1
|
Son M, Nagahawatta DP, Jo HC, Jeon YJ, Ryu B, Kim DY. Diphlorethohydroxycarmalol inhibits Müller cell gliosis by disrupting CXCR4/CXCL12 interaction in violet-blue light-induced retinal phototoxicity. Heliyon 2025; 11:e42475. [PMID: 40034286 PMCID: PMC11874561 DOI: 10.1016/j.heliyon.2025.e42475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 03/05/2025] Open
Abstract
Müller gliosis is a complex process that impairs the ability of retinal Müller glial cells to respond to various forms of retinal injury or disease, leading to retinal damage. Blue light (BL) exposure is a known cause of retinal damage. In this study, we aimed to investigate the potential of DPHC in inhibiting Müller gliosis in models of BL-exposure. We conducted in silico binding analysis to evaluate the binding of DPHC to CXCR4. Then, we developed in vitro and in vivo experimental models to assess the effects of DPHC and BL exposure on Müller gliosis using MIO-M1 cells and zebrafish. Our findings show that DPHC can suppress the Müller gliosis process in BL-exposed MIO-M1 cells in vitro and in BL-exposed zebrafish in vivo. In silico molecular docking, we identified CXCR4 as the target of active site 1 of DPHC. In BL-exposed MIO-M1 cells, DPHC inhibited CXCR4 activity and altered the expression of Müller gliosis markers and NF-κB-related ERK and AKT signaling. In BL-exposed zebrafish, DPHC prevented retinal thickness reduction and inhibited CXCR4 expression and retinal cell apoptosis. This study suggests that DPHC could be a potential therapeutic agent for retinal diseases involving Müller gliosis. By inhibiting CXCR4 activity, DPHC downregulates the ERK/AKT/NF-κB pathway, reducing retinal cell apoptosis and altered expression of Müller gliosis markers. These findings highlight the potential of natural bioactive compounds for treating various diseases, and further research should investigate the therapeutic potential of DPHC and its derivatives.
Collapse
Affiliation(s)
- Myeongjoo Son
- Department of Anatomy & Cell Biology, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Brain Health Research Laboratory, Institute of Medical Science, Kangwon National University College of Medicine, Chuncheon, 24341, Republic of Korea
| | | | - Hang-Chan Jo
- Center for Sensor Systems, Inha University, Incheon, 22212, Republic of Korea
- Department of Electrical and Computer Engineering, College of Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju, 63243, Republic of Korea
- Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Bomi Ryu
- Major of Food Science and Nutrition, Pukyong National University, Busan, 48513, Republic of Korea
| | - Dae Yu Kim
- Center for Sensor Systems, Inha University, Incheon, 22212, Republic of Korea
- Department of Electrical and Computer Engineering, College of Engineering, Inha University, Incheon, 22212, Republic of Korea
- Inha Research Institute for Aerospace Medicine, Inha University, Incheon, 22212, Republic of Korea
| |
Collapse
|
2
|
Kim AR, Kim MJ, Seo J, Moon KM, Lee B. The Beneficial Roles of Seaweed in Atopic Dermatitis. Mar Drugs 2024; 22:566. [PMID: 39728140 DOI: 10.3390/md22120566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/04/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic, inflammatory skin condition characterized by severe pruritus and recurrent flare-ups, significantly impacting patients' quality of life. Current treatments, such as corticosteroids and immunomodulators, often provide symptomatic relief but can lead to adverse effects with prolonged use. Seaweed, a sustainable and nutrient-dense resource, has emerged as a promising alternative due to its rich bioactive compounds-polysaccharides, phlorotannins, polyphenols, and chlorophyll-that offer anti-inflammatory, antioxidant, and immunomodulatory properties. This review explores the therapeutic potential of brown, red, and green algae in alleviating AD symptoms, highlighting the effects of specific species, including Undaria pinnatifida, Laminaria japonica, Chlorella vulgaris, and Sargassum horneri. These seaweeds modulate immune responses, reduce epidermal thickness, and restore skin barrier function, presenting a novel, safe, and effective approach to AD management. Further clinical studies are needed to confirm their efficacy and establish dosing strategies, paving the way for seaweed-derived therapies as natural alternatives in AD treatment.
Collapse
Affiliation(s)
- Ah-Reum Kim
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Myeong-Jin Kim
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Jaeseong Seo
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Kyoung Mi Moon
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Bonggi Lee
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
3
|
Bak SG, Lim HJ, Won YS, Park SI, Cheong SH, Lee SJ. Regulatory effects of Ishige okamurae extract and Diphlorethohydroxycarmalol on skin barrier function. Heliyon 2024; 10:e40227. [PMID: 39654745 PMCID: PMC11625274 DOI: 10.1016/j.heliyon.2024.e40227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024] Open
Abstract
Ethnopharmacological relevance The pharmacological potential of marine organisms remains largely unexplored. Ishige Okamurae, commonly known as Pae, is extensively distributed over Asia. Its antioxidant, antibacterial, antiobesity, and anti-inflammatory properties are also being investigated. Aim of the study In most cases of atopic dermatitis, the stratum corneum, the outermost layer of the epidermis, is damaged, causing symptoms such as dryness and hyperproliferation of the epidermis. In particular, the disruption of cell junctions leads to damage of the skin barrier, exacerbating the disease and becoming a target for therapeutic development. Our study aims to investigate of Ishige okamurae extract (IOE) and a major compound derived from it, called Diphlorethohydroxycarmalol (DPHC), can help strengthen the skin barrier in animals with atopic dermatitis induced by 2,4-dinitrochlorobenzene (DNCB). Materials and methods In keratinocyte cell lines, HaCaT cells, the cytotoxicity of IOE and DPHC was assessed by MTT analysis. The gene expression of skin barrier factors and tight junctions were determined by real-time PCR in tumor necrosis factor-α/interferon-γ-stimulated HaCaT cells. In addition, JAK/STAT signaling pathway was performed to evaluating the mechanism of drugs by Western blot. Next, we studied the effects of IOE and DPHC on the skin of animals with DNCB-induced atopic dermatitis. We measured the expression of genes related of the skin barrier and tight junctions in their ear tissue. Results As a result, IOE and DPHC confirmed that the expression of skin barrier proteins (thymic stromal lymphopoietin, filaggrin, loricrin, and involucrin) was improved in the DNCB-induced atopic dermatitis model and HaCaT cells. In addition, the expression of tight junction-related proteins (claudin, occludin, and tight junction protein-1) were improved. Conclusion IOE and DPHC ameliorated the atopic dermatitis lesions through alleviating the pro-inflammatory responses and tight junction protein destruction. Our results suggest that IOE and DPHC could be promising candidates for enhancing skin barrier function.
Collapse
Affiliation(s)
- Seon Gyeong Bak
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Republic of Korea
| | - Hyung Jin Lim
- Scripps Korea Antibody Institute, Chuncheon, Republic of Korea
| | - Yeong-Seon Won
- Division of Research Management, Department of Bioresource Industrialization, Honam National Institute of Biological Resource, Mokpo, Republic of Korea
| | - Sang-Ik Park
- Department of Veterinary Pathology, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sun Hee Cheong
- Department of Marine Bio Food Science, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Seung Jae Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Republic of Korea
- Applied Biological Engineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| |
Collapse
|
4
|
Wang K, Hu X, Xie XL, Huang M, Wang D, Yu FL. Phytocosmetic potential of Blumea balsamifera oil in mitigating UV-induced photoaging: Evidence from cellular and mouse models. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118535. [PMID: 38972529 DOI: 10.1016/j.jep.2024.118535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Blumea balsamifera (L.) DC. (BB), the source of Blumea balsamifera oil (BBO), is an aromatic medicinal plant, renowned for its pharmacological properties and its traditional use in Southeast Asian countries such as China, Thailand, Vietnam, Malaysia, and the Philippines for centuries. Traditionally, BB has been used as a raw herbal medicine for treating various skin conditions like eczema, dermatitis, athlete's foot, and wound healing for skin injuries. AIM OF THE STUDY This research aimed to explore the inhibitory effects of BBO on skin aging using two models: in vitro analysis with human dermal fibroblasts (HDF) under UVB-induced stress, and in vivo studies on UVA-induced dorsal skin aging in mice. The study sought to uncover the mechanisms behind BBO's anti-aging effects, specifically, its impact on cellular and tissue responses to UV-induced skin aging. MATERIALS AND METHODS We applied doses of 10-20 μL/mL of BBO to HDF cells that had been exposed to UVB radiation to simulate skin aging. We measured cell viability, and levels of reactive oxygen species (ROS), SA-β-gal, pro-inflammatory cytokines, and matrix metalloproteinases (MMPs). In addition, we investigated the involvement of mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-κB) signaling pathways in mediating the anti-aging effects of BBO. Histopathological and biochemical analyses were conducted in a mouse model to examine the effects of BBO on UV-induced photoaging. RESULTS UV exposure accelerated aging, and caused cellular damage and inflammatory responses through ROS-mediated pathways. In HDF cells, BBO treatment countered the UVB-induced senescence, and the recovery of cell viability was correlated to notable reductions in SA-β-gal, ROS, pro-inflammatory cytokines, and MMPs. Mechanistically, the anti-aging effect of BBO was associated with the downregulation of the JNK/NF-κB signaling pathways. In the in vivo mouse model, BBO exhibited protective capabilities against UV-induced photoaging, which were manifested by the enhanced antioxidant enzyme activities and tissue remodeling. CONCLUSIONS BBO effectively protects fibroblasts from UV-induced photoaging through the JNK/NF-κB pathway. Recovery from photoaging involves an increase in dermal fibroblasts, alleviation of inflammation, accelerated synthesis of antioxidant enzymes, and slowed degradation of ECM proteins. Overall, BBO enhances the skin's defensive capabilities against oxidative stress, underscoring its potential as a therapeutic agent for oxidative stress-related skin aging.
Collapse
Affiliation(s)
- Kai Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, P.R. China/Hainan Provincial Engineering Research Center for Blumea Balsamifera, Haikou, Hainan, 571101, P.R. China
| | - Xuan Hu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, P.R. China/Hainan Provincial Engineering Research Center for Blumea Balsamifera, Haikou, Hainan, 571101, P.R. China
| | - Xiao-Li Xie
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, P.R. China/Hainan Provincial Engineering Research Center for Blumea Balsamifera, Haikou, Hainan, 571101, P.R. China
| | - Mei Huang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, P.R. China/Hainan Provincial Engineering Research Center for Blumea Balsamifera, Haikou, Hainan, 571101, P.R. China
| | - Dan Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, P.R. China/Hainan Provincial Engineering Research Center for Blumea Balsamifera, Haikou, Hainan, 571101, P.R. China
| | - Fu-Lai Yu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, P.R. China/Hainan Provincial Engineering Research Center for Blumea Balsamifera, Haikou, Hainan, 571101, P.R. China.
| |
Collapse
|
5
|
Yang F, Yang Y, Xiao D, Kim P, Lee J, Jeon YJ, Wang L. Anti-Photoaging Effects of Antioxidant Peptide from Seahorse ( Hippocampus abdominalis) in In Vivo and In Vitro Models. Mar Drugs 2024; 22:471. [PMID: 39452879 PMCID: PMC11509181 DOI: 10.3390/md22100471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Overexposure to ultraviolet (UV) radiation can lead to photoaging, which contributes to skin damage. The objective of this study was to evaluate the effects of an antioxidant peptide (SHP2) purified from seahorse (Hippocampus abdominalis) alcalase hydrolysate on UVB-irradiated skin damage in human keratinocyte (HaCaT) and human dermal fibroblast (HDF) cells and a zebrafish model. The data revealed that SHP2 significantly enhanced cell viability by attenuating apoptosis through the reduction of intracellular reactive oxygen species (ROS) levels in UVB-stimulated HaCaT cells. Moreover, SHP2 effectively inhibited ROS, improved collagen synthesis, and suppressed the secretion of matrix metalloproteinases (MMPs) in UVB-irradiated HDF cells. SHP2 restored the protein levels of HO-1, Nrf2, and SOD, while decreasing Keap1 expression in UVB-treated HDF, indicating stimulation of the Keap1/Nrf2/HO-1 signaling pathway. Furthermore, an in vivo study conducted in zebrafish confirmed that SHP2 inhibited photoaging by reducing cell death through the suppression of ROS generation and lipid peroxidation. Particularly, 200 µg/mL of SHP2 exerted a remarkable anti-photoaging effect on both in vitro and in vivo models. These results demonstrate that SHP2 possesses antioxidant properties and regulates skin photoaging activities, suggesting that SHP2 may have the potential for use in the development of cosmetic products.
Collapse
Affiliation(s)
- Fengqi Yang
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea; (F.Y.); (D.X.)
| | - Yang Yang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China;
| | - Dandan Xiao
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea; (F.Y.); (D.X.)
| | - Poongho Kim
- South Sea Fisheries Research Institute, National Institute of Fisheries Science, Yeosu 59780, Republic of Korea; (P.K.); (J.L.)
| | - Jihee Lee
- South Sea Fisheries Research Institute, National Institute of Fisheries Science, Yeosu 59780, Republic of Korea; (P.K.); (J.L.)
