal ovarian adipogenic markers occurring after TBT exposure may be associated with uterine irregularities. A positive correlation between the ovarian cholesterol levels and uterine inflammation was observed in the TBT rats. These findings suggest that TBT leads to ovarian obesogenic effects directly by abnormal adipogenesis and/or indirectly through adult reproductive tract irregularities.
Collapse
Affiliation(s)
| | | | - Gabriela C Sena
- Dept of Morphology, Federal University of Espírito Santo, Brazil
| | - Eduardo Merlo
- Dept of Morphology, Federal University of Espírito Santo, Brazil
| | | | | | | | - Ana Paula Santos-Silva
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil; Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | - Leandro Miranda-Alves
- Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Postgraduate Program in Endocrinology, School of Medicine, Federal University of Rio de Janeiro, Brazil
| | - Ian V Silva
- Dept of Morphology, Federal University of Espírito Santo, Brazil
| | - Jones B Graceli
- Dept of Morphology, Federal University of Espírito Santo, Brazil.
| |
Collapse
|
14
|
Santos-Silva AP, Andrade MN, Pereira-Rodrigues P, Paiva-Melo FD, Soares P, Graceli JB, Dias GRM, Ferreira ACF, de Carvalho DP, Miranda-Alves L. Frontiers in endocrine disruption: Impacts of organotin on the hypothalamus-pituitary-thyroid axis. Mol Cell Endocrinol 2018; 460:246-257. [PMID: 28774778 DOI: 10.1016/j.mce.2017.07.038] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/29/2017] [Accepted: 07/29/2017] [Indexed: 10/19/2022]
Abstract
Endocrine disruptors (EDs), chemical substances widely used in industry and ubiquitously distributed in the environment, are able to interfere with the synthesis, release, transport, metabolism, receptor binding, action, or elimination of endogenous hormones. EDs affect homeostasis mainly by acting on nuclear and nonnuclear steroid receptors but also on serotonin, dopamine, norepinephrine and orphan receptors in addition to thyroid hormone receptors. Tributyltin (TBT), an ED widely used as a pesticide and biocide in antifouling paints, has well-documented actions that include inhibiting aromatase and affecting the nuclear receptors PPARγ and RXR. TBT exposure in humans and experimental models has been shown to mainly affect reproductive function and adipocyte differentiation. Since thyroid hormones play a fundamental role in regulating the basal metabolic rate and energy homeostasis, it is crucial to clarify the effects of TBT on the hypothalamus-pituitary-thyroid axis. Therefore, we review herein the main effects of TBT on important metabolic pathways, with emphasis on disruption of the thyroid axis that could contribute to the development of endocrine and metabolic disorders, such as insulin resistance and obesity.
Collapse
Affiliation(s)
- Ana Paula Santos-Silva
- Grupo de Pesquisa, Desenvolvimento e Inovação em Endocrinologia Experimental-GPDIEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Marcelle Novaes Andrade
- Grupo de Pesquisa, Desenvolvimento e Inovação em Endocrinologia Experimental-GPDIEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Paula Pereira-Rodrigues
- Grupo de Pesquisa, Desenvolvimento e Inovação em Endocrinologia Experimental-GPDIEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
| | - Francisca Diana Paiva-Melo
- Grupo de Pesquisa, Desenvolvimento e Inovação em Endocrinologia Experimental-GPDIEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
| | - Paula Soares
- Institute for Research and Innovation in Health, University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) - Cancer Signalling & Metabolism, Porto, Portugal; Medical Faculty, University of Porto, Porto, Portugal; Department of Pathology and Oncology, Medical Faculty of Porto University, Porto, Portugal
| | | | - Glaecir Roseni Mundstock Dias
- Grupo de Pesquisa, Desenvolvimento e Inovação em Endocrinologia Experimental-GPDIEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Andrea Claudia Freitas Ferreira
- Grupo de Pesquisa, Desenvolvimento e Inovação em Endocrinologia Experimental-GPDIEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil; Polo de Xerém/NUMPEX, Universidade Federal do Rio de Janeiro, Brazil
| | - Denise Pires de Carvalho
- Grupo de Pesquisa, Desenvolvimento e Inovação em Endocrinologia Experimental-GPDIEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Leandro Miranda-Alves
- Grupo de Pesquisa, Desenvolvimento e Inovação em Endocrinologia Experimental-GPDIEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil.
