1
|
Xin M, Bi F, Wang C, Huang Y, Xu Y, Liang S, Cai T, Xu X, Dong L, Li T, Wang X, Fang Y, Xu Z, Wang M, Song X, Zheng Y, Sun W, Li L. The circadian rhythm: A new target of natural products that can protect against diseases of the metabolic system, cardiovascular system, and nervous system. J Adv Res 2025; 69:495-514. [PMID: 38631431 PMCID: PMC11954810 DOI: 10.1016/j.jare.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/17/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND The treatment of metabolic system, cardiovascular system, and nervous system diseases remains to be explored. In the internal environment of organisms, the metabolism of substances such as carbohydrates, lipids and proteins (including biohormones and enzymes) exhibit a certain circadian rhythm to maintain the energy supply and material cycle needed for the normal activities of organisms. As a key factor for the health of organisms, the circadian rhythm can be disrupted by pathological conditions, and this disruption accelerates the progression of diseases and results in a vicious cycle. The current treatments targeting the circadian rhythm for the treatment of metabolic system, cardiovascular system, and nervous system diseases have certain limitations, and the identification of safer and more effective circadian rhythm regulators is needed. AIM OF THE REVIEW To systematically assess the possibility of using the biological clock as a natural product target for disease intervention, this work reviews a range of evidence on the potential effectiveness of natural products targeting the circadian rhythm to protect against diseases of the metabolic system, cardiovascular system, and nervous system. This manuscript focuses on how natural products restore normal function by affecting the amplitude of the expression of circadian factors, sleep/wake cycles and the structure of the gut microbiota. KEY SCIENTIFIC CONCEPTS OF THE REVIEW This work proposes that the circadian rhythm, which is regulated by the amplitude of the expression of circadian rhythm-related factors and the sleep/wake cycle, is crucial for diseases of the metabolic system, cardiovascular system and nervous system and is a new target for slowing the progression of diseases through the use of natural products. This manuscript provides a reference for the molecular modeling of natural products that target the circadian rhythm and provides a new perspective for the time-targeted action of drugs.
Collapse
Affiliation(s)
- Meiling Xin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China
| | - Fangjie Bi
- Heart Center, Zibo Central Hospital, Zibo, Shandong 255000, China
| | - Chao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Yuhong Huang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Yujia Xu
- Department of Echocardiography, Zibo Central Hospital, Zibo, Shandong 255000, China
| | - Shufei Liang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Tianqi Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Xiaoxue Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Ling Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Tianxing Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xueke Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yini Fang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; Basic Medical College, Zhejiang Chinese Medical University, Hangzhou 310053 China
| | - Zhengbao Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Meng Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China.
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China.
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China.
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China.
| |
Collapse
|
2
|
Bakhite EA, Hassanien R, Farhan N, Sayed EM, Sharaky M. New tetrahydroisoquinolines bearing nitrophenyl group targeting HSP90 and RET enzymes: synthesis, characterization and biological evaluation. BMC Chem 2025; 19:46. [PMID: 39985107 PMCID: PMC11846289 DOI: 10.1186/s13065-025-01399-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 01/27/2025] [Indexed: 02/24/2025] Open
Abstract
In this study, new tetrahydroisoquinoline compounds were synthesized by reaction of 7-Acetyl-4-cyano-1,6-dimethyl-6-hydroxy-8- (3-nitrophenyl or 4-nitrophenyl)-5,6,7,8-tetrahydrosoquinoline-3(2H)-thiones with methyl iodide, chloro acetonitrile, ethyl chloroacetate to produce compounds 3-5 and reacted with N-arylchloroacetamides reagents to gave tetrahydroisoquinolin-3-ylthio) acetamides compounds 6a-c, 8a-b which can cyclized to 6,7,8,9-tetrahydrothieno[2,3-c]Isoquinoline-2-carboxamides compounds 7a-c, 9a-b. Also react with N-(benzthiazol-2-yl)-2-chloroacetamideto give compound 10. The structures of all newly synthesized compounds were characterized by elemental and spectral analyses. Also, most of the synthesized compounds were evaluated for their anticancer activities aganist MCF7 and HEPG2 cell lines. From the result we found that the most active compound against the MCF7 cell lines was compound 8b, and the most active compound against HEPG2 cell lines was compound 3. Then the effects of compound 3 on the HEPG2 cell line was investigated using an apoptotic Annexin V-FITC test and flow cytometry. Compound 3 induced a 59-fold increase in HEPG2 cell line apoptosis and cell cycle arrested at the G0-G1, G2/M phases. Moreover, the molecular docking study was applied and the result showed that compounds 8b bind to the RET enzyme with binding energies of - 6.8 kcal/mol in comparison with standard alectinib, which exhibits a binding energy of - 7.2 kcal/mol. Compound 3 can bind with HSP 90 with a binding energy (ΔG) of - 6.8 kcal/mol, which was comparable to the standard Onalespib (- 7.1 kcal/mol).
Collapse
Affiliation(s)
- Etify A Bakhite
- Chemistry Department, Faculty of Science, Assuit University, Assiut, 71516, Egypt.
| | - Reda Hassanien
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja, 72511, Egypt
| | - Nasser Farhan
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja, 72511, Egypt
| | - Eman M Sayed
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja, 72511, Egypt.
| | - Marwa Sharaky
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, 12613, El-Gize, Egypt
| |
Collapse
|
3
|
Wiraswati HL, Ma'ruf IF, Sharifi-Rad J, Calina D. Piperine: an emerging biofactor with anticancer efficacy and therapeutic potential. Biofactors 2025; 51:e2134. [PMID: 39467259 DOI: 10.1002/biof.2134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/03/2024] [Indexed: 10/30/2024]
Abstract
Anticancer drug discovery needs serious attention to overcome the high mortality rate caused by cancer. There are still many obstacles to treating this disease, such as the high cost of chemotherapeutic drugs, the resulting side effects from the drug, and the occurrence of multidrug resistance. Herbaceous plants are a reservoir of natural compounds that can be anticancer drugs with novel mechanisms of action. Piperine, a bioactive compound derived from Piper species, is gaining attention due to its unique dual role in directly inhibiting tumor growth and enhancing the bioavailability of chemotherapeutic drugs. Unlike conventional treatments, Piperine exhibits a novel mechanism of action by modulating multiple signaling pathways, including apoptosis and autophagy, with low toxicity. Additionally, Piperine acts as a bioenhancer by improving the absorption and effectiveness of other anticancer agents, reducing the required dosage, and minimizing side effects. Therefore, this review aims to visualize a summary of Piperine sources, phytochemistry, chemical structure-anticancer activity relationship, anticancer activities of semi-synthetic derivatives, pharmacokinetic and bioavailability, in vitro and in vivo preclinical studies, mechanism of antitumor action, human clinical trials, toxicity, side effects, and safety of Piperine. References were collected from the Pubmed/MedLine database (https://pubmed.ncbi.nlm.nih.gov/) with the following keywords: "Piperine anticancer," "Piperine derivatives," "Piperine antitumor mechanism" and "Piperine pharmacokinetic and bioavailability," after filter process by inclusion and exclusion criteria, 101 were selected from 444 articles. From 2013 to 2023, there were numerous studies regarding preclinical studies of Piperine of various cell lines, including breast cancer, prostate cancer, lung cancer, melanoma, cervical cancer, gastric cancer, osteosarcoma, colon cancer, hepatocellular carcinoma, ovarian cancer, leukemia, colorectal cancer, and hypopharyngeal carcinoma. In vivo, the anticancer study has also been conducted on some animal models, such as Ehrlich carcinoma-bearing mice, Ehrlich ascites carcinoma cells-bearing Balbc mice, hepatocellular carcinoma-bearing Wistar rat, A375SM cells-bearing mice, A375P cells-bearing mice, SNU-16 cells-bearing BalbC mice, and HGC-27-bearing baby mice. Treatment with this compound leads to cell proliferation inhibition and induction of apoptosis. Piperine has been used for clinical trials of diseases, but no cancer patient report exists. Various semi-synthetic derivatives of Piperine show efficacy as an anticancer drug across multiple cell lines. Piperine shows promise for use in cancer clinical trials, either as a standalone treatment or as a bioenhancer. Its bioenhancer properties may enhance the efficacy of existing chemotherapeutic agents, providing a valuable foundation for developing new anticancer therapies.
Collapse
Affiliation(s)
- Hesti Lina Wiraswati
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Indonesia
- Oncology and Stem Cell Working Group, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Ilma Fauziah Ma'ruf
- Oncology and Stem Cell Working Group, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, Ecuador
- Centro de Estudios Tecnológicos y Universitarios del Golfo, Veracruz, Mexico
- Department of Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
4
|
Sayilan Ozgun G, Ozgun E, Karabas T, Suer Gokmen S, Eskiocak S. Piperine induces cellular stresses, apoptosis, and cytotoxicity via JNK signaling and has concentration-dependently additive or synergistic effects with sorafenib in hepatocellular carcinoma: an in-vitro study. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03725-0. [PMID: 39708099 DOI: 10.1007/s00210-024-03725-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
We aimed to determine the effects of piperine on cell viability, cellular stresses, and apoptosis first, then the relationship of piperine's effects with the c-Jun N-terminal kinase (JNK) signaling pathway, and also the interaction of piperine with sorafenib in hepatocellular carcinoma. Hepatocellular carcinoma (HepG2 and Hep3B) and non-cancerous hepatocyte (AML12) cell lines were used. The cell viability was determined by using MTT assay. Cellular stresses, apoptosis, and JNK signaling markers were measured by Western blotting. Cells were pre-treated with SP600125 as a JNK inhibitor. The inhibitory concentration 50% (IC50) values and interaction of piperine with sorafenib were calculated by using CompuSyn software. IC50 values of piperine were 97 µM for HepG2, 58 µM for Hep3B, and 184 µM for AML12 with incubation for 48 h. Piperine caused a significant concentration-dependent increase in cellular stresses, apoptosis, and activated JNK signaling in hepatocellular carcinoma cells. Pre-treatment with a JNK inhibitor significantly reduced piperine-induced cellular stresses, apoptosis, and cytotoxicity. Piperine had concentration-dependent additive or synergistic effects when combined with sorafenib in both HepG2 and Hep3B cells. We found that piperine induces cellular stresses, apoptosis, and cytotoxicity via JNK signaling and has concentration-dependently additive or synergistic effects with sorafenib in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Gulben Sayilan Ozgun
- Department of Medical Biochemistry, Trakya University School of Medicine, Edirne, 22030, Turkey.
| | - Eray Ozgun
- Department of Medical Biochemistry, Trakya University School of Medicine, Edirne, 22030, Turkey
| | - Tugce Karabas
- Department of Medical Biochemistry, Trakya University School of Medicine, Edirne, 22030, Turkey
| | - Selma Suer Gokmen
- Department of Medical Biochemistry, Trakya University School of Medicine, Edirne, 22030, Turkey
| | - Sevgi Eskiocak
- Department of Medical Biochemistry, Trakya University School of Medicine, Edirne, 22030, Turkey
| |
Collapse
|
5
|
Gong X, Liu Y, Liang K, Chen Z, Ding K, Qiu L, Wei J, Du H. Cucurbitacin I exerts its anticancer effects by inducing cell cycle arrest via the KAT2a-ube2C/E2F1 pathway and inhibiting HepG2-induced macrophage M2 polarization. Biochem Biophys Res Commun 2024; 738:150508. [PMID: 39151295 DOI: 10.1016/j.bbrc.2024.150508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies globally, particularly prevalent in China, where it accounts for nearly half of the world's new cases and deaths each year, but has limited therapeutic options. This study systematically investigated the impact of cucurbitacin I on HCC cell lines including SK-Hep-1, Huh-7, and HepG2. The results revealed that cucurbitacin I not only inhibited cell proliferation, cell migration and colony formation, but also induced apoptosis in HCC cells. The apoptotic induction was accompanied by a decrease in the expression of the anti-apoptotic factor B-cell lymphoma 2 (Bcl2), and an elevation in the expression levels of pro-apoptotic factors, including tumor protein p53 (P53), bcl2 associated X-apoptosis regulator (Bax), and caspase3 (Cas3). Additionally, cucurbitacin I caused cell cycle arrest by modulating the lysine acetyltransferase 2A (KAT2A)-E2F transcription factor 1 (E2F1)/Ubiquitin-conjugating enzyme E2 C (UBE2C) signaling axis. In terms of regulation on tumor microenvironment, cucurbitacin I was demonstrated the ability to inhibit HCC cell-induced M2 polarization of macrophages. This comprehensive study unveils the multifaceted anti-cancer mechanisms of cucurbitacin I, providing robust support for its potential application in the treatment of HCC, offering new avenues for the future development of HCC treatment strategies.