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea; (F.Y.); (D.X.)
| | - Lei Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China;
- Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
| |
Collapse
|
6
|
Hu X, Chen M, Nawaz J, Duan X. Regulatory Mechanisms of Natural Active Ingredients and Compounds on Keratinocytes and Fibroblasts in Mitigating Skin Photoaging. Clin Cosmet Investig Dermatol 2024; 17:1943-1962. [PMID: 39224224 PMCID: PMC11368101 DOI: 10.2147/ccid.s478666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Background The mechanism underlying skin photoaging remains elusive because of the intricate cellular and molecular changes that contribute to this phenomenon, which have yet to be elucidated. In photoaging, the roles of keratinocytes and fibroblasts are vital for maintaining skin structure and elasticity. But these cells can get photo-induced damage during photoaging, causing skin morphological changes. Recently, the function of natural active ingredients in treating and preventing photoaging has drawn more attention, with researches often focusing on keratinocytes and fibroblasts. Methods We searched for studies published from 2007 to January 2024 in the Web of Science, PubMed, and ScienceDirect databases through the following keywords: natural plant, natural plant products or phytochemicals, traditional Chinese Medicine or Chinese herbal, plant extracts, solar skin aging, skin photoaging, and skin wrinkling. This review conducted the accordance of Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. Results In total, 87 researches were included in this review (Figure 1). In keratinocytes, natural compounds may primarily regulate signal pathways such as the NF-κB, MAPK, PI3K/AKT, and Nrf2/ARE pathways, reducing inflammation and cellular damage, thus slowing skin photoaging. Additionally, in fibroblasts, natural active ingredients primarily promote the TGF-β pathway, inhibit MMPs activity, and enhance collagen synthesis while potentially modulating the mTOR pathway, thereby protecting the dermal collagen network and reducing wrinkle formation. Several trials showed that natural compounds that regulate keratinocytes and fibroblasts responses have significant and safe therapeutic effects. Conclusion The demand for natural product-based ingredients in sunscreen formulations is rising. Natural compounds show promising anti-photoaging effects by targeting cellular pathways in keratinocytes and fibroblasts, providing potential therapeutic strategies. However, comprehensive clinical studies are needed to verify their efficacy and safety in mitigating photoaging, which should use advanced pharmacological methods to uncover the complex anti-photoaging mechanisms of natural compounds.
Collapse
Affiliation(s)
- Xinru Hu
- Department of Dermatovenereology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Meng Chen
- Department of Dermatovenereology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Jahanzeb Nawaz
- Department of Dermatovenereology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Xi Duan
- Department of Dermatovenereology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| |
Collapse
|
7
|
Wei S, Wang L, Yang J, Xu R, Jia R, He P. Protective Effect of Polysaccharides Isolated from Sargassum horneri against H 2O 2-Induced Oxidative Stress Both In Vitro, in Vero Cells, and In Vivo in Zebrafish. BIOLOGY 2024; 13:651. [PMID: 39336079 PMCID: PMC11444143 DOI: 10.3390/biology13090651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024]
Abstract
The extensive outbreak of Sargassum horneri in China has not merely imposed a severe threat to the ecological environment and human life in coastal waters but also impeded the development of waterway transportation and the local economy. Consequently, we isolated polysaccharides from S. horneri, designated as SHP, and evaluated the antioxidant activity of SHP both in vitro and in vivo by investigating the effect of SHP on H2O2-induced African green monkey kidney cells (Vero cells) and zebrafish. The results demonstrated that SHP can enhance the activities of superoxide dismutase, catalase, and glutathione peroxidase in zebrafish. It also effectively inhibits micro malondialdehyde and ROS levels in Vero cells and zebrafish to mitigate the oxidative damage caused by H2O2, thereby achieving the protective effect of SHP on Vero cells and zebrafish. In conclusion, SHP holds the potential as a natural antioxidant. SHP can be contemplated for utilization as a natural antioxidant in the biomedical, cosmetic, and food industries, thereby alleviating the environmental stress caused by S. horneri and achieving resource utilization.
Collapse
Affiliation(s)
- Shuangyan Wei
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (S.W.); (L.W.); (J.Y.); (R.X.)
| | - Li Wang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (S.W.); (L.W.); (J.Y.); (R.X.)
| | - Jia Yang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (S.W.); (L.W.); (J.Y.); (R.X.)
| | - Ruihang Xu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (S.W.); (L.W.); (J.Y.); (R.X.)
| | - Rui Jia
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (S.W.); (L.W.); (J.Y.); (R.X.)
- Marine Biomedical Science and Technology Innovation Platform of Lingang Special Area, Shanghai 201306, China
| | - Peimin He
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (S.W.); (L.W.); (J.Y.); (R.X.)
- Marine Biomedical Science and Technology Innovation Platform of Lingang Special Area, Shanghai 201306, China
| |
Collapse
|
8
|
Sajeeda A, Rashid H, Malik TA, Sharma RR, Bhat AM, Kumar A, Naikoo SH, Sheikh TA. Seabuckthorn pulp extract alleviates UV-B-induced skin photo-damage by significantly reducing oxidative stress-mediated endoplasmic reticulum stress and DNA Damage in human primary skin fibroblasts and Balb/c mice skin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46979-46993. [PMID: 38985420 DOI: 10.1007/s11356-024-34219-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 06/29/2024] [Indexed: 07/11/2024]
Abstract
Skin homeostasis is predominantly compromised by exposure to UV-B irradiation, leading to several physiopathological processes at cellular and tissue levels that deteriorate skin function and integrity. The current study investigated the photo-protective role of seabuckthorn fruit pulp (SBT) extract against UV-B-induced damage in primary human skin fibroblasts (HDFs) and Balb/C mice skin. We subjected HDFs and Balb/C mice to UV-B irradiation and measured multiple cellular damage indicators. We found that UV-B-irradiated HDFs treated with SBT had a considerably greater survival rate than cells exposed to UV-B radiation alone. The UV-B irradiation-induced ROS generation led to the degradation of the extracellular matrix, inflammation, DNA damage, endoplasmic reticulum (ER) stress, and apoptosis. SBT treatment significantly reduced these manifestations. Topical application of SBT alleviated UV-B-induced epidermal thickening, leukocyte infiltration, and degradation of extracellular matrix in Balb/c mice skin. Based on our results, we conclude that SBT has the potential to be developed as a therapeutic/cosmetic remedy for the prevention of skin photo-damage.
Collapse
Affiliation(s)
- Archoo Sajeeda
- Academy of Scientific and Innovative Research (AcSIR), Uttar Pradesh-201 002, Ghaziabad, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu, Kashmir, India
| | - Haroon Rashid
- Sher-E-Kashmir Institute of Medical Sciences (SKIMS), Soura, Sringar-190011, Jammu, Kashmir, India
| | - Tanveer Ahmad Malik
- Academy of Scientific and Innovative Research (AcSIR), Uttar Pradesh-201 002, Ghaziabad, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu, Kashmir, India
| | - Raghu Rai Sharma
- Academy of Scientific and Innovative Research (AcSIR), Uttar Pradesh-201 002, Ghaziabad, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu, Kashmir, India
| | - Aalim Maqsood Bhat
- Academy of Scientific and Innovative Research (AcSIR), Uttar Pradesh-201 002, Ghaziabad, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu, Kashmir, India
| | - Amit Kumar
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu, Kashmir, India
| | - Shahid Hussain Naikoo
- Academy of Scientific and Innovative Research (AcSIR), Uttar Pradesh-201 002, Ghaziabad, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu, Kashmir, India
| | - Tasduq Abdullah Sheikh
- Academy of Scientific and Innovative Research (AcSIR), Uttar Pradesh-201 002, Ghaziabad, India.
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu, Kashmir, India.
| |
Collapse
|
9
|
Yue Z, Liu H, Liu M, Wang N, Ye L, Guo C, Zheng B. Cornus officinalis Extract Enriched with Ursolic Acid Ameliorates UVB-Induced Photoaging in Caenorhabditis elegans. Molecules 2024; 29:2718. [PMID: 38930783 PMCID: PMC11206114 DOI: 10.3390/molecules29122718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Ultraviolet B (UVB) exposure can contribute to photoaging of skin. Cornus officinalis is rich in ursolic acid (UA), which is beneficial to the prevention of photoaging. Because UA is hardly soluble in water, the Cornus officinalis extract (COE) was obtained using water as the antisolvent to separate the components containing UA from the crude extract of Cornus officinalis. The effect of COE on UVB damage was assessed using Caenorhabditis elegans. The results showed that COE could increase the lifespan and enhance the antioxidant enzyme activity of C. elegans exposed to UVB while decreasing the reactive oxygen species (ROS) level. At the same time, COE upregulated the expression of antioxidant-related genes and promoted the migration of SKN-1 to the nucleus. Moreover, COE inhibited the expression of the skn-1 downstream gene and the extension of the lifespan in skn-1 mutants exposed to UVB, indicating that SKN-1 was required for COE to function. Our findings indicate that COE mainly ameliorates the oxidative stress caused by UVB in C. elegans via the SKN-1/Nrf2 pathway.
Collapse
Affiliation(s)
- Zengwang Yue
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (Z.Y.); (M.L.); (L.Y.)
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd., Guangzhou 510700, China; (H.L.); (N.W.)
| | - Han Liu
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd., Guangzhou 510700, China; (H.L.); (N.W.)
| | - Manqiu Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (Z.Y.); (M.L.); (L.Y.)
| | - Ning Wang
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd., Guangzhou 510700, China; (H.L.); (N.W.)
| | - Lin Ye
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (Z.Y.); (M.L.); (L.Y.)
| | - Chaowan Guo
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd., Guangzhou 510700, China; (H.L.); (N.W.)
| | - Bisheng Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (Z.Y.); (M.L.); (L.Y.)
| |
Collapse
|
10
|
Zhang Y, Cheng D, Wang Z, Guo Y, Chang M, Liu R. Protective Effect of Orbitides from Linseed (Linum usitatissimum L.) against Ultraviolet B-induced Photoaging in Zebrafish. Photochem Photobiol 2023; 99:1332-1342. [PMID: 36484266 DOI: 10.1111/php.13758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Excessive ultraviolet (UV) exposure is the primary environmental factor that contributes to skin aging. Orbitides have been considered as important functional components in linseed, and they are complex and multiple. In this study, linseed orbitides (LOs) were divided into oxidized linseed orbitides (OLOs) and reduced linseed orbitides (RLOs) and used to investigate protection against ultraviolet B-induced photoaging in zebrafish. First, the results of the zebrafish embryo acute toxicity test showed that the OLOs had obvious embryo toxicity compared with RLOs. And RLOs had better effect in ultraviolet B-treated zebrafish, which may significantly reduce the reactive oxygen species levels and inhibit the degradation of collagen. Besides, we also found that RLOs could effectively inhibit the oxidation of proteins and lipids and regulate the activity of antioxidant enzymes. Furthermore, neutrophil recruitment to the dorsal and caudal fin regions was observed in UVB-treated zebrafish, and RLOs effectively alleviated this migration. In conclusion, RLOs have strong photoprotective effects and potential to be used as antiphotoaging ingredients.
