1
|
Ben Ayed R, Moreau F, Ben Hlima H, Rebai A, Ercisli S, Kadoo N, Hanana M, Assouguem A, Ullah R, Ali EA. SNP discovery and structural insights into OeFAD2 unravelling high oleic/linoleic ratio in olive oil. Comput Struct Biotechnol J 2022; 20:1229-1243. [PMID: 35317231 PMCID: PMC8914465 DOI: 10.1016/j.csbj.2022.02.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 01/02/2023] Open
Abstract
Fatty Acid Desaturase 2 (FAD2), a key enzyme in the fatty acid biosynthesis pathway, is involved in the desaturation and conversion of oleic acid to linoleic acid. Therefore, it plays a crucial role in oleic/linoleic acid ratio and the quality of olive oil. DNA sequencing of 19 FAD2 genes from a set of olive oil varieties revealed several single-nucleotide polymorphisms (SNPs) and highlighted associations between some of the SNPs and saturated fatty acids contents. This was further confirmed by SNP-interaction and machine learning approach. Haplotype diversity analysis led to the discovery of three highly polymorphic SNPs and four haplotypes harboring differential oleic/linoleic acid ratios. Moreover, a combination of molecular modeling and docking experiments allowed a deeper and better understanding of the structure-function relationship of the FAD2 enzyme. Sequence patterns and variations involved in the regulation of the FAD2 activity were also identified. Furthermore, S82C and H213N substitutions in OeFAD2 make the Oueslati variety more interesting in terms of fatty acid profile and oleic acid level.
Collapse
Affiliation(s)
- Rayda Ben Ayed
- Laboratory of Molecular and Cellular Screening Processes, Genomics and Bioinformatics Group, Centre of Biotechnology of Sfax, PB 1177, 3018 Sfax, Tunisia
| | - Fabienne Moreau
- Institut National de la Recherche Agronomique (INRA), 2 Place Pierre Viala, 34000 Montpellier, France
| | - Hajer Ben Hlima
- Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, 3038 Sfax, Tunisia
| | - Ahmed Rebai
- Laboratory of Molecular and Cellular Screening Processes, Genomics and Bioinformatics Group, Centre of Biotechnology of Sfax, PB 1177, 3018 Sfax, Tunisia
| | - Sezai Ercisli
- Ataturk University, Faculty of Agriculture, Department of Horticulture, 25240 Erzurum, Turkey
| | - Narendra Kadoo
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohsen Hanana
- Laboratory of Extrêmophile Plants, Biotechnology Center of Borj-Cédria, B.P. 901, 2050 Hammam Lif, Tunisia
| | - Amine Assouguem
- Laboratory of Functional Ecology and Environment, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Imouzzer Street, Fez P.O. Box 2202, Morocco
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Essam A. Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Kiser PD. Retinal pigment epithelium 65 kDa protein (RPE65): An update. Prog Retin Eye Res 2021; 88:101013. [PMID: 34607013 PMCID: PMC8975950 DOI: 10.1016/j.preteyeres.2021.101013] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022]
Abstract
Vertebrate vision critically depends on an 11-cis-retinoid renewal system known as the visual cycle. At the heart of this metabolic pathway is an enzyme known as retinal pigment epithelium 65 kDa protein (RPE65), which catalyzes an unusual, possibly biochemically unique, reaction consisting of a coupled all-trans-retinyl ester hydrolysis and alkene geometric isomerization to produce 11-cis-retinol. Early work on this isomerohydrolase demonstrated its membership to the carotenoid cleavage dioxygenase superfamily and its essentiality for 11-cis-retinal production in the vertebrate retina. Three independent studies published in 2005 established RPE65 as the actual isomerohydrolase instead of a retinoid-binding protein as previously believed. Since the last devoted review of RPE65 enzymology appeared in this journal, major advances have been made in a number of areas including our understanding of the mechanistic details of RPE65 isomerohydrolase activity, its phylogenetic origins, the relationship of its membrane binding affinity to its catalytic activity, its role in visual chromophore production for rods and cones, its modulation by macromolecules and small molecules, and the involvement of RPE65 mutations in the development of retinal diseases. In this article, I will review these areas of progress with the goal of integrating results from the varied experimental approaches to provide a comprehensive picture of RPE65 biochemistry. Key outstanding questions that may prove to be fruitful future research pursuits will also be highlighted.
Collapse
Affiliation(s)
- Philip D Kiser
- Research Service, VA Long Beach Healthcare System, Long Beach, CA, 90822, USA; Department of Physiology & Biophysics, University of California, Irvine School of Medicine, Irvine, CA, 92697, USA; Department of Ophthalmology and Center for Translational Vision Research, Gavin Herbert Eye Institute, University of California, Irvine School of Medicine, Irvine, CA, 92697, USA.
| |
Collapse
|
3
|
Marinko J, Huang H, Penn WD, Capra JA, Schlebach JP, Sanders CR. Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis. Chem Rev 2019; 119:5537-5606. [PMID: 30608666 PMCID: PMC6506414 DOI: 10.1021/acs.chemrev.8b00532] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Indexed: 12/13/2022]
Abstract
Advances over the past 25 years have revealed much about how the structural properties of membranes and associated proteins are linked to the thermodynamics and kinetics of membrane protein (MP) folding. At the same time biochemical progress has outlined how cellular proteostasis networks mediate MP folding and manage misfolding in the cell. When combined with results from genomic sequencing, these studies have established paradigms for how MP folding and misfolding are linked to the molecular etiologies of a variety of diseases. This emerging framework has paved the way for the development of a new class of small molecule "pharmacological chaperones" that bind to and stabilize misfolded MP variants, some of which are now in clinical use. In this review, we comprehensively outline current perspectives on the folding and misfolding of integral MPs as well as the mechanisms of cellular MP quality control. Based on these perspectives, we highlight new opportunities for innovations that bridge our molecular understanding of the energetics of MP folding with the nuanced complexity of biological systems. Given the many linkages between MP misfolding and human disease, we also examine some of the exciting opportunities to leverage these advances to address emerging challenges in the development of therapeutics and precision medicine.
Collapse
Affiliation(s)
- Justin
T. Marinko
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Hui Huang
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Wesley D. Penn
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - John A. Capra
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37245, United States
| | - Jonathan P. Schlebach
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Charles R. Sanders
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
4
|
Muller MP, Jiang T, Sun C, Lihan M, Pant S, Mahinthichaichan P, Trifan A, Tajkhorshid E. Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation. Chem Rev 2019; 119:6086-6161. [PMID: 30978005 PMCID: PMC6506392 DOI: 10.1021/acs.chemrev.8b00608] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cellular membrane constitutes one of the most fundamental compartments of a living cell, where key processes such as selective transport of material and exchange of information between the cell and its environment are mediated by proteins that are closely associated with the membrane. The heterogeneity of lipid composition of biological membranes and the effect of lipid molecules on the structure, dynamics, and function of membrane proteins are now widely recognized. Characterization of these functionally important lipid-protein interactions with experimental techniques is however still prohibitively challenging. Molecular dynamics (MD) simulations offer a powerful complementary approach with sufficient temporal and spatial resolutions to gain atomic-level structural information and energetics on lipid-protein interactions. In this review, we aim to provide a broad survey of MD simulations focusing on exploring lipid-protein interactions and characterizing lipid-modulated protein structure and dynamics that have been successful in providing novel insight into the mechanism of membrane protein function.