| |
Collapse
|
15
|
Barbosa CMDL, Ferrão FM, Graceli JB. Organotin Compounds Toxicity: Focus on Kidney. Front Endocrinol (Lausanne) 2018; 9:256. [PMID: 29872423 PMCID: PMC5972511 DOI: 10.3389/fendo.2018.00256] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 05/03/2018] [Indexed: 01/24/2023] Open
Abstract
Organotin compounds (OTs) are synthetic persistent organometallic xenobiotics widely used in several commercial applications. They exert well-described harmful effects in brain, liver, adipose tissue, and reproductive organs, as they are endocrine-disrupting chemicals (EDCs), but the effects in the kidneys are less known. The kidneys are especially vulnerable to environmental contaminants because they are a metabolizing site of xenobiotics, therefore, pollutants can accumulate in renal tissue, leading to impaired renal function and to several renal abnormalities. Individuals chronically exposed to OTs present a threefold increase in the prevalence of kidney stones. These compounds can directly inhibit H+/K+-ATPase in renal intercalated cells, resulting in hypokalemia, renal tubular acidity, and increased urinary pH, which is a known risk factor for kidney stones formation. OTs effects are not only limited to induce nephrolithiasis, its nephrotoxicity is also due to increased reactive oxygen species (ROS). This increase leads to lipid peroxidation, abnormal cellular function, and cell death. Combined, the enzymatic and non-enzymatic antioxidant defense systems become deficient and there is a consequent uncontrolled generation of ROS that culminates in renal tissue damage. Still, few epidemiological and experimental studies have reported renal impact correlated to OTs exposure. This lack of investigation of the complete effect of OTs in renal function and structure led us to perform this review reporting the main researches about this subject.
Collapse
Affiliation(s)
- Carolina Monteiro de Lemos Barbosa
- Laboratory for Clinical and Experimental Research on Vascular Biology (BioVasc), Department of Physiology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Magalhães Ferrão
- Nucleus of Multidisciplinary Research in Biology, Federal University of Rio de Janeiro, Duque de Caxias, Brazil
| | - Jones B Graceli
- Laboratory of Endocrinology and Cellular Toxicology, Department of Morphology, Federal University of Espirito Santo, Vitoria, Brazil
| |
Collapse
|
16
|
Badr El Dine FMM, Nabil IM, Dwedar FI. The effect of Tributyltin on thyroid follicular cells of adult male albino rats and the possible protective role of green tea: a toxicological, histological and biochemical study. EGYPTIAN JOURNAL OF FORENSIC SCIENCES 2017; 7:7. [PMID: 28781899 PMCID: PMC5514189 DOI: 10.1186/s41935-017-0012-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/26/2017] [Indexed: 11/10/2022] Open
Abstract
Introduction Tributyltin is one of the important and wide-spread persistent organic contaminants that accumulate in the food chain. It is suspected to cause endocrine-disrupting effects in mammals, due in part to its possible transfer through marine food chains and to the consumption of contaminated seafood. Aim of the work Was to study the possible toxic effect of Tributyltin on thyroid follicular cells of adult male albino rats and to evaluate the possible protective role of green tea. Material and methods Forty-five adult male albino rats were included and randomly divided into 3 equal groups: a control group (Group I); Group II: received tributyltin chloride (TBT) dissolved in corn oil orally in a dose of 5 mg/kg for 30 days. Group III: received