1
|
Ao H, Han X, Zhou C, Zhou S, Wang M, Xun X, Wu X, Li Y, Zong J, Wan Y. A multifunctional bacterial cellulose-based dressing modified by quaternized chitosan and grafted protocatechuic acid for diabetic ulcer. Int J Biol Macromol 2025; 288:138673. [PMID: 39672428 DOI: 10.1016/j.ijbiomac.2024.138673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/01/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Herein, we developed a multifunctional bacterial cellulose-based dressing (PHBC) modified by quaternized chitosan (HACC) along with protocatechuic acid (PA), through in situ biosynthesis combined with covalent immobilization. The obtained PHBC dressing maintained the excellent physicochemical characteristics of BC, such as high porosity (above 76 %); high water absorption ratio, >80 % of water absorption rate (approximately 30 g/g) has completed in half an hour; favorable hydrophilicity with contact angle of about 50° and excellent flexibility. The introduction of PA-grafted HACC endows exhibited outstanding antibacterial properties against, anti-inflammatory performance and antioxidant capacity. Furthermore, PHBC II, with the reaction solubility of PA was 3 mg/mL, could promote NIH3T3 and HUVECs proliferation and spread. In vivo experiments further verified that PHBC II can effectively promote new granulation tissue hyperplasia and collagen deposition and expression around diabetic ulcers, reduce the inflammatory phenomenon around the wound, and promote the internal capillaries of the wound. The repair and regeneration of the network can promote better and faster wound healing. These results illustrate that the PHBC functional dressing has an important reference value for the clinical treatment of diabetic ulcers.
Collapse
Affiliation(s)
- Haiyong Ao
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China.
| | - Xiao Han
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China
| | - Chen Zhou
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China
| | - Shiqing Zhou
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China
| | - Maohu Wang
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China
| | - Xiaowei Xun
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China
| | - Xidong Wu
- Department of Drug Safety Evaluation, Jiangxi Testing Center of Medical Device, Nanchang 330000, China
| | - Yaqiang Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.
| | - Jiajia Zong
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China
| | - Yizao Wan
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China
| |
Collapse
|
2
|
Long Q, Huang P, Kuang J, Huang Y, Guan H. Diabetes exerts a causal impact on the nervous system within the right hippocampus: substantiated by genetic data. Endocrine 2025; 87:599-608. [PMID: 39480567 DOI: 10.1007/s12020-024-04081-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/12/2024] [Indexed: 11/02/2024]
Abstract
INTRODUCTION Diabetes and neuronal loss in the hippocampus have been observed to be correlated in several studies; however, the exact causality of this association remains uncertain. This study aims to explore the potential causal relationship between diabetes and the hippocampal nervous system. METHODS We utilized the two-sample Mendelian randomization (MR) analysis to investigate the potential causal connection between diabetes and the hippocampal nervous system. The summary statistics of Genome-wide association study (GWAS) for diabetes and hippocampus neuroimaging measurement were acquired from published GWASs, all of which were based on European ancestry. Several two-sample MR analyses were conducted in this study, utilizing inverse-variance weighted (IVW), MR Egger, and Weight-median methods. To ensure the reliability of the results and identify any horizontal pleiotropy, sensitivity analyses were undertaken using Cochran's Q test and the MR-PRESSO global test. RESULTS Causal associations were found between diabetes and the nervous system in the hippocampus. Type 1 and type 2 diabetes were both identified as having adverse causal connections with the right hippocampal nervous system. This was supported by specific ranges of IVW-OR values (P < 0.05). The consistency of the sensitivity analyses further reinforced the main findings, revealing no significant heterogeneity or presence of horizontal pleiotropy. CONCLUSIONS This study delved into the causal associations between diabetes and the hippocampal nervous system, revealing that both type 1 and type 2 diabetes have detrimental effects on the right hippocampal nervous system. Our findings have significant clinical implications as they indicate that diabetes may play a role in the decline of neurons in the right hippocampus among European populations, often resulting in cognitive decline.
Collapse
Affiliation(s)
- Qian Long
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Piao Huang
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jian Kuang
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yu Huang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
- Division of Population Health and Genomics, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK.
| | - Haixia Guan
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Liang S, Zhao Z, Liu L, Zhang Y, Liu X. Research Progress on the Mechanisms of Protocatechuic Acid in the Treatment of Cognitive Impairment. Molecules 2024; 29:4724. [PMID: 39407652 PMCID: PMC11478363 DOI: 10.3390/molecules29194724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Cognitive impairment (CI) is a type of mental health disorder that mainly affects cognitive abilities, such as learning, memory, perception, and problem-solving. Currently, in clinical practice, the treatment of cognitive impairment mainly focuses on the application of cholinesterase inhibitors and NMDA receptor antagonists; however, there is no specific and effective drug yet. Procatechuic acid (PCA) possesses various functions, including antibacterial, antiasthmatic, and expectorant effects. In recent years, it has received growing attention in the cognitive domain. Therefore, by summarizing the mechanisms of action of procatechuic acid in the treatment of cognitive impairment in this paper, it is found that procatechuic acid has multiple effects, such as regulating the expression of neuroprotective factors, inhibiting cell apoptosis, promoting the autophagy-lysosome pathway, suppressing oxidative stress damage, inhibiting inflammatory responses, improving synaptic plasticity dysfunction, inhibiting Aβ deposition, reducing APP hydrolysis, enhancing the cholinergic system, and inhibiting the excitotoxicity of neuronal cells. The involved signaling pathways include activating Pi3K-akt-mTor and inhibiting JNK, P38 MAPK, P38-ERK-JNK, SIRT1, and NF-κB/p53, etc. This paper aims to present the latest progress in research on procatechuic acid, including aspects such as its chemical properties, sources, pharmacokinetics, mechanisms for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Shuzhi Liang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; (S.L.)
| | - Zhongmin Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; (S.L.)
| | - Leilei Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; (S.L.)
| | - Yan Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; (S.L.)
- The Youth Research and Innovation Team of TCM for the Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Xijian Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; (S.L.)
| |
Collapse
|
4
|
Hernández-Ayala LF, Guzmán-López EG, Pérez-González A, Reina M, Galano A. Molecular Insights on Coffee Components as Chemical Antioxidants. J MEX CHEM SOC 2024; 68:888-969. [DOI: 10.29356/jmcs.v68i4.2238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Coffee is not only a delicious beverage but also an important dietary source of natural antioxidants. We live in a world where it is impossible to avoid pollution, stress, food additives, radiation, and other sources of oxidants that eventually lead to severe health disorders. Fortunately, there are chemicals in our diet that counteract the hazards posed by the reactive species that trigger oxidative stress. They are usually referred to as antioxidants; some of them can be versatile compounds that exert such a role in many ways. This review summarizes, from a chemical point of view, the antioxidant effects of relevant molecules found in coffee. Their mechanisms of action, trends in activity, and the influence of media and pH in aqueous solutions, are analyzed. Structure-activity relationships are discussed, and the protective roles of these compounds are examined. A particular section is devoted to derivatives of some coffee components, and another one to their bioactivity. The data used in the analysis come from theoretical and computational protocols, which have been proven to be very useful in this context. Hopefully, the information provided here will pro-mote further investigations into the amazing chemistry contained in our morning coffee cup.
Resumen. El café no solo es una bebida deliciosa, sino también una importante fuente dietética de antioxidantes naturales. Vivimos en un mundo donde es imposible evitar la contaminación, el estrés, los aditivos alimentarios, la radiación y otras fuentes de oxidantes que eventualmente conducen a trastornos de salud graves. Afortunadamente, existen sustancias químicas en nuestra dieta que contrarrestan los peligros planteados por las especies reactivas que desencadenan el estrés oxidativo. Por lo general, se les denomina antioxidantes; algunos de ellos pueden ser compuestos versátiles que ejercen dicho papel de muchas maneras. Este artículo de revisión resume, desde un punto de vista químico, los efectos antioxidantes de moléculas relevantes encontradas en el café. Se analizan sus mecanismos de acción, tendencias en la actividad y la influencia del medio y el pH en soluciones acuosas. Se discuten las relaciones estructura-actividad, y se examinan los roles protectores de estos compuestos. Se dedica una sección particular a los derivados de algunos componentes del café, y otra a su bioactividad. Los datos utilizados en el análisis provienen de protocolos teóricos y computacionales, que han demostrado ser muy útiles en este contexto. Se espera que la información proporcionada aquí promueva investigaciones futuras sobre la química contenida en nuestra taza de café matutina.
Collapse
|
5
|
Mert H, Kerem Ö, Mıs L, Yıldırım S, Mert N. Effects of protocatechuic acid against cisplatin-induced neurotoxicity in rat brains: an experimental study. Int J Neurosci 2024; 134:725-734. [PMID: 36525373 DOI: 10.1080/00207454.2022.2147430] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 12/23/2022]
Abstract
Aims/Objectives: Cisplatin (CIS) is widely used in the treatment of various malignant tumors. The aim of study is to determine the potential protective effects of protocatechuic acid (PCA) on the brain in neurotoxicity induced by CIS in rats.Materials and methods: Forty rats were divided into four groups: 1-Control group: 2- PCA group: PCA was administered orally at a dose of 100 mg/kg/day for 5 weeks. 3-CIS group: 5 mg/kg/week of CIS was administered intraperiteonally 4-PCA + CIS group: The rats were given PCA orally daily for 5 weeks and CIS of 5 mg/kg/week. The brain tissues were used for histopathological examinations and for total antioxidant capacity (TAC), total oxidative state (TOS), oxidative stress index (OSI), tumornecrosis factor-alpha (T NF-α), interleukin 6 (IL-6) Interleukin 1 beta (IL-1β), acetylcholinesterase (AChE), glutamate, gamma aminobutyric acid (GABA), dopamine analyzes in ELISA. WBC, RBC, hemoglobin and hematocrit levels were measured.Results: PCA + CIS group compared to CIS group TOS, OSI, T NF-α, IL-6, IL-1β, AChE, glutamate, WBC levels decreased significantly, while TAC and GABA levels increased statistically significant. With this study, P CA corrected the deterioration in the oxidant / antioxidant status, suppressed neuro-inflammation, decreased AChE activity, partially normalized neurotransmitters, and decreased the increased WBC count. Necrosis seen in the CIS group in histopathological examinations was never seen in the PCA + CIS group.Conclusions: PCA may provide therapeutic benefit when used in conjunction with CIS.
Collapse
Affiliation(s)
- Handan Mert
- Department of Biochemistry, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Özge Kerem
- Department of Biochemistry, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Leyla Mıs
- Department of Physiology, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Serkan Yıldırım
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Nihat Mert
- Department of Biochemistry, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
6
|
Da-Silva OF, Adelowo AR, Babalola AA, Ikeji CN, Owoeye O, Rocha JBT, Adedara IA, Farombi EO. Diphenyl Diselenide Through Reduction of Inflammation, Oxidative Injury and Caspase-3 Activation Abates Doxorubicin-Induced Neurotoxicity in Rats. Neurochem Res 2024; 49:1076-1092. [PMID: 38267690 DOI: 10.1007/s11064-023-04098-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/26/2024]
Abstract
Neurotoxicity associated with chemotherapy is a debilitating side effect of cancer management in humans which reportedly involves inflammatory and oxidative stress responses. Diphenyl diselenide (DPDS) is an organoselenium compound which exhibits its anti-tumoral, anti-oxidant, anti-inflammatory and anti-mutagenic effects. Nevertheless, its possible effect on chemotherapy-induced neurotoxicity is not known. Using rat model, we probed the behavioral and biochemical effects accompanying administration of antineoplastic agent doxorubicin (7.5 mg/kg) and DPDS (5 and 10 mg/kg). Anxiogenic-like behavior, motor and locomotor insufficiencies associated with doxorubicin were considerably abated by both DPDS doses with concomitant enhancement in exploratory behavior as demonstrated by reduced heat maps intensity and enhanced track plot densities. Moreover, with exception of cerebral glutathione (GSH) level, superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, biochemical data demonstrated reversal of doxorubicin-mediated decline in cerebral and cerebellar antioxidant status indices and the increase in acetylcholinesterase (AChE) activity by both doses of DPDS. Also, cerebellar and cerebral lipid peroxidation, hydrogen peroxide as well as reactive oxygen and nitrogen species levels were considerably diminished in rats administered doxorubicin and DPDS. In addition, DPDS administration abated myeloperoxidase activity, tumour necrosis factor alpha and nitric oxide levels along with caspase-3 activity in doxorubicin-administered rats. Chemoprotection of doxorubicin-associated neurotoxicity by DPDS was further validated by histomorphometry and histochemical staining. Taken together, DPDS through offsetting of oxido-inflammatory stress and caspase-3 activation elicited neuroprotection in doxorubicin-treated rats.
Collapse
Affiliation(s)
- Oluwatobiloba F Da-Silva
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adedoyin R Adelowo
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adesina A Babalola
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Cynthia N Ikeji
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olatunde Owoeye
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Joao B T Rocha
- Department of Biochemistry and Molecular Biology, CCNE, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil.
