1
|
Farooq J, Sultana R, Prabhu A, Kayarohanam S, Gupta G, Subramaniyan V. Mitigation of 5-Fluorouracil-Induced Nephrotoxicity: The Protective Role of Thymoquinone and Hesperidin <i>in vitro</i> and <i>in vivo</i>. NATURAL RESOURCES FOR HUMAN HEALTH 2025; 5:255-264. [DOI: 10.53365/nrfhh/203179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/21/2025] [Indexed: 05/04/2025]
Abstract
Anticancer medications often lead to organ toxicity, affecting patients’ quality of life. Phytochemical compounds like Thymoquinone (TQ) and Hesperidin (HESP) have shown promise in mitigating anticancer drug-induced toxicity. However, their ability to protect against nephrotoxicity produced by 5- Fluorouracil (5-FU) remains unexplored. To assess the protective efficacy of TQ, HESP, and their combination against nephrotoxicity induced by 5-FU in both <i>in vitro</i> and <i>in vivo</i> settings. Human Embryonic Kidney (HEK293) cells were subjected to various concentrations of 5-FU, TQ, and HESP, with cell viability assessed using the MTT assay. Apoptosis was evaluated through Acridine orange-Ethidium bromide dual staining (AO- EB). <i>In vivo</i> experiments utilized male Wistar albino rats, which received treatments of 5-FU alone, in combination with TQ, HESP, and both. Subsequent biochemical and histological analyses were conducted on serum and kidney tissue samples. <i>In vitro</i> studies revealed dose- dependent cytotoxicity of 5-FU, while TQ and HESP showed minimal toxicity. Combination treatment significantly improved cell viability compared to 5-FU alone. <i>In vivo</i> studies indicated that the administration of 5-FU resulted in elevated levels of serum creatinine and blood urea nitrogen (BUN), suggestive of kidney dysfunction, which were attenuated by TQ, HESP, or their combination. TQ and HESP also restored antioxidant enzyme activity and reduced inflammatory markers in kidney tissues. Histological analysis showed significant protection against 5-FU- induced renal damage with combination therapy. Our findings suggest that TQ and HESP, alone or in combination, possess protective effects against 5-FU-induced nephrotoxicity, possibly through antioxidant and anti-inflammatory mechanisms. These results highlight the potential of herbal medicines as adjunctive therapies to mitigate chemotherapy-induced organ toxicity and improve patient outcomes. Additional investigation is necessary to clarify the fundamental molecular mechanisms involved and to corroborate these findings in clinical contexts.
Collapse
|
2
|
Okpala OE, Rondevaldova J, Kokoska L. Anti-inflammatory drugs as potential antimicrobial agents: a review. Front Pharmacol 2025; 16:1557333. [PMID: 40264668 PMCID: PMC12011823 DOI: 10.3389/fphar.2025.1557333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/13/2025] [Indexed: 04/24/2025] Open
Abstract
The association and causal role of infectious agents in chronic inflammatory diseases have major implications for public health, treatment, and prevention. Pharmacological treatment of combined infectious and inflammatory diseases requires the administration of multiple drugs, including antibiotics and anti-inflammatory drugs. However, this can cause adverse effects, and therefore, dual-action drugs need to be developed. Anti-inflammatory drugs that have already shown antimicrobial properties appear to be promising candidates. NSAIDs, namely aceclofenac, diclofenac, and ibuprofen, were tested in clinical trials with patients diagnosed with uncomplicated urinary tract infections (UTIs) and cellulitis. The administration of ibuprofen, a drug tested in the highest number of studies, resulted in symptom resolution in patients with UTIs. Additionally, ibuprofen caused a high survival rate in mice infected with Pseudomonas aeruginosa and demonstrated potent in vitro antibacterial effects against Bacillus cereus, Escherichia coli, and Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA) (MIC 0.625-2.5 mg/L). For most anti-inflammatory drugs, only data showing their in vitro and in vivo antimicrobial effects are available. Among these, auranofin caused a high survival rate in mice infected with Enterococcus faecium, S. aureus, and Clostridioides difficile. It also produced a strong in vitro growth-inhibitory effect against Streptococcus agalactiae, S. pneumoniae, S. aureus, S. epidermidis, Bacillus subtilis, C. difficile, E. faecalis, E. faecium, and Mycobacterium tuberculosis (MIC 0.0015-5 mg/L). Similarly, aspirin caused a high survival rate in M. tuberculosis-infected mice and strong to moderate in vitro activity against E. coli, B. cereus, P. aeruginosa, Enterobacter aerogenes, Klebsiella pneumoniae and Salmonella choleraesuis (MIC 1.2-5 mg/L). Moreover, topical application of celecoxib resulted in a high reduction in MRSA burden in mice. However, it only caused moderate in vitro effects against S. epidermidis, S. aureus and Bacillus subitilis (MIC 16-64 mg/L). These data suggest that certain non-steroidal anti-inflammatory drugs (NSAIDs) are promising drug candidates for the development of dual-action drugs for the potential treatment of combined infectious and inflammatory diseases such as tuberculosis, musculoskeletal infections and UTIs. Nevertheless, future clinical trials must be conducted to ascertain the antibacterial effect of these NSAIDs before their practical use.
Collapse
Affiliation(s)
| | | | - Ladislav Kokoska
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
3
|
Kumar H, Dhalaria R, Kimta N, Guleria S, Upadhyay NK, Nepovimova E, Dhanjal DS, Sethi N, Manickam S. Curcumin: A Potential Detoxifier Against Chemical and Natural Toxicants. Phytother Res 2025; 39:1494-1530. [PMID: 39853860 DOI: 10.1002/ptr.8442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/05/2025] [Accepted: 01/11/2025] [Indexed: 01/26/2025]
Abstract
The human body gets exposed to a variety of toxins intentionally or unintentionally on a regular basis from sources such as air, water, food, and soil. Certain toxins can be synthetic, while some are biological. The toxins affect the various parts of the body by activating numerous pro-inflammatory markers, like oxidative stresses, that tend to disturb the normal function of the organs ultimately. Nowadays, people use different types of herbal treatments, viz., herbal drinks that contain different spices for detoxification of their bodies. One such example is turmeric, the most commonly available spice in the kitchen and used across all kinds of households. Turmeric contains curcumin, which is a natural polyphenol. Curcumin is a medicinal compound with different biological activities, such as antioxidant, antineoplastic, anti-inflammatory, and antibacterial. Hence, this review gives a comprehensive insight into the promising potential of curcumin in the detoxification of heavy metals, carbon tetrachloride, drugs, alcohol, acrylamide, mycotoxins, nicotine, and plastics. The review encompasses diverse animal-based studies portraying curcumin's role in nullifying the different toxic effects in various organs of the body (especially the liver, kidney, testicles, and brain) by enhancing defensive signaling pathways, improving antioxidant enzyme levels, inhibiting pro-inflammatory markers activities and so on. Furthermore, this review also argues over curcumin's safety assessment for its utilization as a detoxifying agent.
Collapse
Affiliation(s)
- Harsh Kumar
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Neetika Kimta
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Shivani Guleria
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala, India
| | | | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Centre for Advanced Innovation Technologies, VSB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Nidhi Sethi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Sivakumar Manickam
- Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei
| |
Collapse
|
4
|
Safi A, Mohammadi S, Emami M, Radaei A, Kalantari-Hesari A, Nouri A, Rahimi-Madiseh M, Ahmadi R. Thymoquinone mitigates diclofenac-induced hepatorenal toxicity in male Wistar rats by balancing the redox state and modulating Bax/Bcl-2/caspase-3 apoptotic pathways and NF-κB signaling. Res Pharm Sci 2025; 20:95-108. [PMID: 40190828 PMCID: PMC11972026 DOI: 10.4103/rps.rps_141_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/24/2024] [Accepted: 11/09/2024] [Indexed: 04/09/2025] Open
Abstract
Background and purpose Diclofenac (DF), a widely used non-steroidal anti-inflammatory drug, can induce hepatotoxicity and nephrotoxicity. This study investigated the protective effects of thymoquinone (TQ), a bioactive compound from Nigella sativa, against DF-induced organ damage in rats. Experimental approach Forty-eight male rats were divided into six groups (8 each) and treated orally for seven days as follows: group 1 (control): normal saline; group 2: DF (50 mg/kg); group 3: DF (50 mg/kg) + silymarin (50 mg/kg); groups 4-6: DF (50 mg/kg) + TQ at 10, 20, or 40 mg/kg, respectively. Serum biochemical parameters, hepatorenal oxidative stress markers, pro-inflammatory cytokines, and apoptosis-related genes were assessed. Histopathological examinations of liver and kidney tissues were also performed. Findings/Results DF administration induced significant liver and kidney damage, evidenced by elevated serum biochemical markers, increased oxidative stress, inflammation, apoptosis-related gene expression, and histopathological alterations. TQ treatment, particularly at the highest dose (40 mg/kg) effectively attenuated these changes. TQ improved liver and kidney function, reduced oxidative stress markers, suppressed inflammation, modulated apoptosis-related gene expression, and ameliorated histopathological damage. Conclusion and implication TQ exerted significant protective effects against DF-induced hepatorenal toxicity in rats, potentially through its antioxidant, anti-inflammatory, and anti-apoptotic properties. These findings suggest that TQ may be a promising therapeutic agent for mitigating DF-induced organ damage. However, further research, including clinical trials, is needed to confirm its efficacy and safety in humans.
Collapse
Affiliation(s)
- Amir Safi
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shakila Mohammadi
- Department of Biology, Faculty of Sciences, Urmia University, Urmia, Iran
| | - Mina Emami
- Department of Biology, Yazd University, Yazd, Iran
| | - Alireza Radaei
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Ali Kalantari-Hesari
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Ali Nouri
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Rahimi-Madiseh
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Reza Ahmadi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
5
|
Osanai K, Aoki S, Otsuka C, Watanabe H, Hikichi H, Terukina T, Kondo H. Effect of Fluid Paraffin on the Formulation Properties of Pressure Sensitive Adhesive Formulations Containing Diclofenac Sodium. AAPS PharmSciTech 2024; 25:244. [PMID: 39407002 DOI: 10.1208/s12249-024-02959-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Understanding the relationship between the release characteristics of the active ingredient in the tape formulation and the pharmaceutical characteristics of the adhesive layer can optimize therapeutic efficacy and improve patient adherence. This study aimed to clarify the effect of liquid paraffine (LP)/styrene-isoprene-styrene (SIS) triblock copolymer ratio on pressure-sensitive adhesive (PSA) formulation properties, such as adhesive properties and drug release, with a certain amount of diclofenac sodium (DFS) and tackifier. The effects of changes in PSA composition in DFS-containing tape formulations on adhesive and drug release properties were evaluated. The viscoelasticity results showed rigid gel-like behavior at low angular frequencies regardless of the LP/SIS ratio, and deformable gel-like behavior at high angular frequencies, with a maximum plasticizing effect of LP up to an LP/SIS ratio of 3.7. The peel adhesion test results showed that peel adhesion was not affected, but indicated a decreasing trend by increasing the LP/SIS ratio in the presence of DFS. Drug release test results showed that DFS release increased up to 24 h for LP/SIS ratios of up to 3.7, but decreased when the LP/SIS ratio was 6. The results of the drug permeation tests were similar to those of the drug release tests. In conclusion, it is possible to change the drug release properties by changing the amount of LP in the tape formulation; however, no definitive correlation was found between the adhesive and drug release properties.