tributyltin chloride in the same dose with concomitant oral administration of green tea extract for 30 days. At the end of the experiment, the animals were sacrificed and blood samples were subjected to hormonal assay for T3, T4 and TSH levels. Malondialdehyde and reduced glutathione were assessed. The thyroid tissue was processed for histological and ultrastructure examination. The colloid area of thyroid follicles was evaluated morphometrically and statistically analyzed. Results A significant decrease in T3 and T4 levels and serum reduced glutathione in the group II when compared with the other groups. Furthermore, a significant increase in serum Malondialdehyde and TSH levels was recorded in group II treated group by comparison to the other two groups. Histopathological and ultrastructural changes of thyroid gland follicles were detected in tributyltin treated rats; the follicular cells appeared swollen and vacuolated. Epithelial stratification was noticed in some foci with excessive vacuolation of the colloid. Dilated rough endoplasmic reticulum filled with flocculent material and increased number of lysosomes were also detected together with variation in shape and size of the nuclei. A marked improvement in the histological features of thyroid follicles was noticed in group III. Conclusion Tributyltin induces oxidative stress in rats as well as anti-thyroid effect. The green tea extract is useful in combating tissue injury that is a result of tributyltin toxicity.
Collapse
Affiliation(s)
- Fatma M M Badr El Dine
- Departments of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Alexandria University, Champollion Street, El- Khartoum Square, Azarita Medical Campus, Alexandria, Egypt
| | - Iman M Nabil
- Histology and cell biology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Fatma I Dwedar
- Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
17
|
Zhang CN, Zhang JL, Ren HT, Zhou BH, Wu QJ, Sun P. Effect of tributyltin on antioxidant ability and immune responses of zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 138:1-8. [PMID: 27987418 DOI: 10.1016/j.ecoenv.2016.12.016] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/10/2016] [Accepted: 12/12/2016] [Indexed: 05/21/2023]
Abstract
Tributyltin (TBT) is a toxic compound released into aquatic ecosystems through antifouling paints. This study was designed to examine the effects of TBT on antioxidant ability and immune responses of zebrafish (Danio rerio). Three hundred sixty healthy zebrafish were randomly grouped into four groups and exposed to different doses of TBT (0, 1, 10 and 100ngL-1). At the end of 8 weeks, the fish were sampled, and antioxidant capability, immune parameters and immune-related genes were assessed. The results showed that with an increase in TBT dose, the concentration of malonaldehyde in the liver was significantly increased (p<0.05), whereas the activities of total superoxide dismutase, catalase and glutathione peroxidase were significantly decreased (p<0.05) compared to the control. The activity and expression of lysozyme and the content of immunoglobulin M were significantly decreased compared to those of the fish exposed to 0ngL-1 TBT (p<0.05). However, the expression of the HSP70, HSP90, tumor necrosis factor-α(TNF-α), interleukins (IL-1β, IL-6), and nuclear factor-kappa B p65 (NF-κ B p65) genes were all enhanced with an increase in TBT dose. The results indicated that TBT induced oxidative stress and had immunotoxic effects on zebrafish.
Collapse
Affiliation(s)
- Chun-Nuan Zhang
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China.