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
7
|
Jana S, Ghosh A, Dey A, Perveen H, Maity PP, Maji S, Chattopadhyay S. n-Butanol fraction of moringa seed attenuates arsenic intoxication by regulating the uterine inflammatory and apoptotic pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18593-18613. [PMID: 38349492 DOI: 10.1007/s11356-024-32213-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 01/22/2024] [Indexed: 03/09/2024]
Abstract
The adverse effects of arsenic-chelating drugs make it essential to replace invasive chelating therapy with non-invasive oral therapy for arsenic poisoning. The goal of the current investigation was to determine whether the uterine damage caused by arsenization could be repaired by the n-butanol fraction of Moringa oleifera seed (NB). The rats were orally administered with arsenic (10 mg/kg BW) for the initial 8 days, followed by NB (50 mg/kg) for the next 8 days without arsenic. The probable existence of different components in NB was evaluated by HPLC-MS. Pro and anti-inflammatory indicators were assessed by RT-PCR and western blot. ESR-α was detected via immunostaining. Arsenic-exposed rats had significantly increased lipid peroxidation and decreased antioxidant enzyme activity, which were markedly reduced after NB treatment. Weaker ESR-α expression and distorted uterine histomorphology following arsenication were retrieved significantly by NB. Meaningful restoration by NB was also achieved for altered mRNA and protein expression of various inflammatory and apoptotic indicators. Molecular interaction predicted that glucomoringin and methyl glucosinolate of moringa interact with the catalytic site of caspase-3 in a way that limits its activity. However, NB was successful in restoring the arsenic-mediated uterine hypofunction. The glucomoringin and methyl glucosinolate present in n-butanol fraction may play a critical role in limiting apoptotic event in the arsenicated uterus.
Collapse
Affiliation(s)
- Suryashis Jana
- Department of Biomedical Laboratory Science and Management and Clinical Nutrition and Dietetics, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Angshita Ghosh
- Department of Biomedical Laboratory Science and Management and Clinical Nutrition and Dietetics, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Arindam Dey
- Department of Biomedical Laboratory Science and Management and Clinical Nutrition and Dietetics, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Hasina Perveen
- Department of Biomedical Laboratory Science and Management and Clinical Nutrition and Dietetics, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Pikash Pratim Maity
- Department of Medical Laboratory Technology (MLT), Haldia Institute of Health Sciences, ICARE Complex, Hatiberia, Purba Medinipur, 721657, West Bengal, India
| | - Shilpa Maji
- Department of Biomedical Laboratory Science and Management and Clinical Nutrition and Dietetics, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Sandip Chattopadhyay
- Department of Biomedical Laboratory Science and Management and Clinical Nutrition and Dietetics, Vidyasagar University, Midnapore, 721102, West Bengal, India.
| |
Collapse
|
8
|
Saad KM, Salles ÉL, Naeini SE, Baban B, Abdelmageed ME, Abdelaziz RR, Suddek GM, Elmarakby AA. Reno-protective effect of protocatechuic acid is independent of sex-related differences in murine model of UUO-induced kidney injury. Pharmacol Rep 2024; 76:98-111. [PMID: 38214881 DOI: 10.1007/s43440-023-00565-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Obstructive nephropathy is a condition often caused by urinary tract obstruction either anatomical (e.g., tumors), mechanical (e.g., urolithiasis), or compression (e.g., pregnancy) and can progress to chronic kidney disease (CKD). Studies have shown sexual dimorphism in CKD, where males were found to have a more rapid decline in kidney function following kidney injury compared to age-matched females. Protocatechuic acid (PCA), an anti-oxidant and anti-inflammatory polyphenolic compound, has demonstrated promising effects in mitigating drug-induced kidney injuries. The current study aims to explore sexual dimorphism in kidney injury after unilateral ureteral obstruction (UUO) and assess whether PCA treatment can mitigate kidney injury in both sexes. METHODS UUO was induced in 10-12 weeks old male and female C57BL/6J mice. Mice were categorized into four groups (n = 6-8/group); Sham, Sham plus PCA (100 mg/kg, I.P daily), UUO, and UUO plus PCA. RESULTS After 2 weeks of induction of UUO, markers of kidney oxidative stress (TBARs), inflammation (IL-1α and IL-6), tubular injury (neutrophil gelatinase-associated lipocalin, NGAL and urinary kidney injury molecule-1, KIM-1), fibrosis (Masson's trichrome staining, collagen IV expression, MMP-2 and MMP-9) and apoptosis (TUNEL+ cells, active caspase-1 and caspase-3) were significantly elevated in both males and females relative to their sham counterparts. Males exhibited significantly greater kidney oxidative stress, inflammation, fibrosis, and apoptosis after induction of UUO when compared to females. PCA treatment significantly attenuated UUO-induced kidney injury, inflammation, fibrosis, and apoptosis in both sexes. CONCLUSION Our findings suggest a differential gender response to UUO-induced kidney injury with males being more sensitive to UUO-induced kidney inflammation, fibrosis, and apoptosis than age-matched females. Importantly, PCA treatment reduced UUO-induced kidney injury in a sex-independent manner which might be attributed to its anti-oxidant, anti-inflammatory, anti-fibrotic, and anti-apoptotic properties.
Collapse
Affiliation(s)
- Karim M Saad
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1450 Laney Walker Blvd, CL2126, Augusta, GA, 30912, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Évila Lopes Salles
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1450 Laney Walker Blvd, CL2126, Augusta, GA, 30912, USA
| | - Sahar Emami Naeini
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1450 Laney Walker Blvd, CL2126, Augusta, GA, 30912, USA
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1450 Laney Walker Blvd, CL2126, Augusta, GA, 30912, USA
| | - Marwa E Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Rania R Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ghada M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ahmed A Elmarakby
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1450 Laney Walker Blvd, CL2126, Augusta, GA, 30912, USA.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
9
|
Ferdous R, Islam MB, Al-Amin MY, Dey AK, Mondal MOA, Islam MN, Alam AK, Rahman AA, Sadik MG. Anticholinesterase and antioxidant activity of Drynaria quercifolia and its ameliorative effect in scopolamine-induced memory impairment in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117095. [PMID: 37634747 DOI: 10.1016/j.jep.2023.117095] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Drynaria quercifolia is an epiphytic fern distributed all over Bangladesh with traditional use in treating neurological disorders and other ailments. Although several pharmacological activities of D. quercifolia have been investigated, the neuroprotective potential of this plant is still unexplored. AIM OF STUDY In this study, we evaluated the in vitro anticholinesterase and antioxidant activities of D. quercifolia and the neuroprotective effect in scopolamine-induced memory-impaired mouse model. MATERIALS AND METHODS The crude methanol extract (DCM) of the plant was fractionated to prepare n-hexane (DHF), chloroform (DCF), ethyl acetate (DEF), and aqueous (DAF) factions. All the fractions were evaluated for anticholinesterase activity by modified Ellman's method and the antioxidant activity by several in vitro assays such as DPPH and hydroxyl free radicals scavenging, reducing power, and inhibition of brain lipid peroxidation. The effect of the most active fractions (both DCF and DEF) on learning and memory was assessed in scopolamine-induced mouse model of memory-impairment by Morris water maze tasks. Biochemical assays were performed in brain tissue. The active compound was isolated and characterized by chromatographic, spectroscopic, and molecular docking methods. RESULTS Phytochemical analysis demonstrated a high content of phenolic and flavonoid in DEF. In vitro studies revealed a strong antioxidant power of DEF and anticholinesterase activity of DCF. Both the DCF and DEF significantly (P˂0.05) reduced the escape latency time in the Morris's water maze tasks, and increased the time spent in the northeast quadrant in the probe trial. Biochemical data demonstrated that treatment with DCF and DEF at different doses significantly (P˂0.0001) inhibited acetylcholinesterase activity, restored GSH levels, and reduced MDA levels in the brain of scopolamine-induced memory-impaired mice, indicating the protective effect of D. quercifolia, possibly by acetylcholinesterase inhibition and oxidative stress prevention. Chromatographic methods of separation led to he isolation of catechin and protocatechuric acid from DEF and 3,4-dihydroxy benzoic acid from DCF. The structure of the compounds was determined by studies of their 1H-NMR spectra. Molecular docking as well as in vitro study suggests the anticholinesterase and antioxidant activity of the isolated compounds. CONCLUSION Our study suggested that the extracts of D. quercifolia, due to anticholinesterase and antioxidant activity, ameliorate the scopolamine-induced memory impairment in mice and thus may represent therapeutics in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Rafia Ferdous
- Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| | - Md Badrul Islam
- Bangladesh Council of Scientific and Industrial Research, Rajshahi Laboratories, Bangladesh, Rajshahi, 6206, Bangladesh.
| | - Md Yusuf Al-Amin
- Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| | - Anik Kumar Dey
- Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| | | | - Md Nurul Islam
- Department of Zoology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| | - Ahm Khurshid Alam
- Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| | - Aziz Abdur Rahman
- Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| | - Md Golam Sadik
- Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
10
|
Alsadi N, Yahfoufi N, Nessim C, Matar C. Role of a Polyphenol-Enriched Blueberry Preparation on Inhibition of Melanoma Cancer Stem Cells and Modulation of MicroRNAs. Biomedicines 2024; 12:193. [PMID: 38255297 PMCID: PMC10813708 DOI: 10.3390/biomedicines12010193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Melanoma is a type of skin cancer known for its high mortality rate. Cancer stem cells (CSCs) are a subpopulation of cancer cells that significantly contribute to tumour recurrence and differentiation. Epigenetic-specific changes involving miRNAs maintain CSCs. Plant polyphenols have been reported to be involved in cancer chemoprevention and chemotherapy, with miRNAs being the novel effectors in their biological activities. A polyphenol-enriched blueberry preparation (PEBP) derived from fermented blueberries has demonstrated promising chemopreventative properties on breast cancer stem cells by influencing inflammatory pathways and miRNAs. In our current investigation, we seek to unveil the impact of PEBP on inhibiting melanoma development and to elucidate the underlying mechanisms. Our study employs various human cell lines, including an ex vivo cell line derived from a patient's metastatic tumour. We found that it elevates miR-200c, increasing E-cadherin expression and inhibiting miR-210-3p through NF-κB signalling, impacting Epithelial-to-Mesenchymal Transition (EMT), a critical process in cancer progression. PEBP increases the SOCS1 expression, potentially contributing to miR-210-3p inhibition. Experiments involving miRNA manipulation confirm their functional roles. The study suggests that PEBP's anti-inflammatory effects involve regulating miR-200c and miR-210 expression and their targets in EMT-related pathways. The overall aim is to provide evidence-based supportive care and preclinical evaluation of PEBP, offering a promising strategy for skin cancer chemoprevention.
Collapse
Affiliation(s)
- Nawal Alsadi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (N.A.); (N.Y.)
| | - Nour Yahfoufi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (N.A.); (N.Y.)
| | - Carolyn Nessim
- Department of Surgery, University of Ottawa, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada;
| | - Chantal Matar
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (N.A.); (N.Y.)
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
11
|
Njoku CA, Ileola-Gold AV, Adelaja UA, Ikeji CN, Owoeye O, Adedara IA, Farombi EO. Amelioration of neurobehavioral, biochemical, and morphological alterations associated with silver nanoparticles exposure by taurine in rats. J Biochem Mol Toxicol 2023; 37:e23457. [PMID: 37437208 DOI: 10.1002/jbt.23457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/18/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
The adverse effect of silver nanoparticles (AgNPs) on the nervous system is an emerging concern of public interest globally. Taurine, an essential amino acid required for neurogenesis in the nervous system, is well-documented to possess antioxidant, anti-inflammatory, and antiapoptotic activities. Yet, there is no report in the literature on the effect of taurine on neurotoxicity related to AgNPs exposure. Here, we investigated the neurobehavioral and biochemical responses associated with coexposure to AgNPs (200 µg/kg body weight) and taurine (50 and 100 mg/kg body weight) in rats. Locomotor incompetence, motor deficits, and anxiogenic-like behavior induced by AgNPs were significantly alleviated by both doses of taurine. Taurine administration enhanced exploratory behavior typified by increased track plot densities with diminished heat maps intensity in AgNPs-treated rats. Biochemical data indicated that the reduction in cerebral and cerebellar acetylcholinesterase activity, antioxidant enzyme activities, and glutathione level by AgNPs treatment were markedly upturned by both doses of taurine. The significant abatement in cerebral and cerebellar oxidative stress indices namely reactive oxygen and nitrogen species, hydrogen peroxide, and lipid peroxidation was evident in rats cotreated with AgNPs and taurine. Further, taurine administration abated nitric oxide and tumor necrosis factor-alpha levels cum myeloperoxidase and caspase-3 activities in AgNPs-treated rats. Amelioration of AgNPs-induced neurotoxicity by taurine was confirmed by histochemical staining and histomorphometry. In conclusion, taurine via attenuation of oxido-inflammatory stress and caspase-3 activation protected against neurotoxicity induced by AgNPs in rats.