Collapse
Affiliation(s)
- Melanie P. Muller
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tao Jiang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chang Sun
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Muyun Lihan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shashank Pant
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Paween Mahinthichaichan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anda Trifan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
5
|
Allen KN, Entova S, Ray LC, Imperiali B. Monotopic Membrane Proteins Join the Fold. Trends Biochem Sci 2019; 44:7-20. [PMID: 30337134 PMCID: PMC6309722 DOI: 10.1016/j.tibs.2018.09.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022]
Abstract
Monotopic membrane proteins, classified by topology, are proteins that embed into a single face of the membrane. These proteins are generally underrepresented in the Protein Data Bank (PDB), but the past decade of research has revealed new examples that allow the description of generalizable features. This Opinion article summarizes shared characteristics including oligomerization states, modes of membrane association, mechanisms of interaction with hydrophobic or amphiphilic substrates, and homology to soluble folds. We also discuss how associations of monotopic enzymes in pathways can be used to promote substrate specificity and product composition. These examples highlight the challenges in structure determination specific to this class of proteins, but also the promise of new understanding from future study of these proteins that reside at the interface.
Collapse
Affiliation(s)
- Karen N Allen
- Department of Chemistry, Boston University, Boston, MA 02215, USA; Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Sonya Entova
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leah C Ray
- Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Barbara Imperiali
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
6
|
Molecular mechanism of activation of the immunoregulatory amidase NAAA. Proc Natl Acad Sci U S A 2018; 115:E10032-E10040. [PMID: 30301806 DOI: 10.1073/pnas.1811759115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Palmitoylethanolamide is a bioactive lipid that strongly alleviates pain and inflammation in animal models and in humans. Its signaling activity is terminated through degradation by N-acylethanolamine acid amidase (NAAA), a cysteine hydrolase expressed at high levels in immune cells. Pharmacological inhibitors of NAAA activity exert profound analgesic and antiinflammatory effects in rodent models, pointing to this protein as a potential target for therapeutic drug discovery. To facilitate these efforts and to better understand the molecular mechanism of action of NAAA, we determined crystal structures of this enzyme in various activation states and in complex with several ligands, including both a covalent and a reversible inhibitor. Self-proteolysis exposes the otherwise buried active site of NAAA to allow catalysis. Formation of a stable substrate- or inhibitor-binding site appears to be conformationally coupled to the interaction of a pair of hydrophobic helices in the enzyme with lipid membranes, resulting in the creation of a linear hydrophobic cavity near the active site that accommodates the ligand's acyl chain.
Collapse
|
7
|
Entova S, Billod JM, Swiecicki JM, Martín-Santamaría S, Imperiali B. Insights into the key determinants of membrane protein topology enable the identification of new monotopic folds. eLife 2018; 7:40889. [PMID: 30168796 PMCID: PMC6133551 DOI: 10.7554/elife.40889] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/27/2018] [Indexed: 01/31/2023] Open
Abstract
Monotopic membrane proteins integrate into the lipid bilayer via reentrant hydrophobic domains that enter and exit on a single face of the membrane. Whereas many membrane-spanning proteins have been structurally characterized and transmembrane topologies can be predicted computationally, relatively little is known about the determinants of membrane topology in monotopic proteins. Recently, we reported the X-ray structure determination of PglC, a full-length monotopic membrane protein with phosphoglycosyl transferase (PGT) activity. The definition of this unique structure has prompted in vivo, biochemical, and computational analyses to understand and define key motifs that contribute to the membrane topology and to provide insight into the dynamics of the enzyme in a lipid bilayer environment. Using the new information gained from studies on the PGT superfamily we demonstrate that two motifs exemplify principles of topology determination that can be applied to the identification of reentrant domains among diverse monotopic proteins of interest.
Collapse
Affiliation(s)
- Sonya Entova
- Department of BiologyMassachusetts Institute of TechnologyCambridgeUnited States
| | - Jean-Marc Billod
- Department of Structural & Chemical BiologyCentro de Investigaciones BiológicasMadridSpain
| | - Jean-Marie Swiecicki
- Department of BiologyMassachusetts Institute of TechnologyCambridgeUnited States
| | | | - Barbara Imperiali
- Department of BiologyMassachusetts Institute of TechnologyCambridgeUnited States
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
8
|
Membrane properties that shape the evolution of membrane enzymes. Curr Opin Struct Biol 2018; 51:80-91. [PMID: 29597094 DOI: 10.1016/j.sbi.2018.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 02/07/2023]
Abstract
Spectacular recent progress in structural biology has led to determination of the structures of many integral membrane enzymes that catalyze reactions in which at least one substrate also is membrane bound. A pattern of results seems to be emerging in which the active site chemistry of these enzymes is usually found to be analogous to what is observed for water soluble enzymes catalyzing the same reaction types. However, in light of the chemical, structural, and physical complexity of cellular membranes plus the presence of transmembrane gradients and potentials, these enzymes may be subject to membrane-specific regulatory mechanisms that are only now beginning to be uncovered. We review the membrane-specific environmental traits that shape the evolution of membrane-embedded biocatalysts.
Collapse
|
9
|
Liebau J, Fu B, Brown C, Mäler L. New insights into the membrane association mechanism of the glycosyltransferase WaaG from Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:683-690. [PMID: 29225173 DOI: 10.1016/j.bbamem.2017.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/30/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022]
Abstract
Monotopic glycosyltransferases (GTs) interact with membranes via electrostatic interactions. The N-terminal domain is permanently anchored to the membrane while the membrane interaction of the C-terminal domain is believed to be weaker so that it undergoes a functionally relevant conformational change upon donor or acceptor binding. Here, we studied the applicability of this model to the glycosyltransferase WaaG. WaaG is involved in the synthesis of lipopolysaccharides (LPS) in Gram-negative bacteria and was previously categorized as a monotopic GT. We analyzed the binding of WaaG to membranes by stopped-flow fluorescence and NMR diffusion experiments. We find that electrostatic interactions are required to bind WaaG to membranes while mere hydrophobic interactions are not sufficient. WaaG senses the membrane's surface charge density but there is no preferential binding to specific anionic lipids. However, the binding is weaker than expected for monotopic GTs but similar to peripheral GTs. Therefore, WaaG may be a peripheral GT and this could be of functional relevance in vivo since LPS synthesis occurs only when WaaG is membrane-bound. We could not observe a C-terminal domain movement under our experimental conditions.
Collapse
Affiliation(s)
- Jobst Liebau
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Biao Fu
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Christian Brown
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Lena Mäler
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
10
|
Abstract
Symmetry is a common feature among natural systems, including protein structures. A strong propensity toward symmetric architectures has long been recognized for water-soluble proteins, and this propensity has been rationalized from an evolutionary standpoint. Proteins residing in cellular membranes, however, have traditionally been less amenable to structural studies, and thus the prevalence and significance of symmetry in this important class of molecules is not as well understood. In the past two decades, researchers have made great strides in this area, and these advances have provided exciting insights into the range of architectures adopted by membrane proteins. These structural studies have revealed a similarly strong bias toward symmetric arrangements, which were often unexpected and which occurred despite the restrictions imposed by the membrane environment on the possible symmetry groups. Moreover, membrane proteins disproportionately contain internal structural repeats resulting from duplication and fusion of smaller segments. This article discusses the types and origins of symmetry in membrane proteins and the implications of symmetry for protein function.
Collapse
Affiliation(s)
- Lucy R Forrest
- Computational Structural Biology Group, Porter Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20852;
| |
Collapse
|
11
|
Affiliation(s)
| | | | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case
Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106-4965,
United States
| |
Collapse
|
12
|
Mráček T, Drahota Z, Houštěk J. The function and the role of the mitochondrial glycerol-3-phosphate dehydrogenase in mammalian tissues. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:401-10. [PMID: 23220394 DOI: 10.1016/j.bbabio.2012.11.014] [Citation(s) in RCA: 291] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 11/20/2012] [Accepted: 11/27/2012] [Indexed: 12/27/2022]
Abstract
Mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH) is not included in the traditional textbook schemes of the respiratory chain, reflecting the fact that it is a non-standard, tissue-specific component of mammalian mitochondria. But despite its very simple structure, mGPDH is a very important enzyme of intermediary metabolism and as a component of glycerophosphate shuttle it functions at the crossroads of glycolysis, oxidative phosphorylation and fatty acid metabolism. In this review we summarize the present knowledge on the structure and regulation of mGPDH and discuss its metabolic functions, reactive oxygen species production and tissue and organ specific roles in mammalian mitochondria at physiological and pathological conditions.