| | - Ji-Liang Zhang
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China
| | - Hong-Tao Ren
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China
| | - Bian-Hua Zhou
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China
| | - Qiu-Jue Wu
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China
| | - Ping Sun
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China
| |
Collapse
|
18
|
Sena GC, Freitas-Lima LC, Merlo E, Podratz PL, de Araújo JF, Brandão PA, Carneiro MT, Zicker MC, Ferreira AV, Takiya CM, de Lemos Barbosa CM, Morales MM, Santos-Silva AP, Miranda-Alves L, Silva IV, Graceli JB. Environmental obesogen tributyltin chloride leads to abnormal hypothalamic-pituitary-gonadal axis function by disruption in kisspeptin/leptin signaling in female rats. Toxicol Appl Pharmacol 2017; 319:22-38. [DOI: 10.1016/j.taap.2017.01.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 12/15/2022]
|
19
|
Nunes-Silva A, Dittz D, Santana HS, Faria RA, Freitas KM, Coutinho CR, de Melo Rodrigues LC, Miranda-Alves L, Silva IV, Graceli JB, Freitas Lima LC. The Pollutant Organotins Leads to Respiratory Disease by Inflammation: A Mini-Review. Front Endocrinol (Lausanne) 2017; 8:369. [PMID: 29403432 PMCID: PMC5786825 DOI: 10.3389/fendo.2017.00369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/15/2017] [Indexed: 11/17/2022] Open
Abstract
Organotins (OTs) are organometallic pollutants. The OTs are organometallic pollutants that are used in many industrial, agricultural, and domestic products, and it works as powerful biocidal compound against large types of microorganisms such as fungi and bacteria. In addition, OTs are well known to be endocrine-disrupting chemicals, leading abnormalities an "imposex" phenomenon in the female mollusks. There are some studies showing that OTs' exposure is responsible for neural, endocrine, and reproductive dysfunctions in vitro and in vivo models. However, OTs' effects over the mammalian immune system are poorly understood, particularly in respiratory diseases. The immune system, as well as their cellular components, performs a pivotal role in the control of the several physiologic functions, and in the maintenance and recovery of homeostasis. Thus, it is becoming important to better understand the association between environmental contaminants, as OTs, and the physiological function of immune system. There are no many scientific works studying the relationship between OTs and respiratory disease, especially about immune system activation. Herein, we reported studies in animal, humans, and in vitro models. We searched studies in PUBMED, LILACS, and Scielo platforms. Studies have reported that OTs exposure was able to suppress T helper 1 (Th1) and exacerbate T helper 2 (Th2) response in the immune system. In addition, OTs' contact could elevate in the airway inflammatory response, throughout a mechanism associated with the apoptosis of T-regulatory cells and increased oxidative stress response. In addition, OTs induce macrophage recruitment to the tissue, leading to the increased necrosis, which stimulates an inflammatory cytokines secretion exacerbating the local inflammation and tissue function loss. Thus, the main intention of this mini-review is to up to date the main findings involving the inflammatory profile (especially Th1 and Th2 response) in the respiratory tract as a result of OTs' exposure.
Collapse
Affiliation(s)
- Albená Nunes-Silva
- Department of Physical Education and Sports, Centro Desportivo da Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Dalton Dittz
- Department of Pharmacology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Rodrigo Alves Faria
- Department of Health Sciences, Universidade Federal do Espírito Santo, São Mateus, Brazil
| | - Katia Michelle Freitas
- Department of Pharmaceutical Sciences, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | | | - Livia Carla de Melo Rodrigues
- Department of Physiological Sciences, Universidade Federal do Espírito Santo, Vitória, Brazil
- Physiological Sciences Graduate Program, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Leandro Miranda-Alves
- Research Group, Development in Experimental Endocrinology, Biomedical Science Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Endocrinology, Medicine School, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Pharmacology and Medicinal Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ian Victor Silva
- Department of Morphology, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Jones Bernardes Graceli
- Department of Morphology, Universidade Federal do Espírito Santo, Vitória, Brazil
- Physiological Sciences Graduate Program, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Leandro Ceotto Freitas Lima
- Department of Morphology, Universidade Federal do Espírito Santo, Vitória, Brazil