Collapse
Affiliation(s)
- Kaede Osanai
- Department of Pharmaceutical Engineering and Drug Delivery Science, Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka-Shi, Shizuoka, 422-8526, Japan
| | - Shunsuke Aoki
- Department of Pharmaceutical Engineering and Drug Delivery Science, Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka-Shi, Shizuoka, 422-8526, Japan
| | - Chihiro Otsuka
- Department of Pharmaceutical Engineering and Drug Delivery Science, Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka-Shi, Shizuoka, 422-8526, Japan
| | - Hirotaka Watanabe
- Department of Resarch, Division of Resarch & Development, Dojin Iyaku-Kako Co., Ltd., 8-1, Higashi Nakakawara, Senoue-Machi, Fukushima-Shi, Fukushima, 960-0101, Japan
| | - Haruhiko Hikichi
- Department of Resarch, Division of Resarch & Development, Dojin Iyaku-Kako Co., Ltd., 8-1, Higashi Nakakawara, Senoue-Machi, Fukushima-Shi, Fukushima, 960-0101, Japan
| | - Takayuki Terukina
- Department of Pharmaceutical Engineering and Drug Delivery Science, Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka-Shi, Shizuoka, 422-8526, Japan
| | - Hiromu Kondo
- Department of Pharmaceutical Engineering and Drug Delivery Science, Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka-Shi, Shizuoka, 422-8526, Japan.
| |
Collapse
|
6
|
Attia H, Badr A, Alshehri O, Alsulaiman W, Alshanwani A, Alshehri S, Arafa M, Hasan I, Ali R. The Protective Effects of Vitamin B Complex on Diclofenac Sodium-Induced Nephrotoxicity: The Role of NOX4/RhoA/ROCK. Inflammation 2024; 47:1600-1615. [PMID: 38413451 DOI: 10.1007/s10753-024-01996-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/04/2024] [Accepted: 02/19/2024] [Indexed: 02/29/2024]
Abstract
Diclofenac sodium (DIC) is a widely used non-steroidal anti-inflammatory drug. Unfortunately, its prolonged use is associated with nephrotoxicity due to oxidative stress, inflammation, and fibrosis. We aimed to investigate the nephroprotective effects of vitamin B complex (B1, B6, B12) against DIC-induced nephrotoxicity and its impact on NOX4/RhoA/ROCK, a pathway that plays a vital role in renal pathophysiology. Thirty-two Wistar rats were divided into four groups: (1) normal control; (2) vitamin B complex (16 mg/kg B1, 16 mg/kg B6, 0.16 mg/kg B12, intraperitoneal); (3) DIC (10 mg/kg, intramuscular); and (4) DIC plus vitamin B complex group. After 14 days, the following were assayed: serum renal biomarkers (creatinine, blood urea nitrogen, kidney injury molecule-1), oxidative stress, inflammatory (tumor necrosis factor-α, interleukin-6), and fibrotic (transforming growth factor-β) markers as well as the protein levels of NOX4, RhoA, and ROCK. Structural changes, inflammatory cell infiltration, and fibrosis were detected using hematoxylin and eosin and Masson trichrome stains. Compared to DIC, vitamin B complex significantly decreased the renal function biomarkers, markers of oxidative stress and inflammation, and fibrotic cytokines. Glomerular and tubular damage, inflammatory infiltration, and excessive collagen accumulation were also reduced. Protein levels of NOX4, RhoA, and ROCK were significantly elevated by DIC, and this elevation was ameliorated by vitamin B complex. In conclusion, vitamin B complex administration could be a renoprotective approach during treatment with DIC via, at least in part, suppressing the NOX4/RhoA/ROCK pathway.
Collapse
Affiliation(s)
- Hala Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box: 2454, Riyadh, 11495, Saudi Arabia.
| | - Amira Badr
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box: 2454, Riyadh, 11495, Saudi Arabia
| | - Orjuwan Alshehri
- College of Pharmacy, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Waad Alsulaiman
- College of Pharmacy, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Aliah Alshanwani
- Department of Physiology, College of Medicine, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Samiyah Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box: 2454, Riyadh, 11495, Saudi Arabia
| | - Maha Arafa
- Pathology Department, College of Medicine, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Iman Hasan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box: 2454, Riyadh, 11495, Saudi Arabia
| | - Rehab Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box: 2454, Riyadh, 11495, Saudi Arabia
| |
Collapse
|
7
|
Mazloumi Jourkouyeh E, Taslimi Eshkalak M, Faezi Ghasemi M, Zahmatkesh H, Rasti B, Zamani H. Diclofenac Sodium and Gentamicin Co-Encapsulated PLGA Nanoparticles: Targeting Extracellular Matrix Components to Combat Biofilm Formation in Pseudomonas aeruginosa PAO1. J CLUST SCI 2024; 35:2475-2488. [DOI: 10.1007/s10876-024-02675-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/23/2024] [Indexed: 01/05/2025]
|
8
|
Chen J, Mu W, Chang C. In-situ construct CuInS 2/Bi/Bi 2MoO 6 S-scheme/Schottky dual heterojunctions catalyst for enhanced photocatalytic degradation of diclofenac sodium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124077. [PMID: 38705447 DOI: 10.1016/j.envpol.2024.124077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/07/2024]
Abstract
In this paper, the S-scheme/Schottky heterojunction photocatalyst (CuInS2/Bi/Bi2MoO6, CIS/Bi/BMO) was successfully constructed via a facile in-situ solvothermal method, aimed at enhancing its photocatalytic performance. The results of the study on the photocatalytic degradation of diclofenac sodium (DCF) under simulated solar light irradiation revealed that the as-prepared composite exhibited remarkable catalytic efficiency in comparison to the pristine Bi2MoO6 and CuInS2. The plasmonic bismuth (Bi) was formed during the solvothermal process. Subsequently, CuInS2 and Bi were grown on the surface of Bi2MoO6 leading to forming CIS/BMO S-scheme heterojunction, along with a Schottky junction between Bi and Bi2MoO6. The use of ethylene glycol as a support was the main reason for the significant improvement in photocatalytic efficiency in the degradation of DCF. Moreover, the probable photocatalytic mechanisms for the degradation of DCF had been proposed based on the active species quenching experiments. The eleven degradation products were detected by HPLC-MS, and the degradation reaction pathway of DCF was deduced. Additionally, the CIS/Bi/BMO photocatalyst exhibited a consistently high removal rate after four cycles. This study proposes a new strategy for designing efficient S-scheme/Schottky heterojunction photocatalysts for solar energy conversion.
Collapse
Affiliation(s)
- Junlin Chen
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Weina Mu
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China
| | - Chun Chang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China; College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China.
| |
Collapse
|
9
|
Shaban NZ, El Swify LA, Abu-Serie MM, Maher AM, Habashy NH. A comparative study on the protective effects of cuminaldehyde, thymoquinone, and gallic acid against carbon tetrachloride-induced pulmonary and renal toxicity in rats by affecting ROS and NF-κB signaling. Biomed Pharmacother 2024; 175:116692. [PMID: 38701569 DOI: 10.1016/j.biopha.2024.116692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024] Open
Abstract
CCl4 toxicity is a fatal condition that can cause numerous organ dysfunctions. We evaluated and compared the protective effects of cuminaldehyde (CuA), thymoquinone (TQ), and gallic acid (GA) on CCl4-induced pulmonary and renal toxicity in rats. The impacts of these compounds on CCl4-induced oxidative stress, inflammation, and morphological alterations were examined. The results showed that the compounds under investigation prevented CCl4 from significantly increasing pulmonary and renal lipid peroxidation and NO levels, as well as massively depleting GSH levels and GPX and SOD activities. Moreover, they suppressed the CCl4-induced increase in mucus secretion in the lung and upregulated the gene expression of pulmonary and renal NF-ҡB, iNOS, TNF-α, and COX-2. The heatmap cluster plots showed that GA and TQ had better protective potencies than CuA. The external organ morphology, histopathological results, and chest X-ray analysis confirmed the toxicity of CCl4 and the protective influences of the tested compounds in both the lungs and kidneys of rats. These compounds displayed predicted competitive inhibitory effects on iNOS activity and may block the IL-13α2 receptor, as revealed by molecular docking analysis. Thus, CuA, TQ, and GA, particularly the latter two, are prospective protective compounds against the pulmonary and renal toxicity caused by CCl4.
Collapse
Affiliation(s)
- Nadia Z Shaban
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Lamiaa A El Swify
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering, and Biotechnology Research Institute, City for Scientific Research and Technology Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt
| | - Adham M Maher
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Noha H Habashy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
10
|
He J, Wang Y, Xie X, Qi K, Yuan Y, Dong W, Wang Z. N-CQDs modified BiOBr with different nitrogen configurations synthesized from different precursors for efficient photocatalytic degradation of carbamazepine. Sep Purif Technol 2024; 335:126124. [DOI: 10.1016/j.seppur.2023.126124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
11
|
Birdane YO, Atik H, Atik O, Aslan R. Mandarin peel ethanolic extract attenuates diclofenac sodium induced hepatorenal toxicity in rats by mitigating oxidative stress and inflammation. Drug Chem Toxicol 2024; 47:180-190. [PMID: 36541068 DOI: 10.1080/01480545.2022.2158848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/10/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) constitute approximately one-third of the global pharmaceutical market and are the first drugs of choice when treating fever and pain. Furthermore, among NSAIDs, the use of diclofenac sodium (DS) is preferred as it is a strong inhibitor of cyclooxygenase enzyme. However, despite its strong efficacy, DS is known for its potential to cause hepatorenal damage. Currently, to mitigate the adverse effects of certain drugs, medically effective agricultural products are often preferred as they are inexpensive, effective and safe. One such agricultural product-mandarin-is noteworthy for its high phenolic contents. The purpose of the present study was to assess the efficacy of mandarin peel ethanolic extract (MPEE) in protecting against hepatorenal damage induced by DS. Four groups (six/group) of adult male albino rats received oral administration of physiological saline (control group), DS (10 mg/kg body weight), MPEE (200 mg/kg body weight), and DS + MPEE for 7 days. Rats in the DS group showed increased serum levels of ALT, AST, ALP, BUN, CRE, and UA. Furthermore, the hepatic and renal tissue levels of MDA, TNF-α and IL-1β increased, whereas those of GSH, SOD, GP-x and IL-10 decreased (p < 0.05). Investigation of MPEE in terms of its effects on biochemical, oxidative and inflammatory parameters, it exerted protective and healing effects. Therefore, MPEE can be used to ameliorate DS-induced hepatorenal damage.
Collapse
Affiliation(s)
- Yavuz Osman Birdane
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Afyon Kocatepe, Afyonkarahisar, Turkey
| | - Hülya Atik
- Department of Physiology, Faculty of Veterinary Medicine, University of Afyon Kocatepe, Afyonkarahisar, Turkey
| | - Orkun Atik
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Afyon Kocatepe, Afyonkarahisar, Turkey
| | - Recep Aslan
- Department of Physiology, Faculty of Veterinary Medicine, University of Afyon Kocatepe, Afyonkarahisar, Turkey
| |
Collapse
|
12
|
Bibi M, Rashid J, Siddiqa A, Xu M. The mechanism and reaction kinetics of visible light active bismuth oxide deposited on titanium vanadium oxide for aqueous diclofenac photocatalysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23228-23246. [PMID: 38413524 DOI: 10.1007/s11356-024-32477-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/10/2024] [Indexed: 02/29/2024]
Abstract
Non-uniform, non-spherical bismuth oxide deposited on titanium vanadium oxide (3%-BVT1) was successfully synthesized via co-precipitation method and assessed for visible light degradation of aqueous diclofenac. The synthesized photocatalysts were characterized using X-ray diffraction, diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and high-resolution transmission electron microscopy. Up to 80.7% diclofenac degradation was observed with a significant increment in reaction rate compared to commercially available Degussa P25 (kapp = 0.0013 → 0.0083 min-1) achieved within 3 h treatment time under optimized parameters of diclofenac concentration (10 mg L-1), catalyst loading (0.1 g L-1), and pH (5). The enhanced photocatalysis could be due to electron-hole separation and contribution of powerful oxidative species •OH > O2•- > h+ > > e-. The recyclability experiments indicate that 3%-BVT1 retained its efficiency up to 74.1% over five reaction cycles. Gas chromatography-mass spectrometry analysis indicated the formation of several transformation products during the degradation pathway. The studies of interfering ions depicted mild interference by sulfates, while interference by phosphates and nitrates was negligible during photocatalytic process, i.e., 70, 78.01, and 78.43% for the selected concentrations of 50, 25, and 40 mg L-1 as per their maximum concentrations detected in the natural wastewaters. Thus, 3%-BVT1 is a potential versatile candidate to treat various organic pollutants including pharmaceuticals.