Collapse
Affiliation(s)
- Xiaocheng Gong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
| | - Yunfei Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
| | - Keying Liang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
| | - Zixi Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
| | - Ke Ding
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
| | - Li Qiu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
| | - Jinfen Wei
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China.
| |
Collapse
|
6
|
Zou R, Zhou Y, Lu Y, Zhao Y, Zhang N, Liu J, Zhang Y, Fu Y. Preparation, pungency and bioactivity transduction of piperine from black pepper (Piper nigrum L.): A comprehensive review. Food Chem 2024; 456:139980. [PMID: 38850607 DOI: 10.1016/j.foodchem.2024.139980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Piperine, derived from black pepper (Piper nigrum L.), is responsible for the pungent sensation. The diverse bioactivities of piperine underscores its promising potential as a functional food ingredient. This review presents a comprehensive overview of the research progress in extraction, synthesis, pungency transduction mechanism and bioactivities of piperine. Piperine can be extracted through various methods, such as traditional, modern, and innovative extraction techniques. Its synthesis mainly included both chemical and biosynthetic approaches. It exhibits a diverse range of bioactivities, including anticancer, anticonvulsant, antidepressant, anti-inflammatory, antioxidant, immunomodulatory, anti-obesity, neuroprotective, antidiabetic, hepatoprotective, and cardiovascular protective activities. Piperine can bind to TRPV1 receptor to elicit pungent sensation. Overall, the present review can provide a theoretical reference for advancing the potential application of piperine in the field of food science.
Collapse
Affiliation(s)
- Ruixuan Zou
- College of Food Science, Southwest University, Chongqing 400715, China; Westa College, Southwest University, Chongqing, 400715, China
| | - Yuhao Zhou
- College of Food Science, Southwest University, Chongqing 400715, China; Westa College, Southwest University, Chongqing, 400715, China
| | - Yujia Lu
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Yuchen Zhao
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Jing Liu
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799, Copenhagen V, Denmark
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
7
|
Shetty M, Shenoy S, Amuthan A, Devi V, Kumar N, Kiran A, Shenoy G, Chinta DR, Prasada K S, Shetty A, Rao K G M. Kadukkai maathirai (Indian herbal drug) prevents hepatocellular cancer progression by enhancing GSTM1 expression and modulating β catenin transcription: in-silico and in-vivo study. F1000Res 2024; 13:639. [PMID: 39916986 PMCID: PMC11800331 DOI: 10.12688/f1000research.145961.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 02/09/2025] Open
Abstract
Background Hepatocellular carcinoma (HCC) is an aggressive malignancy with poor clinical outcomes. Hence cost-effective drugs with fewer side effects as a standard supportive therapy might yield substantial advantages in efficacy and safety. Kadukkai maathirai (KM) is being used as a supplement in hepatocellular carcinoma. We evaluated whether KM has any preventive action on cancer progression in diethyl nitrosamine (DEN) - induced HCC in rats. Methods DEN was injected to produce HCC in rats, which was confirmed after 16 weeks. All the rats were orally administered KM for 4 weeks. Hepatoprotective potential (serum AST, ALT, ALP, Bilirubin) and anticancer efficacy (body weight, nodule count, tumor progression by histopathology, expression of GSTM1 by Liquid chromatography-mass spectrometry (LC-MS), and In-silico analysis of phytoconstituents against β catenin and LRP analysis were evaluated. Results KM prevented cancer progression against DEN-induced HCC by an increase in GSTM1, a phase II detoxifying enzyme. It significantly reversed altered nodule count, relative liver weight, body weight, and histopathological features of HCC. In silico analysis of phytoconstituents of KM showed that they modulate the intracellular transcription process by inhibiting the armadillo repeat region of β catenin. Conclusions Our results elucidate the potential of KM as a supplement in HCC by reducing nodule count, protecting the liver from further damage, GSTM1 expression, and inhibiting armadillo repeat region of β catenin.
Collapse
Affiliation(s)
- Manjunath Shetty
- Centre Of Excellence, Ocular Nanoscience, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- Division of Pharmacology, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Smita Shenoy
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Arul Amuthan
- Division of Pharmacology, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Vasudha Devi
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Vaishali, Bihar, 844102, India
| | - Amruth Kiran
- Division of Pharmacology, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ganesh Shenoy
- Division of Pharmacology, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Diya Rajasekhar Chinta
- Department of Pharmacology, Manipal University College Malaysia, Bukit Baru, Melaka, 75150, Malaysia
| | - Shama Prasada K
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, Manipal, Karnataka, 576104, India
| | - Akshatha Shetty
- Department of Research and Development, Muniyal Institute of Ayurveda and Medical Sciences, Manipal, Manipal, Karnataka, 576104, India
| | - Mohandas Rao K G
- Division of Anatomy, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
8
|
Kaur C, Sahu SK, Bansal K, DeLiberto LK, Zhang J, Tewari D, Bishayee A. Targeting Peroxisome Proliferator-Activated Receptor-β/δ, Reactive Oxygen Species and Redox Signaling with Phytocompounds for Cancer Therapy. Antioxid Redox Signal 2024; 41:342-395. [PMID: 38299535 DOI: 10.1089/ars.2023.0442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Significance: Peroxisome proliferator-activated receptors (PPARs) have a moderately preserved amino-terminal domain, an extremely preserved DNA-binding domain, an integral hinge region, and a distinct ligand-binding domain that are frequently encountered with the other nuclear receptors. PPAR-β/δ is among the three nuclear receptor superfamily members in the PPAR group. Recent Advances: Emerging studies provide an insight on natural compounds that have gained increasing attention as potential anticancer agents due to their ability to target multiple pathways involved in cancer development and progression. Critical Issues: Modulation of PPAR-β/δ activity has been suggested as a potential therapeutic strategy for cancer management. This review focuses on the ability of bioactive phytocompounds to impact reactive oxygen species (ROS) and redox signaling by targeting PPAR-β/δ for cancer therapy. The rise of ROS in cancer cells may play an important part in the initiation and progression of cancer. However, excessive levels of ROS stress can also be toxic to the cells and cancer cells with increased oxidative stress are likely to be more vulnerable to damage by further ROS insults induced by exogenous agents, such as phytocompounds and therapeutic agents. Therefore, redox modulation is a way to selectively kill cancer cells without causing significant toxicity to normal cells. However, use of antioxidants together with cancer drugs may risk the effect of treatment as both act through opposite mechanisms. Future Directions: It is advisable to employ more thorough and detailed methodologies to undertake mechanistic explorations of numerous phytocompounds. Moreover, conducting additional clinical studies is recommended to establish optimal dosages, efficacy, and the impact of different phytochemicals on PPAR-β/δ.
Collapse
Affiliation(s)
- Charanjit Kaur
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Sanjeev Kumar Sahu
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Keshav Bansal
- Department of Pharmaceutics, Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Lindsay K DeLiberto
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| |
Collapse
|
9
|
Asoka AS, Kolikkandy A, Nair B, Kamath AJ, Sethi G, Nath LR. Role of Culinary Indian Spices in the Regulation of TGF-β Signaling Pathway in Inflammation-Induced Liver Cancer. Mol Nutr Food Res 2024; 68:e2300793. [PMID: 38766929 DOI: 10.1002/mnfr.202300793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/29/2023] [Indexed: 05/22/2024]
Abstract
SCOPE Hepatocellular carcinoma (HCC) results from various etiologies, such as Hepatitis B and C, Alcoholic and Non-alcoholic fatty liver disorders, fibrosis, and cirrhosis. About 80 to 90% of HCC cases possess cirrhosis, which is brought on by persistent liver inflammation. TGF-β is a multifunctional polypeptide molecule that acts as a pro-fibrogenic marker, inflammatory cytokine, immunosuppressive agent, and pro-carcinogenic growth factor during the progression of HCC. The preclinical and clinical evidence illustrates that TGF-β can induce epithelial-to-mesenchymal transition, promoting progression and hepatocyte immune evasion. Therefore, targeting the TGF-β pathway can be a promising therapeutic option against HCC. METHODS AND RESULTS We carry out a systemic analysis of eight potentially selected culinary Indian spices: Turmeric, Black pepper, Ginger, Garlic, Fenugreek, Red pepper, Clove, Cinnamon, and their bioactives in regulation of the TGF-β pathway against liver cancer. CONCLUSION Turmeric and its active constituent, curcumin, possess the highest therapeutic potential in treating inflammation-induced HCC and they also have the maximum number of ongoing in-vivo and in-vitro studies.
Collapse
Affiliation(s)
- Ajay Sarija Asoka
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
| | - Anusha Kolikkandy
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
| | - Adithya J Kamath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
| |
Collapse
|
10
|
Islam MR, Rauf A, Alash S, Fakir MNH, Thufa GK, Sowa MS, Mukherjee D, Kumar H, Hussain MS, Aljohani ASM, Imran M, Al Abdulmonem W, Thiruvengadam R, Thiruvengadam M. A comprehensive review of phytoconstituents in liver cancer prevention and treatment: targeting insights into molecular signaling pathways. Med Oncol 2024; 41:134. [PMID: 38703282 DOI: 10.1007/s12032-024-02333-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/13/2024] [Indexed: 05/06/2024]
Abstract
Primary liver cancer is a type of cancer that develops in the liver. Hepatocellular carcinoma is a primary liver cancer that usually affects adults. Liver cancer is a fatal global condition that affects millions of people worldwide. Despite advances in technology, the mortality rate remains alarming. There is growing interest in researching alternative medicines to prevent or reduce the effects of liver cancer. Recent studies have shown growing interest in herbal products, nutraceuticals, and Chinese medicines as potential treatments for liver cancer. These substances contain unique bioactive compounds with anticancer properties. The causes of liver cancer and potential treatments are discussed in this review. This study reviews natural compounds, such as curcumin, resveratrol, green tea catechins, grape seed extracts, vitamin D, and selenium. Preclinical and clinical studies have shown that these medications reduce the risk of liver cancer through their antiviral, anti-inflammatory, antioxidant, anti-angiogenic, and antimetastatic properties. This article discusses the therapeutic properties of natural products, nutraceuticals, and Chinese compounds for the prevention and treatment of liver cancer.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Shopnil Alash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Md Naeem Hossain Fakir
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Gazi Kaifeara Thufa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Mahbuba Sharmin Sowa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Dattatreya Mukherjee
- Raiganj Government Medical College and Hospital, Pranabananda Sarani, Raiganj, 733134, West Bengal, India
| | - Harendra Kumar
- Dow University of Health Sciences, Mission Rd, New Labour Colony Nanakwara, Karachi, 74200, Sindh, Pakistan
| | - Md Sadique Hussain
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, 302017, Rajasthan, India
| | - Abdullah S M Aljohani
- Department of Medical Biosciences, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Muhammad Imran
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Rekha Thiruvengadam
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, Tamil Nadu, India.
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, South Korea
| |
Collapse
|
11
|
Cai F, Wang C. Comprehensive review of the phytochemistry, pharmacology, pharmacokinetics, and toxicology of alkamides (2016-2022). PHYTOCHEMISTRY 2024; 220:114006. [PMID: 38309452 DOI: 10.1016/j.phytochem.2024.114006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Alkamides refer to a class of natural active small-molecule products composed of fatty acids and amine groups. These compounds are widely distributed in plants, and their unique structures and various pharmacological activities have caught the attention of scholars. This review provides a collection of literatures related to the phytochemistry, pharmacological effects, pharmacokinetics, and toxicity of alkamides published in 2016-2022 and their summary to provide references for further development of this class of ingredients. A total of 234 components (including chiral isomers) were summarized, pharmacological activities, such as anti-inflammatory, antitumor, antidiabetic, analgesic, neuroprotective, insecticidal, antioxidant, and antibacterial, and miscellaneous properties of alkamides were discussed. In addition, the pharmacokinetic characteristics and toxicity of alkamides were reviewed. However, information on the pharmacological mechanisms of the action, drug safety, and pharmacokinetics of alkamides is limited and thus requires further investigation and evaluation.