Collapse
Affiliation(s)
- Chiwueze A Njoku
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ayomitan V Ileola-Gold
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Uthman A Adelaja
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Cynthia N Ikeji
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olatunde Owoeye
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
12
|
Soliman AM, Ghorab WM, Lotfy DM, Karam HM, Ghorab MM, Ramadan LA. Novel iodoquinazolinones bearing sulfonamide moiety as potential antioxidants and neuroprotectors. Sci Rep 2023; 13:15546. [PMID: 37730974 PMCID: PMC10511408 DOI: 10.1038/s41598-023-42239-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023] Open
Abstract
In a search for new antioxidants, a set of new iodoquinazolinone derivatives bearing benzenesulfonamide moiety and variable acetamide pharmacophores 5-17 were designed and synthesized. The structures of the synthesized compounds were confirmed based on spectral data. Compounds 5-17 were screened using in vitro assay for their antioxidant potential and acetylcholinesterase (AChE) inhibitory activity. The 2-(6-iodo-4-oxo-3-(4-sulfamoylphenyl)-3,4-dihydroquinazolin-2-ylthio)-N-(pyrazin-2-yl) acetamide 14 was the most active scaffold with potent AChE inhibitory activity. Compound 14 showed relative safety with a median lethal dose of 300 mg/kg (LD50 = 300 mg/kg), in an acute toxicity study. The possible antioxidant and neuroprotective activities of 14 were evaluated in irradiated mice. Compound 14 possessed in vivo AChE inhibitory activity and was able to modify the brain neurotransmitters. It was able to cause mitigation of gamma radiation-induced oxidative stress verified by the decline in Myeloperoxidase (MPO) and increase of glutathione (GSH) levels. Also, 14 restored the alterations in behavioral tests. Molecular docking of 14 was performed inside MPO and AChE active sites and showed the same binding interactions as that of the co-crystallized ligands considering the binding possibilities and energy scores. These findings would support that 14 could be considered a promising antioxidant with a neuromodulatory effect.
Collapse
Affiliation(s)
- Aiten M Soliman
- Drug Chemistry Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt
| | - Walid M Ghorab
- Drug Chemistry Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt
| | - Dina M Lotfy
- Pharmacology and Toxicology Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt
| | - Heba M Karam
- Pharmacology and Toxicology Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt
| | - Mostafa M Ghorab
- Drug Chemistry Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt.
| | - Laila A Ramadan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| |
Collapse
|
13
|
Go MJ, Kim JM, Lee HL, Kim TY, Joo SG, Kim JH, Lee HS, Kim DO, Heo HJ. Anti-Amnesia-like Effect of Pinus densiflora Extract by Improving Apoptosis and Neuroinflammation on Trimethyltin-Induced ICR Mice. Int J Mol Sci 2023; 24:14084. [PMID: 37762386 PMCID: PMC10531555 DOI: 10.3390/ijms241814084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
This study was conducted to investigate the anti-amnestic property of Korean red pine bark extract (KRPBE) on TMT-induced cognitive decline in ICR mice. As a result of looking at behavioral function, the consumption of KRPBE improved the spatial work ability, short-term learning, and memory ability by Y-maze, passive avoidance, and Morris water maze tests. KRPBE suppressed antioxidant system damage by assessing the SOD activity, reduced GSH content, and MDA levels in brain tissue. In addition, it had a protective effect on cholinergic and synaptic systems by regulating ACh levels, AChE activity, and protein expression levels of ChAT, AChE, SYP, and PSD-95. Also, the KRPBE ameliorated TMT-induced mitochondrial damage by regulating the ROS content, MMP, and ATP levels. Treatment with KRPBE suppressed Aβ accumulation and phosphorylation of tau and reduced the expression level of BAX/BCl-2 ratio and caspase 3, improving oxidative stress-induced apoptosis. Moreover, treatment with KRPBE improved cognitive dysfunction by regulating the neuro-inflammatory protein expression levels of p-JNK, p-Akt, p-IκB-α, COX-2, and IL-1β. Based on these results, the extract of Korean red pine bark, which is discarded as a byproduct of forestry, might be used as an eco-friendly material for functional foods or pharmaceuticals by having an anti-amnesia effect on cognitive impairment.
Collapse
Affiliation(s)
- Min Ji Go
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.J.G.); (J.M.K.); (H.L.L.); (T.Y.K.); (S.G.J.); (J.H.K.); (H.S.L.)
| | - Jong Min Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.J.G.); (J.M.K.); (H.L.L.); (T.Y.K.); (S.G.J.); (J.H.K.); (H.S.L.)
| | - Hyo Lim Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.J.G.); (J.M.K.); (H.L.L.); (T.Y.K.); (S.G.J.); (J.H.K.); (H.S.L.)
| | - Tae Yoon Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.J.G.); (J.M.K.); (H.L.L.); (T.Y.K.); (S.G.J.); (J.H.K.); (H.S.L.)
| | - Seung Gyum Joo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.J.G.); (J.M.K.); (H.L.L.); (T.Y.K.); (S.G.J.); (J.H.K.); (H.S.L.)
| | - Ju Hui Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.J.G.); (J.M.K.); (H.L.L.); (T.Y.K.); (S.G.J.); (J.H.K.); (H.S.L.)
| | - Han Su Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.J.G.); (J.M.K.); (H.L.L.); (T.Y.K.); (S.G.J.); (J.H.K.); (H.S.L.)
| | - Dae-Ok Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea;
| | - Ho Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.J.G.); (J.M.K.); (H.L.L.); (T.Y.K.); (S.G.J.); (J.H.K.); (H.S.L.)
| |
Collapse
|
14
|
Xiao K, Zhou M, Lv Q, He P, Qin X, Wang D, Zhao J, Liu Y. Protocatechuic acid and quercetin attenuate ETEC-caused IPEC-1 cell inflammation and injury associated with inhibition of necroptosis and pyroptosis signaling pathways. J Anim Sci Biotechnol 2023; 14:5. [PMID: 36721159 PMCID: PMC9890695 DOI: 10.1186/s40104-022-00816-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/02/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Necroptosis and pyroptosis are newly identified forms of programmed cell death, which play a vital role in development of many gastrointestinal disorders. Although plant polyphenols have been reported to protect intestinal health, it is still unclear whether there is a beneficial role of plant polyphenols in modulating necroptosis and pyroptosis in intestinal porcine epithelial cell line (IPEC-1) infected with enterotoxigenic Escherichia coli (ETEC) K88. This research was conducted to explore whether plant polyphenols including protocatechuic acid (PCA) and quercetin (Que), attenuated inflammation and injury of IPEC-1 caused by ETEC K88 through regulating necroptosis and pyroptosis signaling pathways. METHODS IPEC-1 cells were treated with PCA (40 μmol/L) or Que (10 μmol/L) in the presence or absence of ETEC K88. RESULTS PCA and Que decreased ETEC K88 adhesion and endotoxin level (P < 0.05) in cell supernatant. PCA and Que increased cell number (P < 0.001) and decreased lactate dehydrogenases (LDH) activity (P < 0.05) in cell supernatant after ETEC infection. PCA and Que improved transepithelial electrical resistance (TEER) (P < 0.001) and reduced fluorescein isothiocyanate-labeled dextran (FD4) flux (P < 0.001), and enhanced membrane protein abundance of occludin, claudin-1 and ZO-1 (P < 0.05), and rescued distribution of these tight junction proteins (P < 0.05) after ETEC infection. PCA and Que also declined cell necrosis ratio (P < 0.05). PCA and Que reduced mRNA abundance and concentration of tumor necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-8 (P < 0.001), and down-regulated gene expression of toll-like receptors 4 (TLR4) and its downstream signals (P < 0.001) after ETEC infection. PCA and Que down-regulated protein abundance of total receptor interacting protein kinase 1 (t-RIP1), phosphorylated-RIP1 (p-RIP1), p-RIP1/t-RIP1, t-RIP3, p-RIP3, mixed lineage kinase domain-like protein (MLKL), p-MLKL, dynamin- related protein 1 (DRP1), phosphoglycerate mutase 5 (PGAM5) and high mobility group box 1 (HMGB1) (P < 0.05) after ETEC infection. Moreover, PCA and Que reduced protein abundance of nod-like receptor protein 3 (NLRP3), nod-like receptors family CARD domain-containing protein 4 (NLRC4), apoptosis-associated speck-like protein containing a CARD (ASC), gasdermin D (GSDMD) and caspase-1 (P < 0.05) after ETEC infection. CONCLUSIONS In general, our data suggest that PCA and Que are capable of attenuating ETEC-caused intestinal inflammation and damage via inhibiting necroptosis and pyroptosis signaling pathways.
Collapse
Affiliation(s)
- Kan Xiao
- grid.412969.10000 0004 1798 1968Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023 People’s Republic of China
| | - Mohan Zhou
- grid.412969.10000 0004 1798 1968Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023 People’s Republic of China
| | - Qingqing Lv
- grid.412969.10000 0004 1798 1968Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023 People’s Republic of China
| | - Pengwei He
- grid.412969.10000 0004 1798 1968Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023 People’s Republic of China
| | - Xu Qin
- grid.412969.10000 0004 1798 1968Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023 People’s Republic of China
| | - Dan Wang
- grid.412969.10000 0004 1798 1968Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023 People’s Republic of China
| | - Jiangchao Zhao
- grid.411017.20000 0001 2151 0999Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701 USA
| | - Yulan Liu
- grid.412969.10000 0004 1798 1968Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023 People’s Republic of China
| |
Collapse
|
15
|
Neurobehavioral and biochemical responses to artemisinin-based drug and aflatoxin B 1 co-exposure in rats. Mycotoxin Res 2023; 39:67-80. [PMID: 36701108 DOI: 10.1007/s12550-023-00474-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/27/2023]
Abstract
Populations in malaria endemic areas are frequently exposed to mycotoxin-contaminated diets. The possible toxicological outcome of co-exposure to dietary aflatoxin B1 (AFB1) and artemisinin-based combination therapy warrants investigation to ascertain amplification or attenuation of cellular injury. Here, we investigated the neurobehavioral and biochemical responses associated with co-exposure to anti-malarial drug coartem, an artemether-lumefantrine combination (5 mg/kg body weight, twice a day and 3 days per week) and AFB1 (35 and 70 µg/kg body weight) in rats. Motor deficits, locomotor incompetence, and anxiogenic-like behavior induced by low AFB1 dose were significantly (p < 0.05) assuaged by coartem but failed to rescue these behavioral abnormalities in high AFB1-dosed group. Coartem administration did not alter exploratory deficits typified by reduced track plot densities and greater heat map intensity in high AFB1-dosed animals. Furthermore, the reduction in cerebral and cerebellar acetylcholinesterase activity, anti-oxidant enzyme activities, and glutathione and thiol levels were markedly assuaged by coartem administration in low AFB1 group but not in high AFB1-dosed animals. The significant attenuation of cerebral and cerebellar oxidative stress indices namely reactive oxygen and nitrogen species, xanthine oxidase activity, and lipid peroxidation by coartem administration was evident in low AFB1 group but not high AFB1 dose. Although coartem administration abated nitric oxide level, activities of myeloperoxidase, caspase-9, and caspase-3 in animals exposed to both doses of AFB1, these indices were significantly higher than the control. Coartem administration ameliorated histopathological and mophometrical changes due to low AFB1 exposure but not in high AFB1 exposure. In conclusion, contrary to AFB1 alone, behavioral and biochemical responses were not altered in animals singly exposed to coartem. Co-exposure to coartem and AFB1 elicited no additional risk but partially lessened neurotoxicity associated with AFB1 exposure.
Collapse
|
16
|
Owumi SE, Adedara IA, Otunla MT, Owoeye O. Influence of furan and lead co-exposure at environmentally relevant concentrations on neurobehavioral performance, redox-regulatory system and apoptotic responses in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 97:104011. [PMID: 36396074 DOI: 10.1016/j.etap.2022.104011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 05/10/2023]
Abstract
Furan and lead are contaminants of global concern due to the potential public health threat associated with their exposure. Herein, the neurobehavioral performance, biochemical effects and histological alterations associated with co-exposure to furan (8 mg/kg) and lead acetate at low, environmentally realistic concentrations (1, 10 and 100 µg PbAc/L) for 28 uninterrupted days were investigated in rats. The results demonstrated that locomotor, motor and exploratory deficits associated with separate exposure to furan and lead was exacerbated in the co-exposed rats. Furan and lead co-exposure aggravated the marked decrease in acetylcholinesterase activity and antioxidant status, elevation in oxido-inflammatory stress indices and caspases activation in the cerebrum and cerebellum of exposed rats compared with control. Furan and lead co-exposure worsened neuronal degeneration as verified by histomorphometry and histochemical staining. Collectively, furan and lead acts together to exacerbate neurotoxicity via inhibition of cholinergic system, induction of oxido-inflammatory stress and caspases activation in rats.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Moses T Otunla
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olatunde Owoeye
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
17
|
Go MJ, Kim JM, Kang JY, Park SK, Lee CJ, Kim MJ, Lee HR, Kim TY, Joo SG, Kim DO, Heo HJ. Korean Red Pine ( Pinus densiflora) Bark Extract Attenuates Aβ-Induced Cognitive Impairment by Regulating Cholinergic Dysfunction and Neuroinflammation. J Microbiol Biotechnol 2022; 32:1154-1167. [PMID: 36039041 PMCID: PMC9628973 DOI: 10.4014/jmb.2207.07015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/15/2022]
Abstract
In this study, we investigated the anti-amnesic effect of Korean red pine (Pinus densiflora) bark extract (KRPBE) against amyloid beta1-42 (Aβ1-42)-induced neurotoxicity. We found that treatment with KRPBE improved the behavioral function in Aβ-induced mice, and also boosted the antioxidant system in mice by decreasing malondialdehyde (MDA) content, increasing superoxide dismutase (SOD) activities, and reducing glutathione (GSH) levels. In addition, KRPBE improved the cholinergic system by suppressing reduced acetylcholine (ACh) content while also activating acetylcholinesterase (AChE), regulating the expression of choline acetyltransferase (ChAT), postsynaptic density protein-95 (PSD-95), and synaptophysin. KRPBE also showed an ameliorating effect on cerebral mitochondrial deficit by regulating reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and ATP levels. Moreover, KRPBE modulated the expression levels of neurotoxicity indicators Aβ and phosphorylated tau (p-tau) and inflammatory cytokines TNF-α, p-IκB-α, and IL-1β. Furthermore, we found that KRPBE improved the expression levels of neuronal apoptosis-related markers BAX and BCl-2 and increased the expression levels of BDNF and p-CREB. Therefore, this study suggests that KRPBE treatment has an anti-amnestic effect by modulating cholinergic system dysfunction and neuroinflammation in Aβ1-42-induced cognitive impairment in mice.
