1
|
Viljoen A, Vercellone A, Chimen M, Gaibelet G, Mazères S, Nigou J, Dufrêne YF. Nanoscale clustering of mycobacterial ligands and DC-SIGN host receptors are key determinants for pathogen recognition. SCIENCE ADVANCES 2023; 9:eadf9498. [PMID: 37205764 PMCID: PMC10198640 DOI: 10.1126/sciadv.adf9498] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/14/2023] [Indexed: 05/21/2023]
Abstract
The bacterial pathogen Mycobacterium tuberculosis binds to the C-type lectin DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin) on dendritic cells to evade the immune system. While DC-SIGN glycoconjugate ligands are ubiquitous among mycobacterial species, the receptor selectively binds pathogenic species from the M. tuberculosis complex (MTBC). Here, we unravel the molecular mechanism behind this intriguing selective recognition by means of a multidisciplinary approach combining single-molecule atomic force microscopy with Förster resonance energy transfer and bioassays. Molecular recognition imaging of mycobacteria demonstrates that the distribution of DC-SIGN ligands markedly differs between Mycobacterium bovis Bacille Calmette-Guérin (BCG) (model MTBC species) and Mycobacterium smegmatis (non-MTBC species), the ligands being concentrated into dense nanodomains on M. bovis BCG. Upon bacteria-host cell adhesion, ligand nanodomains induce the recruitment and clustering of DC-SIGN. Our study highlights the key role of clustering of both ligands on MTBC species and DC-SIGN host receptors in pathogen recognition, a mechanism that might be widespread in host-pathogen interactions.
Collapse
Affiliation(s)
- Albertus Viljoen
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07., B-1348 Louvain-la-Neuve, Belgium
| | - Alain Vercellone
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Myriam Chimen
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Gérald Gaibelet
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Serge Mazères
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Jérôme Nigou
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Yves F. Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07., B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
2
|
Sanz-Paz M, van Zanten TS, Manzo C, Mivelle M, Garcia-Parajo MF. Broadband Plasmonic Nanoantennas for Multi-Color Nanoscale Dynamics in Living Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207977. [PMID: 36999791 DOI: 10.1002/smll.202207977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Recently, the implementation of plasmonic nanoantennas has opened new possibilities to investigate the nanoscale dynamics of individual biomolecules in living cells. However, studies so far have been restricted to single molecular species as the narrow wavelength resonance of gold-based nanostructures precludes the simultaneous interrogation of different fluorescently labeled molecules. Here, broadband aluminum-based nanoantennas carved at the apex of near-field probes are exploited to resolve nanoscale-dynamic molecular interactions on living cell membranes. Through multicolor excitation, the authors simultaneously recorded fluorescence fluctuations of dual-color labeled transmembrane receptors known to form nanoclusters. Fluorescence cross-correlation studies revealed transient interactions between individual receptors in regions of ≈60 nm. Moreover, the high signal-to-background ratio provided by the antenna illumination allowed the authors to directly detect fluorescent bursts arising from the passage of individual receptors underneath the antenna. Remarkably, by reducing the illumination volume below the characteristic receptor nanocluster sizes, the molecular diffusion within nanoclusters is resolved and distinguished from nanocluster diffusion. Spatiotemporal characterization of transient interactions between molecules is crucial to understand how they communicate with each other to regulate cell function. This work demonstrates the potential of broadband photonic antennas to study multi-molecular events and interactions in living cell membranes with unprecedented spatiotemporal resolution.
Collapse
Affiliation(s)
- Maria Sanz-Paz
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute for Science and Technology, Barcelona, 08860, Spain
- Department of Physics, University of Fribourg, Chemin du Musée 3, Fribourg, CH-1700, Switzerland
| | - Thomas S van Zanten
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute for Science and Technology, Barcelona, 08860, Spain
- National Centre for Biological Sciences, Bangalore, 560065, India
| | - Carlo Manzo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute for Science and Technology, Barcelona, 08860, Spain
- Facultat de Ciéncies, Tecnologia i Enginyeries, Universitat de Vic - Universitat Central de Catalunya, C. de la Laura 13, Vic, 08500, Spain
| | - Mathieu Mivelle
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, UMR 7588, Paris, 75005, France
| | - Maria F Garcia-Parajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute for Science and Technology, Barcelona, 08860, Spain
- ICREA, Pg. Lluis Companys 23, Barcelona, 08010, Spain
| |
Collapse
|
3
|
Yu JR, Chou HC, Yang CW, Liao WS, Hwang IS, Chen C. A horizontal-type scanning near-field optical microscope with torsional mode operation toward high-resolution and non-destructive imaging of soft materials. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:073703. [PMID: 32752832 DOI: 10.1063/5.0009422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
We design and build a horizontal-type aperture based scanning near-field optical microscope (a-SNOM) with superior mechanical stability toward high-resolution and non-destructive topographic and optical imaging. We adopt the torsional mode in AFM (atomic force microscopy) operation to achieve a better force sensitivity and a higher topographic resolution when using pyramidal a-SNOM tips. The performance and stability of the AFM are evaluated through single-walled carbon nanotube and poly(3-hexyl-thiophene) nanowire samples. An optical resolution of 93 nm is deduced from the a-SNOM imaging of a metallic grating. Finally, a-SNOM fluorescence imaging of soft lipid domains is successfully achieved without sample damage by our horizontal-type a-SNOM instrument with torsional mode AFM operation.