Collapse
Affiliation(s)
- Fujie Cai
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
12
|
Umapathy VR, Dhanavel A, Kesavan R, Natarajan PM, S B, P V. Anticancer Potential of the Principal Constituent of Piper nigrum, Piperine: A Comprehensive Review. Cureus 2024; 16:e54425. [PMID: 38405638 PMCID: PMC10894018 DOI: 10.7759/cureus.54425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/18/2024] [Indexed: 02/27/2024] Open
Abstract
Black pepper's main component, piperine, is a phytochemical that gives the spice its distinctively pungent flavor, which has made it a staple in human diets for decades and a widely used food item. In addition to its use as a culinary component and preservation agent, it is also employed in traditional medicine for a diverse range of objectives, a practice that has been substantiated by existing scientific investigations on its physiological impacts in the majority of instances. Piperine contains various bioactive effects, such as antibacterial activity, in addition to several physiological benefits that could help overall human health, such as immunomodulatory, hepatoprotective, antioxidant, antimetastatic, anticancer, and many more properties that have been established. Clinical trials revealed that this phytochemical has exceptional antioxidant, anticancer, and drug availability-enhancing properties, as well as immunomodulatory potential. The different components of evidence indicate the therapeutic potential of piperine and underscore the importance of incorporating it into both broad health-promoting interventions and supplementary treatment pharmaceutical formulations. This inclusion can enhance the bioavailability of other therapeutic medications, including those used in chemotherapy.
Collapse
Affiliation(s)
- Vidhya Rekha Umapathy
- Public Health Dentistry, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research (MAHER), Chennai, IND
| | - Anandhi Dhanavel
- Biochemistry, Meenakshi Academy of Higher Education and Research (MAHER), Chennai, IND
| | - R Kesavan
- Public Health Dentistry, Thai Moogambigai Dental College and Hospital, Chennai, IND
| | | | - Bhuminathan S
- Public Health Dentistry, Sree Balaji Dental College & Hospital, Chennai, IND
| | - Vijayalakshmi P
- Biotechnology, Holy Cross College (Autonomous) Tiruchirappalli, Tiruchirappalli, IND
| |
Collapse
|
13
|
Khamis AA, Ali EMM, Salim EI, El-Moneim MAA. Synergistic effects of bee venom, hesperidin, and piperine with tamoxifen on apoptotic and angiogenesis biomarker molecules against xerographic MCF-7 injected rats. Sci Rep 2024; 14:1510. [PMID: 38233443 PMCID: PMC10794414 DOI: 10.1038/s41598-023-50729-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/23/2023] [Indexed: 01/19/2024] Open
Abstract
Breast cancer ranks as the second leading most significant of mortality for women. Studies have demonstrated the potential benefits of natural compounds in cancer treatment and prevention, either in isolation or in conjunction with chemotherapy. In order to improve Tamoxifen's therapeutic efficacy in in-vivo studies, our research sought to determine the effects of hesperidin, piperine, and bee venom as natural compounds, as well as their combination effect with or without Tamoxifen. First, 132 female albino rats were equally divided into six groups and five subgroups, and breast cancer was induced in the selected groups by xenografting of MCF7 cells. Second, the effect of single and best ratio combinations treatment from previous in vitro studies were selected. Next, tumorous mammary glands were collected for apoptotic and antiapoptotic biomarkers and cell cycle analysis. Single or combined natural products with or without Tamoxifen revealed a significant up-regulation in apoptotic genes Bax and Casp3 and a downregulation of antiapoptotic and angiogenesis genes Bcl-2 and VEGF genes. We found that cell cycle arrest in the G0/G1 phase was exclusively caused by Tamoxifen and/ or hesperidin. However, the cell cycle arrest in the G2/M phase is a result of the combination of piperine and bee venom, with or without Tamoxifen by using the flow cytometric technique. Our research concludes that bee venom, hesperidin, and piperine can synergistically enhance to increase Tamoxifen's efficiency in the management of breast cancer.
Collapse
Affiliation(s)
- Abeer A Khamis
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Ehab M M Ali
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Elsayed I Salim
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mohamed A Abd El-Moneim
- Biochemistry Department, Faculty of Dentistry, Sinai University, Al-Arish, North Sinai, Egypt
| |
Collapse
|
14
|
Nouri-Vaskeh M, Hashemi P, Hataminia N, Yazdani Y, Nasirian M, Alizadeh L. The impact of piperine on the metabolic conditions of patients with NAFLD and early cirrhosis: a randomized double-blind controlled trial. Sci Rep 2024; 14:1053. [PMID: 38200253 PMCID: PMC10782007 DOI: 10.1038/s41598-024-51726-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/09/2024] [Indexed: 01/12/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a metabolic dysfunction of the liver defined as an abnormal accumulation of fat within the liver without secondary triggers like alcohol consumption or viral hepatitis. Piperine, the bio-active ingredient of black pepper, can exert a significant function in treatment of individuals with NAFLDand early cirrhosis. We investigated the impact of piperine consumption with a duration of 12 weeks on patients with NAFLD and early cirrhosis compared toplacebo consumption. In a double-blind study, patients with NAFLD and early stage of cirrhosis were haphazardly distributed into case and control groups. They were prescribed a placebo and 5 mg of piperine for 12 weeks, respectively. The demographic and laboratory parameters of individuals were assessed as the baseline and after the duration of piperine intake. Piperine with a daily dosage of 5 mg could significantly decrease hepatic enzymes and glucose, and alleviate dyslipidemia in the case arm rather than the control arm. Moreover, HOMA levels and insulin resistance were reduced in case participants compared to the control counterparts. In the absence of approved medicinal intervention for patients with NAFLD, and regarding the favorable impact of piperine on NAFLD more studies on this subject are warranted.
Collapse
Affiliation(s)
- Masoud Nouri-Vaskeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity, Universal Scientific Education and Research Network, Tehran, Iran
| | - Payam Hashemi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Hataminia
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yalda Yazdani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahkameh Nasirian
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Alizadeh
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Benayad S, Wahnou H, El Kebbaj R, Liagre B, Sol V, Oudghiri M, Saad EM, Duval RE, Limami Y. The Promise of Piperine in Cancer Chemoprevention. Cancers (Basel) 2023; 15:5488. [PMID: 38001748 PMCID: PMC10670142 DOI: 10.3390/cancers15225488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer, characterized by the unregulated growth and dissemination of malignantly transformed cells, presents a significant global health challenge. The multistage process of cancer development involves intricate biochemical and genetic alterations within target cells. Cancer chemoprevention has emerged as a vital strategy to address this complex issue to mitigate cancer's impact on healthcare systems. This approach leverages pharmacologically active agents to block, suppress, prevent, or reverse invasive cancer development. Among these agents, piperine, an active alkaloid with a wide range of therapeutic properties, including antioxidant, anti-inflammatory, and immunomodulatory effects, has garnered attention for its potential in cancer prevention and treatment. This comprehensive review explores piperine's multifaceted role in inhibiting the molecular events and signaling pathways associated with various stages of cancer development, shedding light on its promising prospects as a versatile tool in cancer chemoprevention. Furthermore, the review will also delve into how piperine enhances the effectiveness of conventional treatments such as UV-phototherapy and TRAIL-based therapy, potentially synergizing with existing therapeutic modalities to provide more robust cancer management strategies. Finally, a crucial perspective of the long-term safety and potential side effects of piperine-based therapies and the need for clinical trials is also discussed.
Collapse
Affiliation(s)
- Salma Benayad
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat 26000, Morocco; (S.B.); (R.E.K.); (E.M.S.)
| | - Hicham Wahnou
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Casablanca 20100, Morocco; (H.W.); (M.O.)
| | - Riad El Kebbaj
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat 26000, Morocco; (S.B.); (R.E.K.); (E.M.S.)
| | - Bertrand Liagre
- Le Laboratoire des Agroressources, Biomolécules et Chimie pour l’Innovation en Santé (LABCiS), University Limoges, UR 22722, F-87000 Limoges, France; (B.L.); (V.S.)
| | - Vincent Sol
- Le Laboratoire des Agroressources, Biomolécules et Chimie pour l’Innovation en Santé (LABCiS), University Limoges, UR 22722, F-87000 Limoges, France; (B.L.); (V.S.)
| | - Mounia Oudghiri
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Casablanca 20100, Morocco; (H.W.); (M.O.)
| | - El Madani Saad
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat 26000, Morocco; (S.B.); (R.E.K.); (E.M.S.)
| | - Raphaël Emmanuel Duval
- The Franch Center for Scientific Research (CNRS), Université de Lorraine, L2CM, F-54000 Nancy, France
| | - Youness Limami
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat 26000, Morocco; (S.B.); (R.E.K.); (E.M.S.)
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Casablanca 20100, Morocco; (H.W.); (M.O.)
| |
Collapse
|
16
|
Ramos INDF, da Silva MF, Lopes JMS, Cruz JN, Alves FS, do Rego JDAR, Costa MLD, Assumpção PPD, Barros Brasil DDS, Khayat AS. Extraction, Characterization, and Evaluation of the Cytotoxic Activity of Piperine in Its Isolated form and in Combination with Chemotherapeutics against Gastric Cancer. Molecules 2023; 28:5587. [PMID: 37513459 PMCID: PMC10385350 DOI: 10.3390/molecules28145587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Gastric cancer is one of the most frequent types of neoplasms worldwide, usually presenting as aggressive and difficult-to-manage tumors. The search for new structures with anticancer potential encompasses a vast research field in which natural products arise as promising alternatives. In this scenario, piperine, an alkaloid of the Piper species, has received attention due to its biological activity, including anticancer attributes. The present work proposes three heating-independent, reliable, low-cost, and selective methods for obtaining piperine from Piper nigrum L. (Black pepper). Electronic (SEM) and optical microscopies, X-ray diffraction, nuclear magnetic resonance spectroscopies (13C and 1H NMR), and optical spectroscopies (UV-Vis, photoluminescence, and FTIR) confirm the obtention of piperine crystals. The MTT assay reveals that the piperine samples exhibit good cytotoxic activity against primary and metastasis models of gastric cancer cell lines from the Brazilian Amazon. The samples showed selective cytotoxicity on the evaluated models, revealing higher effectiveness in cells bearing a higher degree of aggressiveness. Moreover, the investigated piperine crystals demonstrated the ability to act as a good cytotoxicity enhancer when combined with traditional chemotherapeutics (5-FU and GEM), allowing the drugs to achieve the same cytotoxic effect in cells employing lower concentrations. These results establish piperine as a promising molecule for therapy investigations in aggressive gastric cancer, both in its isolated form or as a bioenhancer.