Collapse
Affiliation(s)
- Min Ji Go
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jong Min Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jin Yong Kang
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea,Advanced Process Technology and Fermentation Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Seon Kyeong Park
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea,Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Chang Jun Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea,Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Min Ji Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyo Rim Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Tae Yoon Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Seung Gyum Joo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Dae-Ok Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Ho Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea,Corresponding author Phone: +82-55-772-1907 Fax: +82-55-772-1909 E-mail:
| |
Collapse
|
18
|
Zhou Z, Wang M, Huang C, Li Y, Gao L, Zhu Y, Ying C, Zhou X. Treadmill exercise training alleviates diabetes-induced depressive-like behavior and cognitive impairment by improving hippocampal CA1 neurons injury in db/db mice. Brain Res Bull 2022; 190:84-96. [PMID: 36174874 DOI: 10.1016/j.brainresbull.2022.09.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/12/2022] [Accepted: 09/23/2022] [Indexed: 11/28/2022]
Abstract
Patients with diabetes mellitus (DM) have an increased risk of diabetic encephalopathy symptoms such as depressive-like behaviour and cognitive impairment. Exercise is an effective strategy for preventing and treating DM and diabetic complications. The aim of this study is to investigate the effects and potential mechanisms of treadmill exercise training on diabetes-induced depressive-like behavior and cognitive impairment in db/db mice. In this study, the mice were divided into three groups (n=10 per group) as follows: healthy-sedentary (db/m), diabetes-sedentary (db/db), and diabetes-treadmill exercise training (db/db-TET). The db/db-TET mice were performed five days per week at a speed of 8m/min for 60min/day for 8 weeks, following which body weight, fasting blood glucose, insulin resistance, behavioral, synaptic ultrastructure, oxidative stress, apoptotic signaling, and inflammatory responses were evaluated. As a result, treadmill exercise training significantly decreased body weight and fasting blood glucose levels, increased insulin sensitivity, protected synaptic ultrastructure, reduced depression-like behavior, and improved learning and memory deficits in db/db mice. In addition, treadmill exercise training significantly suppressed NOX2-mediated oxidative stress, resulting in a decrease in NOX2-dependent ROS generation in the db/db mouse hippocampus CA1 region. Reduced ROS generation prevented the apoptotic signaling pathway and NLRP3 inflammasome activation, thereby ameliorating hippocampus neuronal damage. In summary, the results indicated that treadmill exercise training significantly ameliorates hippocampus injury by suppressing oxidative stress-induced apoptosis and NLRP3 inflammasome activation, consequently ameliorating diabetes-induced depressive-like behavior and cognitive impairment in db/db mice.
Collapse
Affiliation(s)
- Zhongyuan Zhou
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R.China; Department of Pain, Lianyungang Maternal and Child Health Hospital, Lianyungang, 222000, P.R.China
| | - Meng Wang
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R.China
| | - Chengyu Huang
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R.China
| | - Yan Li
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R.China
| | - Lin Gao
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R.China
| | - Yandong Zhu
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R.China
| | - Changjiang Ying
- Department of Endocrinology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R.China.
| | - Xiaoyan Zhou
- Laboratory of Morphology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R.China.
| |
Collapse
|
19
|
Elangovan A, Ramachandran J, Lakshmanan DK, Ravichandran G, Thilagar S. Ethnomedical, phytochemical and pharmacological insights on an Indian medicinal plant: The balloon vine (Cardiospermum halicacabum Linn.). JOURNAL OF ETHNOPHARMACOLOGY 2022; 291:115143. [PMID: 35227784 DOI: 10.1016/j.jep.2022.115143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cardiospermum halicacabum Linn. (C. halicacabum) is one of the well-known leafy green vegetables in India. It is an herbaceous climber from the Sapindaceae family which is found in almost every Continent and Oceania. In the traditional Indian medicine systems, this plant is used for the treatment of rheumatism, abdominal pain, orchitis, dropsy, lumbago, skin diseases, cough, nervous disorders, and hyperthermia. AIM OF THE REVIEW This review presents the current information about ethnomedical uses and progress on geographical distribution, pharmacological activities, phytochemistry, micropropagation, and toxicity of C. halicacabum. Also, critically summarizes the relationship between the reported pharmacological activities and the traditional usages along with the future perspectives for research on this medicinal plant. MATERIALS AND METHODS The data on C. halicacabum were collected using multiple internet sources such as Google Scholar, Science Direct, Taylor & Francis, PubMed, Web of Science, Springer Link, Wiley online, and plant databases. RESULTS Chemical characterization using LC-MS/MS, HPLC, and NMR exposed the presence of chlorogenic acid, caffeic acid, coumaric acid, luteolin-7-o-glucuronide, apigenin-7-o-glucuronide, and chrysoeriol in different parts of C. halicacabum. Based on the outcomes of this review, the main bioactive compounds found in C. halicacabum include phenols, phenolic acids, flavonoids, flavonoid glycosides, and flavonoid glucuronides. Besides the above-mentioned constituents, palmitic acid, oleic acid, stearic acid, linolenic acid, eicosenoic acid, and arachidic acid are the compounds that constitute the fatty acid profile of C. halicacabum seeds. Specifically, Cardiospermin, a bioactive compound isolated from the root extract of C. halicacabum has been recognized for its anxiolytic activity. Moreover, C. halicacabum showed a broad spectrum of pharmacological activities including anti-inflammatory, anti-arthritic, anti-diabetic, anxiolytic activity, antiulcer, apoptotic activity, antibacterial, antiviral, anti-diarrheal, antioxidant, hepatoprotective, and nephroprotective properties. However, the bioactive compounds responsible for most of the above therapeutic properties have not been elucidated till now. CONCLUSION Phytochemicals from C. halicacabum showed noticeable pharmacological effects against plethora of health disorders. Some of the traditional applications were supported by modern scientific studies, however, more pharmacological evaluations should be conducted to validate other traditional uses of C. halicacabum. Despite C. halicacabum's vast pharmacological activity, additional human clinical trials are needed to determine the potent and safe dosages for the treatment of various health abnormalities. Besides, bioassay-guided isolation of active constituents, pharmacokinetic evaluations and identification of their mode of action are recommended for future investigations on C. halicacabum to unveil its therapeutic drug leads. Overall, this review suggests that C. halicacabum could be a new source of functional foods.
Collapse
Affiliation(s)
- Abbirami Elangovan
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Jeyadevi Ramachandran
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Dinesh Kumar Lakshmanan
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India; Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India
| | - Guna Ravichandran
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Sivasudha Thilagar
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
| |
Collapse
|
20
|
Yalçınkaya AS, Şekeroğlu MR, Huyut Z, Çokluk E, Özbek H, Öztürk G, Balahoroğlu R. The levels of nitrite, nitrate and lipid peroxidation in diabetic mouse brain: the effect of melatonin and pentoxifylline. Arch Physiol Biochem 2022; 128:795-801. [PMID: 32070146 DOI: 10.1080/13813455.2020.1727528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE This study investigated the relationship between diabetes (DM) and nitrite, nitrate and MDA levels and effect of melatonin and pentoxifylline. METHODS Sixty mice were randomly divided into four groups. Control: no action; Diabetes group (DM): after fasting-blood-glucose (FBG) was measured, 150 mg/kg alloxane was applied intraperitoneally three-times every other day; Diabetes + Melatonin (DM + MLT) and Diabetes + Pentoxifylline groups (DM + PTX): following the same procedures with DM, 10 mg/kg melatonin and 50 mg/kg pentoxifylline were administered subcutaneously six days, respectively. Following FBG analysis, brain tissues were taken under the anaesthesia. Nitrite, nitrate and MDA levels were measured. RESULTS In the all groups with alloxane, FBG were higher than in before application (p < .05). Also, FBG, nitrite, nitrate and MDA levels in the DM + MLT and DM + PTX groups were lower than in the DM (p < .05). CONCLUSIONS Nitrite and nitrate may be related to etiopathogenesis of DM, and pentoxifylline and especially melatonin relatively decrease nitrite, nitrate and lipid peroxidation.
Collapse
Affiliation(s)
- Ahmet S Yalçınkaya
- Department of Biochemistry, Toyosata Emergency Hospital, Sakarya, Turkey
| | | | - Zübeyir Huyut
- Department of Biochemistry, Medical Faculty, Van Yuzuncu Yıl University, Van, Turkey
| | - Erdem Çokluk
- Department of Biochemistry, Medical Faculty, Sakarya University, Sakarya, Turkey
| | - Hanefi Özbek
- Department of Pharmacology, Faculty of Medicine, Medipol University, Istanbul, Turkey
| | - Gürkan Öztürk
- Department of Physiology, Faculty of Medicine, Medipol University, Istanbul, Turkey
| | - Ragıp Balahoroğlu
- Department of Biochemistry, Konya Regional Research Hospital, Konya, Turkey
| |
Collapse
|
21
|
Asejeje FO, Ajayi BO, Abiola MA, Samuel O, Asejeje GI, Ajiboye EO, Ajayi AM. Sodium benzoate induces neurobehavioral deficits and brain oxido‐inflammatory stress in male Wistar rats: Ameliorative role of ascorbic acid. J Biochem Mol Toxicol 2022; 36:e23010. [DOI: 10.1002/jbt.23010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 12/11/2021] [Accepted: 01/04/2022] [Indexed: 12/21/2022]
Affiliation(s)
- Folake O. Asejeje
- Department of Chemical Sciences, Faculty of Natural Sciences Ajayi Crowther University Oyo Nigeria
| | - Babajide O. Ajayi
- Department of Chemical Sciences, Faculty of Natural Sciences Ajayi Crowther University Oyo Nigeria
| | - Michael A. Abiola
- Department of Biochemistry, Faculty of Basic Medical Sciences University of Ibadan Ibadan Nigeria
| | - Omolola Samuel
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences University of Ibadan Ibadan Nigeria
| | - Gbolahan I. Asejeje
- Department of Chemistry, Faculty of Science University of Ibadan Ibadan Nigeria
| | - Ebenezer O. Ajiboye
- Department of Physiology and Anatomy, Faculty of Basic Medical Sciences Ajayi Crowther University Oyo Nigeria
| | - Abayomi M. Ajayi
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences University of Ibadan Ibadan Nigeria
| |
Collapse
|
22
|
Protocatechuic acid protects mice from influenza A virus infection. Eur J Clin Microbiol Infect Dis 2022; 41:589-596. [PMID: 35067799 PMCID: PMC8784203 DOI: 10.1007/s10096-022-04401-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 01/10/2022] [Indexed: 11/08/2022]
Abstract
Influenza A virus (IAV) H1N1 infection remains great challenge to public health and causes great burden over the world. Although there are anti-viral agents available, searching for effective agents to treat H1N1 infection is still in urgent because of the emergence of resistant strain. Protocatechuic acid (PCA) is a biological agent with multiple functions. In present study, we explored the effects of PCA on H1N1 infection. Mice infected with mouse adapted influenza strain A/Font Monmouth were administrated with PCA. The body weight change, mortality, lung index, viral titer, immune cell infiltration, and cytokine production in the lung were monitored. The activation of toll-like receptor 4 (TLR4) and nuclear factor kappa light chain enhancer of activated B cells (NF-κB) pathway was investigated. PCA treatment prevented H1N1 infection-induced mice body weight loss and death. PCA reduced the lung index, viral titer, infiltration of immune cells, and cytokine level in the lung, as well as suppressed H1N1-induced TLR4/NF-κB activation. PCA protects mice against H1N1 infection and could be a potential therapeutic agent to treat influenza.