Collapse
Affiliation(s)
- Jia-Ru Yu
- Research Center for Applied Sciences, Academia Sinica, Nangang, Taipei 115, Taiwan
| | - He-Chun Chou
- Research Center for Applied Sciences, Academia Sinica, Nangang, Taipei 115, Taiwan
| | - Chih-Wen Yang
- Institute of Physics, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Wei-Ssu Liao
- Department of Chemistry, National Taiwan University, Da-an, Taipei 106, Taiwan
| | - Ing-Shouh Hwang
- Institute of Physics, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Chi Chen
- Research Center for Applied Sciences, Academia Sinica, Nangang, Taipei 115, Taiwan
| |
Collapse
|
4
|
Chasing Uptake: Super-Resolution Microscopy in Endocytosis and Phagocytosis. Trends Cell Biol 2019; 29:727-739. [PMID: 31227311 DOI: 10.1016/j.tcb.2019.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/14/2019] [Accepted: 05/23/2019] [Indexed: 11/21/2022]
Abstract
Since their invention about two decades ago, super-resolution microscopes have become a method of choice in cell biology. Owing to a spatial resolution below 50 nm, smaller than the size of most organelles, and an order of magnitude better than the diffraction limit of conventional light microscopes, super-resolution microscopy is a powerful technique for resolving intracellular trafficking. In this review we discuss discoveries in endocytosis and phagocytosis that have been made possible by super-resolution microscopy - from uptake at the plasma membrane, endocytic coat formation, and cytoskeletal rearrangements to endosomal maturation. The detailed visualization of the diverse molecular assemblies that mediate endocytic uptake will provide a better understanding of how cells ingest extracellular material.
Collapse
|
5
|
Chtcheglova LA, Hinterdorfer P. Simultaneous AFM topography and recognition imaging at the plasma membrane of mammalian cells. Semin Cell Dev Biol 2018; 73:45-56. [DOI: 10.1016/j.semcdb.2017.08.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/04/2017] [Accepted: 08/08/2017] [Indexed: 10/19/2022]
|
6
|
Chorsi HT, Zhu Y, Zhang JXJ. Patterned Plasmonic Surfaces-Theory, Fabrication, and Applications in Biosensing. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS : A JOINT IEEE AND ASME PUBLICATION ON MICROSTRUCTURES, MICROACTUATORS, MICROSENSORS, AND MICROSYSTEMS 2017; 26:718-739. [PMID: 29276365 PMCID: PMC5736324 DOI: 10.1109/jmems.2017.2699864] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Low-profile patterned plasmonic surfaces are synergized with a broad class of silicon microstructures to greatly enhance near-field nanoscale imaging, sensing, and energy harvesting coupled with far-field free-space detection. This concept has a clear impact on several key areas of interest for the MEMS community, including but not limited to ultra-compact microsystems for sensitive detection of small number of target molecules, and "surface" devices for optical data storage, micro-imaging and displaying. In this paper, we review the current state-of-the-art in plasmonic theory as well as derive design guidance for plasmonic integration with microsystems, fabrication techniques, and selected applications in biosensing, including refractive-index based label-free biosensing, plasmonic integrated lab-on-chip systems, plasmonic near-field scanning optical microscopy and plasmonics on-chip systems for cellular imaging. This paradigm enables low-profile conformal surfaces on microdevices, rather than bulk material or coatings, which provide clear advantages for physical, chemical and biological-related sensing, imaging, and light harvesting, in addition to easier realization, enhanced flexibility, and tunability.