Collapse
Affiliation(s)
| | | | | | - Jordy Neves Cruz
- Institute of Technology, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Fabrine Silva Alves
- Graduate Program in Pharmaceutical Innovation, Federal University of Pará, Belém 66075-110, PA, Brazil
| | | | | | | | - Davi do Socorro Barros Brasil
- Institute of Technology, Federal University of Pará, Belém 66075-110, PA, Brazil
- Graduate Program in Pharmaceutical Innovation, Federal University of Pará, Belém 66075-110, PA, Brazil
- Graduate Program in Science and Environment, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - André Salim Khayat
- Oncology Research Center, Federal University of Pará, Belém 66075-110, PA, Brazil
- Institute of Biological Science, Federal University of Pará, Belém 66075-110, PA, Brazil
| |
Collapse
|
17
|
Alshehri S, Bukhari SI, Imam SS, Hussain A, Alghaith AF, Altamimi MA, AlAbdulkarim AS, Almurshedi A. Formulation of Piperine-Loaded Nanoemulsion: In Vitro Characterization, Ex Vivo Evaluation, and Cell Viability Assessment. ACS OMEGA 2023; 8:22406-22413. [PMID: 37396261 PMCID: PMC10308402 DOI: 10.1021/acsomega.2c08187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/01/2023] [Indexed: 07/04/2023]
Abstract
Piperine is an alkaloid, but its therapeutic efficacy is limited due to poor aqueous solubility. In this study, piperine nanoemulsions were prepared using oleic acid (oil), Cremophore EL (surfactant), and Tween 80 (co-surfactant) using the high-energy ultrasonication approach. The optimal nanoemulsion (N2) was further evaluated using transmission electron microscopy, release, permeation, antibacterial, and cell viability studies based on minimal droplet size and maximum encapsulation efficiency. The prepared nanoemulsions (N1-N6) showed a transmittance of more than 95%, a mean droplet size between 105 ± 4.11 and 250 ± 7.4 nm, a polydispersity index of 0.19 to 0.36, and a ζ potential of -19 to -39 mV. The optimized nanoemulsion (N2) showed significantly improved drug release and permeation compared with pure piperine dispersion. The nanoemulsions were stable in the tested media. The transmission electron microscopy image showed a spherical and dispersed nanoemulsion droplet. The antibacterial and cell line results of piperine nanoemulsions were significantly better than the pure piperine dispersion. The findings suggested that piperine nanoemulsions may be a more advanced nanodrug delivery system than conventional ones.
Collapse
|
18
|
Mad-adam N, Madla S, Lailerd N, Hiransai P, Graidist P. Piper nigrum Extract: Dietary Supplement for Reducing Mammary Tumor Incidence and Chemotherapy-Induced Toxicity. Foods 2023; 12:2053. [PMID: 37238871 PMCID: PMC10216990 DOI: 10.3390/foods12102053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
A low piperine fractional Piper nigrum extract (PFPE) was prepared by mixing cold-pressed coconut oil and honey in distilled water, namely, PFPE-CH. In this study, PFPE-CH was orally administered as a dietary supplement to decrease the risk of tumor formation and reduce the side effects of chemotherapeutic drugs during breast cancer treatment. The toxicity study demonstrated no mortality or adverse effects after administrating PFPE-CH at 5000 mg/kg during a 14-day observation period. Additionally, PFPE-CH at 86 mg/kg BW/day did not cause any harm to the kidney or liver function of the rats for six months. In a cancer prevention study, treatment with PFPE-CH at 100 mg/kg BW for 101 days induced oxidative stress and increased the immune response by altering the levels of cancer-associated cytokines (IL-4, IL-6, and IFN-g), leading to a reduction in the tumor incidence of up to 71.4% without any adverse effects. In combination with doxorubicin, PFPE-CH did not disrupt the anticancer effects of the drug in rats with mammary tumors. Surprisingly, PFPE-CH reduced chemotherapy-induced toxicity by improving some hematological and biochemical parameters. Therefore, our results suggest that PFPE-CH is safe and effective in reducing breast tumor incidence and toxicity of chemotherapeutic drugs during cancer treatment in mammary tumor rats.
Collapse
Affiliation(s)
- Nadeeya Mad-adam
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Siribhon Madla
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Narissara Lailerd
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Poonsit Hiransai
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Center of Excellence in Marijuana, Hemp, and Kratom, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Potchanapond Graidist
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
19
|
Plants-based medicine implication in the evolution of chronic liver diseases. Biomed Pharmacother 2023; 158:114207. [PMID: 36916432 DOI: 10.1016/j.biopha.2022.114207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Hepatic disorders are considered major health problems, due to their high incidence, increased risk of chronicling or death and the costs involved in therapies. A large number of patients with chronic liver diseases use herbal medicines and dietary supplements in parallel with allopathic treatment. The current review provides a thorough analysis of the studies conducted on the most important species of medicinal plants used in this disease, bioactive compounds and on the activity of herbal medicines in the evolution of chronic liver diseases. However, a negative aspect is that there is frequently a lack of comprehensive data on the progression of the illness and the living standards of patients who are affected when evaluating the effects of these phytocomponents on the evolution of chronic liver disease, the patients' health, and their quality of life. It is essential to take this impairment into account when evaluating the long-term effects of herbal treatments on the health of individuals who suffer from liver illness. Bioactive phytocomponents may be a suitable source for the development of novel medications due to the correlation between traditional uses and medical advances. Additional high-quality preclinical examinations utilizing cutting-edge approaches are needed to assess safety and effectiveness and to detect, categorize, and standardize the active substances and their formulations for the most suitable therapeutic management of liver illnesses.
Collapse
|
20
|
Li T, Lv M, Wen H, Wang Y, Thapa S, Zhang S, Xu H. Synthesis of Piperine-Based Ester Derivatives with Diverse Aromatic Rings and Their Agricultural Bioactivities against Tetranychus cinnabarinus Boisduval, Aphis citricola Van der Goot, and Eriosoma lanigerum Hausmann. INSECTS 2022; 14:40. [PMID: 36661967 PMCID: PMC9862344 DOI: 10.3390/insects14010040] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Exploration of plant secondary metabolites or by using them as leads for development of new pesticides has become one of the focal research topics nowadays. Herein, a series of new ester derivatives of piperine were prepared via the Vilsmeier−Haack−Arnold (VHA) reaction, and their structures were characterized by infrared spectroscopy (IR), melting point (mp), proton nuclear magnetic resonance spectroscopy (1H NMR), and carbon nuclear magnetic resonance spectroscopy (13C NMR). Notably, the steric configurations of compounds 6 and 7 were confirmed by single-crystal analysis. Against T. cinnabarinus, compounds 9 and 11 exhibited 47.6- and 45.4-fold more pronounced acaricidal activity than piperine. In particular, compounds 9 and 11 also showed 2.6-fold control efficiency on the fifth day of piperine. In addition, compound 6 (>10−fold higher than piperine) displayed the most potent aphicidal activity against A. citricola. Furthermore, some derivatives showed good aphicidal activities against E. lanigerum. Moreover, the effects of compounds on the cuticles of T. cinnabarinus were investigated by the scanning electron microscope (SEM) imaging method. This study will pave the way for future high value added application of piperine and its derivatives as botanical pesticides.
Collapse
Affiliation(s)
- Tianze Li
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Min Lv
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Houpeng Wen
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Yanyan Wang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Sunita Thapa
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Shaoyong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Hui Xu
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
21
|
Talib WH, Awajan D, Hamed RA, Azzam AO, Mahmod AI, AL-Yasari IH. Combination Anticancer Therapies Using Selected Phytochemicals. Molecules 2022; 27:5452. [PMID: 36080219 PMCID: PMC9458090 DOI: 10.3390/molecules27175452] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is still one of the most widespread diseases globally, it is considered a vital health challenge worldwide and one of the main barriers to long life expectancy. Due to the potential toxicity and lack of selectivity of conventional chemotherapeutic agents, discovering alternative treatments is a top priority. Plant-derived natural products have high potential in cancer treatment due to their multiple mechanisms of action, diversity in structure, availability in nature, and relatively low toxicity. In this review, the anticancer mechanisms of the most common phytochemicals were analyzed. Furthermore, a detailed discussion of the anticancer effect of combinations consisting of natural product or natural products with chemotherapeutic drugs was provided. This review should provide a strong platform for researchers and clinicians to improve basic and clinical research in the development of alternative anticancer medicines.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan
| | - Dima Awajan
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan
| | - Reem Ali Hamed
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan
| | - Aya O. Azzam
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan
| | - Intisar Hadi AL-Yasari
- Department of Genetic Engineering, College of Biotechnology, Al-Qasim Green University, Babylon 964, Iraq
| |
Collapse
|
22
|
Babadi D, Dadashzadeh S, Shahsavari Z, Shahhosseini S, Ten Hagen TLM, Haeri A. Piperine-loaded electrospun nanofibers, an implantable anticancer controlled delivery system for postsurgical breast cancer treatment. Int J Pharm 2022; 624:121990. [PMID: 35809829 DOI: 10.1016/j.ijpharm.2022.121990] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/20/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022]
Abstract
Tumorectomy followed by radiotherapy, hormone, and chemotherapy, are the current mainstays for breast cancer treatment. However, these strategies have systemic toxicities and limited treatment outcomes. Hence, there is a crucial need for a novel controlled release delivery system for implantation following tumor resection to effectively prevent recurrence. Here, we fabricated polycaprolactone (PCL)-based electrospun nanofibers containing piperine (PIP), known for chemopreventive and anticancer activities, and also evaluated the impact of collagen (Coll) incorporation into the matrices. In addition to physicochemical characterization such as morphology, hydrophilicity, drug content, release properties, and mechanical behaviors, fabricated nanofibers were investigated in terms of cytotoxicity and involved mechanisms in MCF-7 and 4T1 breast tumor cell lines. In vivo antitumor study was performed in 4T1 tumor-bearing mice. PIP-PCL75-Coll25 nanofiber was chosen as the optimum formulation due to sustained PIP release, good mechanical performance, and superior cytotoxicity. Demonstrating no organ toxicity, animal studies confirmed the superiority of locally administered PIP-PCL75-Coll25 nanofiber in terms of inhibition of growth tumor, induction of apoptosis, and reduction of cell proliferation compared to PIP suspension, blank nanofiber, and the control. Taken together, we concluded that PIP-loaded nanofibers can be introduced as a promising treatment for implantation upon breast tumorectomy.
Collapse
Affiliation(s)
- Delaram Babadi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simin Dadashzadeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Shahsavari
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soraya Shahhosseini
- Department of Pharmaceutical Chemistry and Radiopharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Timo L M Ten Hagen
- Laboratory Experimental Oncology and Nanomedicine Innovation Center Erasmus (NICE), Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Azadeh Haeri
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Yapasert R, Banjerdpongchai R. Gambogic Acid and Piperine Synergistically Induce Apoptosis in Human Cholangiocarcinoma Cell via Caspase and Mitochondria-Mediated Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6288742. [PMID: 35600948 PMCID: PMC9119777 DOI: 10.1155/2022/6288742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022]
Abstract
Most cholangiocarcinoma (CCA) patients undergo chemotherapy as a therapeutic approach due to the disease's frequently late diagnosis. However, because CCA is resistant to currently available treatments, the prognosis for this cancer is still quite poor. Combination therapy has emerged as a novel and promising strategy in cancer treatment, as monotherapy frequently results in tumor recurrence and drug resistance. Gambogic acid has been shown to have a synergism with other compounds in combating certain cancer cells. Moreover, piperine has been shown to improve the efficacy of numerous chemotherapy drugs and other anticancer natural substances. However, no research has been done on the combination of these two compounds in the treatment of bile duct cancer. In this study, the cytotoxic activity was determined by using the MTT assay, and then, the combined effect was assessed by using the combination index (CI). We found that the combination of gambogic acid and piperine inhibited cell viability more effectively than either treatment alone, and it also demonstrated a synergistically cytotoxic effect against CCA cells. Interestingly, the findings allowed the use of lower concentrations of gambogic acid in cancer treatment when combined with piperine, which could reduce its adverse effect on normal cholangiocytes. Furthermore, the combination of the two compounds increased CCA cell death by inducing apoptosis via both the extrinsic and intrinsic or mitochondria-mediated pathways, as determined by caspase-3, -8, and -9 activity and the reduction of mitochondrial transmembrane potential (ΔΨm). It is possible that the use of these two natural compounds together could be a promising strategy for the treatment of bile duct cancer.