Collapse
|
23
|
The Use of Bioactive Compounds in Hyperglycemia- and Amyloid Fibrils-Induced Toxicity in Type 2 Diabetes and Alzheimer’s Disease. Pharmaceutics 2022; 14:pharmaceutics14020235. [PMID: 35213966 PMCID: PMC8879577 DOI: 10.3390/pharmaceutics14020235] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 12/29/2022] Open
Abstract
It has become increasingly apparent that defective insulin signaling may increase the risk for developing Alzheimer’s disease (AD), influence neurodegeneration through promotion of amyloid formation or by increasing inflammatory responses to intraneuronal β-amyloid. Recent work has demonstrated that hyperglycemia is linked to cognitive decline, with elevated levels of glucose causing oxidative stress in vulnerable tissues such as the brain. The ability of β-amyloid peptide to form β-sheet-rich aggregates and induce apoptosis has made amyloid fibrils a leading target for the development of novel pharmacotherapies used in managing and treatment of neuropathological conditions such as AD-related cognitive decline. Additionally, deposits of β-sheets folded amylin, a glucose homeostasis regulator, are also present in diabetic patients. Thus, therapeutic compounds capable of reducing intracellular protein aggregation in models of neurodegenerative disorders may prove useful in ameliorating type 2 diabetes mellitus symptoms. Furthermore, both diabetes and neurodegenerative conditions, such as AD, are characterized by chronic inflammatory responses accompanied by the presence of dysregulated inflammatory biomarkers. This review presents current evidence describing the role of various small bioactive molecules known to ameliorate amyloidosis and subsequent effects in prevention and development of diabetes and AD. It also highlights the potential efficacy of peptide–drug conjugates capable of targeting intracellular targets.
Collapse
|
24
|
Avicularin Attenuates Memory Impairment in Rats with Amyloid Beta-Induced Alzheimer's Disease. Neurotox Res 2022; 40:140-153. [PMID: 35043380 DOI: 10.1007/s12640-021-00467-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022]
Abstract
Amyloid-beta-induced Alzheimer's disease (AD) and its further complications are well-established models in preclinical studies and demonstrated by many researchers. Intracerebroventricular injection of Aβ produces brain malfunction, including neurodegeneration and memory impairment. Avicularin is a bioactive flavonoid that has been found to prevent oxidative stress and proinflammatory cytokines. Alzheimer's disease treatment may benefit from inhibiting amyloid-beta and its related complications. Hence, by considering multiple actions of avicularin, including antioxidant and anti-inflammatory, we demonstrated the neuroprotective action of avicularin against amyloid beta-induced neurotoxicity. Aβ1-42 (1 µg/µl) was dissolved in phosphate buffer solution (pH7.4) and incubated at 37 °C for 3 days to induce aggregation. A single intracerebroventricular (i.c.v.) injection of the Aβ1-42 was given to the animals utilizing stereotaxic equipment. Avicularin was dissolved in 0.5% sodium carboxymethyl cellulose (CMC), and treatment was given to the animals for 21 days at a dose of (25, 50, and 100 mg/kg, p.o.) after Aβ1-42 peptide (i.c.v.) injection. Several behavioral studies, acetylcholinesterase activity, oxidative stress, TNFα, IL-6, IL-1β, and expression of BDNF and amyloid-beta were measured. Avicularin treatment (50 and 100 mg/kg) showed cognition enhancement activity in behavioral studies and could reverse the effects of amyloid beta-induced inflammatory response and excessive oxidative stress. Furthermore, the findings reveal that avicularin can halt AD progression by targeting BDNF and amyloid-beta levels in the brain, suggesting that avicularin could be used for Alzheimer's disease treatment.
Collapse
|
25
|
Gaur S, Gaur S, Mishra R, Singh RK, Bajpai S. Astaxanthin reduces oxidative stress and alleviates diabetic neuropathy in STZ-induced diabetic mice. Int J Diabetes Dev Ctries 2022. [DOI: 10.1007/s13410-021-01035-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
26
|
Zhang S, Gai Z, Gui T, Chen J, Chen Q, Li Y. Antioxidant Effects of Protocatechuic Acid and Protocatechuic Aldehyde: Old Wine in a New Bottle. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6139308. [PMID: 34790246 PMCID: PMC8592717 DOI: 10.1155/2021/6139308] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/15/2021] [Indexed: 01/03/2023]
Abstract
Phenolic compounds are naturally present as secondary metabolites in plant-based sources such as fruits, vegetables, and spices. They have received considerable attention for their antioxidant, anti-inflammatory, and anti-carcinogenic properties for protection against many chronic disorders such as neurodegenerative diseases, diabetes, cardiovascular diseases, and cancer. They are categorized into various groups based on their chemical structure and include phenolic acids, flavonoids, curcumins, tannins, and quinolones. Their structural variations contribute to their specific beneficial effects on human health. The antioxidant property of phenolic compounds protects against oxidative stress by up-regulation of endogenous antioxidants, scavenging free radicals, and anti-apoptotic activity. Protocatechuic acid (PCA; 3,4-dihydroxy benzoic acid) and protocatechuic aldehyde (PAL; 3,4-dihydroxybenzaldehyde) are naturally occurring polyphenols found in vegetables, fruits, and herbs. PCA and PAL are the primary metabolites of anthocyanins and proanthocyanidins, which have been shown to possess pharmacological actions including antioxidant activity in vitro and in vivo. This review aims to explore the therapeutic potential of PCA and PAL by comprehensively summarizing their pharmacological properties reported to date, with an emphasis on their mechanisms of action and biological properties.
Collapse
Affiliation(s)
- Shijun Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhibo Gai
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ting Gui
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Juanli Chen
- The Institute for Tissue Engineering and Regenerative Medicine, The Liaocheng University/Liaocheng People's Hospital, Liaocheng, China
| | - Qingfa Chen
- The Institute for Tissue Engineering and Regenerative Medicine, The Liaocheng University/Liaocheng People's Hospital, Liaocheng, China
| | - Yunlun Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- The Third Department of Cardiovascular Diseases, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
27
|
Alsharif KF, Almalki AA, Alsanie WF, Alzahrani KJ, Kabrah SM, Elshopakey GE, Alghamdi AAA, Lokman MS, Sberi HA, Bauomy AA, Albrakati A, Ramadan SS, Kassab RB, Abdel Moneim AE, Salem FEH. Protocatechuic acid attenuates lipopolysaccharide-induced septic lung injury in mice: The possible role through suppressing oxidative stress, inflammation and apoptosis. J Food Biochem 2021; 45:e13915. [PMID: 34472624 DOI: 10.1111/jfbc.13915] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/14/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022]
Abstract
Here, we investigated the protective efficacy of protocatechuic acid (PCA) against lipopolysaccharide (LPS)-induced septic lung injury. Eighty-two male Balb/c mice were divided into six groups: control, PCA30 (30 mg/kg), LPS (10 mg/kg), PCA10-LPS, PCA20-LPS, and PCA30-LPS treated with 10, 20 and 30 mg/kg PCA, respectively, for seven days before intraperitoneal LPS injection. PCA pre-treatment, especially at higher dose, significantly reduced LPS-induced lung tissue injury as indicated by increased heat shock protein 70 and antioxidant molecules (reduced glutathione, superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase) accompanied by lower oxidative stress indices (malondialdehyde and nitric oxide). PCA administration decreased inflammatory mediators including myeloperoxidase, nuclear factor kappa B (NF-κB p65), and pro-inflammatory cytokines, and prevented the development of apoptotic events in the lung tissue. At the molecular level, PCA downregulated mRNA expression of nitric oxide synthase 2, C/EBP homologous protein, and high mobility group box1 in the lungs of all PCA-LPS treated mice. Thus, PCA-pre-treatment effectively counteracted sepsis-induced acute lung injury in vivo by promoting and antioxidant status, while inhibiting inflammation and apoptosis. PRACTICAL IMPLICATIONS: Sepsis-mediated organ dysfunction and high mortality is aggravated by acute lung injury (ALI). Therefore, new therapeutic approaches are needed to encounter sepsis-mediated ALI. Protocatechuic acid (PCA) is a naturally occurring phenolic acid with various biological and pharmacological activities. PCA is abundant in edible plants including Allium cepa L., Oryza sativa L., Hibiscus sabdariffa, Prunus domestica L., and Eucommia ulmoides. In this investigation we studied the potential protective role of pure PCA (10, 20 and 30 mg/kg) on LPS-mediated septic lung injury in mice through examining oxidative challenge, inflammatory response, apoptotic events and histopathological changes in addition to evaluating the levels and mRNA expression of heat shock protein 70, C/EBP homologous protein and high mobility group box1 in the lung tissue. The recorded results showed that PCA pre-administration was able to significantly abrogate the damages in the lung tissue associated septic response. This protective effect comes from its strong antioxidant, anti-inflammatory, and anti-apoptotic activities, suggesting that PCA may be applied to alleviate ALI associated with the development of sepsis.
Collapse
Affiliation(s)
- Khalaf F Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Abdulraheem Ali Almalki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Walaa F Alsanie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Khalid J Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Saeed M Kabrah
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm AlQura University, Mecca, Saudi Arabia
| | - Gehad E Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | | | - Maha S Lokman
- Biology Department, College of Science and Humanities, Prince Sattam Bin Abdul Aziz University, Alkharj, Saudi Arabia.,Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Hassan Al Sberi
- Basic Medical Science, Histopathology Department, National Organization for Drug Control and Research, Giza, Egypt.,Department of Biology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Amira A Bauomy
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.,Department of Science Laboratories, College of Science and Arts, Qassim University, ArRass, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Shimaa S Ramadan
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.,Department of Biology, Faculty of Science and Arts, Al Baha University, Almakhwah, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Fatma Elzahraa H Salem
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
28
|
Li H, Zheng T, Lian F, Xu T, Yin W, Jiang Y. Anthocyanin-rich blueberry extracts and anthocyanin metabolite protocatechuic acid promote autophagy-lysosomal pathway and alleviate neurons damage in in vivo and in vitro models of Alzheimer's disease. Nutrition 2021; 93:111473. [PMID: 34739938 DOI: 10.1016/j.nut.2021.111473] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/13/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVES As the global aging phenomenon intensifies, the incidence of Alzheimer's disease (AD) is gradually increasing. Diet appears to be an effective way to prevent and delay the progression of AD. Previous studies have found that cognitive impairment and neuronal damage were effectively alleviated by blueberry extract (BBE) in AD mice, but its mechanism is still unclear. The aims of this study were to detect the main anthocyanins of BBE; then to verify the protective effects of anthocyanin-rich BBE on hippocampal neurons and the promotion of autophagy; and finally to investigate the main protective effects and mechanisms of protocatechuic acid (PCA), a major metabolite of BBE, for promoting autophagy and thus playing a neuroprotective role. METHODS APP/PS1 mice were given 150 mg/kg BBE daily for 16 wk. Morphology of neurons was observed and autophagy-related proteins were detected. RESULTS Neuron damage in morphology was reduced and the expression of autophagy-related proteins in APP/PS1 mice were promoted after BBE treatment. In vitro, Aβ25-35-induced cytotoxicity, including decreased neuron viability and increased levels of lactate dehydrogenase and reactive oxygen species, was effectively reversed by PCA. Furthermore, by adding autophagy inducers rapamycin and autophagy inhibitors Bafilomycin A1, it was verified that degradation of autophagosomes was upregulated and autophagy was promoted by PCA. CONCLUSION This study elucidated the mechanism of BBE for reducing neuronal damage by promoting neuronal autophagy and proved PCA may be the main bioactive metabolite of BBE for neuroprotective effects, providing a basis for dietary intervention in AD.
Collapse
Affiliation(s)
- Hui Li
- Department of Nutrition and Food Hygiene, Institute of Environmental and Operational Medicine, Tianjin, PR China
| | - Tingting Zheng
- Department of Nutrition and Food Hygiene, Institute of Environmental and Operational Medicine, Tianjin, PR China; Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health, and Healthy Food Evaluation Research Center, Sichuan University, Sichuan, PR China
| | - Fuzhi Lian
- Department of Preventive Medicine, Hangzhou Normal University, Hangzhou, China
| | - Tong Xu
- Department of Nutrition and Food Hygiene, Institute of Environmental and Operational Medicine, Tianjin, PR China
| | - Wenya Yin
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health, and Healthy Food Evaluation Research Center, Sichuan University, Sichuan, PR China.
| | - Yugang Jiang
- Department of Nutrition and Food Hygiene, Institute of Environmental and Operational Medicine, Tianjin, PR China.
| |
Collapse
|
29
|
Association of dietary intake, medication and anthropometric indices with serum levels of advanced glycation end products, caspase-3, and matrix metalloproteinase-9 in diabetic patients. J Diabetes Metab Disord 2021; 20:719-725. [PMID: 34222087 DOI: 10.1007/s40200-021-00803-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
Background and objective Increased serum levels of advanced glycation end products (AGEs), caspase-3 (Cas-3) and matrix metalloproteinase-9 (MMP-9) have been reported in diabetic patients. This study aimed to evaluate association of anthropometric, dietary, and therapeutic factors with serum levels of methylglyoxal (MGO), carboxymethyl lysine (CML), pentosidine (Pen), Cas-3, and MMP-9 in diabetic patients. Methods The current study included 36 diabetic subjects. Dietary intake of the participants was assessed using three-day 24-h recall survey and anthropometric indices were measured. Demographic factors and medication intake of every subject were obtained. Serum levels of CML, MGO, Pen, MMP-9, and Cas-3 were measured using ELISA method. Results Gliclazide consumption was positively correlated with MMP-9 and Cas-3, but not AGEs levels. Females had higher MGO level compared with males. Further, CML levels were negatively correlated with BMI and WHR. Dietary protein intake was positively correlated with MMP-9, Cas-3, and MGO levels. As well as dietary energy and fat intake had significant positive relationship with serum Cas-3 concentration. Conclusion It is concluded that anthropometric characteristics, dietary intake, and therapeutic medications are possible factors that may determine the circulating levels of AGEs, MMP-9, and Cas-3 in patients with diabetes.