Collapse
Affiliation(s)
- Yu Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Dekun Cheng
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhangtie Wang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yiwen Guo
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Ming Chang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Ruijie Liu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
11
|
Thapa Magar TB, Mallik SK, Gurung P, Lim J, Kim YT, Shrestha R, Kim YW. Chlorin E6-Curcumin-Mediated Photodynamic Therapy Promotes an Anti-Photoaging Effect in UVB-Irradiated Fibroblasts. Int J Mol Sci 2023; 24:13468. [PMID: 37686273 PMCID: PMC10487708 DOI: 10.3390/ijms241713468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Skin photoaging due to ultraviolet B (UVB) exposure generates reactive oxygen species (ROS) that increase matrix metalloproteinase (MMP). Chlorin e6-photodynamic therapy (Ce6-PDT), in addition to being the first-line treatment for malignancies, has been shown to lessen skin photoaging, while curcumin is well known for reducing the deleterious effects of ROS. In the current study, PDT with three novel Ce6-curcumin derivatives, a combination of Ce6 and curcumin with various linkers, including propane-1,3-diamine for Ce6-propane-curcumin; hexane-1,6-diamine for Ce6-hexane-curcumin; and 3,3'-((oxybis(ethane-2,1-diyl))bis(oxy))bis(propan-1-amine) for Ce6-dipolyethylene glycol (diPEG)-curcumin, were studied for regulation of UVB-induced photoaging on human skin fibroblast (Hs68) and mouse embryonic fibroblast (BALB/c 3T3) cells. We assessed the antiphotoaging effects of Ce6-curcumin derivatives on cell viability, antioxidant activity, the mechanism of matrix metalloproteinase-1 and 2 (MMP-2) expression, and collagen synthesis in UVB-irradiated in vitro models. All three Ce6-curcumin derivatives were found to be non-phototoxic in the neutral red uptake phototoxicity test. We found that Ce6-hexane-curcumin-PDT and Ce6-propane-curcumin-associated PDT exhibited less cytotoxicity in Hs68 and BALB/c 3T3 fibroblast cell lines compared to Ce6-diPEG-curcumin-PDT. Ce6-diPEG-curcumin and Ce6-propane-curcumin-associated PDT showed superior antioxidant activity in Hs68 cell lines. Further, in UVB-irradiated in vitro models, the Ce6-diPEG-curcumin-PDT greatly attenuated the expression levels of MMP-1 and MMP-2 by blocking mitogen-activated protein kinases (MAPKs), activator protein 1 (AP-1), and tumor necrosis factor-α (NF-κB) signaling. Moreover, Ce6-diPEG-curcumin effectively inhibited inflammatory molecules, such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression, while accelerating collagen synthesis. These results demonstrate that Ce6-diPEG-curcumin may be a potential therapy for treating skin photoaging.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yong-Wan Kim
- Dongsung Cancer Center, Dongsung Biopharmaceutical, Daegu 41061, Republic of Korea
| |
Collapse
|
12
|
Tao X, Hu X, Wu T, Zhou D, Yang D, Li X, Fu Y, Zheng F, Yue H, Dai Y. Characterization and screening of anti-melanogenesis and anti-photoaging activity of different enzyme-assisted polysaccharide extracts from Portulaca oleracea L. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154879. [PMID: 37229889 DOI: 10.1016/j.phymed.2023.154879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND The flavonoids and polysaccharides in Portulaca oleracea L. (PO) have significant antibacterial and antioxidant effects, which can inhibit common bacteria and remove free radicals in the body. However, there was little research on the use of PO to alleviate hyperpigmentation and photoaging damage. PURPOSE This study was to investigate the anti-photoaging and whitening activity mechanism of polysaccharide of PO (POP) in vitro and in vivo. METHOD In this study, 16 fractions obtained by four enzyme-assisted extraction from PO and their scavenging capabilities against 2,2-diphenyl-1-picrylhydrazyl and hydroxyl radicals were evaluated. Among these fractions, a polysaccharide fraction (VPOP3) showed the strongest biological activity. VPOP3 was characterized by Fourier-transform infrared spectroscopy, molecular weight (MW), and monosaccharide composition analysis, and the protective effect of VPOP3 on photoaging and hyperpigmentation was researched. RESULTS VPOP3 is a low-MW acidic heteropolysaccharide with MW mainly distributed around 0.71KDa, arabinose as its main monosaccharide component. VPOP3 reliably reduced the reactive oxygen species levels in cells and zebrafish and the level of lipid peroxidation in zebrafish. In addition, VPOP3 inhibited UVB-induced apoptotic body formation and apoptosis by downregulating caspase-3 and Bax and upregulating Bcl-2 in mitochondrion-mediated signaling pathways. On the other hand, VPOP3 at high concentrations significantly downregulated the expression of microphthalmia-associated transcription factor, tyrosinase (TYR), and TYR-related protein-1 and TYR-related protein-2 in the melanogenic signaling pathway to achieve a whitening effect. CONCLUSION The above results showed that VPOP3 has superior activities of anti-photoaging and anti-melanogenesis and can be utilized as a safe resource in the manufacture of cosmetics.
Collapse
Affiliation(s)
- Xingyu Tao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xuan Hu
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Tongchuan Wu
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Dongyue Zhou
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Di Yang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xue Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yunhua Fu
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Fei Zheng
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Hao Yue
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Yulin Dai
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
13
|
Jayawardhana H, Lee HG, Liyanage N, Nagahawatta D, Ryu B, Jeon YJ. Structural characterization and anti-inflammatory potential of sulfated polysaccharides from Scytosiphon lomentaria; attenuate inflammatory signaling pathways. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
|
14
|
Wang L, Jayawardena TU, Hyun J, Wang K, Fu X, Xu J, Gao X, Park Y, Jeon YJ. Antioxidant and anti-photoaging effects of a fucoidan isolated from Turbinaria ornata. Int J Biol Macromol 2023; 225:1021-1027. [PMID: 36410533 DOI: 10.1016/j.ijbiomac.2022.11.164] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/30/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022]
Abstract
Fucoidans isolated from brown seaweeds are potential ingredients in the cosmetic industry. In our preosvious study, a fucoidan was isolated from the brown seaweed Turbinaria ornata (TO-F10) and the anti-inflammatory effect of TO-F10 was evaluated. In order to further explore the potential of TO-F10 in cosmetics, in the present study, antioxidant and photoprotective effects of TO-F10 were investigated. TO-F10 remarkably protected Vero cells against AAPH-stimulated cell death by reducing apoptosis via scavenging intracellular reactive oxygen species (ROS). In addition, TO-F10 increased the survival rate of AAPH-treated zebrafish by suppressing oxidative stress displayed in reducing the levels of ROS, cell death, and lipid peroxidation. Furthermore, TO-F10 effectively attenuated UVB-induced in vitro and in vivo photodamage. TO-F10 increased the viability of UVB-irradiated human keratinocytes via suppressing apoptosis by reducing the intracellular ROS level. Besides, TO-F10 effectively attenuated in vivo photodamage stimulated by UVB irradiation via inhibiting oxidative stress and inflammatory response in zebrafish. These results demonstrate that TO-F10 possesses in vitro and in vivo antioxidant and photoprotective effects, and suggest TO-F10 is a potential ingredient in the cosmetic industry.
Collapse
Affiliation(s)
- Lei Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Thilina U Jayawardena
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea; Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Jimin Hyun
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Kaiqiang Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiaoting Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jiachao Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xin Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Youngjin Park
- Department of Family Medicine, Dong-A University Hospital, Daesingongwon-ro, Busan 49201, Republic of Korea.
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea.
| |
Collapse
|
15
|
Potential of the Ethyl Acetate Fraction of Padina boergesenii as a Natural UV Filter in Sunscreen Cream Formulation. Life (Basel) 2023; 13:life13010239. [PMID: 36676188 PMCID: PMC9862676 DOI: 10.3390/life13010239] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Brown seaweeds, due to their wide range of bioactive compounds, have a high ability to inhibit free radicals and protect against ultraviolet rays. In the present study, the ethyl acetate fraction (EF) was isolated from the Padina boergesenii brown seaweed. Antioxidant activity (by the DPPH scavenging activity method) and cytotoxicity against UVB-induced cytotoxicity in HaCaT human keratinocytes were evaluated. Then, this fraction was used as a bio-filter in the formulation of sunscreen, and the physical properties and stability were investigated. The results showed that the EF could inhibit DPPH radical scavenging (54 ± 1%) and cell viability of HaCaT keratinocytes exposed to UVB irradiation (81.2 ± 0.1%). The results of the stability study of the cream formulated with EF showed that at temperatures 4 °C and 25 °C it has high stability; and at 40 °C on the 28th day, a slight decrease in its stability was observed. The pH and Sun Protection Factor of the cream formulated with EF were reported at 5.8 and 20.55, respectively. Also, the DPPH scavenging activity of the cream was not altered for 28 days of storage at temperatures of 4-40 °C. According to our results, it was proved that the sunscreen formulated with EF of P. boergesenii brown seaweed has promising properties and characteristics that can create a new opportunity for the development of cosmetics and skin care products.
Collapse
|
16
|
Qian H, Shan Y, Gong R, Lin D, Zhang M, Wang C, Wang L. Mechanism of action and therapeutic effects of oxidative stress and stem cell-based materials in skin aging: Current evidence and future perspectives. Front Bioeng Biotechnol 2023; 10:1082403. [PMID: 36698629 PMCID: PMC9868183 DOI: 10.3389/fbioe.2022.1082403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Aging is associated with multiple degenerative diseases, including atherosclerosis, osteoporosis, and Alzheimer's disease. As the most intuitive manifestation of aging, skin aging has received the most significant attention. Skin aging results from various intrinsic and extrinsic factors. Aged skin is characterized by wrinkles, laxity, elastosis, telangiectasia, and aberrant pigmentation. The underlying mechanism is complex and may involve cellular senescence, DNA damage, oxidative stress (OS), inflammation, and genetic mutations, among other factors. Among them, OS plays an important role in skin aging, and multiple antioxidants (e.g., vitamin C, glutathione, and melatonin) are considered to promote skin rejuvenation. In addition, stem cells that exhibit self-replication, multi-directional differentiation, and a strong paracrine function can exert anti-aging effects by inhibiting OS. With the further development of stem cell technology, treatments related to OS mitigation and involving stem cell use may have a promising future in anti-skin aging therapy.
Collapse
Affiliation(s)
- Huan Qian
- Department of Plastic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China,*Correspondence: Huan Qian, ; Lu Wang,
| | - Yihan Shan
- Wenzhou Medical University, Wenzhou, China
| | | | - Danfeng Lin
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengwen Zhang
- Department of Plastic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen Wang
- Department of Plastic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lu Wang
- Starbody plastic surgery Clinic, Hangzhou, China,*Correspondence: Huan Qian, ; Lu Wang,
| |
Collapse
|
17
|
Cosmeceutical Effects of Ishige okamurae Celluclast Extract. Antioxidants (Basel) 2022; 11:antiox11122442. [PMID: 36552650 PMCID: PMC9774589 DOI: 10.3390/antiox11122442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Sulfated polysaccharides extracted from brown algae are unique algal polysaccharides and potential ingredients in the cosmeceutical, functional food, and pharmaceutical industries. Therefore, the present study evaluated the cosmeceutical effects, including antioxidant, anti-wrinkle, anti-inflammation, and photoprotective activities, of Ishige okamurae Celluclast extract (IOC). The IOC was abundant in sulfated polysaccharides (48.47%), polysaccharides (44.33%), and fucose (43.50%). Moreover, the IOC effectively scavenged free radicals, and its anti-inflammatory properties were confirmed in lipopolysaccharide-induced RAW 264.7 macrophages; therefore, the IOC may produce auxiliary effects by inhibiting reactive oxygen species (ROS). In vitro (Vero cells) and in vivo (zebrafish) studies further confirmed that the IOC produced a protective effect against hydrogen-peroxide-induced oxidative stress in a dose-dependent manner. In addition, the IOC suppressed intracellular ROS and apoptosis and enhanced HO-1 and SOD-1 expression through transcriptional activation of Nrf2 and downregulation of Keap1 in HaCaT cells. Furthermore, the IOC exhibited a potent protective effect against ultraviolet-B-induced skin damage and photoaging. In conclusion, the IOC possesses antioxidant, anti-inflammatory, and photoprotective activities, and can, therefore, be utilized in the cosmeceutical and functional food industries.
Collapse
|
18
|
Zhang L, Liao W, Huang Y, Wen Y, Chu Y, Zhao C. Global seaweed farming and processing in the past 20 years. FOOD PRODUCTION, PROCESSING AND NUTRITION 2022. [DOI: 10.1186/s43014-022-00103-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractSeaweed has emerged as one of the most promising resources due to its remarkable adaptability, short development period, and resource sustainability. It is an effective breakthrough to alleviate future resource crises. Algal resources have reached a high stage of growth in the past years due to the increased output and demand for seaweed worldwide. Several aspects global seaweed farming production and processing over the last 20 years are reviewed, such as the latest situation and approaches of seaweed farming. Research progress and production trend of various seaweed application are discussed. Besides, the challenges faced by seaweed farming and processing are also analyzed, and the related countermeasures are proposed, which can provide advice for seaweed farming and processing. The primary products, extraction and application, or waste utilization of seaweed would bring greater benefits with the continuous development and improvement of applications in various fields.
Graphical Abstract
Collapse
|
19
|
Liu Y, Liu Y, Deng J, Wu X, He W, Mu X, Nie X. Molecular mechanisms of Marine-Derived Natural Compounds as photoprotective strategies. Int Immunopharmacol 2022; 111:109174. [PMID: 35998505 DOI: 10.1016/j.intimp.2022.109174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/02/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022]
Abstract
Excessive exposure of the skin to ultraviolet radiation (UVR) causes oxidative stress, inflammation, immunosuppression, apoptosis, and changes in the extracellular matrix, which lead to the development of photoaging and photodamage of skin. At the molecular level, these pathological changes are mainly caused by the activation of related protein kinases and downstream transcription pathways, the increase of matrix metalloproteinase, the formation of reactive oxygen species, and the combined action of cytokines and inflammatory mediators. At present, the photostability, toxicity, and damage to marine ecosystems of most sun protection products in the market have affected their efficacy and safety. Another way is to use natural products produced by various marine species. Marine organisms have evolved a variety of molecular strategies to protect themselves from the harmful effects of ultraviolet radiation, and their unique chemicals have attracted more and more attention in the research of photoprotection and photoaging resistance. This article provides an extensive description of the recent literature on the potential of Marine-Derived Natural Compounds (MDNCs) as photoprotective and photoprotective agents. It reviews the positive effects of MDNCs in counteracting UV-induced oxidative stress, inflammation, DNA damage, apoptosis, immunosuppression, and extracellular matrix degradation. Some MDNCs have the potential to develop feasible solutions for related phenomena, such as photoaging and photodamage caused by UVR.