Collapse
Affiliation(s)
- Hamid T Chorsi
- Thayer School of engineering, Dartmouth College, Hanover, NH 03755 USA
| | - Ying Zhu
- Thayer School of engineering, Dartmouth College, Hanover, NH 03755 USA
| | - John X J Zhang
- Thayer School of engineering, Dartmouth College, Hanover, NH 03755 USA
| |
Collapse
|
7
|
Bulat K, Rygula A, Szafraniec E, Ozaki Y, Baranska M. Live endothelial cells imaged by Scanning Near-field Optical Microscopy (SNOM): capabilities and challenges. JOURNAL OF BIOPHOTONICS 2017; 10:928-938. [PMID: 27545579 DOI: 10.1002/jbio.201600081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 07/23/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Abstract
The scanning near-field optical microscopy (SNOM) shows a potential to study details of biological samples, since it provides the optical images of objects with nanometric spatial resolution (50-200 nm) and the topographic information at the same time. The goal of this work is to demonstrate the capabilities of SNOM in transmission configuration to study human endothelial cells and their morphological changes, sometimes very subtle, upon inflammation. Various sample preparations were tested for SNOM measurements and promising results are collected to show: 1) the influence of α tumor necrosis factor (TNF-α) on EA.hy 926 cells (measurements of the fixed cells); 2) high resolution images of various endothelial cell lines, i.e. EA.hy 926 and HLMVEC (investigations of the fixed cells in buffer environment); 3) imaging of live endothelial cells in physiological buffers. The study demonstrate complementarity of the SNOM measurements performed in air and in liquid environments, on fixed as well as on living cells. Furthermore, it is proved that the SNOM is a very useful method for analysis of cellular morphology and topography. Changes in the cell shape and nucleus size, which are the symptoms of inflammatory reaction, were noticed in TNF-α activated EA.hy 926 cells. The cellular structures of submicron size were observed in high resolution optical images of cells from EA.hy 926 and HLMVEC lines.
Collapse
Affiliation(s)
- Katarzyna Bulat
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, Krakow, Poland
- Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, Kraków, Poland
| | - Anna Rygula
- Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, Kraków, Poland
| | - Ewelina Szafraniec
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, Krakow, Poland
| | - Yukihiro Ozaki
- Kwasei Gakuin University, 2-1 Gakuen, Sanda, Hyougo, 669-1337, Japan
| | - Malgorzata Baranska
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, Krakow, Poland
- Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, Kraków, Poland
| |
Collapse
|
8
|
Brahami A, Levy H, Zlotkin-Rivkin E, Melamed-Book N, Tal N, Lev D, Yeshua T, Fedosyeyev O, Aroeti B, Lewis A. Live cell near-field optical imaging and voltage sensing with ultrasensitive force control. OPTICS EXPRESS 2017; 25:12131-12143. [PMID: 28786571 DOI: 10.1364/oe.25.012131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/24/2017] [Indexed: 06/07/2023]
Abstract
Force controlled optical imaging of membranes of living cells is demonstrated. Such imaging has been extended to image membrane potential changes to demonstrate that live cell imaging has been achieved. To accomplish this advance, limitations inherent in atomic force microscopy (AFM) since its inception in 1986 [G. Binnig, C. F. Quate, and C. Gerber, "Atomic Force Microscope," Phys. Rev. Lett. 56, 930-933 (1986).] had to be overcome. The advances allow for live cell imaging of a whole genre of functional biological imaging with stiff (1-10N/m) scanned probe imaging cantilevers. Even topographic imaging of fine cell protrusions, such as microvilli, has been accomplished with such cantilevers. Similar topographic imaging has only recently been demonstrated with the standard soft (0.05N/m) cantilevers that are generally required for live cell imaging. The progress reported here demonstrates both ultrasensitive AFM (~100pN), capable of topographic imaging of even microvilli protruding from cell membranes and new functional applications that should have a significant impact on optical and other approaches in biological imaging of living systems and ultrasoft materials.