Collapse
|
30
|
Ebokaiwe AP, Okori S, Nwankwo JO, Ejike CECC, Osawe SO. Selenium nanoparticles and metformin ameliorate streptozotocin-instigated brain oxidative-inflammatory stress and neurobehavioral alterations in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:591-602. [PMID: 33064168 PMCID: PMC7561705 DOI: 10.1007/s00210-020-02000-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/11/2020] [Indexed: 12/12/2022]
Abstract
Selenium nanoparticles (SeNPs) are well reported to exhibit pharmacological activities both in vitro and in vivo. However, literature is devoid of studies on the impact of SeNPs and/or metformin (M) against streptozotocin (STZ)-mediated oxidative brain injury and behavioral impairment. Consequently, to fill this gap, diabetes was induced in male Wistar rats by feeding with 10% fructose solution for 2 weeks, followed by a single dose intraperitoneal injection of STZ (40 mg/kg body weight [bwt]). After rats were confirmed diabetic, they were treated orally with 0.1 mg/kg bwt of SeNPs ± M (50 mg/kg bwt), and normal control (NC) received citrate buffer (2 mg/mL) for 5 weeks. In comparison with the diabetic control (DC), SeNPs, and/or M significantly (p < 0.05) lowered blood glucose levels, but increased insulin secretion and pancreatic β-cell function. An increase in locomotor and motor activities evidenced by improved spontaneous alternation, locomotor frequency, hinding, and increased mobility time were observed in treated groups. In addition, there was enhanced brain antioxidant status with a lower acetylcholinesterase (AChE) activity and oxidative-inflammatory stress biomarkers. A significant downregulation of caspase 3 and upregulation of parvalbumin and Nrf2 protein expressions was observed in treated groups. In some of the studied parameters, treated groups were statistically (p < 0.05) insignificant compared with the normal control (NC) group. Overall, co-treatment elicited more efficacy than that of the individual regimen.
Collapse
Affiliation(s)
- Azubuike P Ebokaiwe
- Department of Chemistry/Biochemistry and Molecular Biology, Alex Ekwueme Federal University, Ndufu-Alike Ikwo, Abakaliki, Ebonyi State, PMB 1010, Nigeria.
| | - Stephen Okori
- Department of Anatomy, Faculty of Basic Medical Sciences, Cross River University of Technology, Okuku Campus, Okuku, Cross River, Nigeria
| | - Joseph O Nwankwo
- Department of Medical Biochemistry, Alex Ekwueme Federal University, Ndufu-Alike Ikwo, Abakaliki, PMB 1010, Nigeria
| | - Chukwunonso E C C Ejike
- Department of Medical Biochemistry, Alex Ekwueme Federal University, Ndufu-Alike Ikwo, Abakaliki, PMB 1010, Nigeria
| | - Sharon O Osawe
- Department of Biological Sciences, Biochemistry Programme, KolaDaisi University, Ibadan, Oyo State, Nigeria
| |
Collapse
|
31
|
Han H, Liu C, Gao W, Li Z, Qin G, Qi S, Jiang H, Li X, Liu M, Yan F, Guo Q, Hu CY. Anthocyanins Are Converted into Anthocyanidins and Phenolic Acids and Effectively Absorbed in the Jejunum and Ileum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:992-1002. [PMID: 33428422 DOI: 10.1021/acs.jafc.0c07771] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Anthocyanins have been known for their health benefits. However, the in vivo digestion and absorption of anthocyanins through the gastrointestinal tract have not been fully clarified, creating challenges for understanding why anthocyanins have high biological activities and purported low bioavailability in vivo. Twenty-seven male rats were intubated with a 500 mg/kg dose of cyanidin-3-glucoside (C3G). Samples from rats' stomach, duodenum, jejunum, ileum, colon, and serum were collected at 0.5, 1, 2, 3, 4, 5, 6, 12, and 24 h after intubation. Three rats without C3G were used as the control with samples collected at 0 h. C3G and its metabolites in each sample were analyzed using high-performance liquid chromatography-PDA-electrospray ionization-MS/MS. These in vivo studies' results unequivocally demonstrated that cyanidin and phenolic acids were the primary C3G metabolites absorbed, mainly in the jejunum and ileum, between 1 and 5 h post-ingestion. We speculate that C3G uses phloroglucinaldehyde and protocatechuic acid metabolic pathways in its metabolism in vivo.
Collapse
Affiliation(s)
- Hao Han
- Shaanxi Provincial Bioresource Key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China
| | - Caifen Liu
- Shaanxi Provincial Bioresource Key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China
| | - Wenchuan Gao
- Baoji Academy of Agricultural Sciences, Qishan 721000, Shaanxi, China
| | - Zhongye Li
- Shaanxi Provincial Bioresource Key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China
| | - Gongwei Qin
- Shaanxi Provincial Bioresource Key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China
| | - Shanshan Qi
- Shaanxi Provincial Bioresource Key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China
| | - Hai Jiang
- Shaanxi Provincial Bioresource Key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China
| | - Xinsheng Li
- Shaanxi Provincial Bioresource Key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China
| | - Minghui Liu
- Baoji Academy of Agricultural Sciences, Qishan 721000, Shaanxi, China
| | - Fei Yan
- Shaanxi Provincial Bioresource Key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Ching Yuan Hu
- Shaanxi Provincial Bioresource Key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 1955 East-West Road, AgSci. 415J, Honolulu 96822, Hawaii, United States
| |
Collapse
|
32
|
Lu Y, An T, Tian H, Gao X, Wang F, Wang S, Ma K. Depression with Comorbid Diabetes: What Evidence Exists for Treatments Using Traditional Chinese Medicine and Natural Products? Front Pharmacol 2021; 11:596362. [PMID: 33568996 PMCID: PMC7868339 DOI: 10.3389/fphar.2020.596362] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
Comorbidity between diabetes mellitus (DM) and depression, two chronic and devastating diseases spreading worldwide, has been confirmed by a large body of epidemiological and clinical studies. Due to the bidirectional relationship between DM and depression, this comorbidity leads to poorer outcomes in both conditions. Given the adverse effects and limited effectiveness of the existing therapies for depression associated with diabetes, the development of novel therapeutic drugs with more potency and fewer side effects is still the most important goal. Hence, many researchers have made great efforts to investigate the potential usefulness of traditional Chinese medicine (TCM) and natural products, including natural extracts and purified compounds, in the treatment of comorbid depression in diabetes. Here, we reviewed the related literature on TCM and natural products that can remedy the comorbidity of diabetes and depression and presented them on the basis of their mechanism of action, focusing on shared risk factors, including insulin resistance, oxidative stress and inflammation, and nervous disturbances. In short, this review suggests that TCM and natural products could expand the therapeutic alternatives to ameliorate the association between DM and depressive disorders.
Collapse
Affiliation(s)
- Yanting Lu
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
- College of TCM, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tao An
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Hu Tian
- College of TCM, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xueqin Gao
- College of TCM, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Furong Wang
- College of TCM, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shijun Wang
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
- College of TCM, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ke Ma
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
- College of TCM, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
33
|
Li Z, Liu Y, Wang F, Gao Z, Elhefny MA, Habotta OA, Abdel Moneim AE, Kassab RB. Neuroprotective effects of protocatechuic acid on sodium arsenate induced toxicity in mice: Role of oxidative stress, inflammation, and apoptosis. Chem Biol Interact 2021; 337:109392. [PMID: 33497687 DOI: 10.1016/j.cbi.2021.109392] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/01/2021] [Accepted: 01/19/2021] [Indexed: 12/17/2022]
Abstract
Arsenic is a toxic metalloid abundantly found in nature and used in many industries. Consumption of contaminated water mainly results in human exposure to arsenic. Toxicity (arsenicosis) resulting from arsenic exposure causes cerebral neurodegeneration. Protocatechuic acid (PCA), a phenol derived from edible plants, has antioxidant properties. The present study investigated the neuroprotective potential of PCA against arsenic-induced neurotoxicity in mice. Male Swiss albino mice were divided into four groups: (i) orally administered physiological saline, (ii) orally administered 100 mg/kg PCA, (iii) orally administered 5 mg/kg NaAsO2, and (iv) orally administered 100 mg/kg PCA 120 min prior to oral administration of 5 mg/kg NaAsO2. Each group received its respective treatment for 1 week, after which cortical tissues from each group were analyzed for various parameters of oxidative stress, proinflammatory cytokines, apoptosis-related proteins, and changes in histopathology. NaAsO2-treatment resulted in a significant increase in lipid peroxidation (LPO), inducible nitric oxide synthetase (iNOs), and NO levels, with a decrease in the levels of both enzymatic (superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase) and non-enzymatic (glutathione) antioxidant markers. Arsenic increased proinflammatory cytokine (tumor necrosis factor-α and interleukin-1β) levels, enhanced caspase-3 and Bax expression, and reduced Bcl-2 expression. Furthermore, arsenic-exposure in mice decreased significantly acetylcholinesterase activity and brain-derived neurotrophic factor level in the cerebral cortex. Histopathological examination revealed changes in nerve cell cyto-architecture and distribution in arsenic-exposed brain tissue sections. PCA treatment before arsenic administration resulted in a positive shift in the oxidative stress and cytokine levels with decreased levels of LPO, iNOS, and NO. PCA pre-treatment considerably attenuated arsenic-associated histopathological changes in murine brain tissue. This study suggested that the presence of PCA may be responsible for the prevention of arsenic-induced neurotoxicity.
Collapse
Affiliation(s)
- Zhaoxia Li
- Department of Pediatric, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247 Beiyuan Street, Jinan, Shandong, 250033, People's Republic of China
| | - Yujuan Liu
- Department of Pediatric, Binzhou People's Hospital, Binzhou, Shandong Province, 256600, China
| | - Fang Wang
- Department of Pediatric, Binzhou People's Hospital, Binzhou, Shandong Province, 256600, China
| | - Zhuanglei Gao
- Department of Gastrointestinal Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247 Beiyuan Street, Jinan, Shandong, 250033, People's Republic of China.