Collapse
Affiliation(s)
- Yiqiu Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Ye Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Junyu Deng
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Xingqian Wu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Wenjie He
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Xingrui Mu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Xuqiang Nie
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China.
| |
Collapse
|
20
|
Wang L, Je JG, Kim HS, Wang K, Fu X, Xu J, Gao X, Jeon YJ. Anti-Melanogenesis and Photoprotective Effects of Ecklonia maxima Extract Containing Dieckol and Eckmaxol. Mar Drugs 2022; 20:557. [PMID: 36135746 PMCID: PMC9506176 DOI: 10.3390/md20090557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Seaweeds are potential ingredients in the cosmeceutical industry. Our previous study demonstrates that the phlorotannin-enriched extract of Ecklonia maxima (EME-EA) containing dieckol and eckmaxol possesses strong anti-inflammatory activity and suggests the cosmeceutical potential of EME-EA. In order to evaluate the cosmeceutical potential of EME-EA, the anti-melanogenesis and photoprotective effects of EME-EA were investigated in this study. EME-EA remarkably inhibited mushroom tyrosinase and melanogenesis in alpha-melanocyte-stimulating hormone-stimulated B16F10 cells. In addition, EME-EA significantly suppressed UVB-induced HaCaT cell death that was consistent with inhibition of apoptosis and reduction in scavenging intracellular reactive oxygen species. Furthermore, EME-EA significantly inhibited collagen degradation and matrix metalloproteinases expression in UVB-irradiated HDF cells in a concentration-dependent manner. These results indicate that EME-EA possesses strong anti-melanogenesis and photoprotective activities and suggest EME-EA is an ideal ingredient in the pharmaceutical and cosmeceutical industries.
Collapse
Affiliation(s)
- Lei Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jun-Geon Je
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea
| | - Hyun-Soo Kim
- National Marine Biodiversity Institute of Korea, Seocheon 33677, Korea
| | - Kaiqiang Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiaoting Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jiachao Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xin Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea
- Marine Science Institute, Jeju National University, Jeju 63333, Korea
| |
Collapse
|
21
|
Kim HS, Je JG, An H, Baek K, Lee JM, Yim MJ, Ko SC, Kim JY, Oh GW, Kang MC, Ham YM, Jeon YJ, Lee DS. Isolation and Characterization of Efficient Active Compounds Using High-Performance Centrifugal Partition Chromatography (CPC) from Anti-Inflammatory Activity Fraction of Ecklonia maxima in South Africa. Mar Drugs 2022; 20:471. [PMID: 35892939 PMCID: PMC9394317 DOI: 10.3390/md20080471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 02/05/2023] Open
Abstract
Ecklonia maxima is a brown seaweed, which is abundantly distributed in South Africa. This study investigated an efficient approach using high-performance centrifugal partition chromatography (HPCPC), which has been successfully developed for the isolation and purification of phlorotannins, eckmaxol, and dieckol from the ethyl acetate fraction of E. maxima (EEM). We evaluated EEM for its inhibitory effect against lipopolysaccharide (LPS)-induced inflammatory responses in zebrafish embryos. The separation of eckmaxol and dieckol from samples of EEM using HPCPC was found to be of high purity and yield under an optimal solvent system composed of n-hexane:ethyl acetate:methanol:water (2:7:3:7, v/v/v/v). To evaluate the anti-inflammatory efficacy of EEM containing active compounds, zebrafish embryos exposed to LPS were compared with and without EEM treatment for nitric oxide (NO) production, reactive oxygen species (ROS) generation, and cell death two days after fertilization. These evaluations indicate that EEM alleviated inflammation by inhibiting cell death, ROS, and NO generation induced by LPS treatment. According to these results, eckmaxol and dieckol isolated from brown seaweed E. maxima could be considered effective anti-inflammatory agents as pharmaceutical and functional food ingredients.
Collapse
Affiliation(s)
- Hyun-Soo Kim
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101 gil, Janghang-eup, Seocheon 33662, Korea; (H.-S.K.); (H.A.); (K.B.); (J.M.L.); (M.-J.Y.); (S.-C.K.); (J.-Y.K.); (G.-W.O.)
| | - Jun-Geon Je
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Korea;
| | - Hyesuck An
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101 gil, Janghang-eup, Seocheon 33662, Korea; (H.-S.K.); (H.A.); (K.B.); (J.M.L.); (M.-J.Y.); (S.-C.K.); (J.-Y.K.); (G.-W.O.)
| | - Kyunghwa Baek
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101 gil, Janghang-eup, Seocheon 33662, Korea; (H.-S.K.); (H.A.); (K.B.); (J.M.L.); (M.-J.Y.); (S.-C.K.); (J.-Y.K.); (G.-W.O.)
| | - Jeong Min Lee
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101 gil, Janghang-eup, Seocheon 33662, Korea; (H.-S.K.); (H.A.); (K.B.); (J.M.L.); (M.-J.Y.); (S.-C.K.); (J.-Y.K.); (G.-W.O.)
| | - Mi-Jin Yim
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101 gil, Janghang-eup, Seocheon 33662, Korea; (H.-S.K.); (H.A.); (K.B.); (J.M.L.); (M.-J.Y.); (S.-C.K.); (J.-Y.K.); (G.-W.O.)
| | - Seok-Chun Ko
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101 gil, Janghang-eup, Seocheon 33662, Korea; (H.-S.K.); (H.A.); (K.B.); (J.M.L.); (M.-J.Y.); (S.-C.K.); (J.-Y.K.); (G.-W.O.)
| | - Ji-Yul Kim
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101 gil, Janghang-eup, Seocheon 33662, Korea; (H.-S.K.); (H.A.); (K.B.); (J.M.L.); (M.-J.Y.); (S.-C.K.); (J.-Y.K.); (G.-W.O.)
| | - Gun-Woo Oh
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101 gil, Janghang-eup, Seocheon 33662, Korea; (H.-S.K.); (H.A.); (K.B.); (J.M.L.); (M.-J.Y.); (S.-C.K.); (J.-Y.K.); (G.-W.O.)
| | - Min-Cheol Kang
- Research Group of Food Processing Research Division of Strategic Food Technology, Wanju-gun 55365, Korea;
| | - Young Min Ham
- Korea Jeju Biodiversity Research Institute, Jeju Technopark, Jeju 63608, Korea;
| | - You-Jin Jeon
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Korea;
| | - Dae-Sung Lee
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101 gil, Janghang-eup, Seocheon 33662, Korea; (H.-S.K.); (H.A.); (K.B.); (J.M.L.); (M.-J.Y.); (S.-C.K.); (J.-Y.K.); (G.-W.O.)
| |
Collapse
|
22
|
Kirindage KGIS, Jayasinghe AMK, Han EJ, Jee Y, Kim HJ, Do SG, Fernando IPS, Ahn G. Fucosterol Isolated from Dietary Brown Alga Sargassum horneri Protects TNF-α/IFN-γ-Stimulated Human Dermal Fibroblasts via Regulating Nrf2/HO-1 and NF-κB/MAPK Pathways. Antioxidants (Basel) 2022; 11:antiox11081429. [PMID: 35892631 PMCID: PMC9394315 DOI: 10.3390/antiox11081429] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
Sargassum horneri is a well-known edible brown alga that is widely abundant in the sea near China, Korea, and Japan and has a wide range of bioactive compounds. Fucosterol (FST), which is a renowned secondary metabolite in brown algae, was extracted from S. horneri to 70% ethanol, isolated via high-performance liquid chromatography (HPLC), followed by the immiscible liquid-liquid separation, and its structure was confirmed by NMR spectroscopy. The present study was undertaken to investigate the effects of FST against oxidative stress, inflammation, and its mechanism of action in tumor necrosis factor (TNF)-α/interferon (IFN)-γ-stimulated human dermal fibroblast (HDF). FST was biocompatible with HDF cells up to the 120 μM dosage. TNF-α/IFN-γ stimulation significantly decreased HDF viability by notably increasing reactive oxygen species (ROS) production. FST dose-dependently decreased the intracellular ROS production in HDFs. Western blot analysis confirmed a significant increment of nuclear factor erythroid 2-related factor 2 (Nrf2)/ heme oxygenase-1 (HO-1) involvement in FST-treated HDF cells. In addition, the downregulation of inflammatory mediators, molecules related to connective tissue degradation, and tissue inhibitors of metalloproteinases were identified. TNF-α/IFN-γ stimulation in HDF cells increased the phosphorylation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) mediators, and its phosphorylation was reduced with the treatment of FST in a dose-dependent manner. Results obtained from western blot analysis of the NF-κB nuclear translocation were supported by immunocytochemistry results. Collectively, the outcomes suggested that FST significantly upregulates the Nrf2/HO-1 signaling and regulates NF-κB/MAPK signaling pathways to minimize the inflammatory responses in TNF-α/IFN-γ-stimulated HDF cells.
Collapse
Affiliation(s)
| | | | - Eui-Jeong Han
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea; (K.G.I.S.K.); (A.M.K.J.); (E.-J.H.)
| | - Youngheun Jee
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea;
| | - Hyun-Jin Kim
- Research and Development Center, Naturetch Co., Ltd., Cheonnam-si 31257, Korea; (H.-J.K.); (S.G.D.)
| | - Sun Gil Do
- Research and Development Center, Naturetch Co., Ltd., Cheonnam-si 31257, Korea; (H.-J.K.); (S.G.D.)
| | | | - Ginnae Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea; (K.G.I.S.K.); (A.M.K.J.); (E.-J.H.)
- Correspondence: (I.P.S.F.); (G.A.)
| |
Collapse
|
23
|
Zampieri RM, Adessi A, Caldara F, De Philippis R, Dalla Valle L, La Rocca N. In vivo anti-inflammatory and antioxidant effects of microbial polysaccharides extracted from Euganean therapeutic muds. Int J Biol Macromol 2022; 209:1710-1719. [PMID: 35483514 DOI: 10.1016/j.ijbiomac.2022.04.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 11/19/2022]
Abstract
Therapeutic thermal mud produced by spas of the Euganean Thermal District (Italy) is used as a treatment for arthro-rheumatic diseases. Its production involves the growth of a specific microbiota embedded in a polysaccharidic matrix. Polysaccharides (Microbial-PolySaccharides, M-PS) released in the mud by the resident microorganisms were extracted and analyzed. The monosaccharidic composition analysis showed the presence of galacturonic acid, mannose, xylose, ribose and glucose and a high percentage of sulfated groups in the polymers. To assess their involvement in the therapeutic efficacy of the mud, the M-PS were tested using the model organism zebrafish (Danio rerio). The anti-inflammatory and antioxidant activities were evaluated after confirming the lack of toxic effects during development. Inflammatory state was induced chemically with copper sulfate, or through tail fin amputation procedure and UVB exposure. Recovery from inflammatory condition after exposure to M-PS was always observed with specific morphometric analyses, and further supported by qPCR. Genes linked with the inflammatory and oxidative stress response were investigated confirming the M-PS treatment's efficacy.
Collapse
Affiliation(s)
| | - Alessandra Adessi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Via Maragliano 77, 50144 Firenze, Italy.
| | - Fabrizio Caldara
- Pietro d'Abano Thermal Studies Center, Via Jappelli 5, Abano Terme, 35031 Padova, Italy.
| | - Roberto De Philippis
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Via Maragliano 77, 50144 Firenze, Italy.
| | - Luisa Dalla Valle
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy.
| | - Nicoletta La Rocca
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy.
| |
Collapse
|
24
|
Chen B, Chen H, Qu H, Qiao K, Xu M, Wu J, Su Y, Shi Y, Liu Z, Wang Q. Photoprotective effects of Sargassum thunbergii on ultraviolet B-induced mouse L929 fibroblasts and zebrafish. BMC Complement Med Ther 2022; 22:144. [PMID: 35597942 PMCID: PMC9123674 DOI: 10.1186/s12906-022-03609-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 04/25/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Chronic exposure to ultraviolet B (UVB) causes a series of adverse skin reactions, such as erythema, sunburn, photoaging, and cancer, by altering signaling pathways related to inflammation, oxidative stress, and DNA damage. Marine algae have abundant amounts and varieties of bioactive compounds that possess antioxidant and anti-inflammatory properties. Thus, the objective of this study was to investigate the photoprotective effects of an ethanol extract of Sargassum thunbergii. METHODS Sargassum thunbergii phenolic-rich extract (STPE) was prepared, and its activity against UVB damage was evaluated using L929 fibroblast cells and zebrafish. STPE was extracted and purified by 40% ethanol and macroporous resin XDA-7. Reactive oxygen species (ROS) and antioxidant markers, such as superoxide dismutase (SOD), catalase (CAT) activities, and malondialdehyde (MDA) content were analyzed. The effect of STPE on UVB-induced inflammation was determined by inflammatory cytokine gene and protein expression. The expression of signaling molecules in the Nuclear Factor KappaB (NF-κB) pathway was determined by western blotting. DNA condensation was analyzed and visualized by Hoechst 33342 staining. In vivo evaluation was performed by tail fin area and ROS measurement using the zebrafish model. RESULTS The total polyphenol content of STPE was 72%. STPE reduced ROS content in L929 cells, improved SOD and CAT activities, and significantly reduced MDA content, thereby effectively alleviating UVB radiation-induced oxidative damage. STPE inhibited the mRNA and protein expression of TNF-α, IL-6, and IL-1α. STPE reversed DNA condensation at concentrations of 20 and 40 μg/mL compared with the UVB control. Moreover, STPE inhibited NF-κB signaling pathway activation and alleviated DNA agglutination in L929 cells after UVB irradiation. Additionally, 1.67 μg/mL STPE significantly increased the tail fin area in zebrafish, and 0.8-1.6 μg/mL STPE effectively eliminated excessive ROS after UVB radiation. CONCLUSIONS STPE inhibited UVB-induced oxidative stress, inflammatory cytokine expression, and DNA condensation via the downregulation of the NF-κB signaling pathway, suggesting that it prevents UVB-induced photodamage, and has potential for clinical development for skin disease treatment.