Collapse
|
9
|
Abstract
The majority of studies of the living cell rely on capturing images using fluorescence microscopy. Unfortunately, for centuries, diffraction of light was limiting the spatial resolution in the optical microscope: structural and molecular details much finer than about half the wavelength of visible light (~200 nm) could not be visualized, imposing significant limitations on this otherwise so promising method. The surpassing of this resolution limit in far-field microscopy is currently one of the most momentous developments for studying the living cell, as the move from microscopy to super-resolution microscopy or 'nanoscopy' offers opportunities to study problems in biophysical and biomedical research at a new level of detail. This review describes the principles and modalities of present fluorescence nanoscopes, as well as their potential for biophysical and cellular experiments. All the existing nanoscopy variants separate neighboring features by transiently preparing their fluorescent molecules in states of different emission characteristics in order to make the features discernible. Usually these are fluorescent 'on' and 'off' states causing the adjacent molecules to emit sequentially in time. Each of the variants can in principle reach molecular spatial resolution and has its own advantages and disadvantages. Some require specific transitions and states that can be found only in certain fluorophore subfamilies, such as photoswitchable fluorophores, while other variants can be realized with standard fluorescent labels. Similar to conventional far-field microscopy, nanoscopy can be utilized for dynamical, multi-color and three-dimensional imaging of fixed and live cells, tissues or organisms. Lens-based fluorescence nanoscopy is poised for a high impact on future developments in the life sciences, with the potential to help solve long-standing quests in different areas of scientific research.
Collapse
|
10
|
Czajkowsky DM, Sun J, Shao Z. Illuminated up close: near-field optical microscopy of cell surfaces. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:119-25. [DOI: 10.1016/j.nano.2014.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/10/2014] [Indexed: 01/22/2023]
|
11
|
Pi J, Jin H, Yang F, Chen ZW, Cai J. In situ single molecule imaging of cell membranes: linking basic nanotechniques to cell biology, immunology and medicine. NANOSCALE 2014; 6:12229-12249. [PMID: 25227707 DOI: 10.1039/c4nr04195j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The cell membrane, which consists of a viscous phospholipid bilayer, different kinds of proteins and various nano/micrometer-sized domains, plays a very important role in ensuring the stability of the intracellular environment and the order of cellular signal transductions. Exploring the precise cell membrane structure and detailed functions of the biomolecules in a cell membrane would be helpful to understand the underlying mechanisms involved in cell membrane signal transductions, which could further benefit research into cell biology, immunology and medicine. The detection of membrane biomolecules at the single molecule level can provide some subtle information about the molecular structure and the functions of the cell membrane. In particular, information obtained about the molecular mechanisms and other information at the single molecule level are significantly different from that detected from a large amount of biomolecules at the large-scale through traditional techniques, and can thus provide a novel perspective for the study of cell membrane structures and functions. However, the precise investigations of membrane biomolecules prompts researchers to explore cell membranes at the single molecule level by the use of in situ imaging methods, as the exact conformation and functions of biomolecules are highly controlled by the native cellular environment. Recently, the in situ single molecule imaging of cell membranes has attracted increasing attention from cell biologists and immunologists. The size of biomolecules and their clusters on the cell surface are set at the nanoscale, which makes it mandatory to use high- and super-resolution imaging techniques to realize the in situ single molecule imaging of cell membranes. In the past few decades, some amazing imaging techniques and instruments with super resolution have been widely developed for molecule imaging, which can also be further employed for the in situ single molecule imaging of cell membranes. In this review, we attempt to summarize the characteristics of these advanced techniques for use in the in situ single molecule imaging of cell membranes. We believe that this work will help to promote the technological and methodological developments of super-resolution techniques for the single molecule imaging of cell membranes and help researchers better understand which technique is most suitable for their future exploring of membrane biomolecules; ultimately promoting further developments in cell biology, immunology and medicine.
Collapse
Affiliation(s)
- Jiang Pi
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technique, Macau, China.
| | | | | | | | | |
Collapse
|
12
|
van Hoorn CH, Chavan DC, Tiribilli B, Margheri G, Mank AJG, Ariese F, Iannuzzi D. Opto-mechanical probe for combining atomic force microscopy and optical near-field surface analysis. OPTICS LETTERS 2014; 39:4800-4803. [PMID: 25121878 DOI: 10.1364/ol.39.004800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We have developed a new easy-to-use probe that can be used to combine atomic force microscopy (AFM) and scanning near-field optical microscopy (SNOM). We show that, using this device, the evanescent field, obtained by total internal reflection conditions in a prism, can be visualized by approaching the surface with the scanning tip. Furthermore, we were able to obtain simultaneous AFM and SNOM images of a standard test grating in air and in liquid. The lateral resolution in AFM and SNOM mode was estimated to be 45 and 160 nm, respectively. This new probe overcomes a number of limitations that commercial probes have, while yielding the same resolution.