Collapse
Affiliation(s)
- Mehmooda Bibi
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Jamshaid Rashid
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
- BNU-HKUST Laboratory for Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, China.
| | - Asima Siddiqa
- National Centre for Physics, Quaid-I-Azam University Complex, Islamabad, 45320, Pakistan
| | - Ming Xu
- BNU-HKUST Laboratory for Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, China
| |
Collapse
|
13
|
Darijani MH, Aminzadeh A, Rahimi HR, Mandegary A, Heidari MR, Karami-Mohajeri S, Jafari E. Evaluating the protective effect of metformin against diclofenac-induced oxidative stress and hepatic damage: In vitro and in vivo studies. Biochem Biophys Res Commun 2023; 685:149168. [PMID: 37907013 DOI: 10.1016/j.bbrc.2023.149168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023]
Abstract
Diclofenac (DIC) is one of the most commonly prescribed non-steroidal anti-inflammatory drugs and has been shown to cause oxidative stress and liver injury. The current study investigated protective effects of metformin against DIC-induced hepatic toxicity in both in vitro and in vivo models. For the in vitro study, HepG2 cells were exposed to DIC in the presence or absence of metformin. The effect of metformin on cell viability was evaluated by MTT assay. Oxidative stress parameters (malondialdehyde (MDA), total thiol molecules (TTM), and total antioxidant capacity (TAC)) were assessed. For the in vivo study, thirty-six male Wistar rats were randomly divided into 6 groups. These groups were normal saline, metformin (200 mg/kg), DIC (50 mg/kg/day), DIC + metformin (50, 100, and 200 mg/kg/day). Histopathological studies and serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), albumin, direct and total bilirubin were measured. Also, oxidative stress parameters were assessed in liver tissue. Furthermore, expression of glutathione peroxidase (GPX)-1, -3, and -4, catalase (CAT), superoxide dismutase (SOD)-1, and -3 was examined using the real-time PCR method in hepatic tissue. In the in vitro study, metformin significantly prevented DIC-induced loss in cell viability in HepG2 cells. Metformin markedly reduced DIC-induced elevation of MDA levels and increased the TAC and TTM levels. In the in vivo study, metformin significantly prevented DIC-induced changes in hematological and histological markers. Administration of metformin significantly improved oxidative stress parameters in liver tissue. In addition, metformin increased the expression of antioxidant enzymes. Our results suggest that metformin exerts a significant protective effect against DIC-induced hepatic toxicity.
Collapse
Affiliation(s)
- Mohammad Hossein Darijani
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Azadeh Aminzadeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| | - Hamid-Reza Rahimi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Mandegary
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahmoud-Reza Heidari
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Somayyeh Karami-Mohajeri
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Jafari
- Pathology and Stem Cell Research Center, Department of Pathology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
14
|
Tureyen A, Demirel HH, Demirkapi EN, Eryavuz AM, Ince S. Tubuloside A, a phenylethanoid glycoside, alleviates diclofenac induced hepato-nephro oxidative injury via Nrf2/HO-1. J Cell Mol Med 2023; 27:3404-3413. [PMID: 37772986 PMCID: PMC10623516 DOI: 10.1111/jcmm.17968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 09/30/2023] Open
Abstract
The most prominent adverse effects of nonsteroidal anti-inflammatory drugs (NSAIDs) such as diclofenac (DF) are hepato-renal damage. Natural antioxidants can be preferred as an alternative and/or combination to improve this damage. This present study was conducted to evaluate the protective effect of Tubuloside A (TA) against diclofenac (DF)-induced hepato-renal damage. TA (1 mg/kg, ip) was administered to male Sprague-Dawley rats for 5 days, and DF (50 mg/kg, ip) was administered on Days 4 and 5. Plasma aspartate amino transferase, alanine amino transferase, alkaline phosphatase, blood urea nitrogen and creatinine were measured to evaluate liver and kidney functions. Additionally, oxidative stress parameters (malondialdehyde, glutathione, superoxide dismutase, catalase, and 8-oxo-7,8-dihydro-2'-deoxyguanosine) in blood, liver, and kidney tissues, changes in mRNA expression of genes involved in the Nrf2/HO-1 signalling pathway (Nrf2, HO-1, NQO-1, IL-6, iNOS, Cox-2, TNF-α, IL1-β and NFκB) and apoptotic process (Bcl-2, Cas-3 and Bax) in liver and kidney tissues were determined. Additionally, tissue sections were evaluated histopathologically. Biochemical, histopathological, and molecular results demonstrated the hepato-renal toxic effects of DF, and TA treatment protected the liver and kidney from DF-induced damage. This provides an explanation for the hepato-nephro damage caused by DF and offers new ideas and drug targets together with TA for the prevention and treatment of DF injury.
Collapse
Affiliation(s)
- Ali Tureyen
- Department of GastroenterologyMinistry of Health Eskisehir City HospitalEskisehirTurkey
| | | | - Ezgi Nur Demirkapi
- Faculty of Veterinary Medicine, Department of PhysiologyAfyon Kocatepe UniversityAfyonkarahisarTurkey
| | - Azra Mila Eryavuz
- Department of Biochemistry, Faculty of Veterinary MedicineAfyon Kocatepe UniversityAfyonkarahisarTurkey
| | - Sinan Ince
- Department of Pharmacology and Toxicology, Faculty of Veterinary MedicineAfyon Kocatepe UniversityAfyonkarahisarTurkey
| |
Collapse
|
15
|
Mendoza-Fernández PD, Silva-Correa CR, Torre VEVL, Aspajo-Villalaz CL, Calderón-Peña AA, Rosario-Chávarri JD. Hepatoprotective and nephroprotective effects of Tessaria integrifolia Ruiz and Pav. on diclofenac-induced toxicity in rats. Vet World 2023; 16:1933-1939. [PMID: 37859960 PMCID: PMC10583873 DOI: 10.14202/vetworld.2023.1933-1939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/25/2023] [Indexed: 10/21/2023] Open
Abstract
Background and Aim Tessaria integrifolia Ruiz and Pav. (also known as "Pájaro bobo") is known for its medicinal properties, including antiulcer, antiasthmatic, leishmanicidal, antipyretic, antispasmodic, diuretic, anti-inflammatory, analgesic, and hepatoprotective effects. Therefore, we aimed to evaluate its hepatoprotective and nephroprotective effects using a rat model of diclofenac-induced toxicity. Materials and Methods We administered three different doses of the methanolic extract of T. integrifolia (100, 200, and 400 mg/kg/day orally) and compared them with the commercial medicine silymarin (100 mg/kg orally). The rats received the T. integrifolia extracts for 5 days, and on days 3 and 4, 1 h after receiving the extracts, diclofenac was administered intraperitoneally at a dose of 50 mg/kg. The animals were euthanized 48 h after the last diclofenac injection, and blood samples were obtained to measure biochemical parameters related to liver and kidney function, such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), bilirubin, cholesterol, triglycerides, creatinine, and urea. Kidney and liver tissues were preserved in 10% formaldehyde and sent for histopathological analysis. Results The results show that T. integrifolia has hepatoprotective and nephroprotective effects. These effects are verified by the lower blood levels of ALT, AST, urea, and creatinine compared to the diclofenac group, which exhibited elevated biochemical parameters. In addition, histopathological analysis showed that the groups that received T. integrifolia did not display necrosis or infiltration, which were observed in the diclofenac group. Conclusion The methanolic extract of T. integrifolia has hepatoprotective and nephroprotective effects, with the highest protective activity observed at a dose of 400 mg/kg/day.
Collapse
Affiliation(s)
| | - Carmen R. Silva-Correa
- Department of Pharmacology, Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Perú
| | | | - Cinthya L. Aspajo-Villalaz
- Department of Biological Chemistry and Animal Physiology, Facultad de Ciencias Biológicas, Universidad Nacional de Trujillo, Perú
| | - Abhel A. Calderón-Peña
- Department of Biological Chemistry and Animal Physiology, Facultad de Ciencias Biológicas, Universidad Nacional de Trujillo, Perú
| | - Jorge Del Rosario-Chávarri
- Department of Biological Chemistry and Animal Physiology, Facultad de Ciencias Biológicas, Universidad Nacional de Trujillo, Perú
| |
Collapse
|
16
|
Soliman MM, Elshehawei AM, Althobaiti S, Sayed SM. Protective impacts of Withania somnifera leaf extract from Taif area against diclofenac induced hepato-renal toxicity: role of antioxidants, inflammation, apoptosis, and anti-oxidative stress biomarkers. Toxicol Res (Camb) 2023; 12:685-692. [PMID: 37663806 PMCID: PMC10470349 DOI: 10.1093/toxres/tfad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/24/2023] [Accepted: 07/05/2023] [Indexed: 09/05/2023] Open
Abstract
Current study examined the boosting impacts of Withania somnifera leaf extract from Taif area (high-altitude area) against hepatic and renal toxicity induced by diclofenac in experimental rats. Withania is highly grown on Taif area as environmental herb with multiple functions. Diclofenac is non-steroidal medication used for treatment of pain but over dose has severe side effects. Thirty-two adult Wistar rats of male type were subdivided into 4 groups. The control rats (group 1) received saline. Second group received diclofenac (50 mg/kg BW intraperitoneally) at days 4 and 5. Third group received W. somnifera leaf extract (250 mg /kg body weight) for 6 days. The fourth protective group, received W. somnifera leaf extract plus diclofenac for 6 days as shown in groups 2 and 3. Diclofenac significantly increased serum AST, ALT, and decreased albumin and total proteins levels. It also increased serum concentrations of uric acid and creatinine. In addition, it increased lipid peroxidation, and decreased reduced glutathione and superoxide dismutase levels. Diclofenac increased inflammatory cytokines secretion and up-regulated hepatic oxidative stress genes (HO-1; hemoxygenase-1 and Nrf2nuclear factor erythroid 2-related factor 2 (Nrf2) and renal inflammatory transcriptional markers (TGF-β1; transforming growth factor-beta1 and COX-2; cycloxygenas-2). In parallel, hepatic caspase-3 expression was up-regulated as an apoptotic marker, while Bcl2; (B-cell lymphoma 2) mRNA expression was down regulated as anti-apoptotic marker. W. somnifera pre-administration in the protective group ameliorated the altered parameters induced by diclofenac. In conclusion, W. somnifera leaf extract has the potential to antagonize side effects of diclofenac by regulating the pathways of oxidative stress, inflammation, and apoptosis/antiapoptosis.
Collapse
Affiliation(s)
- Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed M Elshehawei
- Department of Bitechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Saed Althobaiti
- Biology Department, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Samy M Sayed
- Department of Science and Technology, University College-Ranyah, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
17
|
Anwar MM, Laila IMI. Mitigative effect of caffeine against diclofenac-induced hepato-renal damage and chromosomal aberrations in male albino rats. BMC Complement Med Ther 2022; 22:327. [PMID: 36482339 PMCID: PMC9732991 DOI: 10.1186/s12906-022-03802-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Among the most commonly consumed non-steroidal anti-inflammatory drugs (NSAID) is Diclofenac (Dic), especially in low-income countries due to its high efficiency and affordable price. However, the continuous administration of Diclofenac may induce toxic effects on various body organs including the liver and kidney. Caffeine (Caf) (1,3,7-trimethylxanthine) is a pharmacologically active alkaloid type with antioxidant and anti-inflammatory actions. AIM The current study aims to evaluate the ameliorative effect of Caffeine against Dic-induced hepato-renal toxicity and damage. METHODS Twenty-four male albino rats type were assigned randomly into four groups (n = 6): (Group 1): Control group, (Group 2): Six male rats were exposed to Dic 10 mg/kg intraperitoneally (I.P) for 28 days, (Group 3): Six male rats were exposed to Caf (15 mg/kg orally) for 28 days; (Groups 4): Six male rats were exposed to Dic (10 mg/kg, i.p) + Caf (15 mg/kg, orally) for 28 days. Histopathological study and various biological parameters were estimated among the four groups including hemoglobin (Hb%) red blood cells (RBCs), Hematocrit (HT%), total leucocyte count (WBCs), lipid peroxidation (LPO), glutathione peroxidase (GPx), alanine aminotransferase (ALT), aspartate aminotransferase (AST), urea, creatinine, tumor necrosis factor-α (TNF-α), and nitric oxide (NO). RESULTS The administration of Diclofenac resulted in significant deteriorations in the histopathological findings and estimated biological parameters. Whereas, daily Caffeine administration ameliorated Diclofenac-induced toxicity in the kidney and liver by three mechanisms including antioxidant, anti-inflammatory, and DNA damage inhibition. CONCLUSION The current study demonstrated the promising ameliorative and protective effects of Caffeine against Diclofenac-induced hepatic and renal injury.