Collapse
Affiliation(s)
- Rittibet Yapasert
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ratana Banjerdpongchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
24
|
Mm Shehata E, A Gowayed M, El-Ganainy SO, Sheta E, Sr Elnaggar Y, Abdallah OY. Pectin coated Nanostructured Lipid Carriers for Targeted Piperine Delivery to Hepatocellular Carcinoma. Int J Pharm 2022; 619:121712. [PMID: 35367582 DOI: 10.1016/j.ijpharm.2022.121712] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022]
Abstract
Piperine (PIP) is a herbal drug with well-known anticancer activity against different types of cancer including hepatocellular carcinoma. However, low aqueous solubility and extensive first-pass metabolism limit its clinical use. In this study, positively charged PIP-loaded nanostructured lipid carriers (PIP-NLCs) were prepared via melt-emulsification and ultra-sonication method followed by pectin coating to get novel pectin-coated NLCs (PIP-P-NLCs) targeting hepatocellular carcinoma. Complete in vitro characterization was performed. In addition, cytotoxicity and cellular uptake of nanosystems in HepG2 cells were evaluated. Finally, in vivo anticancer activity was tested in the diethylnitrosamine-induced hepatocellular carcinoma mice model. Successful pectin coating was confirmed by an increased particle size of PIP-NLCs from 150.28±2.51 nm to 205.24±5.13 nm and revered Zeta potential from 33.34±3.52 mV to -27.63±2.05 mV. Nanosystems had high entrapment efficiency, good stability, spherical shape, and sustained drug release over 24 hours. Targeted P-NLCs enhanced the cytotoxicity and cellular uptake compared to untargeted NLCs. Furthermore, PIP-P-NLCs improved in vivo anticancer effect of PIP as proved by histological examination of liver tissues, suppression of liver enzymes and oxidative stress environment in the liver, and alteration of cell cycle regulators. To conclude, PIP-P-NLCs can act as a promising approach for targeted delivery of PIP to hepatocellular carcinoma.
Collapse
Affiliation(s)
- Eman Mm Shehata
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mennatallah A Gowayed
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Samar O El-Ganainy
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Eman Sheta
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Yosra Sr Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Head of International Publication and Nanotechnology Consultation Center INCC, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
25
|
Study of the Anticancer Potential of Plant Extracts Using Liver Tumor Microphysiological System. Life (Basel) 2022; 12:life12020135. [PMID: 35207423 PMCID: PMC8880716 DOI: 10.3390/life12020135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 01/09/2023] Open
Abstract
Background: Plants have been considered a vital source of modern pharmaceutics since the paleolithic age. Contemporary chemotherapeutic drugs for cancer therapy are chemical entities sourced from plants. However, synthetic drugs or their derivatives come with severe to moderate side effects for human health. Hence, the quest to explore and discover plant-based novel anticancer drugs is ongoing. Anticancer activities are the primary method to estimate the potential and efficacy of an extract or compound for drug discovery. However, traditional in vitro anticancer activity assays often show poor efficacy due to the lack of in-vivo-like cellular environment. In comparison, the animal-based in vivo assays lack human genetic makeup and have ethical concerns. Aim: This study aimed to overcome the limitations of traditional cell-culture-based anticancer assays and find the most suitable assay for anticancer activity of plant extracts. We first reported utilizing a liver tumor microphysiological system in the anticancer effect assessment of plant extracts. Methodology: Methanolic extracts of Acer cappadocicum Gled were used to assess anticancer activity against liver tumor microphysiological system (MPS), and cell viability, liver function tests, and antioxidant enzyme activities were performed. Additionally, an embedded transepithelial electrical resistance sensor was utilized for the real-time monitoring of the liver tumor MPS. The results were also compared with the traditional cell culture model. Results: The study demonstrated the superiority of the TEER sensor-based liver tumor MPS by its better anticancer activity based on cell viability and biomarker analysis compared to the traditional in vitro cell culture model. The anticancer effects of the plant extracts were successfully observed in real time, and methanolic extracts of Acer cappadocicum Gled increased the alanine transaminase and aspartate aminotransferase secretion, which may reveal the different mechanisms of these extracts and suggest a clue for the future molecular study of the anticancer pathways. Conclusion: Our results show that the liver tumor microphysiological system could be a better platform for plant-based anticancer activity assessment than traditional cell culture models.
Collapse
|
26
|
Lim HM, Park SH. Regulation of reactive oxygen species by phytochemicals for the management of cancer and diabetes. Crit Rev Food Sci Nutr 2022; 63:5911-5936. [PMID: 34996316 DOI: 10.1080/10408398.2022.2025574] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cancer and diabetes mellitus are served as typical life-threatening diseases with common risk factors. Developing therapeutic measures in cancers and diabetes have aroused attention for a long time. However, the problems with conventional treatments are in challenge, including side effects, economic burdens, and patient compliance. It is essential to secure safe and efficient therapeutic methods to overcome these issues. As an alternative method, antioxidant and pro-oxidant properties of phytochemicals from edible plants have come to the fore. Phytochemicals are naturally occurring compounds, considered promising agent applicable in treatment of various diseases with beneficial effects. Either antioxidative or pro-oxidative activity of various phytochemicals were found to contribute to regulation of cell proliferation, differentiation, cell cycle arrest, and apoptosis, which can exert preventive and therapeutic effects against cancer and diabetes. In this article, the antioxidant or pro-oxidant effects and underlying mechanisms of flavonoids, alkaloids, and saponins in cancer or diabetic models demonstrated by the recent studies are summarized.
Collapse
Affiliation(s)
- Heui Min Lim
- Department of Biological Science, Gachon University, Seongnam, Republic of Korea
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| |
Collapse
|
27
|
Yadav SS, Singh MK, Hussain S, Dwivedi P, Khattri S, Singh K. Therapeutic spectrum of piperine for clinical practice: a scoping review. Crit Rev Food Sci Nutr 2022; 63:5813-5840. [PMID: 34996326 DOI: 10.1080/10408398.2021.2024792] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Translation of traditional knowledge of herbs into a viable product for clinical use is still an uphill task. Piperine, a pungent alkaloid molecule derived from Piper nigrum and Piper longum possesses diverse pharmacological effects. Traditionally, pepper is used for arthritis, bronchitis, gastritis, diarrhea, snake bite, menstrual pain, fever, and bacterial infections, etc. The anti-inflammatory, antioxidant and immunomodulatory actions of piperine are the possible mechanisms behind its therapeutic potential. Various in-silico and experimental studies have shown piperine as a possible promising molecule in coronavirus disease (COVID-19), ebola, and dengue due to its immunomodulatory and antiviral activities. The other important clinical applications of piperine are due to its bio enhancing effect on drugs, by modulating, absorption in the gastrointestinal tract, altering activities of transporters like p-glycoprotein substrates, and modulating drug metabolism by altering the expression of cytochrome P450 or UDP-glucuronosyltransferase enzymes. Piperine attracted clinicians in treating patients with arthritis, metabolic syndrome, diabetes, skin infections, gastric and liver disorders. This review focused on systematic, evidence-based insight into the use of piperine in clinical settings and mechanistic details behind its therapeutic actions. Also, highlights a number of clinical trials of piperine at various stages exploring its clinical application in cancer, neurological, respiratory, and viral disease, etc.
Collapse
|
28
|
Feng F, Pan L, Wu J, Li L, Xu H, Yang L, Xu K, Wang C. Cepharanthine inhibits hepatocellular carcinoma cell growth and proliferation by regulating amino acid metabolism and suppresses tumorigenesis in vivo. Int J Biol Sci 2021; 17:4340-4352. [PMID: 34803502 PMCID: PMC8579440 DOI: 10.7150/ijbs.64675] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
Cepharanthine (CEP), a natural compound extracted from Stephania cepharantha Hayata, has been found to have the potential to treat a variety of tumors in recent years. This study aims to evaluate the anti-hepatocellular carcinoma (HCC) effect of CEP and determine its in-depth mechanism. In this study, Hep3B and HCCLM3 cells were selected to evaluate the antitumor effects of CEP in vitro, whereas tumor xenograft in nude mice was performed to make in vivo anti-tumor assessment. RNA-sequence (RNA-seq) was used to identify possible molecular targets and pathways. Further, gas chromatography mass spectrometry (GC-MS) was performed to assess the differential metabolites involved in mediating the effect of CEP on the HCC cell line. Our results showed that CEP treatment resulted in the dose-dependent inhibition of cell viability, migration, and proliferation and could also induce apoptosis in HCC cells. RNA-seq following CEP treatment identified 168 differentially expressed genes (DEGs), which were highly enriched in metabolism-associated pathways. In addition, CEP down-regulated many metabolites through the amino acid metabolism pathway. In vivo experiment showed that CEP significantly suppressed tumor growth. Our results indicate that CEP has significant antitumor effects and has the potential to be a candidate drug for HCC treatment.
Collapse
Affiliation(s)
- Fan Feng
- National Innovation and Attracting Talents “111” base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Lianhong Pan
- National Innovation and Attracting Talents “111” base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing 400030, China
| | - Jiaqin Wu
- National Innovation and Attracting Talents “111” base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Lanqing Li
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Haiying Xu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Li Yang
- National Innovation and Attracting Talents “111” base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Kang Xu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Chunli Wang
- National Innovation and Attracting Talents “111” base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
29
|
Mandlik DS, Mandlik SK. An Overview of Hepatocellular Carcinoma with Emphasis on Dietary Products and Herbal Remedies. Nutr Cancer 2021; 74:1549-1567. [PMID: 34396860 DOI: 10.1080/01635581.2021.1965630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The most common principal malignant tumor that accounts for ∼80% of cases of liver cancer across the world is hepatocellular carcinoma (HCC). It is a multifacetedillness that is caused by several risk factors and often progresses in the context of underlying cirrhosis. It is tremendously difficult and essential for the screening of novel therapeutic medications to establish HCC preclinical models that are equivalent to clinical diseases settings, i.e., representing the tumor microenvironment of HCC. In the progress of HCC, numerous molecular cascades have been supposed to play a part. Sorafenib is the only drug permitted by the US Food and Drug Administration for the treatment of HCC. Yet because of the increasing resistance to the drug and its toxicity, clinical treatment methods are not completely adequate. Newer treatment therapy options are essential for the management of HCC in patients. Natural compounds can be afforded by the patients with improved results with less toxicity and fewer side effects, among different methods of liver cancer treatment. The treatment and management of HCC with natural drugs and their phytoconstituents are connected to several paths that can prevent the occurrence and progress of HCC in several ways. The present review summarizes the etiology of HCC, molecular pathways, newer therapeutic approaches, natural dietary products, herbal plants and phytoconstituents for HCC treatment.
Collapse
Affiliation(s)
- Deepa S Mandlik
- Poona College of Pharmacy, Bharati Vidyapeeth, Deemed to be University, Pune, India
| | - Satish K Mandlik
- Poona College of Pharmacy, Bharati Vidyapeeth, Deemed to be University, Pune, India
| |
Collapse
|
30
|
AbouAitah K, Higazy IM, Swiderska-Sroda A, Abdelhameed RM, Gierlotka S, Mohamed TA, Szałaj U, Lojkowski W. Anti-inflammatory and antioxidant effects of nanoformulations composed of metal-organic frameworks delivering rutin and/or piperine natural agents. Drug Deliv 2021; 28:1478-1495. [PMID: 34254539 PMCID: PMC8280904 DOI: 10.1080/10717544.2021.1949073] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Plant-derived natural medicines have been extensively studied for anti-inflammatory or antioxidant properties, but challenges to their clinical use include low bioavailability, poor solubility in water, and difficult-to-control release kinetics. Nanomedicine may offer innovative solutions that can enhance the therapeutic activity and control release kinetics of these agents, opening the way to translating them into the clinic. Two agents of particular interest are rutin (Ru), a flavonoid, and piperine (Pip), an alkaloid, which exhibit a range of pharmacological activities that include antioxidant and anti-inflammatory effects. In this work, nanoformulations were developed consisting of two metal–organic frameworks (MOFs) with surface modifications, Ti-MOF and Zr-MOF, each of them loaded with Ru and/or Pip. Both MOFs and nanoformulations were characterized and evaluated in vivo for anti-inflammatory and antioxidant effects. Loadings of ∼17 wt.% for a single pro-drug and ∼27 wt.% for dual loading were achieved. The release patterns for Ru and or Pip followed two stages: a zero-order for the first 12-hour stage, and a second stage of stable sustained release. At pH 7.4, the release patterns best fit to zero-order and Korsmeyer–Peppas kinetic models. The nanoformulations had enhanced anti-inflammatory and antioxidant effects than any of their elements singly, and those with Ru or Pip alone showed stronger effects than those with both agents. Results of assays using a paw edema model, leukocyte migration, and plasma antioxidant capacity were in agreement. Our preliminary findings indicate that nanoformulations with these agents exert better anti-inflammatory and antioxidant effects than the agents in their free form.