Collapse
Affiliation(s)
- Bei Chen
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, No. 7, Haishan Road, Huli District, Xiamen, 361013 Fujian China
| | - Honghong Chen
- School of Life Sciences, Xiamen University, South Xiangan Road, Xiang’an District, Xiamen, 361102 Fujian China
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
| | - Haidong Qu
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102 Fujian China
| | - Kun Qiao
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, No. 7, Haishan Road, Huli District, Xiamen, 361013 Fujian China
| | - Min Xu
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, No. 7, Haishan Road, Huli District, Xiamen, 361013 Fujian China
| | - Jingna Wu
- Xiamen Medical College, Xiamen, 361023 Fujian China
| | - Yongchang Su
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, No. 7, Haishan Road, Huli District, Xiamen, 361013 Fujian China
| | - Yan Shi
- School of Life Sciences, Xiamen University, South Xiangan Road, Xiang’an District, Xiamen, 361102 Fujian China
| | - Zhiyu Liu
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, No. 7, Haishan Road, Huli District, Xiamen, 361013 Fujian China
| | - Qin Wang
- School of Life Sciences, Xiamen University, South Xiangan Road, Xiang’an District, Xiamen, 361102 Fujian China
| |
Collapse
|
25
|
Matulja D, Vranješević F, Kolympadi Markovic M, Pavelić SK, Marković D. Anticancer Activities of Marine-Derived Phenolic Compounds and Their Derivatives. Molecules 2022; 27:molecules27041449. [PMID: 35209235 PMCID: PMC8879422 DOI: 10.3390/molecules27041449] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 12/24/2022] Open
Abstract
Since the middle of the last century, marine organisms have been identified as producers of chemically and biologically diverse secondary metabolites which have exerted various biological activities including anticancer, anti-inflammatory, antioxidant, antimicrobial, antifouling and others. This review primarily focuses on the marine phenolic compounds and their derivatives with potent anticancer activity, isolated and/or modified in the last decade. Reports on the elucidation of their structures as well as biosynthetic studies and total synthesis are also covered. Presented phenolic compounds inhibited cancer cells proliferation or migration, at sub-micromolar or nanomolar concentrations (lamellarins D (37), M (38), K (39), aspergiolide B (41), fradimycin B (62), makulavamine J (66), mayamycin (69), N-acetyl-N-demethylmayamycin (70) or norhierridin B (75)). In addition, they exhibited anticancer properties by a diverse biological mechanism including induction of apoptosis or inhibition of cell migration and invasive potential. Finally, phlorotannins 1–7 and bromophenols 12–29 represent the most researched phenolic compounds, of which the former are recognized as protective agents against UVB or gamma radiation-induced skin damages. Finally, phenolic metabolites were assorted into six main classes: phlorotannins, bromophenols, flavonoids, coumarins, terpenophenolics, quinones and hydroquinones. The derivatives that could not be attributed to any of the above-mentioned classes were grouped in a separate class named miscellaneous compounds.
Collapse
Affiliation(s)
- Dario Matulja
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (D.M.); (F.V.); (M.K.M.)
| | - Filip Vranješević
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (D.M.); (F.V.); (M.K.M.)
| | - Maria Kolympadi Markovic
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (D.M.); (F.V.); (M.K.M.)
| | - Sandra Kraljević Pavelić
- Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 5, 51000 Rijeka, Croatia
- Correspondence: (S.K.P.); (D.M.); Tel.: +385-51-688-266 (S.K.P.); +385-91-500-8676 (D.M.)
| | - Dean Marković
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (D.M.); (F.V.); (M.K.M.)
- Correspondence: (S.K.P.); (D.M.); Tel.: +385-51-688-266 (S.K.P.); +385-91-500-8676 (D.M.)
| |
Collapse
|
26
|
Je JG, Jiang Y, Heo JH, Li X, Jeon YJ, Ryu BM. Mitigative Effects of PFF-A Isolated from Ecklonia cava on Pigmentation in a Zebrafish Model and Melanogenesis in B16F10 Cells. Mar Drugs 2022; 20:123. [PMID: 35200653 PMCID: PMC8877154 DOI: 10.3390/md20020123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 01/29/2022] [Accepted: 02/03/2022] [Indexed: 02/01/2023] Open
Abstract
Melanin synthesis is a defense mechanism that prevents skin damage, but excessive accumulation of melanin occurs in the skin in various reactions such as pigmentation, lentigines, and freckles. Although anti-melanogenic effects have been demonstrated for various naturally occurring marine products that inhibit and control tyrosinase activity, most studies have not been extended to in vivo applications. Phlorofucofuroeckol-A (PFF-A, 12.5-100 µM) isolated from Ecklonia cava has previously been shown to have tyrosinase-mitigative effects in B16F10 cells, but it has not been evaluated in an in vivo model, and its underlying mechanism for anti-melanogenic effects has not been studied. In the present study, we evaluated the safety and efficacy of PFF-A for anti-melanogenic effects in an in vivo model. We selected low doses of PFF-A (1.5-15 nM) and investigated their mitigative effects on pigmentation stimulated by α-MSH in vivo and their related-mechanism in an in vitro model. The findings suggest that low-dose PFF-A derived from E. cava suppresses pigmentation in vivo and melanogenesis in vitro. Therefore, this study presents the possibility that PFF-A could be utilized as a new anti-melanogenic agent in the cosmeceutical industries.
Collapse
Affiliation(s)
- Jun-Geon Je
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea; (J.-G.J.); (J.-H.H.); (Y.-J.J.)
| | - Yunfei Jiang
- School of Food Engineering, Jilin Agriculture Science and Technology University, Jilin 132101, China;
| | - Jun-Ho Heo
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea; (J.-G.J.); (J.-H.H.); (Y.-J.J.)
| | - Xining Li
- School of Life Sciences, Northeast Normal University, Changchun 130024, China;
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea; (J.-G.J.); (J.-H.H.); (Y.-J.J.)
- Marine Science Institute, Jeju National University, Jeju 63333, Korea
| | - Bo-Mi Ryu
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea; (J.-G.J.); (J.-H.H.); (Y.-J.J.)
| |
Collapse
|
27
|
Xiao Z, Yang S, Liu Y, Zhou C, Hong P, Sun S, Qian ZJ. A novel glyceroglycolipid from brown algae Ishige okamurae improve photoaging and counteract inflammation in UVB-induced HaCaT cells. Chem Biol Interact 2022; 351:109737. [PMID: 34740599 DOI: 10.1016/j.cbi.2021.109737] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/29/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Excessive exposure to Ultraviolet (UV) rays can cause premature skin aging. Ishigoside (IGS) is a new glyceroglycolipid compound isolated from brown algal Ishige okamurae, However, whether it can protect the skin from (Ultraviolet-B) UVB damage has not been illuminated. METHODS The in vitro anti-photoaging effect of IGS was conducted in UVB-induced HaCaT. The HaCaT cells were divided into the following five groups: (1) cells didn't suffer from UVB irradiation or IGS treatment. (2-5) Cells were treated with various concentrations of IGS (0, 10, 50, and 100 μM) and irradiated by 40 mJ/cm2 UVB. The Matrix metalloproteinase (MMP) of photoaging process was determined by ELISA kits and the latent interaction between IGS and MMP was further performed by molecular docking. The crucial signaling pathway proteins involved in the collagen synthesis and degradation were subsequently evaluated by Western blotting, immunofluorescence and EMSA. RESULTS IGS effectively suppresses the high expressions and secretions of matrix metalloproteinases (MMPs) and photo-inflammation by blocking MAPKs, AP-1 and NF-κB. Meanwhile, increasing antioxidant enzyme expression. Molecular docking results suggest that inhibition of IGS on MMPs may be attributed to its hydrogen supply and hydrophobic capacity. In addition, IGS enhanced procollagen production by upregulating the TGF-β/Smad pathways. CONCLUSIONS IGS exhibited anti-photoaging activity in UVB-damage HaCaT. These effects might be a contribution by its suppression of MMPs expression via MAPKs, AP-1 and NF-κB pathway and have anti-oxidative and anti-inflammatory effects. Therefore, IGS has the great potential to become skin-care products or functional foods for preventing skin photoaging.
Collapse
Affiliation(s)
- Zhenbang Xiao
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Shengtao Yang
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yi Liu
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chunxia Zhou
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China
| | - Pengzhi Hong
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China
| | - Shengli Sun
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhong-Ji Qian
- School of Chemistry and Environment, College of Food Science and Technology, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China.
| |
Collapse
|
28
|
Okeke ES, Nweze EJ, Chibuogwu CC, Anaduaka EG, Chukwudozie KI, Ezeorba TPC. Aquatic Phlorotannins and Human Health: Bioavailability, Toxicity, and Future Prospects. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211056144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Medicinal chemists and pharmacognosists have relied on terrestrial sources for bioactive phytochemicals to manage and treat disease conditions. However, minimal interest is given to sea life, especially macroalgae and their inherent phytochemical reserves. Phlorotannins are a special class of phytochemicals mainly predominant in brown algae of marine and estuarine habitats. Phlorotannins are formed through the polymerization of phloroglucinol residues and derivatives via the polyketide (acetate–malonate) pathway. Studies over the past decades have implicated phlorotannins with several bioactivities, including anti-herbivory, antioxidants, anti-inflammatory, anti-microbial, anti-proliferative, anti-diabetic, radio-protective, adipogenic, anti-allergic, and anti-human immunodeficiency virus (anti-HIV) properties. All these activities are reflected in their applications as nutraceuticals and cosmeceutical agents. This article reviews the chemical composition of phlorotannins, their biological roles, and their applications. Moreover, very few studies on phlorotannin bioavailability, safety, and toxicity have been thoroughly reviewed. The paper concludes by suggesting exciting research questions for further studies.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
- School of General Studies, University of Nigeria, Nsukka, Nigeria
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, P.R. China
- Organization of African Academic Doctor, Nairobi, Kenya
| | - Ekene John Nweze
- Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | | | | | | | - Timothy Prince Chidike Ezeorba
- Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
- School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
29
|
Multifunctional Gelatin/Chitosan Electrospun Wound Dressing Dopped with Undaria pinnatifida Phlorotannin-Enriched Extract for Skin Regeneration. Pharmaceutics 2021; 13:pharmaceutics13122152. [PMID: 34959432 PMCID: PMC8704818 DOI: 10.3390/pharmaceutics13122152] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/04/2021] [Accepted: 12/08/2021] [Indexed: 01/14/2023] Open
Abstract
The similarities of electrospun fibers with the skin extracellular matrix (ECM) make them promising structures for advanced wound dressings. Moreover, infection and resistance in wounds are a major health concern that may be reduced with antibacterial wound dressings. In this work, a multifunctional wound dressing was developed based on gelatin/chitosan hybrid fibers dopped with phlorotannin-enrich extract from the seaweed Undaria pinnatifida. The intrinsic electrospun structure properties combined with the antimicrobial and anti-inflammatory properties of phlorotannin-enrich extract will enhance the wound healing process. Electrospun meshes were produced by incorporating 1 or 2 wt% of extract, and the structure without extract was used as a control. Physico-chemical, mechanical, and biological properties were evaluated for all conditions. Results demonstrated that all developed samples presented a homogenous fiber deposition with the average diameters closer to the native ECM fibrils, and high porosities (~90%) that will be crucial to control the wound moist environment. According to the tensile test assays, the incorporation of phlorotannin-enriched extract enhances the elastic performance of the samples. Additionally, the extract incorporation made the structure stable over time since its in vitro degradation rates decreased under enzymatic medium. Extract release profile demonstrated a longstanding delivery (up to 160 days), reaching a maximum value of ~98% over time. Moreover, the preliminary antimicrobial results confirm the mesh's antimicrobial activity against Pseudomonas aeruginosa and Staphylococcus aureus. In terms of biological characterization, no condition presented cytotoxicity effects on hDNF cells, allowing their adhesion and proliferation over 14 days, except the condition of 2 wt% after 7 days. Overall, the electrospun structure comprising phlorotannins-enriched extract is a promising bioactive structure with potential to be used as a drug delivery system for skin regeneration by reducing the bacterial infection in the wound bed.
Collapse
|
30
|
Jayawardena TU, Nagahawatta D, Lu YA, Yang HW, Je JG, Kim SY, Jeon YJ. Ishige okamurae and diphloroethohydoxycarmalol inhibit palmitic acid-impaired skeletal myogenesis and improve muscle regenerative potential. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
31
|
Wang L, Kim HS, Je JG, Fu X, Huang C, Ahn G, Oh JY, Sanjeewa KKA, Xu J, Gao X, Yeo IK, Jeon YJ. In Vitro and In Vivo Photoprotective Effects of (-)-Loliode Isolated from the Brown Seaweed, Sargassum horneri. Molecules 2021; 26:6898. [PMID: 34833989 PMCID: PMC8620499 DOI: 10.3390/molecules26226898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 01/18/2023] Open
Abstract
Skin is the largest organ of humans. Overexposure to ultraviolet (UV) is the primary environmental factor that causes skin damage. The compound, (-)-loliode, isolated from the brown seaweed Sargassum horneri, showed strong antioxidant and anti-inflammatory activities in in vitro and in vivo models. To further explore the potential of (-)-loliode in cosmetics, in the present study, we investigated the photoprotective effect of (-)-loliode in vitro in skin cells and in vivo in zebrafish. The results indicated that (-)-loliode significantly reduced intracellular reactive oxygen species (ROS) level, improved cell viability, and suppressed apoptosis of UVB-irradiated human keratinocytes. In addition, (-)-loliode remarkably attenuated oxidative damage, improved collagen synthesis, and inhibited matrix metalloproteinases expression in UVB-irradiated human dermal fibroblasts. Furthermore, the in vivo test demonstrated that (-)-loliode effectively and dose-dependently suppressed UVB-induced zebrafish damage displayed in decreasing the levels of ROS, nitric oxide, lipid peroxidation, and cell death in UVB-irradiated zebrafish. These results indicate that (-)-loliode possesses strong photoprotective activities and suggest (-)-loliode may an ideal ingredient in the pharmaceutical and cosmeceutical industries.