- Physiological Sciences Graduate Program, Universidade Federal do Espírito Santo, Vitória, Brazil
- *Correspondence: Leandro Ceotto Freitas Lima,
| |
Collapse
|
20
|
Coutinho JVS, Freitas-Lima LC, Freitas FFCT, Freitas FPS, Podratz PL, Magnago RPL, Porto ML, Meyrelles SS, Vasquez EC, Brandão PAA, Carneiro MTWD, Paiva-Melo FD, Miranda-Alves L, Silva IV, Gava AL, Graceli JB. Tributyltin chloride induces renal dysfunction by inflammation and oxidative stress in female rats. Toxicol Lett 2016; 260:52-69. [PMID: 27521499 DOI: 10.1016/j.toxlet.2016.08.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 07/09/2016] [Accepted: 08/08/2016] [Indexed: 11/17/2022]
Abstract
Tributyltin chloride (TBT) is an organometallic pollutant that is used as a biocide in antifouling paints. TBT induces several toxic and endocrine-disrupting effects. However, studies evaluating the effects of TBT on renal function are rare. This study demonstrates that TBT exposure is responsible for improper renal function as well as the development of abnormal morphophysiology in mammalian kidneys. Female rats were treated with TBT, and their renal morphophysiology was assessed. Morphophysiological abnormalities such as decreased glomerular filtration rate and increased proteinuria levels were observed in TBT rats. In addition, increases in inflammation, collagen deposition and α-smooth muscle actin (α-SMA) protein expression were observed in TBT kidneys. A disrupted cellular redox balance and apoptosis in kidney tissue were also observed in TBT rats. TBT rats demonstrated reduced serum estrogen levels and estrogen receptor-α (ERα) protein expression in renal cortex. Together, these data provide in vivo evidence that TBT is toxic to normal renal function and that these effects may be associated with renal histopathology complications, such as inflammation and fibrosis.
Collapse
Affiliation(s)
- João V S Coutinho
- Department of Morphology, Federal University of Espírito Santo, Brazil
| | | | | | - Flávia P S Freitas
- Department of Physiological Sciences, Federal University of Espírito Santo, Brazil
| | | | | | - Marcella L Porto
- Department of Physiological Sciences, Federal University of Espírito Santo, Brazil
| | - Silvana S Meyrelles
- Department of Physiological Sciences, Federal University of Espírito Santo, Brazil
| | - Elisardo C Vasquez
- Department of Physiological Sciences, Federal University of Espírito Santo, Brazil
| | | | | | - Francisca D Paiva-Melo
- Experimental Endocrinology Research Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | - Leandro Miranda-Alves
- Experimental Endocrinology Research Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Postgraduate Program in Endocrinology, School of Medicine, Federal University of Rio de Janeiro, Brazil
| | - Ian V Silva
- Department of Morphology, Federal University of Espírito Santo, Brazil
| | - Agata L Gava
- Department of Physiological Sciences, Federal University of Espírito Santo, Brazil.
| | - Jones B Graceli
- Department of Morphology, Federal University of Espírito Santo, Brazil.
| |
Collapse
|
21
|
Botelho G, Bernardini C, Zannoni A, Ventrella V, Bacci ML, Forni M. Effect of tributyltin on mammalian endothelial cell integrity. Comp Biochem Physiol C Toxicol Pharmacol 2015; 176-177:79-86. [PMID: 26256121 DOI: 10.1016/j.cbpc.2015.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/22/2015] [Accepted: 07/29/2015] [Indexed: 12/19/2022]
Abstract
Tributyltin (TBT), is a man-made pollutants, known to accumulate along the food chain, acting as an endocrine disruptor in marine organisms, with toxic and adverse effects in many tissues including vascular system. Based on the absence of specific studies of TBT effects on endothelial cells, we aimed to evaluate the toxicity of TBT on primary culture of porcine aortic endothelial cells (pAECs), pig being an excellent model to study human cardiovascular disease. pAECs were exposed for 24h to TBT (100, 250, 500, 750 and 1000nM) showing a dose dependent decrease in cell viability through both apoptosis and necrosis. Moreover the ability of TBT (100 and 500nM) to influence endothelial gene expression was investigated at 1, 7 and 15h of treatment. Gene expression of tight junction molecules, occludin (OCLN) and tight junction protein-1 (ZO-1) was reduced while monocyte adhesion and adhesion molecules ICAM-1 and VCAM-1 (intercellular adhesion molecule-1 and vascular cell adhesion molecule-1) levels increased significantly at 1h. IL-6 and estrogen receptors 1 and 2 (ESR-1 and ESR-2) mRNAs, after a transient decrease, reached the maximum levels after 15h of exposure. Finally, we demonstrated that TBT altered endothelial functionality greatly increasing monocyte adhesion. These findings indicate that TBT deeply alters endothelial profile, disrupting their structure and interfering with their ability to interact with molecules and other cells.