| | - Mohamed A Elhefny
- Department of Cancer and Molecular Biology, National Cancer Institute, Cairo University, Cairo, Egypt; Department of Medial Genetics, Faculty of Medicine; Umm Al-Qura University, Alqunfudah, Saudi Arabia
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, 11795, Egypt
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, 11795, Egypt; Biology Department, Faculty of Science and Arts, Al Baha University, Almakhwah Branch, Saudi Arabia
| |
Collapse
|
34
|
Vujanović M, Majkić T, Zengin G, Beara I, Tomović V, Šojić B, Đurović S, Radojković M. Elderberry ( Sambucus nigra L.) juice as a novel functional product rich in health-promoting compounds. RSC Adv 2020; 10:44805-44814. [PMID: 35516231 PMCID: PMC9058610 DOI: 10.1039/d0ra09129d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/03/2020] [Indexed: 02/03/2023] Open
Abstract
The medicinal herbs of the Balkan Peninsula are highly represented in traditional medicine. The connection between traditional and modern life and health is reflected in the creation of new food products with added value. In this study, the plant species Sambucus nigra L. was used to obtain freshly pressed juice, whose chemical composition and various biological activities were evaluated. The most abundant compounds were phenolic acids: protocatechuic and chlorogenic acid, as well as flavonoids: quercetin-3-O-hexoside, quercetin, and rutin. The analyzed juice was very rich in total phenolic compounds (1945 mg GAE per mL juice), and a significant anthocyanin concentration was observed (30.85 mg Cy-3-GE per mL juice). Bioactivity testing revealed that elderberry juice was an extremely potent agent in the process of neutralizing NO free radicals (53.06 g TE per L juice), while in reducing over-enzyme activity, the best result was achieved in the inhibition of tyrosinase enzyme (54.70 mg KAE per g of juice). The medicinal herbs of the Balkan Peninsula are highly represented in traditional medicine.![]()
Collapse
Affiliation(s)
- Milena Vujanović
- Faculty of Technology, University of Novi Sad Bulevar cara Lazara 1 21000 Novi Sad Serbia +381 21 485 3716
| | - Tatjana Majkić
- Faculty of Sciences, University of Novi Sad Trg Dositeja Obradovića 3 21000 Novi Sad Serbia
| | - Gökhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus Konya Turkey
| | - Ivana Beara
- Faculty of Sciences, University of Novi Sad Trg Dositeja Obradovića 3 21000 Novi Sad Serbia
| | - Vladimir Tomović
- Faculty of Technology, University of Novi Sad Bulevar cara Lazara 1 21000 Novi Sad Serbia +381 21 485 3716
| | - Branislav Šojić
- Faculty of Technology, University of Novi Sad Bulevar cara Lazara 1 21000 Novi Sad Serbia +381 21 485 3716
| | - Saša Đurović
- Institute of General and Physical Chemistry Studenstki trg 12 11158 Belgrade Serbia
| | - Marija Radojković
- Faculty of Technology, University of Novi Sad Bulevar cara Lazara 1 21000 Novi Sad Serbia +381 21 485 3716
| |
Collapse
|
35
|
Adedara IA, Owumi SE, Oyelere AK, Farombi EO. Neuroprotective role of gallic acid in aflatoxin B 1 -induced behavioral abnormalities in rats. J Biochem Mol Toxicol 2020; 35:e22684. [PMID: 33319922 DOI: 10.1002/jbt.22684] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/07/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022]
Abstract
The neurotoxic impact of dietary exposure to aflatoxin B1 (AFB1 ) is documented in experimental and epidemiological studies. Gallic acid (GA) is a triphenolic phytochemical with potent anticancer, anti-inflammatory, and antioxidant activities. There is a knowledge gap on the influence of GA on AFB1 -induced neurotoxicity. This study probed the influence of GA on neurobehavioral and biochemical abnormalities in rats orally treated with AFB1 per se (75 µg/kg body weight) or administered together with GA (20 and 40 mg/kg) for 28 uninterrupted days. Behavioral endpoints obtained with video-tracking software demonstrated significant (p < .05) abatement of AFB1 -induced anxiogenic-like behaviors (increased freezing, urination, and fecal bolus discharge), motor and locomotor inadequacies, namely increased negative geotaxis and diminished grip strength, absolute turn angle, total time mobile, body rotation, maximum speed, and total distance traveled by GA. The improvement of exploratory behavior in animals that received both AFB1 and GA was confirmed by track plots and heat maps appraisal. Abatement of AFB1 -induced decreases in acetylcholinesterase activity, antioxidant status and glutathione level by GA was accompanied by a marked reduction in oxidative stress markers in the cerebellum and cerebrum of rats. Additionally, GA treatment abrogated AFB1 -mediated decrease in interleukin-10 and elevation of inflammatory indices, namely tumor necrosis factor-α, myeloperoxidase activity, interleukin-1β, and nitric oxide. Further, GA treatment curtailed caspase-3 activation and histological injuries in the cerebral and cerebellar tissues. In conclusion, abatement of AFB1 -induced neurobehavioral abnormalities by GA involves anti-inflammatory, antioxidant, and antiapoptotic mechanisms in rats.
Collapse
Affiliation(s)
- Isaac A Adedara
- Department of Biochemistry, Drug Metabolism and Toxicology Research Laboratories, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Solomon E Owumi
- Department of Biochemistry, Cancer Research and Molecular Biology Laboratory, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adegboyega K Oyelere
- School of Biochemistry and Chemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Ebenezer O Farombi
- Department of Biochemistry, Drug Metabolism and Toxicology Research Laboratories, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
36
|
Aissani N, Albouchi F, Sebai H. Anticancer Effect in Human Glioblastoma and Antioxidant Activity of Petroselinum crispum L. Methanol Extract. Nutr Cancer 2020; 73:2605-2613. [PMID: 33121278 DOI: 10.1080/01635581.2020.1842894] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Parsley (Petroselinum crispum L.) has been used as food, spices and in folkloric medicine. Several scientific researches have been focalized on anti-inflammatory, anti-proliferative, antioxidant and other pharmacological activities of parsley. The aim of the present study was to evaluate the phytochemical composition, antioxidant and anticancer activity of P. crispum L aqueous and methanol extracts against Human glioblastoma cells U87MG. Adhesion assay was realized on different protein matrices (fibrinogen, fibronectin and poly-L-lysine) and the anti-proliferative effect was performed. Compared to aqueous extract, the methanol extract presented an important level of phenol contents. Five phenolic compounds were found using HPLC-DAD with quinic acid as the most abounded followed by gallic acid, acacetin, protocatechuic acid and Cirsilineol with 120753.07 ± 27450; 190 ± 25; 53.83 ± 10; 13.7 ± 2.5 and 2 ± 0.3 µg/mL respectively.The DPPH, ABTS+, OH radical, Iron (II) chelation and FRAP assays exhibited that methanol extract show a modulate antioxidant activity. The methanol extract shows the highest ability to inhibit cell adhesion to different protein matrices. In addition, it was found as a potential anti-proliferative. These results suggest for the first time that P. crispum methanol extract presents anti-adhesion and anti-proliferative proprieties.
Collapse
Affiliation(s)
- Nadhem Aissani
- Laboratory of Functional Physiology and Valorization of Bio resources, High Institute of Biotechnology of Beja, University of Jendouba, Beja, Tunisia
| | - Ferdaous Albouchi
- Laboratoire Matériaux-Molécules et Applications, University of Carthage, IPEST, La Marsa, Tunisia
| | - Hichem Sebai
- Laboratory of Functional Physiology and Valorization of Bio resources, High Institute of Biotechnology of Beja, University of Jendouba, Beja, Tunisia
| |
Collapse
|
37
|
Song J, He Y, Luo C, Feng B, Ran F, Xu H, Ci Z, Xu R, Han L, Zhang D. New progress in the pharmacology of protocatechuic acid: A compound ingested in daily foods and herbs frequently and heavily. Pharmacol Res 2020; 161:105109. [PMID: 32738494 DOI: 10.1016/j.phrs.2020.105109] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022]
Abstract
Protocatechuic acid is a natural phenolic acid, which widely exists in our daily diet and herbs. It is also one of the main metabolites of complex polyphenols, such as anthocyanins and proanthocyanins. In recent years, a large number of studies on the pharmacological activities of protocatechuic acid have emerged. Protocatechuic acid has a wide range of pharmacological activities including antioxidant, anti-inflammatory, neuroprotective, antibacterial, antiviral, anticancer, antiosteoporotic, analgesia, antiaging activties; protection from metabolic syndrome; and preservation of liver, kidneys, and reproductive functions. Pharmacokinetic studies showed that the absorption and elimination rate of protocatechuic acid are faster, with glucuronidation and sulfation being the major metabolic pathways. However, protocatechuic acid displays a dual-directional regulatory effect on some pharmacological activities. When the concentration is very high, it can inhibit cell proliferation and reduce survival rate. This review aims to comprehensively summarize the pharmacology, pharmacokinetics, and toxicity of protocatechuic acid with emphasis on its pharmacological activities discovered in recent 5 years, so as to provide more up-to-date and thorough information for the preclinical and clinical research of protocatechuic acid in the future. Moreover, it is hoped that the clinical application of protocatechuic acid can be broadened, giving full play to its characteristics of rich sources, low toxicity and wide pharmacological activites.
Collapse
Affiliation(s)
- Jiao Song
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Key Laboratory Breeding Base of Systematic Research and Utilization on Chinese Meterial Medical Resources Co-founded by Sichuan Province and Ministry of Science and Technology, Chengdu 611137, PR China
| | - Yanan He
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Key Laboratory Breeding Base of Systematic Research and Utilization on Chinese Meterial Medical Resources Co-founded by Sichuan Province and Ministry of Science and Technology, Chengdu 611137, PR China
| | - Chuanhong Luo
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Key Laboratory Breeding Base of Systematic Research and Utilization on Chinese Meterial Medical Resources Co-founded by Sichuan Province and Ministry of Science and Technology, Chengdu 611137, PR China
| | - Bi Feng
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Key Laboratory Breeding Base of Systematic Research and Utilization on Chinese Meterial Medical Resources Co-founded by Sichuan Province and Ministry of Science and Technology, Chengdu 611137, PR China
| | - Fei Ran
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Key Laboratory Breeding Base of Systematic Research and Utilization on Chinese Meterial Medical Resources Co-founded by Sichuan Province and Ministry of Science and Technology, Chengdu 611137, PR China
| | - Hong Xu
- Chengdu Yongkang Pharmaceutical Co., Ltd., Chengdu 610041, PR China
| | - Zhimin Ci
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Key Laboratory Breeding Base of Systematic Research and Utilization on Chinese Meterial Medical Resources Co-founded by Sichuan Province and Ministry of Science and Technology, Chengdu 611137, PR China
| | - Runchun Xu
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Key Laboratory Breeding Base of Systematic Research and Utilization on Chinese Meterial Medical Resources Co-founded by Sichuan Province and Ministry of Science and Technology, Chengdu 611137, PR China
| | - Li Han
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Key Laboratory Breeding Base of Systematic Research and Utilization on Chinese Meterial Medical Resources Co-founded by Sichuan Province and Ministry of Science and Technology, Chengdu 611137, PR China.
| | - Dingkun Zhang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Key Laboratory Breeding Base of Systematic Research and Utilization on Chinese Meterial Medical Resources Co-founded by Sichuan Province and Ministry of Science and Technology, Chengdu 611137, PR China.
| |
Collapse
|
38
|
Wu Y, Yuan Y, Wu C, Jiang T, Wang B, Xiong J, Zheng P, Li Y, Xu J, Xu K, Liu Y, Li X, Xiao J. The Reciprocal Causation of the ASK1-JNK1/2 Pathway and Endoplasmic Reticulum Stress in Diabetes-Induced Cognitive Decline. Front Cell Dev Biol 2020; 8:602. [PMID: 32766246 PMCID: PMC7379134 DOI: 10.3389/fcell.2020.00602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/19/2020] [Indexed: 12/31/2022] Open
Abstract
Diabetes significantly induces cognitive dysfunction. Neuronal apoptosis is the main cause of diabetes-induced cognitive decline (DICD). Apoptosis signal-regulating kinase 1 (ASK1) and endoplasmic reticulum (ER) stress are remarkably activated by diabetes. The role and relationship of ASK1-JNK1/2 signaling and ER stress in DICD have not yet been elucidated. In this study, we used db/db mice as the DICD animal model and confirmed that db/db mice displayed cognitive decline with inferior learning and memory function. Diabetes significantly induced morphological and structural changes, excessive neuronal apoptosis, Aβ1 - 42 large deposition, and synaptic dysfunction in the hippocampus. Mechanistic studies found that diabetes significantly triggered ASK1-JNK1/2 signaling activation and increased ER stress in the hippocampus. Moreover, diabetes enhanced the formation of the IRE1α-TRAF2-ASK1 complex, which promotes the crosstalk of ER stress and the ASK1-JNK1/2 pathway during DICD. Furthermore, 4-PBA treatment blocked high glucose (HG)-induced ASK1-JNK1/2 signaling activation, and excessive apoptosis in vitro. Inhibiting ASK1 via siRNA remarkably ameliorated the HG-induced increase in p-IRE1α and associated apoptosis in SH-SY5Y cells, suggesting that ASK1 is essential for the assembly and function of the proapoptotic kinase activity of the IRE1α signalosome. In summary, ER stress and ASK1-JNK1/2 signaling play causal roles in DICD development, which has crosstalk through the formation of the IRE1α-TRAF2-ASK1 complex.