Collapse
|
13
|
Itano MS, Graus MS, Pehlke C, Wester MJ, Liu P, Lidke KA, Thompson NL, Jacobson K, Neumann AK. Super-resolution imaging of C-type lectin spatial rearrangement within the dendritic cell plasma membrane at fungal microbe contact sites. FRONTIERS IN PHYSICS 2014; 2:46. [PMID: 25506589 PMCID: PMC4262399 DOI: 10.3389/fphy.2014.00046] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Dendritic cells express DC-SIGN and CD206, C-type lectins (CTLs) that bind a variety of pathogens and may facilitate pathogen uptake for subsequent antigen presentation. Both proteins form punctate membrane nanodomains (∼80 nm) on naïve cells. We analyzed the spatiotemporal distribution of CTLs following host-fungal particle contact using confocal microscopy and three distinct methods of cluster identification and measurement of receptor clusters in super-resolution datasets: DBSCAN, Pair Correlation and a custom implementation of the Getis spatial statistic. Quantitative analysis of confocal and super-resolution images demonstrated that CTL nanodomains become concentrated in the contact site relative to non-contact membrane after the first hour of exposure and established that this recruitment is sustained out to 4 h. DC-SIGN nanodomains in fungal contact sites exhibit a 70% area increase and a 38% decrease in interdomain separation. Contact site CD206 nanodomains possess 90% greater area and 42% lower interdomain separation relative to non-contact regions. Contact site CTL clusters appear as disk-shaped domains of approximately 150-175 nm in diameter. The increase in length scale of CTL nanostructure in contact sites suggests that the smaller nanodomains on resting membranes may merge during fungal recognition, or that they become packed closely enough to achieve sub-resolution inter-domain edge separations of <30 nm. This study provides evidence of local receptor spatial rearrangements on the nanoscale that occur in the plasma membrane upon pathogen binding and may direct important signaling interactions required to recognize and respond to the presence of a relatively large pathogen.
Collapse
Affiliation(s)
- Michelle S. Itano
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew S. Graus
- Department of Pathology, Spatiotemporal Modeling Center, University of New Mexico, Albuquerque, NM, USA
| | - Carolyn Pehlke
- Spatiotemporal Modeling Center, University of New Mexico, Albuquerque, NM, USA
| | - Michael J. Wester
- Department of Mathematics and Statistics, Spatiotemporal Modeling Center, University of New Mexico, Albuquerque, NM, USA
| | - Ping Liu
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Keith A. Lidke
- Department of Physics, Spatiotemporal Modeling Center, University of New Mexico, Albuquerque, NM, USA
| | - Nancy L. Thompson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ken Jacobson
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Aaron K. Neumann
- Department of Pathology, Spatiotemporal Modeling Center, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
14
|
Graus MS, Pehlke C, Wester MJ, Davidson LB, Steinberg SL, Neumann AK. A new tool to quantify receptor recruitment to cell contact sites during host-pathogen interaction. PLoS Comput Biol 2014; 10:e1003639. [PMID: 24874253 PMCID: PMC4038466 DOI: 10.1371/journal.pcbi.1003639] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 04/08/2014] [Indexed: 11/18/2022] Open
Abstract
To understand the process of innate immune fungal recognition, we developed computational tools for the rigorous quantification and comparison of receptor recruitment and distribution at cell-cell contact sites. We used these tools to quantify pattern recognition receptor spatiotemporal distributions in contacts between primary human dendritic cells and the fungal pathogens C. albicans, C. parapsilosis and the environmental yeast S. cerevisiae, imaged using 3D multichannel laser scanning confocal microscopy. The detailed quantitative analysis of contact sites shows that, despite considerable biochemical similarity in the composition and structure of these species' cell walls, the receptor spatiotemporal distribution in host-microbe contact sites varies significantly between these yeasts. Our findings suggest a model where innate immune cells discriminate fungal microorganisms based on differential mobilization and coordination of receptor networks. Our analysis methods are also broadly applicable to a range of cell-cell interactions central to many biological problems.
Collapse
Affiliation(s)
- Matthew S. Graus
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Carolyn Pehlke
- Center for Spatiotemporal Modeling of Cell Signaling, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Michael J. Wester
- Center for Spatiotemporal Modeling of Cell Signaling and Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Lisa B. Davidson
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Stanly L. Steinberg
- Center for Spatiotemporal Modeling of Cell Signaling and Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Aaron K. Neumann
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
15
|
Park KD, Park DJ, Lee SG, Choi G, Kim DS, Byeon CC, Choi SB, Jeong MS. Operation of a wet near-field scanning optical microscope in stable zones by minimizing the resonance change of tuning forks. NANOTECHNOLOGY 2014; 25:075704. [PMID: 24457601 DOI: 10.1088/0957-4484/25/7/075704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A resonant shift and a decrease of resonance quality of a tuning fork attached to a conventional fiber optic probe in the vicinity of liquid is monitored systematically while varying the protrusion length and immersion depth of the probe. Stable zones where the resonance modification as a function of immersion depth is minimized are observed. A wet near-field scanning optical microscope (wet-NSOM) is operated for a sample within water by using such a stable zone.