Collapse
Affiliation(s)
- Mai M. Anwar
- grid.419698.bDepartment of Biochemistry, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Cairo, Egypt ,grid.419698.bNational Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Cairo, Egypt
| | - Ibrahim M. Ibrahim Laila
- grid.419698.bDepartment of Biotechnology & Molecular drug evaluation, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Cairo, Egypt
| |
Collapse
|
18
|
Gaurav, Khan MU, Basist P, Zahiruddin S, Ibrahim M, Parveen R, Krishnan A, Ahmad S. Nephroprotective potential of Boerhaavia diffusa and Tinospora cordifolia herbal combination against diclofenac induced nephrotoxicity. SOUTH AFRICAN JOURNAL OF BOTANY 2022; 151:238-247. [DOI: 10.1016/j.sajb.2022.01.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
19
|
The nephroprotective effect of ellagic acid against diclofenac-induced renal injury in male rats: role of Nrf2/HO-1 and NF-κB/TNF-α pathways. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
20
|
Development and Challenges of Diclofenac-Based Novel Therapeutics: Targeting Cancer and Complex Diseases. Cancers (Basel) 2022; 14:cancers14184385. [PMID: 36139546 PMCID: PMC9496891 DOI: 10.3390/cancers14184385] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Diclofenac is a widely used drug for its anti-inflammatory and pain alleviating properties. This review summarizes the current understanding about the drug diclofenac. The potential applications of diclofenac beyond its well-known anti-inflammatory properties for other diseases such as cancer are discussed, along with existing limitations. Abstract Diclofenac is a highly prescribed non-steroidal anti-inflammatory drug (NSAID) that relieves inflammation, pain, fever, and aches, used at different doses depending on clinical conditions. This drug inhibits cyclooxygenase-1 and cyclooxygenase-2 enzymes, which are responsible for the generation of prostaglandin synthesis. To improve current diclofenac-based therapies, we require new molecular systematic therapeutic approaches to reduce complex multifactorial effects. However, the critical challenge that appears with diclofenac and other drugs of the same class is their side effects, such as signs of stomach injuries, kidney problems, cardiovascular issues, hepatic issues, and diarrhea. In this article, we discuss why defining diclofenac-based mechanisms, pharmacological features, and its medicinal properties are needed to direct future drug development against neurodegeneration and imperfect ageing and to improve cancer therapy. In addition, we describe various advance molecular mechanisms and fundamental aspects linked with diclofenac which can strengthen and enable the better designing of new derivatives of diclofenac to overcome critical challenges and improve their applications.
Collapse
|
21
|
Izak-Shirian F, Najafi-Asl M, Azami B, Heidarian E, Najafi M, Khaledi M, Nouri A. Quercetin exerts an ameliorative effect in the rat model of diclofenac-induced renal injury through mitigation of inflammatory response and modulation of oxidative stress. EUR J INFLAMM 2022; 20. [DOI: 10.1177/1721727x221086530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
Diclofenac (DIC) is administrated to treat pain, inflammatory disorders, and dysmenorrhea but kidney problems are the main worries of the agent. The literature has revealed that quercetin (QR) has anti-inflammatory and antioxidant attributes. This study aims to highlight the possible nephroprotective effects of QR on DIC-exposed rats. In this study, the animals after exposure to DIC (50 mg/kg, i.p) were administrated to QR (100 mg/kg, p.o). Then, the levels, as well as the activity of several oxidant and anti-oxidant mediators, were evaluated. Our results showed that DIC treatment was coupled with the elevation in the levels of malondialdehyde (MDA), nitric oxide (NO), and some pro-inflammatory factors such as TNF-α, NF-κB, and IL-1β, suggesting that probably this agent exert its toxicity in the kidney tissue through inducing both oxidative stress and inflammation. Interestingly, QR was successful in restoring the activity of antioxidant compounds such as GSH, GPx, SOD, and CAT in the kidney tissue of DIC-treated rats. Moreover, in the presence of QR, DIC was unable to increase the expression of pro-inflammatory cytokines, suggesting that perhaps QR might have anti-inflammatory properties. In agreement with this, the results of the histopathological evaluation also showed that while DIC increased the lymphocyte infiltration into the kidney tissue, QR reduced the number of lymphocytes in DIC-treated rats. The results revealed that QR exerted a supportive effect against diclofenac-induced renal injury in male rats through modulation of oxidative stress and mitigation of inflammatory response.
Collapse
Affiliation(s)
- Farzad Izak-Shirian
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Najafi-Asl
- Department of Phathobiology, Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Behzad Azami
- School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Esfandiar Heidarian
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Najafi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mansoor Khaledi
- Department of Medical Microbiology, Faculty of Medicine, Shahed University of Medical Science, Tehran, Iran
| | - Ali Nouri
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
22
|
Alorabi M, Cavalu S, Al-Kuraishy HM, Al-Gareeb AI, Mostafa-Hedeab G, Negm WA, Youssef A, El-Kadem AH, Saad HM, Batiha GES. Pentoxifylline and berberine mitigate diclofenac-induced acute nephrotoxicity in male rats via modulation of inflammation and oxidative stress. Biomed Pharmacother 2022; 152:113225. [PMID: 35671584 DOI: 10.1016/j.biopha.2022.113225] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/24/2022] Open
Abstract
Nephrotoxicity (NT) is a renal-specific situation caused by different toxins and drugs like non-steroidal anti-inflammatory drugs (NSAIDs). NSAIDs like diclofenac (DCF) lead to glomerular dysfunction. Pentoxifylline (PTX) and berberine (BER) have antioxidant and anti-inflammatory properties. Thus, the objective of the present study was to investigate the ameliorative effect of PTX, BER and their combination against DCF-mediated acute NT. Induction of acute NT was done via DCF injection (150 mg/kg I.P, for 6 days) in rats. PTX 200 mg/kg, BER 200 mg/kg and their combination were administrated for 6 days prior to DCF injection and concurrently with DCF for additional 6 days. Acute NT was evaluated biochemically and histopathologically by measuring blood urea (BU), serum creatinine (SCr), kidney injury molecule-1(KIM-1), integrin (ITG), and vitronectin (VTN), interleukin (IL)-18, Neutrophil gelatinase-associated lipocalin (NGAL), glomerular filtration rate (GFR), superoxide dismutase (SOD) and glutathione (GSH) and malondialdehyde (MDA) with the scoring of histopathological alterations. PTX, BER and their combination significantly (P < 0.05) attenuated biochemical and histopathological changes in DCF-mediated acute NT by amelioration of BU, SCr, KIM-1, ITG, VTN, IL-18, NGAL, GFR, SOD, GSH, MDA and scoring of histopathological alterations. The combined effects of PTX and BER produced more significant effects (P < 0.05) than either PTX or BER when used alone against DCF-induced acute NT. In conclusion, BER and BTX were found to have potential renoprotective effects against DCF-induced NT in rats by inhibiting inflammatory reactions and oxidative stress.
Collapse
Affiliation(s)
- Mohammed Alorabi
- Department of Biotechnology, College of Sciences, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia.
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania.
| | - Hayder M Al-Kuraishy
- Pharmacology and Therapeutic Medicine Department, Faculty of Medicine, Al-Mustansiriyah University, Baghdad, Iraq.
| | - Ali I Al-Gareeb
- Pharmacology and Therapeutic Medicine Department, Faculty of Medicine, Al-Mustansiriyah University, Baghdad, Iraq.
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department & Health Research Unit, Medical College, Jouf University, Jouf, Saudi Arabia; Pharmacology Department, Faculty of Medicine, Beni-Suef University, Egypt.
| | - Walaa A Negm
- Pharmacognosy Department, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt.
| | - Amal Youssef
- Medical Pharmacology Department, Faculty of Medicine, Cairo University, Egypt.
| | - Aya H El-Kadem
- Pharmacology Department, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh 51744, Matrouh, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt.
| |
Collapse
|
23
|
Hassan SMA, Aboonq MS, Albadawi EA, Aljehani Y, Abdel-Latif HM, Mariah RA, Shafik NM, Soliman TM, Abdel-Gawad AR, Omran FM, Abdellah WA, Shehata A, Shahada H, Baghdadi HH, Aly HY, Saad A, Nabo MMH, Almilaibary A, Eltahir HM, El Sayed SM, Abu-Elnaga MAM, Elbastawisy YM. The Preventive and Therapeutic Effects of Ajwa Date Fruit Extract Against Acute Diclofenac Toxicity-Induced Colopathy: An Experimental Study. Drug Des Devel Ther 2022; 16:2601-2616. [PMID: 35965961 PMCID: PMC9366708 DOI: 10.2147/dddt.s344247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/13/2022] [Indexed: 11/23/2022] Open
Abstract
Background Studies regarding treatment of acute toxicity with diclofenac (ATD) are quite few. Diclofenac is commonly prescribed in neurology, psychiatry, and general medicine practice. This study investigated possible colon-protective effects exerted by Ajwa date fruit extract (ADFE), a prophetic medicine remedy native to Al-Madinah, Saudi Arabia against ATD. Phytochemicals in ADFE as gallic acid and quercetin have reported protective effects against ATD. Methods Total phenols and flavonoids in ADFE were estimated as equivalents to gallic acid and quercetin. Four experimental groups were allocated each of six rats: control group, ATD group received a single dose of 150 mg diclofenac intraperitoneally, toxicity prevention group received a single dose of ADFE orally followed 4 hours later by diclofenac injection, and toxicity treatment group received a similar diclofenac dose followed 4 hours later by a single dose of ADFE. Four days later, animals were sacrificed. Histological and biochemical examinations were done. Results ADFE has a total phenolic content of 331.7 gallic acid equivalent/gram extract and a total flavonoid content of 70.23 quercetin equivalent/gram. ATD significantly increased oxidative stress markers as serum malondialdehyde (MDA) and hydrogen peroxide (H2O2). Serum MDA and H2O2 were significantly scavenged by ADFE. ATD significantly (p<0.001) decreased antioxidant power as serum total antioxidant capacity and catalase activity. That was reversed by ADFE in both prevention and treatment groups. Histologically, ATD caused complete destruction of colonic crypts architecture, patchy loss of the crypts, loss of the surface epithelium, absent goblet cells and submucosal exudate, heavy infiltration of the lamina propria and submucosa with inflammatory cells, mainly lymphocytes and eosinophils. There were mucosal haemorrhages and submucosal dilated congested blood vessels. All that was prevented and treated using ADFE. Conclusion ADFE is rich in quercetin and gallic acid equivalents that exert potent antitoxic effects. ADFE is strongly recommended for preventive and therapeutic colon effects against ATD.
Collapse
Affiliation(s)
| | - Moutasem Salih Aboonq
- Department of Medical Physiology, Taibah Faculty of Medicine, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Emad A Albadawi
- Anatomy and Embryology Department, Taibah College of Medicine, Taibah University, Al-Madinah, Saudi Arabia
| | - Yasmeen Aljehani
- Academic Affairs, Training and Research (CAO), King Salman Bin Abdelaziz Medical City, Al-Madinah Al-Munawwarah, Saudi Arabia
- Family Medicine, Research and Studies Department and Health Affairs in Al-Madinah Region, Al-Madinah Al-Munawwarah, Saudi Arabia
| | | | - Reham A Mariah
- Department of Medical Biochemistry, Tanta Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Noha M Shafik
- Department of Medical Biochemistry, Tanta Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Tamer M Soliman
- Department of Clinical Pathology, Sohag Faculty of Medicine, Sohag University, Sohag, Egypt
| | | | - Faten M Omran
- Department of Medical Pharmacology, Sohag Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Wafaa A Abdellah
- Department of Medical Pharmacology, Sohag Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Ahmed Shehata
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Husam Shahada
- Department of Pharmaceutical Care, Uhud Hospital, Al-Madinah, Saudi Arabia
| | - Hussam H Baghdadi
- Department of Clinical Biochemistry, Taibah Faculty of Medicine, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Hanan Yousef Aly
- Department of Neuropsychiatry, Sohag Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Alfarazdeg Saad
- Department of Clinical Biochemistry, Taibah Faculty of Medicine, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
- Correspondence: Alfarazdeg Saad, Department of Clinical Biochemistry and Molecular Medicine, Taibah Faculty of Medicine, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia, Tel +249-91-219-0492, Email
| | | | - Abdullah Almilaibary
- Family and Community Medicine Department, Faculty of Medicine, Albaha University, Albaha, Saudi Arabia
| | - Heba M Eltahir
- Department of pharmacology and toxicology, Biochemistry Division, Taibah University, Medina, Saudi Arabia
| | - Salah Mohamed El Sayed
- Department of Clinical Biochemistry, Taibah Faculty of Medicine, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
- Department of Medical Biochemistry, Sohag Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Mustafa A M Abu-Elnaga
- Department of Anatomy, College of Medicine, Al-Rayyan Medical Colleges, Al-Madinah, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Yasser M Elbastawisy
- Anatomy and Embryology Department, Taibah College of Medicine, Taibah University, Al-Madinah, Saudi Arabia
- Anatomy & Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
24
|
Alessandretti I, Rigueto CVT, Nazari MT, Rosseto M, Dettmer A. Removal of diclofenac from wastewater: A comprehensive review of detection, characteristics and tertiary treatment techniques. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2021; 9:106743. [DOI: 10.1016/j.jece.2021.106743] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
25
|
Akinrinde AS, Fapuro J, Soetan KO. Zinc and ascorbic acid treatment alleviates systemic inflammation and gastrointestinal and renal oxidative stress induced by sodium azide in rats. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021. [DOI: 10.1186/s43088-021-00108-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Sodium azide (NaN3) is a chemical of rapidly increasing economic importance but with high toxic attributes. In this study, the effects of zinc (Zn) and ascorbic acid (AsA) supplementation on sodium azide (NaN3)-induced toxicity in the stomach, colon and kidneys were evaluated in Wistar rats. Twenty-eight rats were randomly allocated to four experimental groups as follows: group A (control) given distilled water only; group B (NaN3 only, 20 mg/kg); group C (NaN3 + zinc sulphate, ZnSO4 80 mg/kg); and group D (NaN3 + AsA 200 mg/kg).