Collapse
Affiliation(s)
- Tomáš Mráček
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | |
Collapse
|
13
|
Kiser PD, Farquhar ER, Shi W, Sui X, Chance MR, Palczewski K. Structure of RPE65 isomerase in a lipidic matrix reveals roles for phospholipids and iron in catalysis. Proc Natl Acad Sci U S A 2012; 109:E2747-56. [PMID: 23012475 PMCID: PMC3478654 DOI: 10.1073/pnas.1212025109] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RPE65 is a key metalloenzyme responsible for maintaining visual function in vertebrates. Despite extensive research on this membrane-bound retinoid isomerase, fundamental questions regarding its enzymology remain unanswered. Here, we report the crystal structure of RPE65 in a membrane-like environment. These crystals, obtained from enzymatically active, nondelipidated protein, displayed an unusual packing arrangement wherein RPE65 is embedded in a lipid-detergent sheet. Structural differences between delipidated and nondelipidated RPE65 uncovered key residues involved in substrate uptake and processing. Complementary iron K-edge X-ray absorption spectroscopy data established that RPE65 as isolated contained a divalent iron center and demonstrated the presence of a tightly bound ligand consistent with a coordinated carboxylate group. These results support the hypothesis that the Lewis acidity of iron could be used to promote ester dissociation and generation of a carbocation intermediate required for retinoid isomerization.
Collapse
Affiliation(s)
- Philip D. Kiser
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106; and
| | - Erik R. Farquhar
- Center for Proteomics and Bioinformatics, Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Wuxian Shi
- Center for Proteomics and Bioinformatics, Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Xuewu Sui
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106; and
| | - Mark R. Chance
- Center for Proteomics and Bioinformatics, Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106; and
| |
Collapse
|
14
|
The structure of the yeast NADH dehydrogenase (Ndi1) reveals overlapping binding sites for water- and lipid-soluble substrates. Proc Natl Acad Sci U S A 2012; 109:15247-52. [PMID: 22949654 DOI: 10.1073/pnas.1210059109] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bioenergy is efficiently produced in the mitochondria by the respiratory system consisting of complexes I-V. In various organisms, complex I can be replaced by the alternative NADH-quinone oxidoreductase (NDH-2), which catalyzes the transfer of an electron from NADH via FAD to quinone, without proton pumping. The Ndi1 protein from Saccharomyces cerevisiae is a monotopic membrane protein, directed to the matrix. A number of studies have investigated the potential use of Ndi1 as a therapeutic agent against complex I disorders, and the NDH-2 enzymes have emerged as potential therapeutic targets for treatments against the causative agents of malaria and tuberculosis. Here we present the crystal structures of Ndi1 in its substrate-free, NAD(+)- and ubiquinone- (UQ2) complexed states. The structures reveal that Ndi1 is a peripheral membrane protein forming an intimate dimer, in which packing of the monomeric units within the dimer creates an amphiphilic membrane-anchor domain structure. Crucially, the structures of the Ndi1-NAD(+) and Ndi1-UQ2 complexes show overlapping binding sites for the NAD(+) and quinone substrates.
Collapse
|
15
|
Smith WL, Urade Y, Jakobsson PJ. Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis. Chem Rev 2011; 111:5821-65. [PMID: 21942677 PMCID: PMC3285496 DOI: 10.1021/cr2002992] [Citation(s) in RCA: 364] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- William L Smith
- Department of Biological Chemistry, University of Michigan Medical School, 1150 West Medical Center Drive, 5301 MSRB III, Ann Arbor, Michigan 48109-5606, USA.
| | | | | |
Collapse
|
16
|
Fournier D, Poirier D. Chemical synthesis and evaluation of 17α-alkylated derivatives of estradiol as inhibitors of steroid sulfatase. Eur J Med Chem 2011; 46:4227-37. [DOI: 10.1016/j.ejmech.2011.06.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 06/11/2011] [Accepted: 06/21/2011] [Indexed: 10/18/2022]
|
17
|
Li S, Zhang X, Wang W. Cluster formation of anchored proteins induced by membrane-mediated interaction. Biophys J 2010; 98:2554-63. [PMID: 20513399 PMCID: PMC2877327 DOI: 10.1016/j.bpj.2010.02.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Revised: 01/16/2010] [Accepted: 02/17/2010] [Indexed: 11/16/2022] Open
Abstract
Computer simulations were used to study the cluster formation of anchored proteins in a membrane. The rate and extent of clustering was found to be dependent upon the hydrophobic length of the anchored proteins embedded in the membrane. The cluster formation mechanism of anchored proteins in our work was ascribed to the different local perturbations on the upper and lower monolayers of the membrane and the intermonolayer coupling. Simulation results demonstrated that only when the penetration depth of anchored proteins was larger than half the membrane thickness, could the structure of the lower monolayer be significantly deformed. Additionally, studies on the local structures of membranes indicated weak perturbation of bilayer thickness for a shallowly inserted protein, while there was significant perturbation for a more deeply inserted protein. The origin of membrane-mediated protein-protein interaction is therefore due to the local perturbation of the membrane thickness, and the entropy loss-both of which are caused by the conformation restriction on the lipid chains and the enhanced intermonolayer coupling for a deeply inserted protein. Finally, in this study we addressed the difference of cluster formation mechanisms between anchored proteins and transmembrane proteins.
Collapse
Affiliation(s)
| | - Xianren Zhang
- Division of Molecular and Materials Simulation, Key Laboratory for Nanomaterials, Ministry of Education, Beijing University of Chemical Technology, Beijing, China
| | | |
Collapse
|
18
|
Annalora AJ, Goodin DB, Hong WX, Zhang Q, Johnson EF, Stout CD. Crystal structure of CYP24A1, a mitochondrial cytochrome P450 involved in vitamin D metabolism. J Mol Biol 2009; 396:441-51. [PMID: 19961857 DOI: 10.1016/j.jmb.2009.11.057] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Revised: 11/18/2009] [Accepted: 11/21/2009] [Indexed: 01/08/2023]
Abstract
Cytochrome P450 (CYP) 24A1 catalyzes the side-chain oxidation of the hormonal form of vitamin D. Expression of CYP24A1 is up-regulated to attenuate vitamin D signaling associated with calcium homeostasis and cellular growth processes. The development of therapeutics for disorders linked to vitamin D insufficiency would be greatly facilitated by structural knowledge of CYP24A1. Here, we report the crystal structure of rat CYP24A1 at 2.5 A resolution. The structure exhibits an open cleft leading to the active-site heme prosthetic group on the distal surface that is likely to define the path of substrate access into the active site. The entrance to the cleft is flanked by conserved hydrophobic residues on helices A' and G', suggesting a mode of insertion into the inner mitochondrial membrane. A docking model for 1alpha,25-dihydroxyvitamin D(3) binding in the open form of CYP24A1 that clarifies the structural determinants of secosteroid recognition and validates the predictive power of existing homology models of CYP24A1 is proposed. Analysis of CYP24A1's proximal surface identifies the determinants of adrenodoxin recognition as a constellation of conserved residues from helices K, K'', and L that converge with an adjacent lysine-rich loop for binding the redox protein. Overall, the CYP24A1 structure provides the first template for understanding membrane insertion, substrate binding, and redox partner interaction in mitochondrial P450s.