Collapse
Affiliation(s)
- Khaled AbouAitah
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland.,Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Giza, Egypt
| | - Imane M Higazy
- Department of Pharmaceutical Technology, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Giza, Egypt
| | - Anna Swiderska-Sroda
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Reda M Abdelhameed
- Applied Organic Chemistry Department, Chemical Industries Research Division, National Research Centre (NRC), Giza, Egypt
| | - Stanislaw Gierlotka
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Tarik A Mohamed
- Chemistry of Medicinal Plants Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Giza, Egypt
| | - Urszula Szałaj
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland.,Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Witold Lojkowski
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
31
|
Piperine: Chemical, biological and nanotechnological applications. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2021; 71:185-213. [PMID: 33151173 DOI: 10.2478/acph-2021-0015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/31/2020] [Indexed: 01/19/2023]
Abstract
Piperine (PIP) is an alkaloid present in several species of piper, mainly Piper nigrum Linn. and P. longum, among other species. The present article provides a comprehensive review of PIP research in the last years concerning its chemical properties, synthesis, absorption, metabolism, bioavailability and toxicity. The reviewed PIP literature has shown many pharmacological properties, such as antidiabetic, antidiarrheal, antioxidant, antibacterial, and anti-parasitic activity of PIP. However, its low solubility and absorption make its application challenging. This review also includes advances in the development of nanosystems containing PIP, including liposomes, micelles, metal nanoparticles, nanofibers, polymeric nanoparticles, and solid-lipid nanoparticles. Finally, we discuss different in vitro and in vivo studies to evaluate the biological activity of this drug, as well as some methods for the synthesis of nanosystems and their physical characteristics.
Collapse
|
32
|
Rani R, Kumar S, Dilbaghi N, Kumar R. Nanotechnology enabled the enhancement of antitrypanosomal activity of piperine against Trypanosoma evansi. Exp Parasitol 2020; 219:108018. [DOI: 10.1016/j.exppara.2020.108018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/30/2020] [Accepted: 10/09/2020] [Indexed: 10/23/2022]
|
33
|
Turrini E, Sestili P, Fimognari C. Overview of the Anticancer Potential of the "King of Spices" Piper nigrum and Its Main Constituent Piperine. Toxins (Basel) 2020; 12:E747. [PMID: 33256185 PMCID: PMC7761056 DOI: 10.3390/toxins12120747] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
The main limits of current anticancer therapy are relapses, chemoresistance, and toxic effects resulting from its poor selectivity towards cancer cells that severely impair a patient's quality of life. Therefore, the discovery of new anticancer drugs remains an urgent challenge. Natural products represent an excellent opportunity due to their ability to target heterogenous populations of cancer cells and regulate several key pathways involved in cancer development, and their favorable toxicological profile. Piper nigrum is one of the most popular spices in the world, with growing fame as a source of bioactive molecules with pharmacological properties. The present review aims to provide a comprehensive overview of the anticancer potential of Piper nigrum and its major active constituents-not limited to the well-known piperine-whose undeniable anticancer properties have been reported for different cancer cell lines and animal models. Moreover, the chemosensitizing effects of Piper nigrum in association with traditional anticancer drugs are depicted and its toxicological profile is outlined. Despite the promising results, human studies are missing, which are crucial for supporting the efficacy and safety of Piper nigrum and its single components in cancer patients.
Collapse
Affiliation(s)
- Eleonora Turrini
- Department for Life Quality Studies, Alma Mater Studiorum—Università di Bologna, corso d’Augusto 237, 47921 Rimini, Italy;
| | - Piero Sestili
- Department of Biomolecular Sciences (DISB), Università degli Studi di Urbino Carlo Bo, Via I Maggetti 26, 61029 Urbino, Italy;
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum—Università di Bologna, corso d’Augusto 237, 47921 Rimini, Italy;
| |
Collapse
|
34
|
Shaheer K, Somashekarappa HM, Lakshmanan MD. Piperine sensitizes radiation-resistant cancer cells towards radiation and promotes intrinsic pathway of apoptosis. J Food Sci 2020; 85:4070-4079. [PMID: 33089532 DOI: 10.1111/1750-3841.15496] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/10/2020] [Accepted: 09/18/2020] [Indexed: 12/27/2022]
Abstract
Piperine, a bioactive alkaloid, is known to have anticancer activities. Hence, in this study, the effectiveness of piperine pretreatment as a strategy for radio-sensitizing colorectal adenocarcinoma cell line (HT-29) was analyzed. For this, HT-29 cells were pretreated with piperine (12.5 and 25 µg/mL) and exposed to γ-radiation (1.25 Gy) and analyzed for various effector pathways to elucidate the possible mode of action in comparison to individual treatments. The proliferation efficiency of the cells was analyzed by trypan blue dye exclusion assay and MTT assay. The synergistic effects of the combination treatment were analyzed with compuSyn software. Downstream signaling pathways leading to apoptosis were studied using flowcytometry, immunofluorescence, and immunoblot assays. It was observed that combination treatment arrested HT-29 cells at G2/M phase nearly 2.8 folds higher than radiation treatment alone, inducing the radio-resistant cells to undergo apoptosis through mitochondria-dependent pathway. In addition, activation of caspase-3 and cleavage of poly(ADP-ribose) polymerases-1, the key molecular events in apoptotic signaling, were significantly enhanced. Activation of estrogen receptor beta (ERβ), a nuclear hormone transcription factor promoting tumor suppression represents a novel clinical advance towards management and prevention of cancers. Interestingly, the expression of ERβ was increased in the cells treated with piperine. In conclusion, piperine pretreatment enhances radio-sensitization in HT-29 cells by inducing the cells to undergo apoptosis hence, can be used as a classic candidate for colon cancer sensitization towards radiotherapy. PRACTICAL APPLICATION: Piperine induces enhanced radiosensitization of colon cancer cell line (HT-29) by interfering with the cancer cell line proliferation, DNA damage, and apoptosis.
Collapse
Affiliation(s)
- Koniyan Shaheer
- Molecular Biology Division, Yenepoya Research Centre, Yenepoya (deemed to be University), Deralakatte, Mangalore, Karnataka, 575018, India
| | - H M Somashekarappa
- Centre for Application of Radioisotopes and Radiation Technology (CARRT), USIC, Mangalore University, Mangalore, Karnataka, 575018, India
| | - M Divya Lakshmanan
- Molecular Biology Division, Yenepoya Research Centre, Yenepoya (deemed to be University), Deralakatte, Mangalore, Karnataka, 575018, India
| |
Collapse
|
35
|
Piperine: A comprehensive review of methods of isolation, purification, and biological properties. MEDICINE IN DRUG DISCOVERY 2020. [DOI: 10.1016/j.medidd.2020.100027] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
36
|
Yapasert R, Sripanidkulchai B, Teerachaisakul M, Banchuen K, Banjerdpongchai R. Anticancer effects of a traditional Thai herbal recipe Benja Amarit extracts against human hepatocellular carcinoma and colon cancer cell by targeting apoptosis pathways. JOURNAL OF ETHNOPHARMACOLOGY 2020; 254:112732. [PMID: 32142865 DOI: 10.1016/j.jep.2020.112732] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/24/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A preparation of Benja Amarit (BJA) has been effectively used in folk medicine to treat diseases related to the liver and colon and forms of cancer for hundreds of years in Thailand. However, there has not been any research on BJA with regard to its anticancer activity against human hepatocellular carcinoma and colon cancer cells. AIM OF THE STUDY This study was to obtain the scientific supports for the traditional usage in anticancer potential of BJA extracts on hepatocellular carcinoma and colon cancer. MATERIALS AND METHODS The cytotoxic effects were determined using MTT assay. Apoptosis was quantitated by annexin V-FITC/PI staining. Caspases activities were measured by using specific substrates and colorimetric analysis. The protein expressions were determined by Western blot analysis. Reactive oxygen species (ROS) generation, mitochondrial transmembrane potential, and calcium ion levels were measured by specific fluorescence probes and flow cytometry. The chick embryo chorioallantoic membrane model has been used to study the in vivo anticancer activity. The phytochemical identification was performed by GC-MS and LC-MS. RESULTS Notably, 95% (BJA-95) and 50% (BJA-50) ethanolic extract of BJA inhibited hepatocellular carcinoma and colon cancer cell viability in a dose-dependent manner. While, the water extract of BJA (BJA-W) was not found to be toxic to both kinds of cancer cell lines. BJA extract induced both the extrinsic and intrinsic or mitochondria-mediated apoptosis pathways. Moreover, BJA-95 caused ROS generation and endoplasmic reticulum stress-mediated apoptosis. The extract exhibited the growth inhibitory effects on cancer cells in vivo. Phytochemical analysis revealed that the major active compounds were piperine, xanthotoxol and dihydrogambogic acid. CONCLUSION This study is the first to demonstrate anticancer efficiency of BJA extracts on human cancer cells. We consider BJA extract to be a potentially alternative cancer treatment and to be a promising candidate in the future development of antitumor agents.
Collapse
Affiliation(s)
- Rittibet Yapasert
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Bungorn Sripanidkulchai
- Center for Research and Development of Herbal Health Products, Thailand; Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Monthaka Teerachaisakul
- Thai Traditional Medicine Research Institute, Department of Thai Traditional and Alternative Medicine, Ministry of Public Health, Bangkok, 10100, Thailand
| | - Kamonwan Banchuen
- Thai Traditional Medicine Research Institute, Department of Thai Traditional and Alternative Medicine, Ministry of Public Health, Bangkok, 10100, Thailand
| | - Ratana Banjerdpongchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
37
|
Ferreira RC, Batista TM, Duarte SS, Silva DKF, Lisboa TMH, Cavalcanti RFP, Leite FC, Mangueira VM, Sousa TKGD, Abrantes RAD, Trindade EOD, Athayde-Filho PFD, Brandão MCR, Medeiros KCDP, Farias DF, Sobral MV. A novel piperine analogue exerts in vivo antitumor effect by inducing oxidative, antiangiogenic and immunomodulatory actions. Biomed Pharmacother 2020; 128:110247. [PMID: 32450524 DOI: 10.1016/j.biopha.2020.110247] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/01/2020] [Accepted: 05/10/2020] [Indexed: 02/08/2023] Open
Abstract
Structural diversity characterizes natural products as prototypes for design of lead compounds. The aim of this study was to synthetize, and to evaluate the toxicity and antitumor action of a new piperine analogue, the butyl 4-(4-nitrobenzoate)-piperinoate (DE-07). Toxicity was evaluated against zebrafish, and in mice (acute and micronucleus assays). To evaluate the DE-07 antitumor activity Ehrlich ascites carcinoma model was used in mice. Angiogenesis, Reactive Oxygen Species (ROS) production and cytokines levels were investigated. Ninety-six hours exposure to DE-07 did not cause morphological or developmental changes in zebrafish embryos and larvae, with estimated LC50 (lethal concentration 50%) higher than 100 μg/mL. On the acute toxicity assay in mice, LD50 (lethal dose 50%) was estimated at around 1000 mg/kg, intraperitoneally (i.p.). DE-07 (300 mg/kg, i.p.) did not induce increase in the number of micronucleated erythrocytes in mice, suggesting no genotoxicity. On Ehrlich tumor model, DE-07 (12.5, 25 or 50 mg/kg, i.p.) induced a significant decrease on cell viability. In addition, there was an increase on ROS production and a decrease in peritumoral microvessels density. Moreover, DE-07 induced an increase of cytokines levels involved in oxidative stress and antiangiogenic effect (IL-1β, TNF-α and IL-4). No significant clinical toxicological effects were recorded in Ehrlich tumor transplanted animals. These data provide evidence that DE-07 presents low toxicity, and antitumor effect via oxidative and antiangiogenic actions by inducing modulation of inflammatory response in the tumor microenvironment.