Collapse
Affiliation(s)
- G Botelho
- Department of Veterinary Medical Sciences - DEVET, UNICENTRO - Universidade Estadual do Centro, Oeste do Paraná, Brazil.
| | - C Bernardini
- Department of Veterinary Medical Sciences - DIMEVET, University of Bologna, Ozzano Emilia, Bologna, Italy.
| | - A Zannoni
- Department of Veterinary Medical Sciences - DIMEVET, University of Bologna, Ozzano Emilia, Bologna, Italy.
| | - V Ventrella
- Department of Veterinary Medical Sciences - DIMEVET, University of Bologna, Ozzano Emilia, Bologna, Italy.
| | - M L Bacci
- Department of Veterinary Medical Sciences - DIMEVET, University of Bologna, Ozzano Emilia, Bologna, Italy.
| | - M Forni
- Department of Veterinary Medical Sciences - DIMEVET, University of Bologna, Ozzano Emilia, Bologna, Italy.
| |
Collapse
|
22
|
Changes of hematological parameters and plasma constituents in the olive flounder Paralichthys olivaceus exposed to TBT. ACTA ACUST UNITED AC 2015. [DOI: 10.7847/jfp.2015.28.2.087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Mitra S, Siddiqui WA, Khandelwal S. C-Phycocyanin protects against acute tributyltin chloride neurotoxicity by modulating glial cell activity along with its anti-oxidant and anti-inflammatory property: A comparative efficacy evaluation with N-acetyl cysteine in adult rat brain. Chem Biol Interact 2015; 238:138-50. [DOI: 10.1016/j.cbi.2015.06.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/11/2015] [Accepted: 06/08/2015] [Indexed: 12/28/2022]
|
24
|
Mitra S, Siddiqui WA, Khandelwal S. Early cellular responses against tributyltin chloride exposure in primary cultures derived from various brain regions. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:1048-1059. [PMID: 24762416 DOI: 10.1016/j.etap.2014.03.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 03/24/2014] [Accepted: 03/30/2014] [Indexed: 06/03/2023]
Abstract
Tributyltin (TBT) is a potent biocide and commonly used in various industrial sectors. Humans are mainly exposed through the food chain. We have previously demonstrated tin accumulation in brain following TBT-chloride (TBTC) exposure. In this study, effect of TBTC on dissociated cells from different brain regions was evaluated. Cytotoxicity assay (MTT), mode of cell death (Annexin V/PI assay), oxidative stress parameters (ROS and lipid peroxidation), reducing power of the cell (GSH), mitochondrial membrane potential (MMP) and intracellular Ca(2+) were evaluated to ascertain the effect of TBTC. Expression of glial fibrillary acidic protein (GFAP) was measured to understand the effect on astroglial cells. TBTC as low as 30 nM was found to reduce GSH levels, whereas higher doses of 300 and 3000 nM induced ROS generation and marked loss in cell viability mainly through apoptosis. Striatum showed higher susceptibility than other regions, which may have further implications on various neurological aspects.
Collapse
Affiliation(s)
- Sumonto Mitra
- Immunotoxicology Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India; Department of Biochemistry, Faculty of Science, Jamia Hamdard (Hamdard University), New Delhi, India.
| | - Waseem A Siddiqui
- Department of Biochemistry, Faculty of Science, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Shashi Khandelwal
- Immunotoxicology Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India.
| |
Collapse
|