Collapse
Affiliation(s)
- Andrew J Annalora
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Khan MA, Bishop RE. Molecular mechanism for lateral lipid diffusion between the outer membrane external leaflet and a beta-barrel hydrocarbon ruler. Biochemistry 2009; 48:9745-56. [PMID: 19769329 DOI: 10.1021/bi9013566] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Membrane-intrinsic enzymes are embedded in lipids, yet how such enzymes interrogate lipid substrates remains a largely unexplored fundamental question. The outer membrane phospholipid:lipid A palmitoyltransferase PagP combats host immune defenses during infection and selects a palmitate chain using its beta-barrel interior hydrocarbon ruler. Both a molecular embrasure and crenel in Escherichia coli PagP display weakened transmembrane beta-strand hydrogen bonding to provide potential lateral routes for diffusion of the palmitoyl group between the hydrocarbon ruler and outer membrane external leaflet. Prolines in strands A and B lie beneath the dynamic L1 surface loop flanking the embrasure, whereas the crenel is flanked by prolines in strands F and G. Reversibly barricading the embrasure prevents lipid A palmitoylation without affecting the slower phospholipase reaction. Lys42Ala PagP is also a dedicated phospholipase, implicating this disordered L1 loop residue in lipid A recognition. The embrasure barricade additionally prevents palmitoylation of nonspecific fatty alcohols, but not miscible alcohols. Irreversibly barricading the crenel inhibits both lipid A palmitoylation and phospholipase reactions without compromising PagP structure. These findings indicate lateral palmitoyl group diffusion within the PagP hydrocarbon ruler is likely gated during phospholipid entry via the crenel and during lipid A egress via the embrasure.
Collapse
Affiliation(s)
- M Adil Khan
- Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada L8N 3Z5
| | | |
Collapse
|
20
|
Seierstad M, Breitenbucher JG. Discovery and development of fatty acid amide hydrolase (FAAH) inhibitors. J Med Chem 2009; 51:7327-43. [PMID: 18983142 DOI: 10.1021/jm800311k] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mark Seierstad
- Johnson & Johnson Pharmaceutical Research and Development, L.L.C., 3210 Merryfield Row, San Diego, California 92121, USA
| | | |
Collapse
|
21
|
Balali-Mood K, Bond PJ, Sansom MSP. Interaction of monotopic membrane enzymes with a lipid bilayer: a coarse-grained MD simulation study. Biochemistry 2009; 48:2135-45. [PMID: 19161285 DOI: 10.1021/bi8017398] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Monotopic membrane proteins bind tightly to cell membranes but do not generally span the lipid bilayer. Their interactions with lipid bilayers may be studied via coarse-grained molecular dynamics (CG-MD) simulations. Understanding such interactions is important as monotopic enzymes frequently act on hydrophobic substrates, while X-ray structures rarely provide direct information about their interactions with membranes. CG-MD self-assembly simulations enable prediction of the orientation and depth of insertion into a lipid bilayer of a monotopic protein, and also of the interactions of individual protein residues with lipid molecules. The CG-MD method has been evaluated via comparison with extended (>30 ns) atomistic simulations of monoamine oxidase, revealing good agreement between the results of coarse-grained and atomistic simulations. CG-MD simulations have been applied to a set of 11 monotopic proteins for which three-dimensional structures are available. These proteins may be divided into two groups on the basis of the results of the simulations. One group consists of those proteins which are inserted into the lipid bilayer to a limited extent, interacting mainly at the phospholipid-water interface. The second group consists of those which are inserted more deeply into the bilayer. Those monotopic proteins which are inserted more deeply cause significant local perturbation of bilayer properties such as bilayer thickness. Deeper insertion seems to correlate with a greater number of basic residues in the "foot" whereby a monotopic protein interacts with the membrane.
Collapse
Affiliation(s)
- Kia Balali-Mood
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | |
Collapse
|
22
|
Structural details of the glycosyltransferase step of peptidoglycan assembly. Curr Opin Struct Biol 2008; 18:534-43. [DOI: 10.1016/j.sbi.2008.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 07/06/2008] [Accepted: 07/22/2008] [Indexed: 11/21/2022]
|
23
|
Oezguen N, Kumar S, Hindupur A, Braun W, Muralidhara BK, Halpert JR. Identification and analysis of conserved sequence motifs in cytochrome P450 family 2. Functional and structural role of a motif 187RFDYKD192 in CYP2B enzymes. J Biol Chem 2008; 283:21808-16. [PMID: 18495666 PMCID: PMC2490781 DOI: 10.1074/jbc.m708582200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 05/20/2008] [Indexed: 11/06/2022] Open
Abstract
Using a multiple alignment of 175 cytochrome P450 (CYP) family 2 sequences, 20 conserved sequence motifs (CSMs) were identified with the program PCPMer. Functional importance of the CSM in CYP2B enzymes was assessed from available data on site-directed mutants and genetic variants. These analyses suggested an important role of the CSM 8, which corresponds to(187)RFDYKD(192) in CYP2B4. Further analysis showed that residues 187, 188, 190, and 192 have a very high rank order of conservation compared with 189 and 191. Therefore, eight mutants (R187A, R187K, F188A, D189A, Y190A, K191A, D192A, and a negative control K186A) were made in an N-terminal truncated and modified form of CYP2B4 with an internal mutation, which is termed 2B4dH/H226Y. Function was examined with the substrates 7-methoxy-4-(trifluoromethyl)coumarin (7-MFC), 7-ethoxy-4-(trifluoromethyl)coumarin (7-EFC), 7-benzyloxy-4-(trifluoromethyl)coumarin (7-BFC), and testosterone and with the inhibitors 4-(4-chlorophenyl)imidazole (4-CPI) and bifonazole (BIF). Compared with the template and K186A, the mutants R187A, R187K, F188A, Y190A, and D192A showed > or =2-fold altered substrate specificity, k(cat), K(m), and/or k(cat)/K(m) for 7-MFC and 7-EFC and 3- to 6-fold decreases in differential inhibition (IC(50,BIF)/IC(50,4-CPI)). Subsequently, these mutants displayed 5-12 degrees C decreases in thermal stability (T(m)) and 2-8 degrees C decreases in catalytic tolerance to temperature (T(50)) compared with the template and K186A. Furthermore, when R187A and D192A were introduced in CYP2B1dH, the P450 expression and thermal stability were decreased. In addition, R187A showed increased activity with 7-EFC and decreased IC(50,BIF)/IC(50,4-CPI) compared with 2B1dH. Analysis of long range residue-residue interactions in the CYP2B4 crystal structures indicated strong hydrogen bonds involving Glu(149)-Asn(177)-Arg(187)-Tyr(190) and Asp(192)-Val(194), which were significantly-reduced/abolished by the Arg(187)-->Ala and Asp(192)-->Alasubstitutions, respectively.
Collapse
Affiliation(s)
- Numan Oezguen
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
24
|
Zehmer JK, Bartz R, Liu P, Anderson RGW. Identification of a novel N-terminal hydrophobic sequence that targets proteins to lipid droplets. J Cell Sci 2008; 121:1852-60. [PMID: 18477614 PMCID: PMC2849272 DOI: 10.1242/jcs.012013] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AAM-B is a putative methyltransferase that is a resident protein of lipid droplets. We have identified an N-terminal 28 amino acid hydrophobic sequence that is necessary and sufficient for targeting the protein to droplets. This sequence will also insert AAM-B into the endoplasmic reticulum (ER). A similar hydrophobic sequence (1-23) in the cytochrome p450 2C9 cannot substitute for 1-28 and only inserts AAM-B into the ER, which indicates that hydrophobicity and ER anchoring are not sufficient to reach the droplet. We found that a similar N-terminal hydrophobic sequence in cytochrome b5 reductase 3 and ALDI could also heterologously target proteins to droplets. Targeting is not affected by changing a conserved proline residue that potentially facilitates the formation of a hairpin loop to leucine. By contrast, targeting is blocked when AAM-B amino acids 59-64 or 65-70, situated downstream of the hydrophobic sequence, are changed to alanines. AAM-B-GFP expressed in Saccharomyces cerevisiae is also faithfully targeted to lipid bodies, indicating that the targeting mechanism is evolutionarily conserved. In conclusion, a class of hydrophobic sequences exists that when placed at the N-terminus of a protein will cause it to accumulate in droplets and in the ER.