Results
NaN3 was found to significantly (p < 0.05) induce increases in serum nitric oxide (NO), advanced oxidation protein products (AOPP), myeloperoxidase (MPO) and total protein levels, along with significant (p < 0.05) increase in gastric, colonic and renal malondialdehyde (MDA) and protein carbonyl (PCO) levels. In addition, NaN3 induced significant (p < 0.05) reduction in superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione S-transferase (GST) activities in the colon and kidneys. Treatment with Zn or AsA caused significant (p < 0.05) reduction in serum levels of oxidative and inflammatory markers, as well as tissue PCO and MDA levels. Moreover, co-treatment with Zn or AsA significantly (p < 0.05) restored colonic and renal levels of antioxidant enzymes, reduced glutathione and protein thiols.
Conclusions
This study shows that Zn or AsA supplementation alleviated NaN3 toxicity by suppressing systemic inflammation and preventing oxidative damage in the stomach, colon and kidneys of rats.
Collapse
|
26
|
Carvacrol exerts nephroprotective effect in rat model of diclofenac-induced renal injury through regulation of oxidative stress and suppression of inflammatory response. Heliyon 2021; 7:e08358. [PMID: 34816045 PMCID: PMC8591494 DOI: 10.1016/j.heliyon.2021.e08358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 09/27/2021] [Accepted: 11/05/2021] [Indexed: 12/02/2022] Open
Abstract
Diclofenac (DIC) is an NSAID that can cause toxic effects in animals and humans and carvacrol (CAR) is a monoterpene compound that displays effective pharmacological and biological actions. The purpose of this work was to assess the influences of CAR on DIC-induced renal injury and oxidative stress in male rats. The rats were segregated into four groups. Group 1, control group; Group 2 received DIC-only; Groups 3, received CAR-only and group 4 received DIC plus CAR. Changes in biochemical indexes, pathological changes, molecular biological indexes, and genes related to the inflammation of main organs were evaluated. The results of this work indicated that the amounts of the serum protein carbonyl, sGOT, sGPT, urea, creatinine, uric acid, nitrite content, MDA, serum TNF-α, and renal TNF-α gene expression were remarkably increased and the levels of the GPx, GSH, CAT, and SOD were significantly reduced in DIC-only treated animals compared to the control group. On the other hand, treatment with CAR after exposure to DIC led to significant improvements in abnormalities of DIC-induced renal injury and serum biochemical factors. The data approve that CAR diminished the deleterious effects of DIC exposure. In this regard, the findings of this study indicated that the administration of CAR could alleviate the noxious effects of DIC on the antioxidant defense system and renal tissue.
Collapse
|
27
|
Aydın B. A preliminary assessment of the effects of dietary black cumin seed cake on growth performance, serum biochemical parameters and fatty acid composition of mirror carp (Cyprinus carpio var. specularis) fingerlings. AQUACULTURE REPORTS 2021; 21:100847. [DOI: 10.1016/j.aqrep.2021.100847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
28
|
Doba S, Buzlama A. Protective effect of three developed gel formulations: Chitosan, Chitosan with Taurine and Chitosan with Dexpanthenol, on the acute overdose of Diclofenac sodium in preclinical studies. RESEARCH JOURNAL OF PHARMACY AND TECHNOLOGY 2021:4341-4348. [DOI: 10.52711/0974-360x.2021.00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Objectives: To investigate the tissue-protective effects of three gel formulations (chitosan, chitosan with taurine or chitosan with dexpanthenol) as active substances against an acute overdose of diclofenac sodium. Methods: White outbred conventional male rats were allocated to five experimental groups: the first is an intact group that did not receive any drug, the second group is a control group that received 50mg/kg of diclofenac sodium once orally, the third, fourth and fifth groups are an experimental group that received our studied drugs at a dose of 0.16ml/100mg b.w. once orally 1 hr. before diclofenac sodium, the third group received chitosan-based gel 1%, the fourth group received chitosan-based gel 1% with 4% taurine and the fifth group chitosan-based gel 1% with 0.43% dexpanthenol. Blood samples were taken for biochemical, hematological and blood coagulation system tests on day 7th after administration of diclofenac sodium. Results: An acute overdose of diclofenac sodium caused marked extensive tissue necrosis in the liver, bleeding in the gastrointestinal tract and inflammatory process, these marks were evidenced by different changes in the test of the blood samples. Significantly 73.6% of the blood indicators were improved by the administration of chitosan-based gel 1% with 0.43% dexpanthenol, while 57.8% were improved by chitosan-based gel 1% with 4% taurine and 68.4% by chitosan-based gel 1%. Conclusion: Chitosan-based gel 1% with dexpanthenol 0.43% can help in mitigating hepatic injury, gastrointestinal bleeding, and systemic and local intestinal inflammation caused by an acute overdose of diclofenac sodium.
Collapse
Affiliation(s)
- Solaiman Doba
- Department of Pharmacology and Clinical Pharmacology, Faculty of Pharmacy, Voronezh State University, Russia
| | - Anna Buzlama
- Department of Pharmacology and Clinical Pharmacology, Faculty of Pharmacy, Voronezh State University, Russia
| |
Collapse
|
29
|
Sarkar C, Jamaddar S, Islam T, Mondal M, Islam MT, Mubarak MS. Therapeutic perspectives of the black cumin component thymoquinone: A review. Food Funct 2021; 12:6167-6213. [PMID: 34085672 DOI: 10.1039/d1fo00401h] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The dietary phytochemical thymoquinone (TQ), belonging to the family of quinones, mainly obtained from the black and angular seeds of Nigella sativa, is one of the promising monoterpenoid hydrocarbons, which has been receiving massive attention for its therapeutic potential and pharmacological properties. It plays an important role as a chemopreventive and therapeutic agent in the treatment of various diseases and illnesses. The aim of this review is to present a summary of the most recent literature pertaining to the use of TQ for the prevention and treatment of various diseases along with possible mechanisms of action, and the potential use of this natural product as a complementary or alternative medicine. Research findings indicated that TQ exhibits numerous pharmacological activities including antioxidant, anti-inflammatory, cardioprotective, hepatoprotective, antidiabetic, neuroprotective, and anticancer, among others. Conclusions of this review on the therapeutic aspects of TQ highlight the medicinal and folk values of this compound against various diseases and ailments. In short, TQ could be a novel drug in clinical trials, as we hope.
Collapse
Affiliation(s)
- Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj-8100, Bangladesh.
| | | | | | | | | | | |
Collapse
|
30
|
Akgül B, Aycan İÖ, Hidişoğlu E, Afşar E, Yıldırım S, Tanrıöver G, Coşkunfırat N, Sanlı S, Aslan M. Alleviation of prilocaine-induced epileptiform activity and cardiotoxicity by thymoquinone. Daru 2021; 29:85-99. [PMID: 33469802 PMCID: PMC8149770 DOI: 10.1007/s40199-020-00385-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/29/2020] [Indexed: 02/02/2023] Open
Abstract
PURPOSE This study investigated whether thymoquinone (TQ) could alleviate central nervous system (CNS) and cardiovascular toxicity of prilocaine, a commonly used local anesthetic. METHODS Rats were randomized to the following groups: control, prilocaine treated, TQ treated and prilocaine + TQ treated. Electroencephalography and electrocardiography electrodes were placed and trachea was intubated. Mechanical ventilation was initiated, right femoral artery was cannulated for continuous blood pressure measurements and blood-gas sampling while the left femoral vein was cannulated for prilocaine infusion. Markers of myocardial injury, reactive oxygen/nitrogen species (ROS/RNS) generation and total antioxidant capacity (TAC) were assayed by standard kits. Aquaporin-4 (AQP4), nuclear factor(NF)κB-p65 and -p50 subunit in brain tissue were evaluated by histological scoring. RESULTS Blood pH and partial oxygen pressure, was significantly decreased after prilocaine infusion. The decrease in blood pH was alleviated in the prilocaine + TQ treated group. Prilocaine produced seizure activity, cardiac arrhythmia and asystole at significantly lower doses compared to prilocaine + TQ treated rats. Thymoquinone administration attenuated levels of myocardial injury induced by prilocaine. Prilocaine treatment caused increased ROS/RNS formation and decreased TAC in heart and brain tissue. Thymoquinone increased heart and brain TAC and decreased ROS/RNS formation in prilocaine treated rats. AQP4, NFκB-p65 and NFκB-p50 expressions were increased in cerebellum, cerebral cortex, choroid plexus and thalamic nucleus in prilocaine treated rats. Thymoquinone, decreased the expression of AQP4, NFκB-p65 and NFκB-p50 in brain tissue in prilocaine + TQ treated rats. CONCLUSION Results indicate that TQ could ameliorate prilocaine-induced CNS and cardiovascular toxicity.
Collapse
Affiliation(s)
- Barış Akgül
- Department of Anesthesiology and Reanimation, Akdeniz University, Antalya, Turkey
| | - İlker Öngüç Aycan
- Department of Anesthesiology and Reanimation, Akdeniz University, Antalya, Turkey
| | - Enis Hidişoğlu
- Department of Biophysics, Akdeniz University, Antalya, Turkey
| | - Ebru Afşar
- Department of Medical Biochemistry, Akdeniz University Medical School, 07070 Antalya, Turkey
| | - Sendegül Yıldırım
- Department of Histology and Embryology, Akdeniz University, Antalya, Turkey
| | - Gamze Tanrıöver
- Department of Histology and Embryology, Akdeniz University, Antalya, Turkey
| | - Nesil Coşkunfırat
- Department of Anesthesiology and Reanimation, Akdeniz University, Antalya, Turkey
| | - Suat Sanlı
- Department of Anesthesiology and Reanimation, Akdeniz University, Antalya, Turkey
| | - Mutay Aslan
- Department of Medical Biochemistry, Akdeniz University Medical School, 07070 Antalya, Turkey
| |
Collapse
|
31
|
Gao C, Liu C, Chen Y, Wang Q, Hao Z. Protective effects of natural products against drug-induced nephrotoxicity: A review in recent years. Food Chem Toxicol 2021; 153:112255. [PMID: 33989732 DOI: 10.1016/j.fct.2021.112255] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/03/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022]
Abstract
Drug-induced nephrotoxicity (DIN) is a major cause of kidney damage and is associated with high mortality and morbidity, which limits the clinical use of certain therapeutic or diagnostic agents, such as antineoplastic drugs, antibiotics, immunosuppressive agents, non-steroidal anti-inflammatory drugs (NSAIDs), and contrast agents. However, in recent years, a number of studies have shown that many natural products (NPs), including phytochemicals, various plants extracts, herbal formulas, and NPs derived from animals, confer protective effects against DIN through multi-targeting therapeutic mechanisms, such as inhibition of oxidative stress, inflammation, apoptosis, fibrosis, and necroptosis, regulation of autophagy, maintenance of cell polarity, etc., by regulating multiple signaling pathways and novel molecular targets. In this review, we summarize and discuss the protective effects and mechanisms underlying the action of NPs against DIN found in recent years, which will contribute to the development of promising renal protective agents.