Collapse
Affiliation(s)
- Lei Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (L.W.); (X.F.); (J.X.); (X.G.)
| | - Hyun-Soo Kim
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101gil, Janghang-eup, Seocheon 33662, Korea;
| | - Jun-Geon Je
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea;
| | - Xiaoting Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (L.W.); (X.F.); (J.X.); (X.G.)
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Ginnae Ahn
- Department of Marine Bio Food Science, Chonnam National University, Yeosu 59626, Korea;
| | - Jae-Young Oh
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Korea;
| | - K. K. Asanka Sanjeewa
- Department of Biosystem Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana, Homagama 10206, Sri Lanka;
| | - Jiachao Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (L.W.); (X.F.); (J.X.); (X.G.)
| | - Xin Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (L.W.); (X.F.); (J.X.); (X.G.)
| | - In-Kyu Yeo
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea;
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea;
- Marine Science Institute, Jeju National University, Jeju 63333, Korea
| |
Collapse
|
32
|
Protective Effects of Lignin-Carbohydrate Complexes from Wheat Stalk against Bisphenol a Neurotoxicity in Zebrafish via Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10101640. [PMID: 34679774 PMCID: PMC8533324 DOI: 10.3390/antiox10101640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/29/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022] Open
Abstract
Lignin-carbohydrate complexes (LCCs) from different lignocellulosic biomass have shown biological qualities as antioxidant and immunostimulant. By contrast, the application of LCCs as protectant against neurotoxicity caused by different compounds is scarce. In this work, two kinds of LCCs with carbohydrate-rich and lignin-rich fractions were obtained from wheat stalk and used to protect against BPA-neurotoxicity in zebrafish. The results showed that BPA at a concentration of 500 µg/L results in neurotoxicity, including significant behavioral inhibition, and prevents the expression of central nervous system proteins in transgenic zebrafish models (Tg (HuC-GFP)). When the zebrafish was treated by LCCs, the reactive oxygen species of zebrafish decreased significantly with the change of antioxidant enzymes and lipid peroxidation, which was due to the LCCs' ability to suppress the mRNA expression level of key genes related to nerves. This is essential in view of the neurotoxicity of BPA through oxidative stress. In addition, BPA exposure had negative effects on the exercise behavior, the catalase (CAT) and superoxide dismutase (SOD) activity, and the larval development and gene expression of zebrafish larvae, and LCC preparations could recover these negative effects by reducing oxidative stress. In zebrafish treated with BPA, carbohydrate-rich LCCs showed stronger antioxidant activity than lignin-rich LCCs, showing their potential as a neuroprotective agents.
Collapse
|
33
|
Yang Z, Hu Y, Yue P, Luo H, Li Q, Li H, Zhang Z, Peng F. Physicochemical Properties and Skin Protection Activities of Polysaccharides from Usnea longissima by Graded Ethanol Precipitation. ACS OMEGA 2021; 6:25010-25018. [PMID: 34604681 PMCID: PMC8482769 DOI: 10.1021/acsomega.1c04163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Four Usnea longissima polysaccharides (ULPs; ULP15, ULP30, ULP50, and ULP70) were obtained from the lichen U. longissima via water extraction and graded ethanol precipitation. The obtained ULPs were all heteropolysaccharides with a few proteins, with which glucose was the major monosaccharide composition. With the increase in the precipitated ethanol concentrations, the content of galactose, xylose, and mannose increased, whereas that of glucose decreased. Moreover, the antioxidant activity test demonstrated that ULP15 exhibited better reducing power and stronger scavenging ability on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl free radicals. Importantly, ULP15 also had a better proliferative effect on human HaCaT keratinocytes and dermal fibroblasts. Meanwhile, ULP15 protected HaCaT keratinocytes from UVB-induced proliferation inhibition and exhibited tyrosinase inhibition activity. Therefore, this work provides interesting insight into the preparation of cosmetic ingredients using the polysaccharide ULP15.
Collapse
Affiliation(s)
- Ziying Yang
- Beijing
Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Yajie Hu
- Beijing
Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Panpan Yue
- Beijing
Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Hongdan Luo
- Department
of Dermatology, Zunyi Hospital of Traditional
Chinese Medicine, Zunyi, Guizhou 563000, China
| | - Qisui Li
- Meteorological
Bureau of Meishan City, Meishan, Sichuan 620010, China
| | - Huiling Li
- JALA
Research Center, JALA Group Co. Ltd., Shanghai 200233, China
| | - Zhang Zhang
- JALA
Research Center, JALA Group Co. Ltd., Shanghai 200233, China
| | - Feng Peng
- Beijing
Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
34
|
Fernando IPS, Heo SJ, Dias MKHM, Madusanka DMD, Han EJ, Kim MJ, Sanjeewa KKA, Lee K, Ahn G. (-)-Loliolide Isolated from Sargassum horneri Abate UVB-Induced Oxidative Damage in Human Dermal Fibroblasts and Subside ECM Degradation. Mar Drugs 2021; 19:435. [PMID: 34436274 PMCID: PMC8399698 DOI: 10.3390/md19080435] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 11/20/2022] Open
Abstract
Ultraviolet (UV) B exposure is a prominent cause of skin aging and a contemporary subject of interest. The effects are progressing through the generation of reactive oxygen species (ROS) that alter cell signaling pathways related to inflammatory responses. The present study evaluates the protective effects of (7aR)-6-hydroxy-4,4,7a-trimethyl-6,7-dihydro-5H-1-benzofuran-2-one (HTT) isolated from the edible brown algae Sargassum horneri against UVB protective effects in human dermal fibroblasts (HDFs). HTT treatment dose-dependently suppressed intracellular ROS generation in HDFs with an IC50 of 62.43 ± 3.22 µM. HTT abated UVB-induced mitochondrial hyperpolarization and apoptotic body formation. Furthermore, UVB-induced activation of key nuclear factor (NF)-κB and mitogen-activated protein kinase signaling proteins were suppressed in HTT treated cells while downregulating pro-inflammatory cytokines (interleukin-1β, 6, 8, 33 and tumor necrosis factor-α). Moreover, HTT treatment downregulated matrix metalloproteinase1, 2, 3, 8, 9 and 13 that was further confirmed by the inhibition of collagenase and elastase activity. The evidence implies that HTT delivers protective effects against premature skin aging caused by UVB exposure via suppressing inflammatory responses and degradation of extracellular matrix (ECM) components. Extensive research in this regard will raise perspectives for using HTT as an ingredient in UV protective ointments.
Collapse
Affiliation(s)
| | - Soo-Jin Heo
- Jeju Marine Research Center, Korea Institute of Ocean Science & Technology (KIOST), Jeju 63349, Korea;
| | | | | | - Eui-Jeong Han
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea; (M.K.H.M.D.); (D.M.D.M.); (E.-J.H.); (M.-J.K.)
| | - Min-Ju Kim
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea; (M.K.H.M.D.); (D.M.D.M.); (E.-J.H.); (M.-J.K.)
| | - Kalu Kapuge Asanka Sanjeewa
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Sri Jayewardenepura 10206, Sri Lanka;
| | - Kyounghoon Lee
- Division of Fisheries Science, Chonnam National University, Yeosu 59626, Korea
- Department of Marine Technology, Chonnam National University, Yeosu 59626, Korea
| | - Ginnae Ahn
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Korea;
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea; (M.K.H.M.D.); (D.M.D.M.); (E.-J.H.); (M.-J.K.)
| |
Collapse
|
35
|
Liang CH, Chen YJ. Preparation of High-Performance Metal-Free UV/Near Infrared-Shielding Films for Human Skin Protection. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1954. [PMID: 34443786 PMCID: PMC8401668 DOI: 10.3390/nano11081954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 11/22/2022]
Abstract
A series of metal-free UV/near infrared (NIR)-shielding coatings are successfully fabricated by shielded cathodic arc plasma evaporation (CAPE) and substrate-biased RF magnetron sputtering processes. The UV/NIR-shielding coatings comprising quarter-wave stacks of TiO2/SiO2 multilayers and high-conductivity sputter-deposited ITO films with a thickness in the range of 200-600 nm could block IRA and IRB radiations, respectively. The total thicknesses of UV/near infrared-shielding films are in the range from 375 nm to 1513.8 nm. The anatase-phase TiO2 films with absorption edge located at ∼375 nm were deposited by shielded CAPE at ∼100 °C. Further, the well-crystallized ITO films were found to have high free-electron concentrations (1.12 × 1021 cm-3), resulting in strong absorption of IRB due to the plasmon resonance absorption. The optimal optical design and ITO film thickness were investigated, and the TiO2(SiO2/TiO2)3 multilayer combined with an ITO film thickness of 400 nm was found to provide a high NIR-shielding rate of 94.8%, UVB to UVA-shielding rate of 92.7%, and average visible light transmittance of 68.1%. Further, human skin cells protected by a UV/NIR-shielding coating showed significantly decreased reactive oxygen species generation and inflammatory cytokine expression as compared to those of unprotected cells. The results demonstrate that the development of multifunction coatings have potential for transparent heat insulation windows and human skin protection against UV/IR radiations.
Collapse
Affiliation(s)
- Chih-Hao Liang
- R&D Division, Walsin Technology Corporation, Kaohsiung 806, Taiwan;
| | - Ying-Jung Chen
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
36
|
Fernando IPS, Dias MKHM, Madusanka DMD, Kim HS, Han EJ, Kim MJ, Seo MJ, Ahn G. Effects of (-)-Loliolide against Fine Dust Preconditioned Keratinocyte Media-Induced Dermal Fibroblast Inflammation. Antioxidants (Basel) 2021; 10:antiox10050675. [PMID: 33925954 PMCID: PMC8144948 DOI: 10.3390/antiox10050675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 12/19/2022] Open
Abstract
At present air pollution in parts of East Asia is at an alarming level due to elevated levels of fine dust (FD). Other than pulmonary complications, FD was found to affect the pathogenesis of ROS-dependent inflammatory responses via penetrating barrier-disrupted skin, leading to degradation of extracellular matrix components through the keratinocyte-fibroblast axis. The present study discloses the evaluation of human dermal fibroblast (HDF) responses to FD preconditioned human keratinocyte media (HPM) primed without and with (-)-loliolide (HTT). HPM-FD treatment increased the ROS level in HDFs and activated mitogen-activated protein kinase-derived nuclear factor (NF)-κB inflammatory signaling pathways with a minor reduction of viability. The above events led to cell differentiation and production of matrix metalloproteinases (MMP), increasing collagenase and elastase activity despite the increase of tissue inhibitors of metalloproteinases (TIMP). Media from HTT primed keratinocytes stimulated with FD indicated ameliorated levels of MMPs, inflammatory cytokines, and chemokines in HDFs with suppressed collagenase and elastase activity. Present observations help to understand the factors that affect HDFs in the microenvironment of FD exposed keratinocytes and the therapeutic role of HTT as a suppressor of skin aging. Further studies using organotypic skin culture models could broaden the understanding of the effects of FD and the therapeutic role of HTT.
Collapse
Affiliation(s)
| | | | | | - Hyun-Soo Kim
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101-gil, Janghang-eup, Seocheon 33662, Korea;
| | - Eui-Jeong Han
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea; (M.K.H.M.D.); (D.M.D.M.); (E.-J.H.); (M.-J.K.)
| | - Min-Ju Kim
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea; (M.K.H.M.D.); (D.M.D.M.); (E.-J.H.); (M.-J.K.)
| | - Min-Jeong Seo
- Freshwater Biosources Utilization Bureau, Bioresources Industrialization Support Division, Nakdong-gang National Institute of Biological Resources (NNIBR), Sangju 37242, Korea
- Correspondence: (M.-J.S.); (G.A.); Tel.: +82-54-530-0854 (M.-J.S.); +82-61-659-7213 (G.A.)
| | - Ginnae Ahn
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Korea;
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea; (M.K.H.M.D.); (D.M.D.M.); (E.-J.H.); (M.-J.K.)