Collapse
Affiliation(s)
- John K. Zehmer
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | - René Bartz
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | - Pingsheng Liu
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | - Richard G. W. Anderson
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| |
Collapse
|
25
|
Fezza F, De Simone C, Amadio D, Maccarrone M. Fatty acid amide hydrolase: a gate-keeper of the endocannabinoid system. Subcell Biochem 2008; 49:101-132. [PMID: 18751909 DOI: 10.1007/978-1-4020-8831-5_4] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The family of endocannabinoids contains several polyunsaturated fatty acid amides such as anandamide (AEA), but also esters such as 2-arachidonoylglycerol (2-AG). These compounds are the main endogenous agonists of cannabinoid receptors, able to mimic several pharmacological effects of Delta9-tetrahydrocannabinol (Delta9-THC), the active principle of Cannabis sativa preparations like hashish and marijuana. The activity of AEA at its receptors is limited by cellular uptake, through a putative membrane transporter, followed by intracellular degradation by fatty acid amide hydrolase (FAAH). Growing evidence demonstrates that FAAH is the critical regulator of the endogenous levels of AEA, suggesting that it may serve as an attractive therapeutic target for the treatment of human disorders. In particular, FAAH inhibitors may be next generation therapeutics of potential value for the treatment of pathologies of the central nervous system, and of peripheral tissues. Investigations into the structure and function of FAAH, its biological and therapeutic implications, as well as a description of different families of FAAH inhibitors, are the topic of this chapter.
Collapse
Affiliation(s)
- Filomena Fezza
- Department of Experimental Medicine and Biochemical Sciences, University of Rome, Rome, Italy
| | | | | | | |
Collapse
|
26
|
Abstract
Vitamin K-dependent (VKD) protein carboxylation uses vitamin K epoxidation to convert Glus to carboxylated Glus (Glas), rendering VKD proteins active in physiologies that include hemostasis, apoptosis, bone mineralization, calcium homeostasis, growth control, and signal transduction. Clusters of Glus are modified by a processive carboxylase, generating a calcium-binding module that allows binding to either hydroxyapatite in the extracellular matrices or cell surfaces where anionic phospholipids become exposed, for example, during apoptosis or cell activation. Naturally occurring carboxylase mutations have been informative for function and are associated with bleeding complications and, surprisingly, a pseudoxanthoma elasticum (PXE)-like phenotype. A major advance in defining carboxylase function is the identification of the base that initiates carboxylation, which raises interesting possibilities for how vitamin K epoxidation is regulated by Glu substrate and carboxylase membrane topology. Vitamin K oxidoreductase (VKOR), the target of warfarin, generates the reduced vitamin K cofactor used by the carboxylase. Oxidation of active site thiols during vitamin K reduction inactivates VKOR, and activity is regenerated by an unknown reductase. The amounts of reduced vitamin K limit the capacity for carboxylation in cells, and overexpression of VKOR, but not carboxylase, improves carboxylation. However, the effect of VKOR overexpression is small, possibly because the reductase that regenerates VKOR activity is saturated. The review discusses these advances, as well as the potential impact of secretory components on carboxylation, which occurs during VKD protein secretion. Also discussed is the role of the carboxylase in mammals and lower organisms, including the bacterial pathogen Leptospira interrogans that has acquired a VKD carboxylase by horizontal transfer.
Collapse
Affiliation(s)
- Kathleen L Berkner
- Department of Molecular Cardiology, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| |
Collapse
|
27
|
Affiliation(s)
- Kevin R Mackenzie
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
28
|
Lomize AL, Pogozheva ID, Lomize MA, Mosberg HI. The role of hydrophobic interactions in positioning of peripheral proteins in membranes. BMC STRUCTURAL BIOLOGY 2007; 7:44. [PMID: 17603894 PMCID: PMC1934363 DOI: 10.1186/1472-6807-7-44] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 06/29/2007] [Indexed: 02/05/2023]
Abstract
BACKGROUND Three-dimensional (3D) structures of numerous peripheral membrane proteins have been determined. Biological activity, stability, and conformations of these proteins depend on their spatial positions with respect to the lipid bilayer. However, these positions are usually undetermined. RESULTS We report the first large-scale computational study of monotopic/peripheral proteins with known 3D structures. The optimal translational and rotational positions of 476 proteins are determined by minimizing energy of protein transfer from water to the lipid bilayer, which is approximated by a hydrocarbon slab with a decadiene-like polarity and interfacial regions characterized by water-permeation profiles. Predicted membrane-binding sites, protein tilt angles and membrane penetration depths are consistent with spin-labeling, chemical modification, fluorescence, NMR, mutagenesis, and other experimental studies of 53 peripheral proteins and peptides. Experimental membrane binding affinities of peripheral proteins were reproduced in cases that did not involve a helix-coil transition, specific binding of lipids, or a predominantly electrostatic association. Coordinates of all examined peripheral proteins and peptides with the calculated hydrophobic membrane boundaries, subcellular localization, topology, structural classification, and experimental references are available through the Orientations of Proteins in Membranes (OPM) database. CONCLUSION Positions of diverse peripheral proteins and peptides in the lipid bilayer can be accurately predicted using their 3D structures that represent a proper membrane-bound conformation and oligomeric state, and have membrane binding elements present. The success of the implicit solvation model suggests that hydrophobic interactions are usually sufficient to determine the spatial position of a protein in the membrane, even when electrostatic interactions or specific binding of lipids are substantial. Our results demonstrate that most peripheral proteins not only interact with the membrane surface, but penetrate through the interfacial region and reach the hydrocarbon interior, which is consistent with published experimental studies.
Collapse
Affiliation(s)
- Andrei L Lomize
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA
| | - Irina D Pogozheva
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA
| | - Mikhail A Lomize
- College of Literature, Science and the Arts, University of Michigan, Ann Arbor, MI 48109-1065, USA
| | - Henry I Mosberg
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA
| |
Collapse
|
29
|
Tran UC, Clarke CF. Endogenous synthesis of coenzyme Q in eukaryotes. Mitochondrion 2007; 7 Suppl:S62-71. [PMID: 17482885 PMCID: PMC1974887 DOI: 10.1016/j.mito.2007.03.007] [Citation(s) in RCA: 208] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 03/22/2007] [Accepted: 03/22/2007] [Indexed: 11/26/2022]
Abstract
Coenzyme Q (Q) functions in the mitochondrial respiratory chain and serves as a lipophilic antioxidant. There is increasing interest in the use of Q as a nutritional supplement. Although, the physiological significance of Q is extensively investigated in eukaryotes, ranging from yeast to human, the eukaryotic Q biosynthesis pathway is best characterized in the budding yeast Saccharomyces cerevisiae. At least ten genes (COQ1-COQ10) have been shown to be required for Q biosynthesis and function in respiration. This review highlights recent knowledge about the endogenous synthesis of Q in eukaryotes, with emphasis on S. cerevisiae as a model system.