Collapse
Affiliation(s)
- Rafael Carlos Ferreira
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, 58051-970, João Pessoa, Paraíba, Brazil
| | - Tatianne Mota Batista
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, 58051-970, João Pessoa, Paraíba, Brazil
| | - Sâmia Sousa Duarte
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, 58051-970, João Pessoa, Paraíba, Brazil
| | - Daiana Karla Frade Silva
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, 58051-970, João Pessoa, Paraíba, Brazil
| | - Thaís Mangeon Honorato Lisboa
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, 58051-970, João Pessoa, Paraíba, Brazil
| | - Raquel Fragoso Pereira Cavalcanti
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, 58051-970, João Pessoa, Paraíba, Brazil
| | - Fagner Carvalho Leite
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, 58051-970, João Pessoa, Paraíba, Brazil
| | - Vivianne Mendes Mangueira
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, 58051-970, João Pessoa, Paraíba, Brazil
| | - Tatyanna Kélvia Gomes de Sousa
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, 58051-970, João Pessoa, Paraíba, Brazil
| | - Renata Albuquerque de Abrantes
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, 58051-970, João Pessoa, Paraíba, Brazil
| | | | | | | | - Karina Carla de Paula Medeiros
- Department of Morphology, Center of Biosciences, Federal University of Rio Grande Do Norte, 59078-970, Rio Grande do Norte, Brazil
| | - Davi Felipe Farias
- Department of Molecular Biology, Federal University of Paraíba, 58051-970, João Pessoa, Paraíba, Brazil
| | - Marianna Vieira Sobral
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, 58051-970, João Pessoa, Paraíba, Brazil.
| |
Collapse
|
38
|
Rational design of ultra-small photoluminescent copper nano-dots loaded PLGA micro-vessels for targeted co-delivery of natural piperine molecules for the treatment for epilepsy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 205:111805. [DOI: 10.1016/j.jphotobiol.2020.111805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/11/2020] [Accepted: 01/23/2020] [Indexed: 02/04/2023]
|
39
|
Qi YB, Yang W, Si M, Nie L. Wnt/β‑catenin signaling modulates piperine‑mediated antitumor effects on human osteosarcoma cells. Mol Med Rep 2020; 21:2202-2208. [PMID: 32323765 PMCID: PMC7115194 DOI: 10.3892/mmr.2020.11000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
The plant extract piperine is used as a traditional Chinese medicine due to its anti-inflammatory effects and efficacy against numerous types of cancer. The aim of the present study was to investigate the antitumor mechanism of piperine in human osteosarcoma U2OS and 143B cell lines. The effects of piperine on cell apoptosis and invasion of human osteosarcoma cells were assessed using flow cytometry and Transwell assays. Moreover, western blotting was used to measure the effects of piperine on the protein expression levels of the metastasis markers matrix metalloproteinase-2 (MMP-2) and vascular endothelial growth factor (VEGF). In addition, the involvement of the Wnt/β-catenin signaling pathway in modulating the effects of piperine was examined via western blot analysis. The results of MTT and Transwell invasion assays indicated that piperine treatment dose-dependently reduced U2OS and 143B cell viability and invasion. Furthermore, a significant reduction was identified in MMP-2, VEGF, glycogen synthase kinase-3β and β-catenin protein expression levels, as well as the expression levels of their target proteins cyclooxygenase-2, cyclin D1 and c-myc, in U2OS cells after piperine treatment. In addition, similar results were observed in 143B cells. Therefore, the present study demonstrated the efficacy of piperine in osteosarcoma, and identified that the Wnt/β-catenin signaling pathway may modulate the antitumor effects of piperine on human U2OS and 143B cells.
Collapse
Affiliation(s)
- Yu-Bin Qi
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Wen Yang
- Department of Spinal Surgery, Heze Municipal Hospital, Heze, Shandong 274031, P.R. China
| | - Meng Si
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lin Nie
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
40
|
AbouAitah K, Stefanek A, Higazy IM, Janczewska M, Swiderska-Sroda A, Chodara A, Wojnarowicz J, Szałaj U, Shahein SA, Aboul-Enein AM, Abou-Elella F, Gierlotka S, Ciach T, Lojkowski W. Effective Targeting of Colon Cancer Cells with Piperine Natural Anticancer Prodrug Using Functionalized Clusters of Hydroxyapatite Nanoparticles. Pharmaceutics 2020; 12:E70. [PMID: 31963155 PMCID: PMC7022489 DOI: 10.3390/pharmaceutics12010070] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/31/2019] [Accepted: 01/08/2020] [Indexed: 01/03/2023] Open
Abstract
Targeted drug delivery offers great opportunities for treating cancer. Here, we developed a novel anticancer targeted delivery system for piperine (Pip), an alkaloid prodrug derived from black pepper that exhibits anticancer effects. The tailored delivery system comprises aggregated hydroxyapatite nanoparticles (HAPs) functionalized with phosphonate groups (HAP-Ps). Pip was loaded into HAPs and HAP-Ps at pH 7.2 and 9.3 to obtain nanoformulations. The nanoformulations were characterized using several techniques and the release kinetics and anticancer effects investigated in vitro. The Pip loading capacity was >20%. Prolonged release was observed with kinetics dependent on pH, surface modification, and coating. The nanoformulations fully inhibited monolayer HCT116 colon cancer cells compared to Caco2 colon cancer and MCF7 breast cancer cells after 72 h, whereas free Pip had a weaker effect. The nanoformulations inhibited ~60% in HCT116 spheroids compared to free Pip. The Pip-loaded nanoparticles were also coated with gum Arabic and functionalized with folic acid as a targeting ligand. These functionalized nanoformulations had the lowest cytotoxicity towards normal WI-38 fibroblast cells. These preliminary findings suggest that the targeted delivery system comprising HAP aggregates loaded with Pip, coated with gum Arabic, and functionalized with folic acid are a potentially efficient agent against colon cancer.
Collapse
Affiliation(s)
- Khaled AbouAitah
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (A.S.-S.); (A.C.); (J.W.); (U.S.); (S.G.); (W.L.)
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), P.C. 12622 Dokki, Giza, Egypt
| | - Agata Stefanek
- Biomedical Engineering Laboratory, Faculty of Chemical and Process Engineering, Warsaw University of Technology, 00-645 Warsaw, Poland; (A.S.); (M.J.); (T.C.)
| | - Iman M. Higazy
- Department of Pharmaceutical Technology, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), P.C. 12622 Dokki Giza, Egypt;
| | - Magdalena Janczewska
- Biomedical Engineering Laboratory, Faculty of Chemical and Process Engineering, Warsaw University of Technology, 00-645 Warsaw, Poland; (A.S.); (M.J.); (T.C.)
| | - Anna Swiderska-Sroda
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (A.S.-S.); (A.C.); (J.W.); (U.S.); (S.G.); (W.L.)
| | - Agnieszka Chodara
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (A.S.-S.); (A.C.); (J.W.); (U.S.); (S.G.); (W.L.)
- Faculty of Materials Engineering, Warsaw University of Technology, Wołoska 41, 02-507 Warsaw, Poland
| | - Jacek Wojnarowicz
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (A.S.-S.); (A.C.); (J.W.); (U.S.); (S.G.); (W.L.)
| | - Urszula Szałaj
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (A.S.-S.); (A.C.); (J.W.); (U.S.); (S.G.); (W.L.)
- Faculty of Materials Engineering, Warsaw University of Technology, Wołoska 41, 02-507 Warsaw, Poland
| | - Samar A. Shahein
- Biochemistry Department, Faculty of Agriculture, Cairo University, P.C. 12613 Giza, Egypt (A.M.A.-E.); (F.A.-E.)
| | - Ahmed M. Aboul-Enein
- Biochemistry Department, Faculty of Agriculture, Cairo University, P.C. 12613 Giza, Egypt (A.M.A.-E.); (F.A.-E.)
| | - Faten Abou-Elella
- Biochemistry Department, Faculty of Agriculture, Cairo University, P.C. 12613 Giza, Egypt (A.M.A.-E.); (F.A.-E.)
| | - Stanislaw Gierlotka
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (A.S.-S.); (A.C.); (J.W.); (U.S.); (S.G.); (W.L.)
| | - Tomasz Ciach
- Biomedical Engineering Laboratory, Faculty of Chemical and Process Engineering, Warsaw University of Technology, 00-645 Warsaw, Poland; (A.S.); (M.J.); (T.C.)
| | - Witold Lojkowski
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (A.S.-S.); (A.C.); (J.W.); (U.S.); (S.G.); (W.L.)
| |
Collapse
|
41
|
Graidist P, Tedasen A, Khoka A, Madla S, Sriwiriyajan S. Anticancer effects of piperine-free Piper nigrum extract on cholangiocarcinoma cell lines. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_288_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
42
|
Anwanwan D, Singh SK, Singh S, Saikam V, Singh R. Challenges in liver cancer and possible treatment approaches. Biochim Biophys Acta Rev Cancer 2020; 1873:188314. [PMID: 31682895 PMCID: PMC6981221 DOI: 10.1016/j.bbcan.2019.188314] [Citation(s) in RCA: 835] [Impact Index Per Article: 167.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 02/06/2023]
Abstract
Globally, liver cancer is the most frequent fatal malignancy; in the United States, it ranks fifth. Patients are often diagnosed with liver cancer in advanced stages, contributing to its poor prognosis. Of all liver cancer cases, >90% are hepatocellular carcinomas (HCCs) for which chemotherapy and immunotherapy are the best options for therapy. For liver cancer patients, new treatment options are necessary. Use of natural compounds and/or nanotechnology may provide patients with better outcomes with lower systemic toxicity and fewer side effects. Improved treatments can lead to better prognoses. Finally, in this review, we present some of the problems and current treatment options contributing to the poor outcomes for patients with liver cancer.
Collapse
Affiliation(s)
- David Anwanwan
- Department of Microbiology, Biochemistry and Immunology, Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Santosh Kumar Singh
- Department of Microbiology, Biochemistry and Immunology, Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Shriti Singh
- Department of Kriya Sharir, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP 221 005, India
| | - Varma Saikam
- Department of Chemistry, Center for Therapeutics and Diagnostics, Georgia State University, Atlanta, GA 30302, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry and Immunology, Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA.
| |
Collapse
|
43
|
Efferth T, Oesch F. Repurposing of plant alkaloids for cancer therapy: Pharmacology and toxicology. Semin Cancer Biol 2019; 68:143-163. [PMID: 31883912 DOI: 10.1016/j.semcancer.2019.12.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/15/2019] [Indexed: 02/08/2023]
Abstract
Drug repurposing (or repositioning) is an emerging concept to use old drugs for new treatment indications. Phytochemicals isolated from medicinal plants have been largely neglected in this context, although their pharmacological activities have been well investigated in the past, and they may have considerable potentials for repositioning. A grand number of plant alkaloids inhibit syngeneic or xenograft tumor growth in vivo. Molecular modes of action in cancer cells include induction of cell cycle arrest, intrinsic and extrinsic apoptosis, autophagy, inhibition of angiogenesis and glycolysis, stress and anti-inflammatory responses, regulation of immune functions, cellular differentiation, and inhibition of invasion and metastasis. Numerous underlying signaling processes are affected by plant alkaloids. Furthermore, plant alkaloids suppress carcinogenesis, indicating chemopreventive properties. Some plant alkaloids reveal toxicities such as hepato-, nephro- or genotoxicity, which disqualifies them for repositioning purposes. Others even protect from hepatotoxicity or cardiotoxicity of xenobiotics and established anticancer drugs. The present survey of the published literature clearly demonstrates that plant alkaloids have the potential for repositioning in cancer therapy. Exploitation of the chemical diversity of natural alkaloids may enrich the candidate pool of compounds for cancer chemotherapy and -prevention. Their further preclinical and clinical development should follow the same stringent rules as for any other synthetic drug as well. Prospective randomized, placebo-controlled clinical phase I and II trials should be initiated to unravel the full potential of plant alkaloids for drug repositioning.
Collapse
Affiliation(s)
- Thomas Efferth
- Department of Pharmaceutical Biology, Johannes Gutenberg University, Mainz, Germany.
| | - Franz Oesch
- Institute of Toxicology, Medical Center, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
44
|
Piperine: role in prevention and progression of cancer. Mol Biol Rep 2019; 46:5617-5629. [PMID: 31273611 DOI: 10.1007/s11033-019-04927-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/15/2019] [Indexed: 12/18/2022]
Abstract
Cancer is among the leading causes of death worldwide. Several pharmacological protocols have been developed in order to block tumor progression often showing partial efficacy and severe counterproductive effects. It is now conceived that a healthy lifestyle coupled with the consumption of certain phytochemicals can play a protective role against tumor development and progression. According to this vision, it has been introduced the concept of "chemoprevention". This term refers to natural agents with the capability to interfere with the tumorigenesis and metastasis, or at least, attenuate the cancer-related symptoms. Piperine (1-Piperoylpiperidine), a main extract of Piper longum and Piper nigrum, is an alkaloid with a long history of medicinal use. In fact, it exhibits a variety of biochemical and pharmaceutical properties, including chemopreventive activities without significant cytotoxic effects on normal cells, at least at doses < of 250 µg/ml. The aim of this review is to discuss the relevant molecular and cellular mechanisms underlying the chemopreventive action of this natural alkaloid.