Collapse
Affiliation(s)
- Yanqing Wu
- The Institute of Life Sciences, Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou University, Wenzhou, China.,Research Units of Clinical Translation of Cell Growth Factors and Diseases Research of Chinese Academy of Medical Science, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yuan Yuan
- Research Units of Clinical Translation of Cell Growth Factors and Diseases Research of Chinese Academy of Medical Science, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Chengbiao Wu
- Clinical Research Center, Affiate Xiangshang Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ting Jiang
- Research Units of Clinical Translation of Cell Growth Factors and Diseases Research of Chinese Academy of Medical Science, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Beini Wang
- Research Units of Clinical Translation of Cell Growth Factors and Diseases Research of Chinese Academy of Medical Science, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jun Xiong
- Research Units of Clinical Translation of Cell Growth Factors and Diseases Research of Chinese Academy of Medical Science, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Peipei Zheng
- Research Units of Clinical Translation of Cell Growth Factors and Diseases Research of Chinese Academy of Medical Science, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yiyang Li
- Research Units of Clinical Translation of Cell Growth Factors and Diseases Research of Chinese Academy of Medical Science, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jingyu Xu
- The Institute of Life Sciences, Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou University, Wenzhou, China
| | - Ke Xu
- The Institute of Life Sciences, Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou University, Wenzhou, China
| | - Yaqian Liu
- Research Units of Clinical Translation of Cell Growth Factors and Diseases Research of Chinese Academy of Medical Science, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Li
- Research Units of Clinical Translation of Cell Growth Factors and Diseases Research of Chinese Academy of Medical Science, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jian Xiao
- Research Units of Clinical Translation of Cell Growth Factors and Diseases Research of Chinese Academy of Medical Science, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
39
|
Al Olayan EM, Aloufi AS, AlAmri OD, El-Habit OH, Abdel Moneim AE. Protocatechuic acid mitigates cadmium-induced neurotoxicity in rats: Role of oxidative stress, inflammation and apoptosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:137969. [PMID: 32392679 DOI: 10.1016/j.scitotenv.2020.137969] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 06/11/2023]
Abstract
Environmental and occupational exposure to heavy metals, including cadmium (Cd), is associated with extremely adverse impacts to living systems. Antioxidant agents are suggested to eliminate Cd intoxication. In this paper, we investigated the potential neuroprotective effect of protocatechuic acid (PCA) against Cd-induced neuronal damage in rats. Adult male Wistar rats were randomly divided into control, PCA (100 mg/kg)-treated, CdCl2 (6.5 mg/kg)-treated, and PCA and Cd treatment groups. Pre-treatment with PCA significantly reduced Cd concentrations and increased cortical acetylcholinesterase activity and brain derived neurotrophic factor. Additionally, PCA also prevented CdCl2-induced oxidative stress in the cortical tissue by preventing lipid peroxidation and the formation of nitric oxide (NO), and significantly enhancing antioxidant enzymes. Molecularly, PCA significantly up-regulated the antioxidant gene expression (Sod2, Cat, Gpx1, and Gsr) that was down-regulated by Cd. It should be noted that this effect was achieved by targeting the nuclear-related factor 2 (Nfe2l2) mRNA expression. PCA also prevented the Cd-induced inflammation by reducing the pro-inflammatory cytokines, including tumor necrosis factor-α and interleukin-1β. Moreover, PCA supplementation relieved the Cd-induced neuronal death by increasing Bcl-2 and decreasing Bax and Cas-3 levels in the cortical tissue. The improvement of the cortical tissue histopathology by PCA confirmed the biochemical and molecular data. Collectively, our findings indicate that PCA can counteract Cd-induced cortical toxicity by enhancing the antioxidant defense system and suppressing inflammation and apoptosis.
Collapse
Affiliation(s)
- Ebtesam M Al Olayan
- Department of Zoology, Faculty of Science, King Saud University, Riyadh, Saudi Arabia.
| | - Abeer S Aloufi
- Research Chair of Vaccines, Deanship of Scientific Research, King Saud University, Riyadh, Saudi Arabia; Department of Zoology, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ohoud D AlAmri
- Department of Zoology, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ola H El-Habit
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| |
Collapse
|
40
|
Effect of Quamoclit angulata Extract Supplementation on Oxidative Stress and Inflammation on Hyperglycemia-Induced Renal Damage in Type 2 Diabetic Mice. Antioxidants (Basel) 2020; 9:antiox9060459. [PMID: 32471242 PMCID: PMC7346142 DOI: 10.3390/antiox9060459] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 12/20/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is caused by abnormalities of controlling blood glucose and insulin homeostasis. Especially, hyperglycemia causes hyper-inflammation through activation of NLRP3 inflammasome, which can lead to cell apoptosis, hypertrophy, and fibrosis. Quamoclit angulata (QA), one of the annual winders, has been shown ameliorative effects on diabetes. The current study investigated whether the QA extract (QAE) attenuated hyperglycemia-induced renal inflammation related to NLRP inflammasome and oxidative stress in high fat diet (HFD)-induced diabetic mice. After T2DM was induced, the mice were treated with QAE (5 or 10 mg/kg/day) by gavage for 12 weeks. The QAE supplementation reduced homeostasis model assessment insulin resistance (HOMA-IR), kidney malfunction, and glomerular hypertrophy in T2DM. Moreover, the QAE treatment significantly attenuated renal NLRP3 inflammasome dependent hyper-inflammation and consequential renal damage caused by oxidative stress, apoptosis, and fibrosis in T2DM. Furthermore, QAE normalized aberrant energy metabolism (downregulation of p-AMPK, sirtuin (SIRT)-1, and PPARγ-coactivator α (PGC-1 α)) in T2DM mice. Taken together, the results suggested that QAE as a natural product has ameliorative effects on renal damage by regulation of oxidative stress and inflammation in T2DM.
Collapse
|
41
|
The inefficacy of donepezil on glycated-AChE inhibition: Binding affinity, complex stability and mechanism. Int J Biol Macromol 2020; 160:35-46. [PMID: 32454110 DOI: 10.1016/j.ijbiomac.2020.05.177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/17/2020] [Accepted: 05/21/2020] [Indexed: 12/14/2022]
Abstract
Donepezil (DPZ) is a well-known drug for Alzheimer's disease that inhibits acetylcholinesterase activity (AChE). In the present study, the inhibitory effect of DPZ on non-enzymatic glycated-AChE (GLY-AChE) was studied by different experimental and simulation techniques. The initial investigation revealed that glycation process could reduce AChE activity approximately 60% in the pure enzyme and 38% in the extracted crude AChE from neural cells cultured in the presence of high glucose (HG) concentration. It is suggested that glycation of lysine residues on the structure of AChE could change the conformation of the active site (Trp-86 and His-447) in a way that the orientation of acetylcholine interrupted. The further studies indicated that DPZ is although a strong inhibitor for the native enzyme, it is not able to affect the GLY-AChE activity. The KD values of AChE-DPZ and GLY-AChE-DPZ complexes were estimated to be 1.88 × 10-9 and 2.10 × 10-6, respectively. The stability assessment showed that AChE-DPZ complex is more stable than the glycated complex. Our results indicate that, glycation process could impact on the conformation of the residues involved in the DPZ binding cavity on α-helix domain. Therefore, DPZ is not able to bind its specific cavity to induce its inhibitory effects on GLY-AChE.
Collapse
|
42
|
Adedara IA, Fabunmi AT, Ayenitaju FC, Atanda OE, Adebowale AA, Ajayi BO, Owoeye O, Rocha JB, Farombi EO. Neuroprotective mechanisms of selenium against arsenic-induced behavioral impairments in rats. Neurotoxicology 2020; 76:99-110. [DOI: 10.1016/j.neuro.2019.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/20/2019] [Accepted: 10/24/2019] [Indexed: 12/13/2022]
|
43
|
Adedara IA, Adegbosin AN, Abiola MA, Odunewu AA, Owoeye O, Owumi SE, Farombi EO. Neurobehavioural and biochemical responses associated with exposure to binary waterborne mixtures of zinc and nickel in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 73:103294. [PMID: 31734518 DOI: 10.1016/j.etap.2019.103294] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Environmental and occupational exposure to metal mixtures due to various geogenic and anthropogenic activities poses a health threat to exposed organisms. The outcome of systemic interactions of metals is a topical area of research because it may cause either synergistic or antagonistic effect. The present study investigated the impact of co-exposure to environmentally relevant concentrations of waterborne nickel (75 and 150 μg NiCl 2 L-1) and zinc (100 and 200 μg ZnCl2 L-1) mixtures on neurobehavioural performance of rats. Locomotor, motor and exploratory activities were evaluated using video-tracking software during trial in a novel arena and thereafter, biochemical and histological analyses were performed using the cerebrum, cerebellum and liver. Results indicated that zinc significantly (p < 0.05) abated the nickel-induced locomotor and motor deficits as well as improved the exploratory activity of exposed rats as verified by track plots and heat map analyses. Moreover, zinc mitigated nickel-mediated decrease in acetylcholinesterase activity, elevation in biomarkers of liver damage, levels of reactive oxygen and nitrogen species as well as lipid peroxidation in the exposed rats when compared with control. Additionally, nickel mediated decrease in antioxidant enzyme activities as well as the increase in tumour necrosis factor alpha, interleukin-1 beta and caspase-3 activity were markedly abrogated in the cerebrum, cerebellum and liver of rats co-exposed to nickel and zinc. Histological and histomorphometrical analyses evinced that zinc abated nickel-mediated neurohepatic degeneration as well as quantitative reduction in the widest diameter of the Purkinje cells and the densities of viable granule cell layer of dentate gyrus, pyramidal neurones of cornu ammonis 3 and cortical neurons in the exposed rats. Taken together, zinc abrogated nickel-induced neurohepatic damage via suppression of oxido-inflammatory stress and caspase-3 activation in rats.
Collapse
Affiliation(s)
- Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adedayo N Adegbosin
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Michael A Abiola
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ajibola A Odunewu
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olatunde Owoeye
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Solomon E Owumi
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
44
|
Zhang S, Xue R, Hu R. The neuroprotective effect and action mechanism of polyphenols in diabetes mellitus-related cognitive dysfunction. Eur J Nutr 2019; 59:1295-1311. [PMID: 31598747 DOI: 10.1007/s00394-019-02078-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 08/10/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Diabetes mellitus (DM) is a complex and prevalent metabolic disorder worldwide. Strong evidence has emerged that DM is a risk factor for the accelerated rate of cognitive decline and the development of dementia. Though traditional pharmaceutical agents are efficient for the management of DM and DM-related cognitive decrement, long-term use of these drugs are along with undesired side effects. Therefore, tremendous studies have focused on the therapeutic benefits of natural compounds at present. Ample evidence exists to prove that polyphenols are capable to modulate diabetic neuropathy with minimal toxicity and adverse effects. PURPOSE To describe the benefits and mechanisms of polyphenols on DM-induced cognitive dysfunction. In this review, we introduce an updated overview of associations between DM and cognitive dysfunction. The risk factors as well as pathological and molecular mechanisms of DM-induced cognitive dysfunction are summarized. More importantly, many active polyphenols that possess preventive and therapeutic effects on DM-induced cognitive dysfunction and the potential signaling pathways involved in the action are highlighted. CONCLUSIONS The therapeutic effects of polyphenols on DM-related cognitive dysfunction pave a novel way for the management of diabetic encephalopathy.
Collapse
Affiliation(s)
- Shenshen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China.
| | - Ran Xue
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Ruizhe Hu
- School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
45
|
Anthocyanins and Their Metabolites as Therapeutic Agents for Neurodegenerative Disease. Antioxidants (Basel) 2019; 8:antiox8090333. [PMID: 31443476 PMCID: PMC6770078 DOI: 10.3390/antiox8090333] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis (ALS), are characterized by the death of neurons within specific regions of the brain or spinal cord. While the etiology of many neurodegenerative diseases remains elusive, several factors are thought to contribute to the neurodegenerative process, such as oxidative and nitrosative stress, excitotoxicity, endoplasmic reticulum stress, protein aggregation, and neuroinflammation. These processes culminate in the death of vulnerable neuronal populations, which manifests symptomatically as cognitive and/or motor impairments. Until recently, most treatments for these disorders have targeted single aspects of disease pathology; however, this strategy has proved largely ineffective, and focus has now turned towards therapeutics which target multiple aspects underlying neurodegeneration. Anthocyanins are unique flavonoid compounds that have been shown to modulate several of the factors contributing to neuronal death, and interest in their use as therapeutics for neurodegeneration has grown in recent years. Additionally, due to observations that the bioavailability of anthocyanins is low relative to that of their metabolites, it has been proposed that anthocyanin metabolites may play a significant part in mediating the beneficial effects of an anthocyanin-rich diet. Thus, in this review, we will explore the evidence evaluating the neuroprotective and therapeutic potential of anthocyanins and their common metabolites for treating neurodegenerative diseases.
Collapse
|
46
|
Krzysztoforska K, Piechal A, Blecharz-Klin K, Pyrzanowska J, Joniec-Maciejak I, Mirowska-Guzel D, Widy-Tyszkiewicz E. Administration of protocatechuic acid affects memory and restores hippocampal and cortical serotonin turnover in rat model of oral D-galactose-induced memory impairment. Behav Brain Res 2019; 368:111896. [DOI: 10.1016/j.bbr.2019.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 12/20/2022]
|
47
|
Increased Phenolic Content and Enhanced Antioxidant Activity in Fermented Glutinous Rice Supplemented with Fu Brick Tea. Molecules 2019; 24:molecules24040671. [PMID: 30769776 PMCID: PMC6412323 DOI: 10.3390/molecules24040671] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/10/2019] [Accepted: 02/10/2019] [Indexed: 12/29/2022] Open
Abstract
Glutinous rice-based foods have a long history are consumed worldwide. They are also in great demand for the pursuit of novel sensory and natural health benefits. In this study, we developed a novel fermented glutinous rice product with the supplementation of Fu brick tea. Using in vitro antioxidant evaluation and phenolic compounds analysis, fermentation with Fu brick tea increased the total phenolic content and enhanced the antioxidant activity of glutinous rice, including scavenging of 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) radical, 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) radical, and hydroxyl radical, ferric-reducing antioxidant power, and ferric ion reducing power and iron chelating capability. Besides, compared with traditional fermented glutinous rice, this novel functional food exhibited a stronger activity for protecting DNA against hydroxyl radical-induced oxidation damage. Quantitative analysis by HPLC identified 14 compounds covering catechins and phenolic acids, which were considered to be positively related to the enhanced antioxidant capability. Furthermore, we found that 80% ethanol was a suitable extract solvent compared with water, because of its higher extraction efficiency and stronger functional activities. Our results suggested that this novel fermented glutinous rice could serve as a nutraceutical food/ingredient with special sensory and functional activities.
Collapse
|