Collapse
Affiliation(s)
- UyenPhuong C. Tran
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, 90095
| | - Catherine F. Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, 90095
| |
Collapse
|
30
|
Labar G, Vliet FV, Wouters J, Lambert DM. A MBP-FAAH fusion protein as a tool to produce human and rat fatty acid amide hydrolase: expression and pharmacological comparison. Amino Acids 2007; 34:127-33. [PMID: 17476568 DOI: 10.1007/s00726-007-0540-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2007] [Accepted: 02/23/2007] [Indexed: 11/30/2022]
Abstract
Fatty acid amide hydrolase (FAAH), a membrane-anchored enzyme responsible for the termination of endocannabinoid signalling, is an attractive target for treating conditions such as pain and anxiety. Inhibitors of the enzyme, optimized using rodent FAAH, are known but their pharmacology and medicinal chemistry properties on the human FAAH are missing. Therefore recombinant human enzyme would represent a powerful tool to evaluate new drug candidates. However, the production of high amounts of enzyme is hampered by the known refractiveness of FAAH to overexpression. Here, we report the successful overexpression of rat and human FAAH as a fusion to the E. coli maltose-binding protein, retaining catalytic properties of native FAAH. Several known FAAH inhibitors were tested and differences in their potencies toward the human and rat FAAH were found, underscoring the importance of using a human FAAH in the development of inhibitors.
Collapse
Affiliation(s)
- G Labar
- Unité de Chimie pharmaceutique et de Radiopharmacie, Ecole de Pharmacie, Faculté de Médecine, Université catholique de Louvain, Bruxelles, Belgium
| | | | | | | |
Collapse
|
31
|
Khan MA, Neale C, Michaux C, Pomés R, Privé GG, Woody RW, Bishop RE. Gauging a hydrocarbon ruler by an intrinsic exciton probe. Biochemistry 2007; 46:4565-79. [PMID: 17375935 PMCID: PMC5007129 DOI: 10.1021/bi602526k] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structural basis of lipid acyl-chain selection by membrane-intrinsic enzymes is poorly understood because most integral membrane enzymes of lipid metabolism have proven refractory to structure determination; however, robust enzymes from the outer membranes of gram-negative bacteria are now providing a first glimpse at the underlying mechanisms. The methylene unit resolution of the phospholipid:lipid A palmitoyltransferase PagP is determined by the hydrocarbon ruler, a 16-carbon saturated acyl-chain-binding pocket buried within the transmembrane beta-barrel structure. Substitution of Gly88 lining the floor of the hydrocarbon ruler with Ala or Met makes the enzyme select specifically 15- or 12-carbon saturated acyl chains, respectively, indicating that hydrocarbon ruler depth determines acyl-chain selection. However, the Gly88Cys PagP resolution does not diminish linearly because it selects both 14- and 15-carbon saturated acyl chains. We discovered that an exciton, emanating from a buried Tyr26-Trp66 phenol-indole interaction, is extinguished by a local structural perturbation arising from the proximal Gly88Cys PagP sulfhydryl group. Site-specific S-methylation of the single Cys afforded Gly88Cys-S-methyl PagP, which reasserted both the exciton and methylene unit resolution by specifically selecting 13-carbon saturated acyl chains for transfer to lipid A. Unlike the other Gly88 substitutions, the Cys sulfhydryl group recedes from the hydrocarbon ruler floor and locally perturbs the subjacent Tyr26 and Trp66 aromatic rings. The resulting hydrocarbon ruler expansion thus occurs at the exciton's expense and accommodates an extra methylene unit in the selected acyl chain. The hydrocarbon ruler-exciton juxtaposition endows PagP with a molecular gauge for probing the structural basis of lipid acyl-chain selection in a membrane-intrinsic environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Russell E. Bishop
- To whom correspondence should be addressed: Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada L8N 3Z5. Telephone: (905) 525-9140, ext. 28810. Fax: (905) 522-9033.
| |
Collapse
|
32
|
Annalora AJ, Bobrovnikov-Marjon E, Serda R, Pastuszyn A, Graham SE, Marcus CB, Omdahl JL. Hybrid homology modeling and mutational analysis of cytochrome P450C24A1 (CYP24A1) of the Vitamin D pathway: insights into substrate specificity and membrane bound structure-function. Arch Biochem Biophys 2006; 460:262-73. [PMID: 17207766 PMCID: PMC1978416 DOI: 10.1016/j.abb.2006.11.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 11/02/2006] [Accepted: 11/10/2006] [Indexed: 01/08/2023]
Abstract
Cytochrome P450C24A1 (CYP24A1), a peripheral inner mitochondrial membrane hemoprotein and candidate oncogene, regulates the side-chain metabolism and biological function of vitamin D and many of its related analog drugs. Rational mutational analysis of rat CYP24A1 based on hybrid (2C5/BM-3) homology modeling and affinity labeling studies clarified the role of key domains (N-terminus, A', A, and F-helices, beta3a strand, and beta5 hairpin) in substrate binding and catalysis. The scope of our study was limited by an inability to purify stable mutant enzyme targeting soluble domains (B', G, and I-helices) and suggested greater conformational flexibility among CYP24A1's membrane-associated domains. The most notable mutants developed by modeling were V391T and I500A, which displayed defective-binding function and profound metabolic defects for 25-hydroxylated vitamin D3 substrates similar to a non-functional F-helix mutant (F249T) that we previously reported. Val-391 (beta3a strand) and Ile-500 (beta5 hairpin) are modeled to interact with Phe-249 (F-helix) in a hydrophobic cluster that directs substrate-binding events through interactions with the vitamin D cis-triene moiety. Prior affinity labeling studies identified an amino-terminal residue (Ser-57) as a putative active-site residue that interacts with the 3beta-OH group of the vitamin D A-ring. Studies with 3-epi and 3-deoxy-1,25(OH)2D3 analogs confirmed interactions between the 3beta-OH group and Ser-57 effect substrate recognition and trafficking while establishing that the trans conformation of A-ring hydroxyl groups (1alpha and 3beta) is obligate for high-affinity binding to rat CYP24A1. Our work suggests that CYP24A1's amphipathic nature allows for monotopic membrane insertion, whereby a pw2d-like substrate access channel is formed to shuttle secosteroid substrate from the membrane to the active-site. We hypothesize that CYP24A1 has evolved a unique amino-terminal membrane-binding motif that contributes to substrate specificity and docking through coordinated interactions with the vitamin D A-ring.
Collapse
Affiliation(s)
- Andrew J Annalora
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131-5331, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Rishavy MA, Hallgren KW, Yakubenko AV, Shtofman RL, Runge KW, Berkner KL. Brønsted analysis reveals Lys218 as the carboxylase active site base that deprotonates vitamin K hydroquinone to initiate vitamin K-dependent protein carboxylation. Biochemistry 2006; 45:13239-48. [PMID: 17073445 DOI: 10.1021/bi0609523] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The vitamin K-dependent (VKD) carboxylase converts Glu's to carboxylated Glu's in VKD proteins to render them functional in a broad range of physiologies. The carboxylase uses vitamin K hydroquinone (KH(2)) epoxidation to drive Glu carboxylation, and one of its critical roles is to provide a catalytic base that deprotonates KH(2) to allow epoxidation. A long-standing model invoked Cys as the catalytic base but was ruled out by activity retention in a mutant where every Cys is substituted by Ala. Inhibitor analysis of the cysteine-less mutant suggested that the base is an activated amine [Rishavy et al. (2004) Proc. Natl. Acad. Sci. U.S.A. 101, 13732-13737], and in the present study, we used an evolutionary approach to identify candidate amines, which revealed His160, His287, His381, and Lys218. When mutational analysis was performed using an expression system lacking endogenous carboxylase, the His to Ala mutants all showed full epoxidase activity but K218A activity was not detectable. The addition of exogenous amines restored K218A activity while having little effect on wild type carboxylase, and pH studies indicated that rescue was dependent upon the basic form of the amine. Importantly, Brønsted analysis that measured the effect of amines with different pK(a) values showed that K218A activity rescue depended upon the basicity of the amine. The combined results provide strong evidence that Lys218 is the essential base that deprotonates KH(2) to initiate the reaction. The identification of this base is an important advance in defining the carboxylase active site and has implications regarding carboxylase membrane topology and the feedback mechanism by which the Glu substrate regulates KH(2) oxygenation.