- Correspondence: (M.-J.S.); (G.A.); Tel.: +82-54-530-0854 (M.-J.S.); +82-61-659-7213 (G.A.)
| |
Collapse
|
37
|
Pangestuti R, Shin KH, Kim SK. Anti-Photoaging and Potential Skin Health Benefits of Seaweeds. Mar Drugs 2021; 19:172. [PMID: 33809936 PMCID: PMC8004118 DOI: 10.3390/md19030172] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/16/2021] [Accepted: 03/20/2021] [Indexed: 12/17/2022] Open
Abstract
The skin health benefits of seaweeds have been known since time immemorial. They are known as potential renewable sources of bioactive metabolites that have unique structural and functional features compared to their terrestrial counterparts. In addition, to the consciousness of green, eco-friendly, and natural skincare and cosmetics products, their extracts and bioactive compounds such as fucoidan, laminarin, carrageenan, fucoxanthin, and mycosporine like amino acids (MAAs) have proven useful in the skincare and cosmetic industries. These bioactive compounds have shown potential anti-photoaging properties. Furthermore, some of these bioactive compounds have been clinically tested and currently available in the market. In this contribution, the recent studies on anti-photoaging properties of extracts and bioactive compounds derived from seaweeds were described and discussed.
Collapse
Affiliation(s)
- Ratih Pangestuti
- Director of Research and Development Division for Marine Bio Industry, Indonesian Institute of Sciences (LIPI), West Nusa Tenggara 83352, Indonesia;
| | - Kyung-Hoon Shin
- Department. of Marine Science and Convergence Engineering, College of Science and Technology, Hanyang University, Gyeonggi-do 11558, Korea;
| | - Se-Kwon Kim
- Department. of Marine Science and Convergence Engineering, College of Science and Technology, Hanyang University, Gyeonggi-do 11558, Korea;
| |
Collapse
|
38
|
Fernando IPS, Dias MKHM, Madusanka DMD, Han EJ, Kim MJ, Heo SJ, Ahn G. Fucoidan Fractionated from Sargassum coreanum via Step-Gradient Ethanol Precipitation Indicate Promising UVB-Protective Effects in Human Keratinocytes. Antioxidants (Basel) 2021; 10:antiox10030347. [PMID: 33652609 PMCID: PMC7996943 DOI: 10.3390/antiox10030347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 01/09/2023] Open
Abstract
Fucoidans exhibit a wide range of bioactivities and receive significant attention in functional food and cosmetic research. Industrial applications of fucoidan are limited partially due to high extraction and purification costs. The present study implements an enzyme-assisted extraction and step-gradient ethanol precipitation for fractionating fucoidan from Sargassum coreanum based on its charge and molecular weight and evaluation of ultraviolet B (UVB) protective effects in human keratinocytes (HaCaT). The fucoidan fraction SCOC4 indicated higher fucose and sulfate contents with Fourier-transform infrared and 1H NMR spectral patterns resembling fucoidans. SCOC4 dose-dependently abated UVB-induced keratinocyte damage via suppressing intracellular reactive oxygen species, apoptotic body formation, DNA damage via suppressing mitochondria-mediated apoptosis. UVB-protective effects of SCOC4 were further attributable to the augmentation of nuclear factor erythroid 2-related factor 2 mediated cellular antioxidant defense enzymes. Step-gradient ethanol precipitation was a convenient approach of fractionating fucoidans based on molecular weight and charge (depend on the degree of sulfation). Further evaluation of seasonal variations, biocompatibility parameters, efficacy, and shelf life may widen the use of S. coreanum fucoidans in developing UVB-protective cosmetics and functional foods.
Collapse
Affiliation(s)
| | | | | | - Eui Jeong Han
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea; (M.K.H.M.D.); (D.M.D.M.); (E.J.H.); (M.J.K.)
| | - Min Ju Kim
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea; (M.K.H.M.D.); (D.M.D.M.); (E.J.H.); (M.J.K.)
| | - Soo-Jin Heo
- Jeju International Marine Science Center for Research & Education, Korea Institute of Ocean Science & Technology (KIOST), Jeju 63349, Korea;
| | - Ginnae Ahn
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Korea;
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea; (M.K.H.M.D.); (D.M.D.M.); (E.J.H.); (M.J.K.)
- Correspondence: ; Tel.: +82-61-659-7213
| |
Collapse
|
39
|
Dieckol, an Algae-Derived Phenolic Compound, Suppresses UVB-Induced Skin Damage in Human Dermal Fibroblasts and Its Underlying Mechanisms. Antioxidants (Basel) 2021; 10:antiox10030352. [PMID: 33652913 PMCID: PMC7996756 DOI: 10.3390/antiox10030352] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 11/23/2022] Open
Abstract
Ultraviolet (UV) irradiation is considered to be the primary environmental factor that causes skin damage. In the present study, we investigated the protective effect of dieckol (DK), a compound isolated from the brown seaweed Ecklonia cava, against UVB-induced skin damage in human dermal fibroblasts (HDF cells). The results indicated that DK effectively inhibited the activity of collagenase. DK remarkably reduced the intracellular reactive oxygen species level and improved the viability of UVB-irradiated HDF cells. Besides, DK significantly and dose-dependently improved collagen synthesis and inhibited intracellular collagenase activity in UVB-irradiated HDF cells. In addition, DK markedly reduced the expression of proinflammatory cytokines and matrix metalloproteinases. Further analyses revealed that these processes were mediated through the regulation of nuclear factor kappa B, activator protein 1, and mitogen-activated protein kinase signaling pathways in the UVB-irradiated HDF cells. In conclusion, these results indicate that DK possesses strong in vitro photoprotective effects and therefore has the potential to be used as an ingredient in the cosmeceutical industry.
Collapse
|
40
|
Wang L, Oh JY, Lee W, Jeon YJ. Fucoidan isolated from Hizikia fusiforme suppresses ultraviolet B-induced photodamage by down-regulating the expressions of matrix metalloproteinases and pro-inflammatory cytokines via inhibiting NF-κB, AP-1, and MAPK signaling pathways. Int J Biol Macromol 2021; 166:751-759. [PMID: 33144254 DOI: 10.1016/j.ijbiomac.2020.10.232] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/12/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022]
Abstract
Overexposure to ultraviolet B (UVB) causes skin damage. The purpose of this study was to evaluate the protective effect of a fucoidan with a molecular weight of 102.67 kDa, isolated from Hizikia fusiforme, against UVB-induced photodamage in vitro in human dermal fibroblasts (HDFs) and in vivo in zebrafish. Fucoidan remarkably inhibited commercial collagenase. Additionally, it significantly and dose-dependently decreased the intracellular reactive oxygen species (ROS) levels and increased the viability of UVB-irradiated HDFs. Furthermore, fucoidan remarkably improved collagen synthesis, inhibited intracellular collagenase, and reduced the expression of matrix metalloproteinases and pro-inflammatory cytokines in UVB-irradiated HDFs. Further research demonstrated that these effects occurred through the regulation of the activator protein 1, nuclear factor kappa B, and mitogen-activated protein kinase signaling pathways. Furthermore, the in vivo results showed that fucoidan protected zebrafish larvae against UVB-induced photodamage by decreasing cell death via the suppression of lipid peroxidation and inflammatory response through ROS clearance. In conclusion, fucoidan isolated from Hizikia fusiforme exhibits strong in vitro and in vivo photoprotective effects, and can be used as an ingredient in the cosmeceutical and pharmaceutical industries.
Collapse
Affiliation(s)
- Lei Wang
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea
| | - Jae-Young Oh
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - WonWoo Lee
- Freshwater Bioresources Utilization Division, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea.
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea.
| |
Collapse
|
41
|
Kim SY, Ahn G, Kim HS, Je JG, Kim KN, Jeon YJ. Diphlorethohydroxycarmalol (DPHC) Isolated from the Brown Alga Ishige okamurae Acts on Inflammatory Myopathy as an Inhibitory Agent of TNF-α. Mar Drugs 2020; 18:E529. [PMID: 33114618 PMCID: PMC7692396 DOI: 10.3390/md18110529] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammation affects various organs of the human body, including skeletal muscle. Phlorotannins are natural biologically active substances found in marine brown algae and exhibit anti-inflammatory activities. In this study, we focused on the effects of phlorotannins on anti-inflammatory activity and skeletal muscle cell proliferation activity to identify the protective effects on the inflammatory myopathy. First, the five species of marine brown algal extracts dramatically inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-induced RAW 264.7 cells without toxicity at all the concentrations tested. Moreover, the extracts collected from Ishige okamurae (I. okamurae) significantly increased cell proliferation of C2C12 myoblasts compared to the non-treated cells with non-toxicity. In addition, as a result of finding a potential tumor necrosis factor (TNF)-α inhibitor that regulates the signaling pathway of muscle degradation in I. okamurae-derived natural bioactive compounds, Diphlorethohydroxycarmalol (DPHC) is favorably docked to the TNF-α with the lowest binding energy and docking interaction energy value. Moreover, DPHC down-regulated the mRNA expression level of pro-inflammatory cytokines and suppressed the muscle RING-finger protein (MuRF)-1 and Muscle Atrophy F-box (MAFbx)/Atrgoin-1, which are the key protein muscle atrophy via nuclear factor-κB (NF-κB), and mitogen-activated protein kinase (MAPKs) signaling pathways in TNF-α-stimulated C2C12 myotubes. Therefore, it is expected that DPHC isolated from IO would be developed as a TNF-α inhibitor against inflammatory myopathy.
Collapse
Affiliation(s)
- Seo-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (S.-Y.K.); (H.-S.K.); (J.-G.J.)
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Korea;
| | - Ginnae Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea;
| | - Hyun-Soo Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (S.-Y.K.); (H.-S.K.); (J.-G.J.)
- Department of Applied Research, National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101-gil, Janghang-eup, Seocheon 33662, Korea
| | - Jun-Geon Je
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (S.-Y.K.); (H.-S.K.); (J.-G.J.)
| | - Kil-Nam Kim
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Korea;
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (S.-Y.K.); (H.-S.K.); (J.-G.J.)
| |
Collapse
|
42
|
Wang L, Lee W, Jayawardena TU, Cha SH, Jeon YJ. Dieckol, an algae-derived phenolic compound, suppresses airborne particulate matter-induced skin aging by inhibiting the expressions of pro-inflammatory cytokines and matrix metalloproteinases through regulating NF-κB, AP-1, and MAPKs signaling pathways. Food Chem Toxicol 2020; 146:111823. [PMID: 33164846 DOI: 10.1016/j.fct.2020.111823] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
Exposure to particulate matter causes skin aging. In the present study, we investigated the effect of an algae-derived phenolic compound, dieckol (DK), against Chinese particulate matter (CPM)-stimulated aging in vitro in human dermal fibroblasts (HDF cells) and in vivo in zebrafish. DK effectively protected HDF cells against CPM-induced oxidative stress by scavenging intracellular reactive oxygen species. Moreover, DK significantly improved collagen synthesis and inhibited intracellular collagenase activity in CPM-stimulated HDF cells. In addition, DK remarkably reduced the expression of pro-inflammatory cytokines and matrix metalloproteinases via regulating the nuclear factor kappa B, activator protein 1, and mitogen-activated protein kinases signaling pathways in CPM-stimulated HDF cells. Furthermore, the in vivo test results demonstrated that DK effectively improved the survival rate of CPM-stimulated zebrafish via suppressing oxidative stress and inflammatory response. In conclusion, this study suggests that DK is a potential anti-aging compound that can be used as a therapeutic agent to improve CPM-induced skin aging, or as an ingredient to develop a cosmetic or medicine in the cosmeceutical and pharmaceutical industries.
Collapse
Affiliation(s)
- Lei Wang
- Department of Marine Life Sciences, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - WonWoo Lee
- Freshwater Bioresources Utilization Division, Nakdonggang National Institute of Biological Resources, Sangju, 37242, Republic of Korea
| | - Thilina U Jayawardena
- Department of Marine Life Sciences, Jeju National University, Jeju, 63243, Republic of Korea
| | - Seon-Heui Cha
- Department of Marine Bio and Medical Science, Hanseo University, Chungcheognam-do, 32158, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
43
|
Kostoff RN, Briggs MB, Shores DR. Treatment repurposing for inflammatory bowel disease using literature-related discovery and innovation. World J Gastroenterol 2020; 26:4889-4899. [PMID: 32952337 PMCID: PMC7476176 DOI: 10.3748/wjg.v26.i33.4889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/21/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) incidence has been increasing steadily, most dramatically in the Western developed countries. Treatment often includes lifelong immunosuppressive therapy and surgery. There is a critical need to reduce the burden of IBD and to discover medical therapies with better efficacy and fewer potential side-effects. Repurposing of treatments originally studied in other diseases with similar pathogenesis is less costly and time intensive than de novo drug discovery. This study used a treatment repurposing methodology, the literature-related discovery and innovation (LRDI) text mining system, to identify potential treatments (developed for non-IBD diseases) with sufficient promise for extrapolation to treatment of IBD. By searching for desirable patterns of twenty key biomarkers relevant to IBD (e.g., inflammation, reactive oxygen species, autophagy, barrier function), the LRDI-based query retrieved approximately 9500 records from Medline. The most recent 350 records were further analyzed for proof-of-concept. Approximately 18% (64/350) met the criteria for discovery (not previously studied in IBD human or animal models) and relevance for application to IBD treatment. Many of the treatments were compounds derived from herbal remedies, and the majority of treatments were being studied in cancer, diabetes, and central nervous system disease, such as depression and dementia. As further validation of the search strategy, the query identified ten treatments that have just recently begun testing in IBD models in the last three years. Literature-related discovery and innovation text mining contains a unique search strategy with tremendous potential to identify treatments for repurposing. A more comprehensive query with additional key biomarkers would have retrieved many thousands more records, further increasing the yield of IBD treatment repurposing discovery.