Collapse
Affiliation(s)
- Chen Gao
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Chang Liu
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuwei Chen
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Qingtao Wang
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Zhihui Hao
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
32
|
Badary OA, Hamza MS, Tikamdas R. Thymoquinone: A Promising Natural Compound with Potential Benefits for COVID-19 Prevention and Cure. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1819-1833. [PMID: 33976534 PMCID: PMC8106451 DOI: 10.2147/dddt.s308863] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022]
Abstract
COVID-19 has caused a major global health crisis, as excessive inflammation, oxidation, and exaggerated immune response in some sufferers can lead to a condition known as cytokine storm, which may progress to acute respiratory distress syndrome (ARDs), which can be fatal. So far, few effective drugs have emerged to assist in the treatment of patients with COVID-19, though some herbal medicine candidates may assist in the fight against COVID-19 deaths. Thymoquinone (TQ), the main active ingredient of black seed oil, possesses antioxidant, anti-inflammatory, antiviral, antimicrobial, immunomodulatory and anticoagulant activities. TQ also increases the activity and number of cytokine suppressors, lymphocytes, natural killer cells, and macrophages, and it has demonstrated antiviral potential against a number of viruses, including murine cytomegalovirus, Epstein-Barr virus, hepatitis C virus, human immunodeficiency virus, and other coronaviruses. Recently, TQ has demonstrated notable antiviral activity against a SARSCoV-2 strain isolated from Egyptian patients and, interestingly, molecular docking studies have also shown that TQ could potentially inhibit COVID-19 development through binding to the receptor-binding domain on the spike and envelope proteins of SARS-CoV-2, which may hinder virus entry into the host cell and inhibit its ion channel and pore forming activity. Other studies have shown that TQ may have an inhibitory effect on SARS CoV2 proteases, which could diminish viral replication, and it has also demonstrated good antagonism to angiotensin-converting enzyme 2 receptors, allowing it to interfere with virus uptake into the host cell. Several studies have also noted its potential protective capability against numerous chronic diseases and conditions, including diabetes, hypertension, dyslipidemia, asthma, renal dysfunction and malignancy. TQ has recently been tested in clinical trials for the treatment of several different diseases, and this review thus aims to highlight the potential therapeutic effects of TQ in the context of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Osama A Badary
- Clinical Pharmacy Practice Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt.,Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Marwa S Hamza
- Clinical Pharmacy Practice Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Rajiv Tikamdas
- Clinical Pharmacy Practice Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| |
Collapse
|
33
|
Mohamed AA, Sadeek SA. Ligational and biological studies of Fe(III), Co(II), Ni(II), Cu(II), and Zr(IV) complexes with carbamazepine as antiepileptic drug. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amira A. Mohamed
- Department of Basic Science Zagazig Higher Institute of Engineering and Technology Zagazig Egypt
| | - Sadeek A. Sadeek
- Department of Chemistry, Faculty of Science Zagazig University Zagazig Egypt
| |
Collapse
|
34
|
Kim HS, Kang GH, Yang MJ, Ahn HJ, Han SC, Hwang JH. Toxicity of diclofenac sodium salt in Yucatan minipigs (Sus scrofa) following 4 weeks of daily intramuscular administration. Toxicol Rep 2021; 8:557-570. [PMID: 33777702 PMCID: PMC7985715 DOI: 10.1016/j.toxrep.2021.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 12/02/2022] Open
Abstract
Four-week repeated-dose toxicity of intramuscular DSS was studied in minipigs. DSS administration at ≥10 mg/kg/day causes toxicity and injection-site reaction. The NOAEL of DSS after 4-week administration was 2 mg/kg/day in minipigs.
Diclofenac sodium salt (DSS) is a widely used nonsteroidal anti-inflammatory drug. The present study was performed under good laboratory practice (GLP) regulations to investigate the toxicity of DSS after 4 weeks of repeated intramuscular administration at doses of 0, 2, 10, or 20 mg/kg/day in 32 minipigs and to evaluate the DSS effect following a 2-week recovery period. Dose-related clinical signs and alterations of hematological or clinical chemistry parameters, organ weight, and macroscopic as well as histopathological findings in hepatic, renal, gastrointestinal, skin and injection sites were observed in both sexes’ animals of the 10 or 20 mg/kg/day group. With the exception of the skin-related findings, most symptoms showed a tendency to resolve after the 2-week recovery period. The systemic exposure (AUClast) of DSS in plasma showed similar pattern to the increase rate of the dose and similar values between males and females except for the female 20 mg/kg dose group (56 %) on Day1. The systemic exposure showed a decreasing trend in the 10 or 20 mg/kg group after 4-week of repeated administration compared to Day1. The no-observed-adverse-effect level of DSS in this study was considered to be 2 mg/kg/day in both male and female minipigs.
Collapse
Key Words
- 4-Week repeated toxicity
- AAALAC, association for assessment and accreditation of laboratory animal care
- ALT, alanine aminotransferase
- AP, Alkaline phosphatase
- AST, aspartate aminotransferase
- AUC, area under the concentration-time curve
- BUN, blood urea nitrogen
- BW, body weight
- CAS, chemical abstracts service
- CL, clearance
- COX, cyclooxygenase
- CREA, creatine
- CRO, contract research organization
- CV, coefficients of variation
- Cmax, maximum plasma concentration
- DSS, diclofenac sodium salt
- Diclofenac sodium salt
- ECG, Electrocardiogram
- GI, gastrointestinal
- GLP, good laboratory practice
- H&E, hematoxylin and eosin
- HED, human effective dose
- HR, heart rate
- IACUC, institutional animal care and use committee
- Minipig
- NDA, new drug application
- NOAEL, No-observed-adverse-effect levels
- NSAIDs, nonsteroidal anti-inflammatory drugs
- No-observed-adverse-effect level
- RBC, red blood cell
- SD, standard deviation
- TK, toxicokinetics
- TP, total protein
- Tmax, time to maximum plasma concentration
- WBC, white blood cell
- aVF, augmented vector foot
- aVL, augmented vector left
- aVR, augmented vector right
Collapse
Affiliation(s)
- Hyung-Sun Kim
- Animal Model Research Group, Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongup, Jeonbuk, 56212, Republic of Korea
| | - Goo-Hwa Kang
- Animal Model Research Group, Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongup, Jeonbuk, 56212, Republic of Korea
| | - Mi-Jin Yang
- Jeonbuk Pathology Research Group, Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongup, Jeonbuk, 56212, Republic of Korea
| | - Hee-Jeong Ahn
- Jeonbuk Quality Assurance Unit, Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongup, Jeonbuk, 56212, Republic of Korea
| | - Su-Cheol Han
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongup, Jeonbuk, 56212, Republic of Korea
| | - Jeong Ho Hwang
- Animal Model Research Group, Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongup, Jeonbuk, 56212, Republic of Korea
- Corresponding author.
| |
Collapse
|
35
|
Elgohary S, Elkhodiry AA, Amin NS, Stein U, El Tayebi HM. Thymoquinone: A Tie-Breaker in SARS-CoV2-Infected Cancer Patients? Cells 2021; 10:302. [PMID: 33540625 PMCID: PMC7912962 DOI: 10.3390/cells10020302] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
Since the beginning of the SARS-CoV-2(severe acute respiratory syndrome-coronavirus-2) pandemic, arace to develop a vaccine has been initiated, considering the massive and rather significant economic and healthcare hits that this virus has caused. The pathophysiology occurring following COVID-19(coronavirus disease-2019) infection has givenhints regarding the supportive and symptomatic treatments to establish for patients, as no specific anti-SARS-CoV-2 is available yet. Patient symptoms vary greatly and range from mild symptoms to severe fatal complications. Supportive treatments include antipyretics, antiviral therapies, different combinations of broad-spectrum antibiotics, hydroxychloroquine and plasma transfusion. Unfortunately, cancer patients are at higher risk of viral infection and more likely to develop serious complications due to their immunocompromised state, the fact that they are already administering multiple medications, as well as combined comorbidity compared to the general population. It may seem impossible to find a drug that possesses both potent antiviral and anticancer effects specifically against COVID-19 infection and its complications and the existing malignancy, respectively. Thymoquinone (TQ) is the most pharmacologically active ingredient in Nigella sativa seeds (black seeds); it is reported to have anticancer, anti-inflammatory and antioxidant effects in various settings. In this review, we will discuss the multiple effects of TQ specifically against COVID-19, its beneficial effects against COVID-19 pathophysiology and multiple-organ complications, its use as an adjuvant for supportive COVID-19 therapy and cancer therapy, and finally, its anticancer effects.
Collapse
Affiliation(s)
- Sawsan Elgohary
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt; (S.E.); (A.A.E.); (N.S.A.)
| | - Aya A. Elkhodiry
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt; (S.E.); (A.A.E.); (N.S.A.)
| | - Nada S. Amin
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt; (S.E.); (A.A.E.); (N.S.A.)
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany;
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Hend M. El Tayebi
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt; (S.E.); (A.A.E.); (N.S.A.)
| |
Collapse
|
36
|
Aslan M, Elpek Ö, Akkaya B, Balaban HT, Afşar E. Organ function, sphingolipid levels and inflammation in tunicamycin induced endoplasmic reticulum stress in male rats. Hum Exp Toxicol 2021; 40:259-273. [PMID: 33527851 DOI: 10.1177/0960327120949619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Disorders of the endoplasmic reticulum (ER) lead to cellular damage but can cause cell death if ER dysfunction is prolonged. We aimed to examine liver/kidney functions, neutral sphingomyelinase (N-SMase) activity, sphingolipid levels, cytosolic phospholipase A2 (cPLA2) and cyclooxygenase-2 (COX-2) protein expression in rats under ER stress. ER stress was induced by tunicamycin (TM) and the ER stress inhibitor taurodeoxycholic acid (TUDCA) was injected before induction of ER stress. ER stress was confirmed by increased tissue levels of GRP78. Hematological and biochemical profiles were measured by autoanalyzers while hepatic and renal injury was evaluated via microscopy and histopathological scoring. Tissue levels of C16-C24 sphingomyelins (SM), C16-C24 ceramides (CERs) and sphingosine-1-phosphate (S1P) were determined by LC-MS/MS. Tissue cPLA2 and COX-2 were measured by western blot and activity assays. Tunicamycin treatment caused kidney and liver function test abnormalities, increased hematocrit and hemoglobin levels but decreased white blood cell counts. Histopathological findings showed hepatic necroinflammation and renal tubular damage in rats treated with TM. TUDCA administration attenuated WBC abnormalities and TM- induced hepatic/renal functional impairment in ER stress, as evident by significantly restored serum ALT, AST, creatinine, and total bilirubin levels. A significant increase was observed in N-SMase activity, tissue levels of C16-C24 CERs, cPLA2 and COX-2 expression in liver and kidney tissue under ER stress. TUDCA administration decreased tissue CER levels, cPLA2 and COX-2 expression as well as prostaglandin E2 (PGE2) formation. These results signify that ER stress causes hepatic and renal toxicity as well as CER-induced PGE2 formation in liver and kidney.
Collapse
Affiliation(s)
- Mutay Aslan
- Department of Medical Biochemistry, 64032Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Özlem Elpek
- Department of Pathology, 64032Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Bahar Akkaya
- Department of Pathology, 64032Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Hazal Tuzcu Balaban
- Department of Pathology, 64032Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Ebru Afşar
- Department of Medical Biochemistry, 64032Akdeniz University Faculty of Medicine, Antalya, Turkey
| |
Collapse
|
37
|
Elshopakey GE, Elazab ST. Cinnamon Aqueous Extract Attenuates Diclofenac Sodium and Oxytetracycline Mediated Hepato-Renal Toxicity and Modulates Oxidative Stress, Cell Apoptosis, and Inflammation in Male Albino Rats. Vet Sci 2021; 8:vetsci8010009. [PMID: 33418920 PMCID: PMC7825122 DOI: 10.3390/vetsci8010009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Among commonly consumed anti-inflammatory and antimicrobial drugs are diclofenac sodium (DFS) and oxytetracycline (OTC), especially in developing countries because they are highly effective and cheap. However, the concomitant administration of anti-inflammatory drugs with antibiotics may exaggerate massive toxic effects on many organs. Cinnamon (Cinnamomum zeylanicum, Cin) is considered one of the most broadly utilized plants with various antioxidant and anti-inflammatory actions. This study aimed to evaluate the possible protective effects of cinnamon aqueous extract (Cin) against DFS and OTC hepato-renal toxicity. Eight groups (8/group) of adult male albino rats were treated orally for 15 days with physiological saline (control), Cin aqueous extract (300 mg/kg b.w.), OTC (200 mg/kg b.w.), single dose of DFS at the 14th day (100 mg/kg b.w.), DFS + OTC, Cin + DFS, Cin + OTC, and Cin + DFS + OTC. The administration of DFS and/or OTC significantly increased (p < 0.05) the serum levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, urea, creatinine, and uric acid. Serum levels of pro-inflammatory cytokines, as well as hepatic and renal malondialdehyde and nitric oxide metabolites, were also raised following DFS and OTC administration. Meanwhile, the activities of reduced glutathione, superoxide dismutase, and catalase in liver and kidney were significantly suppressed in DFS, OTC, and DFS + OTC treated rats. Moreover, hepatic and renal tissue sections from these rats exhibited overexpression of caspase-3 and cyclooxygenase-II on immunohistochemical investigation. The administration of Cin aqueous extract ameliorated the aforementioned deteriorations caused by DFS, OTC, and their combination. Conclusively, Cin is a promising protective plant extract capable of attenuating the oxidative damage, apoptosis, and inflammation induced by DFS and OTC either alone or combined, on hepatic and renal tissues.