Collapse
Affiliation(s)
- Mark A Rishavy
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | | | | | | | | | | |
Collapse
|
34
|
Zhang J, Frerman FE, Kim JJP. Structure of electron transfer flavoprotein-ubiquinone oxidoreductase and electron transfer to the mitochondrial ubiquinone pool. Proc Natl Acad Sci U S A 2006; 103:16212-7. [PMID: 17050691 PMCID: PMC1637562 DOI: 10.1073/pnas.0604567103] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is a 4Fe4S flavoprotein located in the inner mitochondrial membrane. It catalyzes ubiquinone (UQ) reduction by ETF, linking oxidation of fatty acids and some amino acids to the mitochondrial respiratory chain. Deficiencies in ETF or ETF-QO result in multiple acyl-CoA dehydrogenase deficiency, a human metabolic disease. Crystal structures of ETF-QO with and without bound UQ were determined, and they are essentially identical. The molecule forms a single structural domain. Three functional regions bind FAD, the 4Fe4S cluster, and UQ and are closely packed and share structural elements, resulting in no discrete structural domains. The UQ-binding pocket consists mainly of hydrophobic residues, and UQ binding differs from that of other UQ-binding proteins. ETF-QO is a monotopic integral membrane protein. The putative membrane-binding surface contains an alpha-helix and a beta-hairpin, forming a hydrophobic plateau. The UQ-flavin distance (8.5 A) is shorter than the UQ-cluster distance (18.8 A), and the very similar redox potentials of FAD and the cluster strongly suggest that the flavin, not the cluster, transfers electrons to UQ. Two possible electron transfer paths can be envisioned. First, electrons from the ETF flavin semiquinone may enter the ETF-QO flavin one by one, followed by rapid equilibration with the cluster. Alternatively, electrons may enter via the cluster, followed by equilibration between centers. In both cases, when ETF-QO is reduced to a two-electron reduced state (one electron at each redox center), the enzyme is primed to reduce UQ to ubiquinol via FAD.
Collapse
Affiliation(s)
- Jian Zhang
- *Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226; and
| | - Frank E. Frerman
- Department of Pediatrics, University of Colorado Health Sciences Center, Denver, CO 80262
| | - Jung-Ja P. Kim
- *Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
35
|
Darghouth D, Hallgren KW, Shtofman RL, Mrad A, Gharbi Y, Maherzi A, Kastally R, LeRicousse S, Berkner KL, Rosa JP. Compound heterozygosity of novel missense mutations in the gamma-glutamyl-carboxylase gene causes hereditary combined vitamin K-dependent coagulation factor deficiency. Blood 2006; 108:1925-31. [PMID: 16720838 PMCID: PMC1895532 DOI: 10.1182/blood-2005-12-010660] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Accepted: 04/06/2006] [Indexed: 11/20/2022] Open
Abstract
Hereditary combined vitamin K-dependent (VKD) coagulation factor deficiency is an autosomal recessive bleeding disorder associated with defects in either the gamma-carboxylase, which carboxylates VKD proteins to render them active, or the vitamin K epoxide reductase (VKORC1), which supplies the reduced vitamin K cofactor required for carboxylation. Such deficiencies are rare, and we report the fourth case resulting from mutations in the carboxylase gene, identified in a Tunisian girl who exhibited impaired function in hemostatic VKD factors that was not restored by vitamin K administration. Sequence analysis of the proposita did not identify any mutations in the VKORC1 gene but, remarkably, revealed 3 heterozygous mutations in the carboxylase gene that caused the substitutions Asp31Asn, Trp157Arg, and Thr591Lys. None of these mutations have previously been reported. Family analysis showed that Asp31Asn and Thr591Lys were coallelic and maternally transmitted while Trp157Arg was transmitted by the father, and a genomic screen of 100 healthy individuals ruled out frequent polymorphisms. Mutational analysis indicated wild-type activity for the Asp31Asn carboxylase. In contrast, the respective Trp157Arg and Thr591Lys activities were 8% and 0% that of wild-type carboxylase, and their compound heterozygosity can therefore account for functional VKD factor deficiency. The implications for carboxylase mechanism are discussed.
Collapse
Affiliation(s)
- Dhouha Darghouth
- Laboratory of Hemostasis and Thrombosis, U689 INSERM, Hôpital Lariboisière, 41 boulevard de la Chapelle, 75475 Paris Cedex 10, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhao Y, White MA, Muralidhara BK, Sun L, Halpert JR, Stout CD. Structure of microsomal cytochrome P450 2B4 complexed with the antifungal drug bifonazole: insight into P450 conformational plasticity and membrane interaction. J Biol Chem 2005; 281:5973-81. [PMID: 16373351 DOI: 10.1074/jbc.m511464200] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To better understand ligand-induced structural transitions in cytochrome P450 2B4, protein-ligand interactions were investigated using a bulky inhibitor. Bifonazole, a broad spectrum antifungal agent, inhibits monooxygenase activity and induces a type II binding spectrum in 2B4dH(H226Y), a modified enzyme previously crystallized in the presence of 4-(4-chlorophenyl)imidazole (CPI). Isothermal titration calorimetry and tryptophan fluorescence quenching indicate no significant burial of protein apolar surface nor altered accessibility of Trp-121 upon bifonazole binding, in contrast to recent results with CPI. A 2.3 A crystal structure of 2B4-bifonazole reveals a novel open conformation with ligand bound in the active site, which is significantly different from either the U-shaped cleft of ligand-free 2B4 or the small active site pocket of 2B4-CPI. The O-shaped active site cleft of 2B4-bifonazole is widely open in the middle but narrow at the top. A bifonazole molecule occupies the bottom of the active site cleft, where helix I is bent approximately 15 degrees to accommodate the bulky ligand. The structure also defines unanticipated interactions between helix C residues and bifonazole, suggesting an important role of helix C in azole recognition by mammalian P450s. Comparison of the ligand-free 2B4 structure, the 2B4-CPI structure, and the 2B4-bifonazole structure identifies structurally plastic regions that undergo correlated conformational changes in response to ligand binding. The most plastic regions are putative membrane-binding motifs involved in substrate access or substrate binding. The results allow us to model the membrane-associated state of P450 and provide insight into how lipophilic substrates access the buried active site.
Collapse
Affiliation(s)
- Yonghong Zhao
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Fatty acid amide hydrolase (FAAH) is a mammalian integral membrane enzyme that degrades the fatty acid amide family of endogenous signaling lipids, which includes the endogenous cannabinoid anandamide and the sleep-inducing substance oleamide. FAAH belongs to a large and diverse class of enzymes referred to as the amidase signature (AS) family. Investigations into the structure and function of FAAH, in combination with complementary studies of other AS enzymes, have engendered provocative molecular models to explain how this enzyme integrates into cell membranes and terminates fatty acid amide signaling in vivo. These studies, as well as their biological and therapeutic implications, are the subject of this review.
Collapse
Affiliation(s)
- Michele K McKinney
- Departments of Cell Biology and Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
38
|
Abstract
The vitamin K-dependent (VKD) carboxylase uses the oxygenation of vitamin K to convert glutamyl residues (Glus) to carboxylated Glus (Glas) in VKD proteins, rendering them active in a broad range of physiologies that include hemostasis, apoptosis, bone development, arterial calcification, signal transduction, and growth control. The carboxylase has a high-affinity site that selectively binds VKD proteins, usually through their propeptide, and also has a second low-affinity site of VKD protein interaction. Propeptide binding increases carboxylase affinity for the Glu substrate, and the coordinated binding of the VKD propeptide and Glu substrate increases carboxylase affinity for vitamin K and activity, possibly through a mechanism of substrate-assisted catalysis. Tethering of VKD proteins to the carboxylase allows clusters of Glus to be modified to Glas by a processive mechanism that becomes disrupted during warfarin therapy. Warfarin inhibits a vitamin K oxidoreductase that generates the reduced vitamin K cofactor required for continuous carboxylation and causes decreased carboxylase catalysis and increased dissociation of partially carboxylated, inactive VKD proteins. The availability of reduced vitamin K may also control carboxylation in r-VKD protein-expressing cells, where the amounts of reduced vitamin K are sufficient for full carboxylation of low, but not high, expression levels of VKD proteins, and where carboxylation is not improved by overexpression of r-carboxylase. This review discusses these recent advances in understanding the mechanism of carboxylation. Also covered is the identification of functional carboxylase residues, a brief description of the role of VKD proteins in mammalian and lower organisms, and the potential impact of quality control components on carboxylation, which occurs in the endoplasmic reticulum during the secretion of VKD proteins.