Collapse
Affiliation(s)
- Ronald Neil Kostoff
- School of Public Policy, Georgia Institute of Technology, Gainesville, VA 20155, United States
| | | | - Darla Roye Shores
- The Hopkins Resource for Intestinal Vitality and Enhancement, the Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| |
Collapse
|
44
|
Wang L, Oh JY, Kim YS, Lee HG, Lee JS, Jeon YJ. Anti-Photoaging and Anti-Melanogenesis Effects of Fucoidan Isolated from Hizikia fusiforme and Its Underlying Mechanisms. Mar Drugs 2020; 18:md18080427. [PMID: 32824148 PMCID: PMC7460018 DOI: 10.3390/md18080427] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022] Open
Abstract
Previous studies suggested that fucoidan with a molecular weight of 102.67 kDa, isolated from Hizikia fusiforme, possesses strong antioxidant activity. To explore the cosmeceutical potential of fucoidan, its anti-photoaging and anti-melanogenesis effects were evaluated in the present study. The anti-photoaging effect was investigated in ultraviolet (UV) B-irradiated human keratinocytes (HaCaT cells), where fucoidan effectively reduced the intracellular reactive oxygen species level and improved the viability of the UVB-irradiated cells without any cytotoxic effects. Moreover, fucoidan significantly decreased UVB-induced apoptosis in HaCaT cells by regulating the protein expression of Bax, Bcl-xL, PARP, and Caspase-3 in HaCaT cells in a concentration-dependent manner. The anti-melanogenesis effect of fucoidan was evaluated in B16F10 melanoma cells that had been stimulated with alpha-melanocyte-stimulating hormone (α-MSH), and fucoidan treatment remarkably inhibited melanin synthesis in α-MSH-stimulated B16F10 cells. Further studies indicated that fucoidan significantly suppressed the expression of tyrosinase and tyrosinase-related protein-1 and -2 (TRP-1 and-2) in B16F10 cells by down-regulating microphthalmia-associated transcription factor (MITF) through regulation of the ERK–MAPK (extracellular signal regulated kinase-mitogen activated protein kinase) pathway. Taken together, these results suggest that fucoidan isolated from H. fusiforme possesses strong anti-photoaging and anti-melanogenesis activities and can be used as an ingredient in the pharmaceutical and cosmeceutical industries.
Collapse
Affiliation(s)
- Lei Wang
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, Jeju 63243, Korea; (L.W.); (J.-Y.O.); (Y.-S.K.); (H.-G.L.)
- Marine Science Institute, Jeju National University, Jeju Self-Governing Province, Jeju 63333, Korea
| | - Jae-Young Oh
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, Jeju 63243, Korea; (L.W.); (J.-Y.O.); (Y.-S.K.); (H.-G.L.)
| | - Young-Sang Kim
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, Jeju 63243, Korea; (L.W.); (J.-Y.O.); (Y.-S.K.); (H.-G.L.)
- Marine Science Institute, Jeju National University, Jeju Self-Governing Province, Jeju 63333, Korea
| | - Hyo-Geun Lee
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, Jeju 63243, Korea; (L.W.); (J.-Y.O.); (Y.-S.K.); (H.-G.L.)
| | - Jung-Suck Lee
- Research Center for Industrial Development of Seafood, Gyeongsang National University, Tongyeong 53064, Korea
- Correspondence: (J.-S.L.); (Y.-J.J.)
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, Jeju 63243, Korea; (L.W.); (J.-Y.O.); (Y.-S.K.); (H.-G.L.)
- Marine Science Institute, Jeju National University, Jeju Self-Governing Province, Jeju 63333, Korea
- Correspondence: (J.-S.L.); (Y.-J.J.)
| |
Collapse
|
45
|
Wang L, Jayawardena TU, Yang HW, Lee HG, Jeon YJ. The Potential of Sulfated Polysaccharides Isolated from the Brown Seaweed Ecklonia maxima in Cosmetics: Antioxidant, Anti-melanogenesis, and Photoprotective Activities. Antioxidants (Basel) 2020; 9:antiox9080724. [PMID: 32784879 PMCID: PMC7465393 DOI: 10.3390/antiox9080724] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/01/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
Sulfated polysaccharides prepared from marine algae are potential ingredients in nutraceutical, pharmaceutical, and cosmeceutical industries. In the present study, the antioxidant, anti-melanogenesis, and photoprotective effects of sulfated polysaccharides obtained from Ecklonia maxima (EMC) were investigated to evaluate their potential in cosmetic. EMC was successfully prepared through Celluclast-assisted extraction and ethanol precipitation, and it contained 79.88% of sulfated polysaccharides that with 69.37% carbohydrates and 10.51% sulfate. EMC effectively suppressed 2,2-azobis(2-amidinopropane) hydrochloride (AAPH)-induced oxidative stress in vitro in Vero cells and in vivo in zebrafish. Furthermore, EMC significantly inhibited mushroom tyrosinase and reduced melanin synthesis in alpha-melanocyte-stimulating hormone-stimulated B16F10 cells. In addition, EMC remarkably attenuated photodamage induced by UVB irradiation in vitro in human keratinocytes (HaCaT cells) and in vivo in zebrafish. Furthermore, EMC effectively inhibited wrinkle-related enzymes and improved collagen synthesis in UVB-irradiated human dermal fibroblasts (HDF cells). These results indicate that EMC possesses strong antioxidant, anti-melanogenesis, and photoprotective activities, and suggest that EMC may be an ideal ingredient in the pharmaceutical and cosmeceutical industries.
Collapse
Affiliation(s)
- Lei Wang
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, Jeju 63243, Korea; (L.W.); (T.U.J.); (H.-W.Y.); (H.-G.L.)
- Marine Science Institute, Jeju National University, Jeju Self-Governing Province, Jeju 63243, Korea
| | - Thilina U. Jayawardena
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, Jeju 63243, Korea; (L.W.); (T.U.J.); (H.-W.Y.); (H.-G.L.)
| | - Hye-Won Yang
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, Jeju 63243, Korea; (L.W.); (T.U.J.); (H.-W.Y.); (H.-G.L.)
| | - Hyo-Geun Lee
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, Jeju 63243, Korea; (L.W.); (T.U.J.); (H.-W.Y.); (H.-G.L.)
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, Jeju 63243, Korea; (L.W.); (T.U.J.); (H.-W.Y.); (H.-G.L.)
- Marine Science Institute, Jeju National University, Jeju Self-Governing Province, Jeju 63243, Korea
- Correspondence: ; Tel.: +82-64-754-3475; Fax: +82-64-756-3493
| |
Collapse
|
46
|
Su W, Wang L, Fu X, Ni L, Duan D, Xu J, Gao X. Protective Effect of a Fucose-Rich Fucoidan Isolated from Saccharina japonica against Ultraviolet B-Induced Photodamage In Vitro in Human Keratinocytes and In Vivo in Zebrafish. Mar Drugs 2020; 18:E316. [PMID: 32549256 PMCID: PMC7344804 DOI: 10.3390/md18060316] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/30/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
A fucose-rich fucoidan was purified from brown seaweed Saccharina japonica, of which the UVB protective effect was investigated in vitro in keratinocytes of HaCaT cells and in vivo in zebrafish. The intracellular reactive oxygen species levels and the viability of UVB-irradiated HaCaT cells were determined. The results indicate that the purified fucoidan significantly reduced the intracellular reactive oxygen species levels and improved the viability of UVB-irradiated HaCaT cells. Furthermore, the purified fucoidan remarkably decreased the apoptosis by regulating the expressions of Bax/Bcl-xL and cleaved caspase-3 in UVB-irradiated HaCaT cells in a dose-dependent manner. In addition, the in vivo UV protective effect of the purified fucoidan was investigated using a zebrafish model. It significantly reduced the intracellular reactive oxygen species level, the cell death, the NO production, and the lipid peroxidation in UVB-irradiated zebrafish in a dose-dependent manner. These results suggest that purified fucoidan has a great potential to be developed as a natural anti-UVB agent applied in the cosmetic industry.
Collapse
Affiliation(s)
- Wanchun Su
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao 266003, China; (W.S.); (L.N.); (J.X.); (X.G.)
| | - Lei Wang
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province 63243, Korea;
- Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Korea
| | - Xiaoting Fu
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao 266003, China; (W.S.); (L.N.); (J.X.); (X.G.)
| | - Liying Ni
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao 266003, China; (W.S.); (L.N.); (J.X.); (X.G.)
| | - Delin Duan
- State Key Lab of Seaweed Bioactive Substances, 1th Daxueyuan Road, Qingdao 266400, China;
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China
| | - Jiachao Xu
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao 266003, China; (W.S.); (L.N.); (J.X.); (X.G.)
| | - Xin Gao
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao 266003, China; (W.S.); (L.N.); (J.X.); (X.G.)
| |
Collapse
|
47
|
Human Keratinocyte UVB-Protective Effects of a Low Molecular Weight Fucoidan from Sargassum horneri Purified by Step Gradient Ethanol Precipitation. Antioxidants (Basel) 2020; 9:antiox9040340. [PMID: 32326316 PMCID: PMC7222425 DOI: 10.3390/antiox9040340] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 01/11/2023] Open
Abstract
Ultraviolet B (UVB) radiation-induced oxidative skin cell damage is a major cause of photoaging. In the present study, a low molecular weight fucoidan fraction (SHC4) was obtained from Sargassum horneri by Celluclast-assisted extraction, followed by step gradient ethanol precipitation. The protective effect of SHC4 was investigated in human keratinocytes against UVB-induced oxidative stress. The purified fucoidan was characterized by Fourier-transform infrared spectroscopy (FTIR), 1H nuclear magnetic resonance (NMR), agarose gel-based molecular weight analysis and monosaccharide composition analysis. SHC4 had a mean molecular weight of 60 kDa, with 37.43% fucose and 28.01 ± 0.50% sulfate content. The structure was mainly composed of α-L-Fucp-(1→4) linked fucose units. SHC4 treatment dose-dependently reduced intracellular reactive oxygen species (ROS) levels and increased the cell viability of UVB exposed HaCaT keratinocytes. Moreover, SHC4 dose-dependently inhibited UVB-induced apoptotic body formation, sub-G1 accumulation of cells and DNA damage. Inhibition of apoptosis was mediated via the mitochondria-mediated pathway, re-establishing the loss of mitochondrial membrane potential. The UVB protective effect of SHC4 was facilitated by enhancing intracellular antioxidant defense via nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling. Further studies may promote the use of SHC4 as an active ingredient in cosmetics and nutricosmetics.
Collapse
|
48
|
Wang L, Kim HS, Je JG, Oh JY, Kim YS, Cha SH, Jeon YJ. Protective Effect of Diphlorethohydroxycarmalol Isolated from Ishige okamurae Against Particulate Matter-Induced Skin Damage by Regulation of NF-κB, AP-1, and MAPKs Signaling Pathways In Vitro in Human Dermal Fibroblasts. Molecules 2020; 25:E1055. [PMID: 32111060 PMCID: PMC7179238 DOI: 10.3390/molecules25051055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 02/04/2023] Open
Abstract
Particulate matters (PM), the main contributor to air pollution, have become a serious issue that threatens human's health. Skin is the largest organ in humans, as well as the primary organ exposed to PM. Overexposure of PM induces skin damage. Diphlorethohydroxycarmalol (DPHC), an algal polyphenol with the potential of skin protection, has been isolated from the edible brown seaweed Ishige okamurae. The purpose of the present study is to investigate the protective effect of DPHC against PM (ERM-CZ100)-induced skin damage in human dermal fibroblasts (HDF) cells. The results indicated that DPHC significantly and dose-dependently reduced intracellular reactive oxygen species generation in HDF cells. In addition, DPHC significantly induced collagen synthesis and inhibited collagenase activity in ERM-CZ100-stimulated HDF cells. Further study demonstrated that DPHC remarkably reduced the expression of human matrix metalloproteinases through regulation of nuclear factor kappa B, activator protein 1, and mitogen-activated protein kinases signaling pathways in ERM-CZ100-stimulated HDF cells. This study suggested that DPHC is a potential candidate to protect skins against PM-induced damage, and it could be used as an ingredient in pharmaceutical and cosmeceutical industries.
Collapse
Affiliation(s)
- Lei Wang
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province 63243, Korea; (L.W.); (J.-G.J.); (J.Y.O.); (Y.-S.K.)
- Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Korea
| | - Hyun Soo Kim
- Department of Applied Research, National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101-gil, Janghang-eup, Seocheon 33675, Korea;
| | - Jun-Geon Je
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province 63243, Korea; (L.W.); (J.-G.J.); (J.Y.O.); (Y.-S.K.)
| | - Jae Young Oh
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province 63243, Korea; (L.W.); (J.-G.J.); (J.Y.O.); (Y.-S.K.)
| | - Young-Sang Kim
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province 63243, Korea; (L.W.); (J.-G.J.); (J.Y.O.); (Y.-S.K.)
- Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Korea
| | - Seon-Heui Cha
- Department of Marine Bioindustry, Hanseo University, Chungcheognam-do 32158, Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province 63243, Korea; (L.W.); (J.-G.J.); (J.Y.O.); (Y.-S.K.)
- Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Korea
| |
Collapse
|