Collapse
Affiliation(s)
- Gehad E. Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Correspondence: or ; Tel.: +20-102-392-3945
| | - Sara T. Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; or
| |
Collapse
|
38
|
Zhang Y, Sun K, Li Z, Chai X, Fu X, Kholodkevich S, Kuznetsova T, Chen C, Ren N. Effescts of acute diclofenac exposure on intestinal histology, antioxidant defense, and microbiota in freshwater crayfish (Procambarus clarkii). CHEMOSPHERE 2021; 263:128130. [PMID: 33297118 DOI: 10.1016/j.chemosphere.2020.128130] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 06/12/2023]
Abstract
In the present study, we exposed Procambarus clarkii to different doses (0, 1, and 10 mg/L) of diclofenac (DCF). Meanwhile, we investigated the effects of exposure to DCF on intestinal histology, antioxidant defense, and microbial communities in P. clarkii. The results showed DCF caused histological changes in the intestines. Additionally, DCF induced significant changes in the expression of antioxidant genes including Mn-sod, cat, gst, and gpx. High-throughput sequencing of 16 S rRNA gene revealed DCF changed the diversity, richness, and composition of intestinal microbial communities. The relative abundances of the predominant phyla Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria showed significant changes at the phylum level after treatment with DCF. At the genus level, the most predominant genera with marked differences in abundance were Lucibacterium, Shewanella, Bacteroides, Anaerorhabdus, Aeromonas, Acinetobacter, Clostridium XlVb, Arcobacter, Bosea, and so on. To conclude, treatment with DCF could cause intestinal histological damage, induce significant changes of the expression of intestinal antioxidant genes, and impact the composition of intestinal microbiota in P. clarkii. This research will provide novel insights into the toxic effects of DCF on aquatic crustaceans.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Kai Sun
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Zheyu Li
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Xiaoxing Chai
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xiangyu Fu
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Sergey Kholodkevich
- Saint-Petersburg Scientific Research Center for Ecological Safety, Russian Academy of Sciences, Saint-Petersburg, 197110, Russia
| | - Tatiana Kuznetsova
- Saint-Petersburg Scientific Research Center for Ecological Safety, Russian Academy of Sciences, Saint-Petersburg, 197110, Russia
| | - Chuan Chen
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Nanqi Ren
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
39
|
|
40
|
Moradi A, Abolfathi M, Javadian M, Heidarian E, Roshanmehr H, Khaledi M, Nouri A. Gallic Acid Exerts Nephroprotective, Anti-Oxidative Stress, and Anti-Inflammatory Effects Against Diclofenac-Induced Renal Injury in Malerats. Arch Med Res 2020; 52:380-388. [PMID: 33358172 DOI: 10.1016/j.arcmed.2020.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/24/2020] [Accepted: 12/03/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND/AIM Diclofenac (DIC) is a Nonsteroidal anti-inflammatory drug (NSAID) and consumption of this drug creates side effects such as renal injury. The purpose of this work was to assess the influences of gallic acid (GA) on DIC-induced renal injury in rats. MATERIAL AND METHODS Rats were segregated into five groups. Group 1, control group; Group 2 received DIC-only (50 mg/kg bw, i.p.) for 7 consecutive days; Groups 3, received GA-only (100 mg/kg bw, po) for 7 consecutive days; group 4 received DIC (50 mg/kg bw, i.p.) plus GA (50 mg/kg, po) for 7 consecutive days and group 5 received DIC (50 mg/kg bw, i.p.) plus GA (100 mg/kg, po) for 7 consecutive days. RESULTS The data indicated that the levels of the serum protein carbonyl, sGOT, sGPT, urea, creatinine, uric acid, nitrite content, MDA, serum IL-1β, and the renal IL-1β gene expression were remarkably increased in DIC-only treated animals compared to control group. In the other hand, treatment with gallic acid led to significant improvements in abnormalities of DIC-induced oxidative stress and serum biochemical parameters. Histological changes were also ameliorated by GA oral administration. CONCLUSION The results indicated that oral injection of GA could alleviate the noxious effects of DIC on the antioxidant defense system and renal tissue.
Collapse
Affiliation(s)
- Alireza Moradi
- Department of Physiology, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Abolfathi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahsa Javadian
- Medical Plant Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Esfandiar Heidarian
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hoshang Roshanmehr
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mansoor Khaledi
- Department of Medical Microbiology, Faculty of Medicine, Shahed University of Medical Science, Tehran, Iran
| | - Ali Nouri
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
41
|
Simon JP, Saravanan SK, Sathiyaranayanan J, Vidya R, Kumari U, Prince SE. Pre-treatment effects against the diclofenac-induced toxicity by the aqueous leaf extract of Madhuca longifolia on female Wistar albino rats for 10 and 15 days. ASIA PACIFIC JOURNAL OF MOLECULAR BIOLOGY AND BIOTECHNOLOGY 2020:132-143. [DOI: 10.35118/apjmbb.2020.028.4.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Diclofenac is used to treat rheumatism disorders, which are associated with the damages of renal, gastric and hepatic organs. Diclofenac is a pharmaceutical drug that is known to induce toxicity on its overdosage and long-term usage. Madhuca longifolia is known to have antioxidant, anti-inflammatory and anti-ulcer activity. It is an evergreen tree that is reported to have many ethnomedicinal uses. The other properties of Madhuca longifolia include anti-diabetic, analgesic and anti-microbial activities. Our study aims to evaluate the pre-treatment activity against the diclofenac-induced toxicity by the Madhuca longifolia aqueous leaf extract in Wistar albino rats for 10 and 15 days. Rats were divided as Group-I: Normal control, Group-II: Diclofenac on the last two days, Group-III and group-IIIa: Diclofenac + Aqueous Leaf Extract of Madhuca longifolia, Group-IV and group-IVb: Diclofenac + Silymarin, Group -V and group-Va: Aqueous Madhuca longifolia leaf extract. After the sacrifice, the rats were studied for antioxidant assay, renal enzyme markers, liver enzyme markers, and histopathological analysis of the kidney, stomach, intestine, and liver. As a result, we could identify that Madhuca longifolia has reduced the toxic changes in rats caused by diclofenac.
Collapse
Affiliation(s)
- Jerine Peter Simon
- Department of Biomedical Sciences, School of Biosciences and Technology (SBST), Vellore Institute of Technology, Vellore, India
| | - Sibi Karthik Saravanan
- Department of Biomedical Sciences, School of Biosciences and Technology (SBST), Vellore Institute of Technology, Vellore, India
| | - Jayashree Sathiyaranayanan
- Department of Biomedical Sciences, School of Biosciences and Technology (SBST), Vellore Institute of Technology, Vellore, India
| | - Radhakrishnan Vidya
- VIT School of Agricultural Innovations and Advanced Learning (VAIAL) Vellore Institute of Technology, Vellore, India cFaculty of Medicine, AIMST University, Malaysia
| | - Usha Kumari
- Faculty of Medicine, AIMST University, Malaysia
| | - Sabina Evan Prince
- Department of Biomedical Sciences, School of Biosciences and Technology (SBST), Vellore Institute of Technology, Vellore, India
| |
Collapse
|
42
|
Effect of Thymoquinone on Acute Kidney Injury Induced by Sepsis in BALB/c Mice. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1594726. [PMID: 32626733 PMCID: PMC7315249 DOI: 10.1155/2020/1594726] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/01/2020] [Indexed: 01/26/2023]
Abstract
Acute kidney injury (AKI) is a common complication of sepsis and has also been observed in some patients suffering from the new coronavirus pneumonia COVID-19, which is currently a major global concern. Thymoquinone (TQ) is one of the most active ingredients in Nigella sativa seeds. It has a variety of beneficial properties including anti-inflammatory and antioxidative activities. Here, we investigated the possible protective effects of TQ against kidney damage in septic BALB/c mice. Eight-week-old male BALB/c mice were divided into four groups: control, TQ, cecal ligation and puncture (CLP), and TQ+CLP. CLP was performed after 2 weeks of TQ gavage. After 48 h, we measured the histopathological alterations in the kidney tissue and the serum levels of creatinine (CRE) and blood urea nitrogen (BUN). We also evaluated pyroptosis (NLRP3, caspase-1), apoptosis (caspase-3, caspase-8), proinflammatory (TNF-α, IL-1β, and IL-6)-related protein and gene expression levels. Our results demonstrated that TQ inhibited CLP-induced increased serum CRE and BUN levels. It also significantly inhibited the high levels of NLRP3, caspase-1, caspase-3, caspase-8, TNF-α, IL-1β, and IL-6 induced by CLP. Furthermore, NF-κB protein level was significantly decreased in the TQ+CLP group than in the CLP group. Together, our results indicate that TQ may be a potential therapeutic agent for sepsis-induced AKI.
Collapse
|
43
|
Owumi SE, Aliyu-Banjo NO, Odunola OA. Selenium attenuates diclofenac-induced testicular and epididymal toxicity in rats. Andrologia 2020; 52:e13669. [PMID: 32510627 DOI: 10.1111/and.13669] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/03/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
The adverse effect of diclofenac administration on the male reproductive organ in both humans and rats has been reported. Selenium, a trace element vital in nutrition, plays a significant part in cellular redox homeostasis, including male reproduction. However, the impact of selenium on male reproductive toxicity associated with diclofenac administration is lacking in the literature. The current investigation assessed the modulatory effects of selenium on diclofenac-mediated reproductive toxicity in rats. Rats were treated for fourteen consecutive days, either with diclofenac (10 mg/kg) or co-treated with selenium (0.125 and 0.25 mg/kg) body weight. Sperm parameters, enzymes of testicular function, luteinizing, follicle-stimulating hormone and testosterone were assessed in addition to oxidative stress indices and histopathological changes. Selenium significantly alleviated diclofenac-induced decreases in sperm count and motility, testicular function enzymes and levels of luteinizing hormone and testosterone in serum. Moreover, selenium co-administration at 0.125 and 0.25 mg/kg inhibited the diclofenac-induced decrease of antioxidant enzyme activities and increased oxidative stress parameters-lipid peroxidation, reactive nitrogen and oxygen species-in epididymis and testes of rats. Selenium (0.25 mg/kg) alone ameliorated diclofenac-mediated histological injuries in exposed rats. Collectively, selenium enhanced testicular and epididymal function in diclofenac-treated rats by suppressing nitrosative and oxidative stress in rats.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Nazirat O Aliyu-Banjo
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Oyeronke A Odunola
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
44
|
Aslan M, Afşar E, Kırımlıoglu E, Çeker T, Yılmaz Ç. Antiproliferative Effects of Thymoquinone in MCF-7 Breast and HepG2 Liver Cancer Cells: Possible Role of Ceramide and ER Stress. Nutr Cancer 2020; 73:460-472. [PMID: 32286088 DOI: 10.1080/01635581.2020.1751216] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We aimed to investigate the impact of thymoquinone (TQ), on sphingolipid metabolites, ER stress and apoptotic pathways in MCF-7 and HepG2 cancer cells. Antiproliferative effect was exerted in cancer cells via TQ incubation at different doses and durations. Cell viability was measured by MTT assay. Levels of sphingosine-1-phosphate (S1P), C16-C24 sphingomyelins (SM) and C16-C24 ceramides (CER) were determined by LC-MS/MS. Neutral sphingomyelinase (N-SMase) enzyme activity was measured by colorimetric assay and ceramide-1-phosphate (C1P) levels were determined by immunoassay. Nuclear factor kappa-b subunit 1 (NFκB1) and glucose-regulated protein 78-kd (GRP78) gene expressions were evaluated by quantitative PCR analysis, while NF-κB p65, GRP 78 and cleaved caspase-3 protein levels were assesed by immunofluorescence and western blot analysis. Incubation with TQ significantly decreased cell viability, S1P, C1P, NF-κB1 mRNA and NF-κB p65 protein levels in cancer cells compared to controls. A significant increase was observed in N-SMase activity, cellular levels of C16-C24 CERs and cleaved caspase-3 levels in cancer cells treated with TQ. GRP78 mRNA and protein levels also increased in cancer cells treated with TQ. In conclusion, TQ-induced ceramide accumulation and ER stress in conjunction with decreased S1P, C1P and NF-κB mediated cell survival may promote cancer cell death by triggering apoptosis.