Collapse
|
45
|
Grinevicius VMAS, Andrade KS, Mota NSRS, Bretanha LC, Felipe KB, Ferreira SRS, Pedrosa RC. CDK2 and Bcl-xL inhibitory mechanisms by docking simulations and anti-tumor activity from piperine enriched supercritical extract. Food Chem Toxicol 2019; 132:110644. [PMID: 31252023 DOI: 10.1016/j.fct.2019.110644] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/21/2019] [Accepted: 06/23/2019] [Indexed: 12/11/2022]
Abstract
Supercritical fluid technologies offer an innovative method for food industry and drug discovery from natural sources. The aim of the study is to investigate the anti-tumor activity of piperine rich extract by supercritical fluid (SFE) from black pepper (Piper nigrum). In silico docking simulations predicted anti-tumor molecular mechanism and protein-piperine hydrophobic interactions, showing hydrogen bonds between piperine and residue Ser5 inside the ATP binding site in CDK2. Moreover, piperine interacts with peptide substrate residue Lys8 inside its binding site in Cyclin A molecule. Other predicted interaction showed piperine inside the hydrophobic groove of Bcl-xL. Confirming the docking simulation, in vitro assays with SFE (40 °C/30 MPa) showed cytotoxicity to MCF-7 cells (IC50 = 27.8 ± 6.8 μg/ml) correlated to increased apoptosis. Balb/c mice-bearing Ehrlich Ascites Carcinoma (EAC) group that received the SFE (100 mg/kg/day) showed tumor growth inhibition (60%) and increased mice survival (50%), probably related to cell cycle arrest (G2/M) and increased apoptosis. In vivo treatments with SFE increased the expression of pro-apoptotic proteins (p53 and Bax), inhibited cell cycle proteins (CDK2, Cyclin A) and anti-apoptotic protein (Bcl-xL). Thus, confirming in silico predicted inhibitory interactions. These results clearly showed promising performance of the piperine-rich fraction recovered from black pepper, drawing attention to its use as complementary therapy for cancer.
Collapse
Affiliation(s)
- Valdelúcia M A S Grinevicius
- Laboratório de Bioquímica Experimental, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Kátia S Andrade
- Laboratório de Termodinâmica e Extração Supercrítica, Departamento de Engenharia Química e Engenharia de Alimentos, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Nádia S R S Mota
- Laboratório de Bioquímica Experimental, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Lizandra C Bretanha
- Laboratório de Eletroforese Capilar, Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Karina B Felipe
- Laboratório de Fisiologia e Sinalização Celular, Universidade Federal Do Paraná, Curitiba, PR, Brazil
| | - Sandra R S Ferreira
- Laboratório de Termodinâmica e Extração Supercrítica, Departamento de Engenharia Química e Engenharia de Alimentos, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Rozangela C Pedrosa
- Laboratório de Bioquímica Experimental, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
46
|
ROS-Mediated Cancer Cell Killing through Dietary Phytochemicals. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9051542. [PMID: 31217841 PMCID: PMC6536988 DOI: 10.1155/2019/9051542] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) promote carcinogenesis by inducing genetic mutations, activating oncogenes, and raising oxidative stress, which all influence cell proliferation, survival, and apoptosis. Cancer cells display redox imbalance due to increased ROS level compared to normal cells. This unique feature in cancer cells may, therefore, be exploited for targeted therapy. Over the past few decades, natural compounds have attracted attention as potential cancer therapies because of their ability to maintain cellular redox homeostasis with minimal toxicity. Preclinical studies show that bioactive dietary polyphenols exert antitumor effects by inducing ROS-mediated cytotoxicity in cancer cells. These bioactive compounds also regulate cell proliferation, survival, and apoptotic and antiapoptotic signalling pathways. In this review, we discuss (i) how ROS is generated and (ii) regulated and (iii) the cell signalling pathways affected by ROS. We also discuss (iv) the various dietary phytochemicals that have been implicated to have cancer therapeutic effects through their ROS-related functions.
Collapse
|
47
|
Vurmaz A, Duman R, Sabaner MC, Ertekin T, Bilir A. Antioxidant effects of piperine in in-vivo chick embryo cataract model induced by steroids. Cutan Ocul Toxicol 2019; 38:182-189. [PMID: 30678496 DOI: 10.1080/15569527.2019.1570521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE The etiopathogenesis of steroid-induced cataracts is unknown. One hypothesis is that the higher reactive oxygen species (ROS) levels play an important role in the pathogenesis of several disorders, including the evolution of cataracts. This study investigated the antioxidant effects of piperine in our steroid-induced chick embryo lens model. METHODS The study included 36 specific pathogen-free (SPF) fertilized eggs divided into six groups: phosphate buffer saline (PBS, pH 7.4 Saline Solution (0.9%) isotonic) group (G1), hydrocortisone succinate sodium (HC)-treated group (G2), 100 mg/kg piperine and HC treated group (G3), 50 mg/kg piperine and HC treated group (G4), 25 mg/kg piperine and HC treated group (G5), and 10 mg/kg piperine and HC treated group (G6). On the 15th day of incubation, the SPF eggs in the six groups were removed from the incubator; all were injected using insulin injectors into the chorioallantoic membrane. On day 17, all of the chick embryos were removed from the eggs and all lenses were dissected from the embryos. Cataract formation was evaluated in all lenses, and total antioxidant status (TAS), total oxidant status (TOS), reduced glutathione (GSH), and lipid peroxidation (MDA, malondialdehyde) levels were measured in all lens. RESULTS The lenses in the G1 group had higher levels of GSH and TAS (p < 0.01), and lower levels of MDA and TOS than the G2 group (p < 0.05 and p < 0.01, respectively). Group 3 had higher levels of GSH and TAS (p < 0.001 and p < 0.001 respectively), and lower levels of MDA and TOS than the G2 group (p < 0.01 and p < 0.001, respectively). CONCLUSION Steroid therapy causes a decrease in GSH and TAS levels and an increase in TOS and MDA levels in lens tissues, indicating increased oxidative stress. Piperine exerts its effects as an antioxidant substance, in increasing doses.
Collapse
Affiliation(s)
- Ayhan Vurmaz
- a The Department of the Biochemistry , Afyonkarahisar Health Sciences University , Afyonkarahisar , Turkey
| | - Reşat Duman
- b The Department of the Ophthalmology , Afyonkarahisar Health Sciences University , Afyonkarahisar , Turkey
| | - Mehmet Cem Sabaner
- b The Department of the Ophthalmology , Afyonkarahisar Health Sciences University , Afyonkarahisar , Turkey
| | - Tolga Ertekin
- c The Department of the Anatomy , Afyonkarahisar Health Sciences University , Afyonkarahisar , Turkey
| | - Abdülkadir Bilir
- c The Department of the Anatomy , Afyonkarahisar Health Sciences University , Afyonkarahisar , Turkey
| |
Collapse
|
48
|
Quijia CR, Chorilli M. Characteristics, Biological Properties and Analytical Methods of Piperine: A Review. Crit Rev Anal Chem 2019; 50:62-77. [DOI: 10.1080/10408347.2019.1573656] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Christian Rafael Quijia
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
49
|
Li W, Qiu Y, Hao J, Zhao C, Deng X, Shu G. Dauricine upregulates the chemosensitivity of hepatocellular carcinoma cells: Role of repressing glycolysis via miR-199a:HK2/PKM2 modulation. Food Chem Toxicol 2018; 121:156-165. [PMID: 30171973 DOI: 10.1016/j.fct.2018.08.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 08/02/2018] [Accepted: 08/17/2018] [Indexed: 01/08/2023]
Abstract
Dauricine (Dau) is a natural alkaloid exhibiting anti-proliferative activity against several different types of malignant cell. However, effects of Dau on hepatocellular carcinoma (HCC) cells and the underlying molecular mechanisms have remained to be fully elucidated. In this study, we found that Dau elevated the sensitivities of HCC cells to chemotherapeutic reagents, including cisplatin, sorafenib, and isoliensinine. Moreover, Dau promoted apoptosis of HCC cells triggered by these chemotherapeutic reagents. Consistently, in a xenograft mouse model, Dau sensitized HCC cells to sorafenib. In HCC cells, Dau dose-dependently inhibited glucose glycolysis and increased oxidative phosphorylation. Mechanistically, Dau downregulated the expression of hexokinase 2 (HK2) and pyruvate kinase M2 (PKM2). HK2 and PKM2 can be directly targeted by miR-199a. Dau dose-dependently increased miR-199a expression in HCC cells. Transfection of anti-miR-199a abrogated Dau-mediated suppression of HK2 and PKM2. Dau-induced metabolic shift was thereby severely crippled by anti-miR-199a. In addition, the incremental activity of Dau on sorafenib sensitivity of HCC cells was diminished in response to the transfection of anti-miR-199a. Taken together, our findings provided novel insights into the impact of Dau on HCC cells and supported considering Dau as an adjuvant reagent in the clinical treatment of HCC.
Collapse
Affiliation(s)
- Wei Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074, PR China
| | - Yunhan Qiu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074, PR China
| | - Ji Hao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074, PR China
| | - Chi Zhao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074, PR China
| | - Xukun Deng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074, PR China
| | - Guangwen Shu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074, PR China.
| |
Collapse
|
50
|
Rather RA, Bhagat M. Cancer Chemoprevention and Piperine: Molecular Mechanisms and Therapeutic Opportunities. Front Cell Dev Biol 2018; 6:10. [PMID: 29497610 PMCID: PMC5818432 DOI: 10.3389/fcell.2018.00010] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/24/2018] [Indexed: 12/30/2022] Open
Abstract
Cancer is a genetic disease characterized by unregulated growth and dissemination of malignantly transformed neoplastic cells. The process of cancer development goes through several stages of biochemical and genetic alterations in a target cell. Several dietary alkaloids have been found to inhibit the molecular events and signaling pathways associated with various stages of cancer development and therefore are useful in cancer chemoprevention. Cancer chemoprevention has long been recognized as an important prophylactic strategy to reduce the burden of cancer on health care system. Cancer chemoprevention assumes the use of one or more pharmacologically active agents to block, suppress, prevent, or reverse the development of invasive cancer. Piperine is an active alkaloid with an excellent spectrum of therapeutic activities such as anti-oxidant, anti-inflammatory, immunomodulatory, anti-asthmatic, anti-convulsant, anti-mutagenic, antimycobacterial, anti-amoebic, and anti-cancer activities. In this article, we made an attempt to sum up the current knowledge on piperine that supports the chemopreventive potential of this dietary phytochemical. Many mechanisms have been purported to understand the chemopreventive action of piperine. Piperine has been reported to inhibit the proliferation and survival of many types of cancer cells through its influence on activation of apoptotic signaling and inhibition of cell cycle progression. Piperine is known to affect cancer cells in variety of other ways such as influencing the redox homeostasis, inhibiting cancer stem cell (CSC) self-renewal and modulation of ER stress and autophagy. Piperine can modify activity of many enzymes and transcription factors to inhibit invasion, metastasis, and angiogenesis. Piperine is a potent inhibitor of p-glycoprotein (P-gp) and has a significant effect on the drug metabolizing enzyme (DME) system. Because of its inhibitory influence on P-gp activity, piperine can reverse multidrug resistance (MDR) in cancer cells and acts as bioavailability enhancer for many chemotherapeutic agents. In this article, we emphasize the potential of piperine as a promising cancer chemopreventive agent and the knowledge we collected in this review can be applied in the strategic design of future researches particularly human intervention trials with piperine.
Collapse
|