Collapse
Affiliation(s)
- Kathleen L Berkner
- Department of Molecular Cardiology, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Lerner Research Institute, Cleveland, Ohio 44195, USA.
| |
Collapse
|
39
|
Gaidukov L, Tawfik DS. High Affinity, Stability, and Lactonase Activity of Serum Paraoxonase PON1 Anchored on HDL with ApoA-I. Biochemistry 2005; 44:11843-54. [PMID: 16128586 DOI: 10.1021/bi050862i] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Serum paraoxonase (PON1) is a high-density lipoprotein (HDL)-associated enzyme exhibiting antiatherogenic properties. This study examined the interaction of recombinant PON1 with reconstituted HDL comprised of PC, cholesterol, and various apolipoproteins (apoA-I, -II, and -IV). The affinity, stability, and lactonase activity were strongly correlated, with apoA-I exhibiting the strongest effects, apoA-IV exhibiting weaker yet significant effects, and apoA-II having a negative effect relative to protein-free particles. We found that PON1 binds apoA-I HDL with sub-nanomolar affinities (K(d) << 10(-)(9) M) and slow dissociation rates (t(1/2) > 80 min), while binding affinity for other particles was dramatically lower. A truncated form of PON1 lacking the N-terminal helix maintains considerable binding to apoA-I HDL (K(d) = 1.2 x 10(-)(7) M), validating the structural model which indicates additional parts of the enzyme involved in HDL binding. Kinetic inactivation assays revealed the existence of an equilibrium between two forms of PON1 differing in their stability by a factor of 100. Various lipoproteins and detergent preparations shift this equilibrium toward the more stable conformation. Consistent with its highest affinity, only apoA-I HDL is capable of totally shifting the equilibrium toward the stable form. The paraoxonase and arylesterase activities were stimulated by HDL by 2-5-fold as previously reported, almost independently of the apoliporotein content. In contrast, only apoA-I is capable of stimulating the lactonase activity by <or=20-fold to k(cat)/K(M) values of 10(6)-10(7) M(-)(1) s(-)(1), while apoA-IV and apoA-II have almost no effect. Overall, the results indicate the high stability, selectivity, and catalytic proficiency of PON1 when anchored onto apoA-I HDL, toward lactone substrates, and lipophilic lactones in particular.
Collapse
Affiliation(s)
- Leonid Gaidukov
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
40
|
Rishavy MA, Hallgren KW, Yakubenko AV, Zuerner RL, Runge KW, Berkner KL. The vitamin K-dependent carboxylase has been acquired by Leptospira pathogens and shows altered activity that suggests a role other than protein carboxylation. J Biol Chem 2005; 280:34870-7. [PMID: 16061481 DOI: 10.1074/jbc.m504345200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leptospirosis is an emerging infectious disease whose pathology includes a hemorrhagic response, and sequencing of the Leptospira interrogans genome revealed an ortholog of the vitamin K-dependent (VKD) carboxylase as one of several hemostatic proteins present in the bacterium. Until now, the VKD carboxylase was known to be present only in the animal kingdom (i.e. metazoans that include mammals, fish, snails, and insects), and this restricted distribution and high sequence similarity between metazoan and Leptospira orthologs strongly suggests that Leptospira acquired the VKD carboxylase by horizontal gene transfer. In metazoans, the VKD carboxylase is bifunctional, acting as an epoxidase that oxygenates vitamin K to a strong base and a carboxylase that uses the base to carboxylate Glu residues in VKD proteins, rendering them active in hemostasis and other physiologies. In contrast, the Leptospira ortholog showed epoxidase but not detectable carboxylase activity and divergence in a region of identity in all known metazoan VKD carboxylases that is important to Glu interaction. Furthermore, although the mammalian carboxylase is regulated so that vitamin K epoxidation does not occur unless Glu substrate is present, the Leptospira VKD epoxidase showed unfettered epoxidation in the absence of Glu substrate. Finally, human VKD protein orthologs were not detected in the L. interrogans genome. The combined data, then, suggest that Leptospira exapted the metazoan VKD carboxylase for some use other than VKD protein carboxylation, such as using the strong vitamin K base to drive a new reaction or to promote oxidative damage or depleting vitamin K to indirectly inhibit host VKD protein carboxylation.
Collapse
Affiliation(s)
- Mark A Rishavy
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, Ohio 44195, USA
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
High-resolution X-ray diffraction structures of integral membrane proteins have revealed various binding modes of lipids, but current spectroscopic studies still use uniform macroscopic binding constants to describe lipid binding. The Adair approach employing microscopic lipid-binding constants has previously been taken to explain the enhancement of agonist binding to the nicotinic acetylcholine receptor by general anaesthetics in terms of the competitive displacement of essential lipid activator molecules [Walcher S, Altschuh J & Sandermann H (2001) J. Biol. Chem.276, 42191-42195]. This approach was extended to tadpole narcosis induced by alcohols. A single class, or two different classes of lipid activator binding sites, are considered. Microscopic lipid and inhibitor binding constants are derived and allow a close fit to dose-response curves of tadpole narcosis on the basis of a preferential displacement of more loosely bound essential lipid activator molecules. This study illustrates the potential of the Adair approach to resolve protein-bound lipid populations.
Collapse
Affiliation(s)
- Joachim Altschuh
- Institute of Biomathematics and Biometry, GSF - National Research Center for Environment and Health, Neuherberg, Germany
| | | | | |
Collapse
|
42
|
Melo AMP, Bandeiras TM, Teixeira M. New insights into type II NAD(P)H:quinone oxidoreductases. Microbiol Mol Biol Rev 2005; 68:603-16. [PMID: 15590775 PMCID: PMC539002 DOI: 10.1128/mmbr.68.4.603-616.2004] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type II NAD(P)H:quinone oxidoreductases (NDH-2) catalyze the two-electron transfer from NAD(P)H to quinones, without any energy-transducing site. NDH-2 accomplish the turnover of NAD(P)H, regenerating the NAD(P)(+) pool, and may contribute to the generation of a membrane potential through complexes III and IV. These enzymes are usually constituted by a nontransmembrane polypeptide chain of approximately 50 kDa, containing a flavin moiety. There are a few compounds that can prevent their activity, but so far no general specific inhibitor has been assigned to these enzymes. However, they have the common feature of being resistant to the complex I classical inhibitors rotenone, capsaicin, and piericidin A. NDH-2 have particular relevance in yeasts like Saccharomyces cerevisiae and in several prokaryotes, whose respiratory chains are devoid of complex I, in which NDH-2 keep the balance and are the main entry point of electrons into the respiratory chains. Our knowledge of these proteins has expanded in the past decade, as a result of contributions at the biochemical level and the sequencing of the genomes from several organisms. The latter showed that most organisms contain genes that potentially encode NDH-2. An overview of this development is presented, with special emphasis on microbial enzymes and on the identification of three subfamilies of NDH-2.
Collapse
Affiliation(s)
- Ana M P Melo
- Instituto de Tecnologia Quimica e Biológica, Universidade Nova de Lisboa, Av. da República, Apartado 127, 2781-901 Oeiras, Portugal.
| | | | | |
Collapse
|