Collapse
Affiliation(s)
- Mutay Aslan
- Departments of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Ebru Afşar
- Departments of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Esma Kırımlıoglu
- Departments of Histology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Tuğçe Çeker
- Departments of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Çağatay Yılmaz
- Departments of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya, Turkey
| |
Collapse
|
45
|
Erdemli ME, Yigitcan B, Erdemli Z, Gul M, Bag HG, Gul S. Thymoquinone protection against 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin induced nephrotoxicity in rats. Biotech Histochem 2020; 95:567-574. [PMID: 32207631 DOI: 10.1080/10520295.2020.1735520] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We investigated the effects of thymoquinone (TQ) on kidney tissues of Wistar rats with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced nephrotoxicity. We used 50 rats divided into five groups; control, corn oil, TCDD, TQ, TCDD + TQ. We found that malondialdehyde (MDA), total oxidant status (TOS), blood urea nitrogen (BUN), creatinine, interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α) levels in the TCDD treated group increased significantly compared to the other groups, while reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) and total antioxidant status (TAS) levels decreased in the TCDD group. In the TQ treated group, we found that GSH, SOD, CAT, TAS levels increased and MDA, TOS, IL-6 and TNF-α levels decreased compared to the other groups. The effects of TCDD on oxidative stress parameters, inflammatory markers and histological changes were ameliorated by TQ treatment.
Collapse
Affiliation(s)
- Mehmet Erman Erdemli
- Department of Medical Biochemistry, Medical Faculty, Inonu University , Malatya, Turkey
| | - Birgul Yigitcan
- Department of Histology and Embryology, Medical Faculty, Inonu University , Malatya, Turkey
| | - Zeynep Erdemli
- Department of Medical Biochemistry, Medical Faculty, Inonu University , Malatya, Turkey
| | - Mehmet Gul
- Department of Histology and Embryology, Medical Faculty, Inonu University , Malatya, Turkey
| | - Harika Gozukara Bag
- Department of Biostatistics, Medical Faculty, Inonu University , Malatya, Turkey
| | - Semir Gul
- Department of Histology and Embryology, Medical Faculty, Inonu University , Malatya, Turkey
| |
Collapse
|
46
|
Aslan M, Kırımlıoğlu E, Afşar E, Çeker T, Yılmaz Ç. Increased PUFA levels in kidney epithelial cells in the course of diclofenac toxicity. Toxicol In Vitro 2020; 66:104836. [PMID: 32220568 DOI: 10.1016/j.tiv.2020.104836] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/24/2020] [Accepted: 03/23/2020] [Indexed: 12/19/2022]
Abstract
This study evaluated polyunsaturated fatty acids (PUFAs) in human kidney epithelial cells exposed to diclofenac (DCL) toxicity. Kidney cells were treated with DCL to induce cytotoxicity and thymoquinone (TQ) was administered to decrease cytotoxic effects. Levels of arachidonic acid (AA, C20:4n-6), dihomo-gamma-linolenic acid (DGLA, C20:3n-6), eicosapentaenoic acid (EPA, C20:5n-3) and docosahexaenoic acid (DHA, C22:6n-3) were determined by liquid chromatography coupled with tandem mass spectrometry. Cytosolic phospholipase A2 (cPLA2), cyclooxygenase 1 (COX-1) and prostaglandin E2 (PGE2) were measured to evaluate changes in enzyme activity. Immunofluorescence staining and western blot analysis was performed to determine protein levels of COX- 1. Renal cell toxicity was accomplished by DCL and was alleviated by TQ treatment. Diclofenac significantly increased all measured PUFAs while pretreatment with TQ decreased PUFA levels in DCL treated cells. Cytosolic PLA2 and total COX activity was significantly decreased in DCL treated cells. Immunofluorescence staining and western blot analysis confirmed significantly decreased COX-1 levels in DCL and DCL + TQ treated groups. The results of this study reveal that DCL treatment is associated with accumulation of PUFAs in kidney cells. We suggest that PUFA accumulation in DCL toxicity might be a consequence of both cPLA2 and COX-1 inhibition. Thymoquinone administration, along with DCL treatment alleviated the buildup of PUFAs and DCL-induced cell death in kidney cells.
Collapse
Affiliation(s)
- Mutay Aslan
- Departments of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya, Turkey.
| | - Esma Kırımlıoğlu
- Departments of Histology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Ebru Afşar
- Departments of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Tuğçe Çeker
- Departments of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Çağatay Yılmaz
- Departments of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya, Turkey
| |
Collapse
|
47
|
Sathishkumar P, Meena RAA, Palanisami T, Ashokkumar V, Palvannan T, Gu FL. Occurrence, interactive effects and ecological risk of diclofenac in environmental compartments and biota - a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134057. [PMID: 31783460 DOI: 10.1016/j.scitotenv.2019.134057] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/17/2019] [Accepted: 08/21/2019] [Indexed: 05/17/2023]
Abstract
Diclofenac, a nonsteroidal anti-inflammatory drug has turned into a contaminant of emerging concern; hence, it was included in the previous Watch List of the EU Water Framework Directive. This review paper aims to highlight the metabolism of diclofenac at different trophic levels, its occurrence, ecological risks, and interactive effects in the water cycle and biota over the past two decades. Increased exposure to diclofenac not only raises health concerns for vultures, aquatic organisms, and higher plants but also causes serious threats to mammals. The ubiquitous nature of diclofenac in surface water (river, lake canal, estuary, and sea) is compared with drinking water, groundwater, and wastewater effluent in the environment. This comprehensive survey from previous studies suggests the fate of diclofenac in wastewater treatment plants (WWTPs) and may predict its persistence in the environment. This review offers evidence of fragmentary available data for the water environment, soil, sediment, and biota worldwide and supports the need for further data to address the risks associated with the presence of diclofenac in the environment. Finally, we suggest that the presence of diclofenac and its metabolites in the environment may represent a high risk because of their synergistic interactions with existing contaminants, leading to the development of drug-resistant strains and the formation of newly emerging pollutants.
Collapse
Affiliation(s)
- Palanivel Sathishkumar
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry and Environment, South China Normal University, Guangzhou 510006, PR China
| | | | - Thavamani Palanisami
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Veeramuthu Ashokkumar
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thayumanavan Palvannan
- Laboratory of Bioprocess and Engineering, Department of Biochemistry, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Feng Long Gu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry and Environment, South China Normal University, Guangzhou 510006, PR China.
| |
Collapse
|
48
|
Hu Z, Cai X, Wang Z, Li S, Wang Z, Xie X. Construction of carbon-doped supramolecule-based g-C 3N 4/TiO 2 composites for removal of diclofenac and carbamazepine: A comparative study of operating parameters, mechanisms, degradation pathways. JOURNAL OF HAZARDOUS MATERIALS 2019; 380:120812. [PMID: 31326838 DOI: 10.1016/j.jhazmat.2019.120812] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/11/2019] [Accepted: 06/21/2019] [Indexed: 06/10/2023]
Abstract
An eco-friendly 2D heterojunction photocatalyst composites (BCCNT) consisting of carbon-doped supramolecule-based g-C3N4 (BCCN) layers and TiO2 nanoparticles has been fabricated via an in-situ method. Based on the SEM and XPS results affirmed that the coaction of doped carbon and supramolecule precursors lead to the different morphology of pure g-C3N4, C-doped g-C3N4 have improved the photodegradation diclofenac (DCF) and carbamazepine (CBZ). And the degradation efficiencies of DCF and CBZ could reach 98.92% and 99.77%, which were separately corresponded to 30 min (min) and 6 h (h) of LED lamp illumination. Additionally, the effects of catalysis dosage, solution pH, natural organic matter (NOM), inorganic anions (Cl-, SO42-, NO3-) and different water matrices were deeply investigated. The scavenger experiments demonstrated that •O2-, h+ were main active species under visible irradiation. Furthermore, the photodegradation pathways of DCF and CBZ were detected by high-resolution mass spectrometry (HRMS) instruments and three-dimensional excitation-emission matrix fluorescence spectra (3D EEMs). Eventually, the possible photocatalytic mechanisms of BCCNT were proposed.
Collapse
Affiliation(s)
- Zhongzheng Hu
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xuewei Cai
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zirun Wang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shan Li
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhaowei Wang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoyun Xie
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
49
|
Ahluwalia A, Hoa N, Jones MK, Tarnawski AS. NSAID-induced injury of gastric epithelial cells is reversible: roles of mitochondria, AMP kinase, NGF, and PGE 2. Am J Physiol Gastrointest Liver Physiol 2019; 317:G862-G871. [PMID: 31545918 PMCID: PMC6962499 DOI: 10.1152/ajpgi.00192.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/03/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) such as diclofenac (DFN) and indomethacin (INDO) are extensively used worldwide. Their main side effects are injury of the gastrointestinal tract, including erosions, ulcers, and bleeding. Since gastric epithelial cells (GEPCs) are crucial for mucosal defense and are the major target of injury, we examined the extent to which DFN- and INDO-induced GEPC injury can be reversed by nerve growth factor (NGF), 16,16 dimethyl prostaglandin E2 (dmPGE2), and 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), the pharmacological activator of the metabolic sensor AMP kinase (AMPK). Cultured normal rat gastric mucosal epithelial (RGM1) cells were treated with PBS (control), NGF, dmPGE2, AICAR, and/or NSAID (DFN or INDO) for 1-4 h. We examined cell injury by confocal microscopy, cell death/survival using calcein AM, mitochondrial membrane potential using MitoTracker, and phosphorylation of AMPK by Western blotting. DFN and INDO treatment of RGM1 cells for 2 h decreased mitochondrial membrane potential and cell viability. NGF posttreatment (initiated 1 or 2 h after DFN or INDO) reversed the dissipation of mitochondrial membrane potential and cell injury caused by DFN and INDO and increased cell viability versus cells treated for 4 h with NSAID alone. Pretreatment with dmPGE2 and AICAR significantly protected these cells from DFN- and INDO-induced injury, whereas dmPGE2 and AICAR posttreatment (initiated 1 h after NSAID treatment) reversed cell injury and significantly increased cell viability and rescued the cells from NSAID-induced mitochondrial membrane potential reduction. DFN and INDO induce extensive mitochondrial injury and GEPC death, which can be significantly reversed by NGF, dmPGE2, and AICAR.NEW & NOTEWORTHY This study demonstrated that mitochondria are key targets of diclofenac- and indomethacin-induced injury of gastric epithelial cells and that diclofenac and indomethacin injury can be prevented and, importantly, also reversed by treatment with nerve growth factor, 16,16 dimethyl prostaglandin E2, and 5-aminoimidazole-4-carboxamide ribonucleotide.
Collapse
Affiliation(s)
- Amrita Ahluwalia
- Medical and Research Services, Veterans Affairs Long Beach Healthcare System, Long Beach, California
| | - Neil Hoa
- Medical and Research Services, Veterans Affairs Long Beach Healthcare System, Long Beach, California
| | - Michael K Jones
- Medical and Research Services, Veterans Affairs Long Beach Healthcare System, Long Beach, California
- Department of Medicine, University of California, Irvine, California
| | - Andrzej S Tarnawski
- Medical and Research Services, Veterans Affairs Long Beach Healthcare System, Long Beach, California
- Department of Medicine, University of California, Irvine, California
| |
Collapse
|
50
|
Protective effects of Ajwa date extract against tissue damage induced by acute diclofenac toxicity. J Taibah Univ Med Sci 2019; 14:553-559. [PMID: 31908644 PMCID: PMC6940670 DOI: 10.1016/j.jtumed.2019.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/28/2019] [Accepted: 10/05/2019] [Indexed: 11/23/2022] Open
Abstract
Objectives To investigate the tissue-protective effects of Ajwa date fruits (a Prophetic medicinal remedy) against acute diclofenac toxicity. Methods Albino Sprague–Dawley rats were allocated to four experimental groups: a negative control group, an Ajwa-only group that received 2 g/kg of Ajwa date extract (ADE) orally, an acute diclofenac toxicity group that received 200 mg diclofenac once intraperitoneally, and a treatment group that received diclofenac and ADE after 4 h. Histological examinations of rat lung and liver tissues were performed. Results Acute diclofenac toxicity caused marked hepatic derangements, such as congested central veins, congested blood sinusoids, hyaline degeneration, and hepatocyte necrosis. Toxic diclofenac overdose resulted in markedly congested alveolar capillaries and alveolar haemorrhages, thick edematous alveolar walls, and edema fluid exudates in the alveoli. Upon treatment with ADE, significant reduction in diclofenac-induced hepatic and pulmonary derangements were observed. Conclusion ADE is a safe, tissue-protective nutritional agent that alleviates cellular and tissue-damaging effects due to acute diclofenac toxicity. ADE relieved hepatic and pulmonary changes induced by acute diclofenac toxicity. The use of ADE is recommended for the treatment of acute diclofenac toxicity.
Collapse
|