Collapse
|
16
|
Liu P, Wang X, Itano MS, Neumann AK, de Silva AM, Jacobson K, Thompson NL. Low copy numbers of DC-SIGN in cell membrane microdomains: implications for structure and function. Traffic 2013; 15:179-96. [PMID: 24313910 DOI: 10.1111/tra.12138] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 11/07/2013] [Accepted: 11/11/2013] [Indexed: 12/17/2022]
Abstract
Presently, there are few estimates of the number of molecules occupying membrane domains. Using a total internal reflection fluorescence microscopy (TIRFM) imaging approach, based on comparing the intensities of fluorescently labeled microdomains with those of single fluorophores, we measured the occupancy of DC-SIGN, a C-type lectin, in membrane microdomains. DC-SIGN or its mutants were labeled with primary monoclonal antibodies (mAbs) in either dendritic cells (DCs) or NIH3T3 cells, or expressed as GFP fusions in NIH3T3 cells. The number of DC-SIGN molecules per microdomain ranges from only a few to over 20, while microdomain dimensions range from the diffraction limit to > 1 µm. The largest fraction of microdomains, appearing at the diffraction limit, in either immature DCs or 3 T3 cells contains only 4-8 molecules of DC-SIGN, consistent with our preliminary super-resolution Blink microscopy estimates. We further show that these small assemblies are sufficient to bind and efficiently internalize a small (∼ 50 nm) pathogen, dengue virus, leading to infection of host cells.
Collapse
Affiliation(s)
- Ping Liu
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7090, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Miyazaki HT, Kasaya T, Takemura T, Hanagata N, Yasuda T, Miyazaki H. Diffraction-unlimited optical imaging of unstained living cells in liquid by electron beam scanning of luminescent environmental cells. OPTICS EXPRESS 2013; 21:28198-28218. [PMID: 24514332 DOI: 10.1364/oe.21.028198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
An environmental cell with a 50-nm-thick cathodoluminescent window was attached to a scanning electron microscope, and diffraction-unlimited near-field optical imaging of unstained living human lung epithelial cells in liquid was demonstrated. Electrons with energies as low as 0.8 - 1.2 kV are sufficiently blocked by the window without damaging the specimens, and form a sub-wavelength-sized illumination light source. A super-resolved optical image of the specimen adhered to the opposite window surface was acquired by a photomultiplier tube placed below. The cells after the observation were proved to stay alive. The image was formed by enhanced dipole radiation or energy transfer, and features as small as 62 nm were resolved.
Collapse
|
18
|
Raigoza AF, Dugger JW, Webb LJ. Review: recent advances and current challenges in scanning probe microscopy of biomolecular surfaces and interfaces. ACS APPLIED MATERIALS & INTERFACES 2013; 5:9249-9261. [PMID: 23848270 DOI: 10.1021/am4018048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The introduction of scanning probe microscopy (SPM) techniques revolutionized the field of condensed matter science by allowing researchers to probe the structure and composition of materials on an atomic scale. Although these methods have been used to make molecular- and atomic-scale measurements on biological systems with some success, the biophysical sciences remain on the cusp of a breakthrough with SPM technologies similar in magnitude to that experienced by fields related to solid-state surfaces and interfaces. Numerous challenges arise when attempting to connect biological molecules that are often delicate, dynamic, and complex with the experimental requirements of SPM techniques. However, there are a growing number of studies in which SPM has been successfully used to achieve subnanometer resolution measurements in biological systems where carefully designed and prepared samples have been paired with appropriate SPM techniques. We review significant recent innovations in applying SPM techniques to biological molecules, and highlight challenges that face researchers attempting to gain atomic- and molecular-level information of complex biomolecular structures.
Collapse
Affiliation(s)
- Annette F Raigoza
- Department of Chemistry and Biochemistry, Center for Nano- and Molecular Science and Technology, and Institute for Cell and Molecular Biology, The University of Texas at Austin , 1 University Station, A5300, Austin, Texas 78712, United States
| | | | | |
Collapse
|
19
|
NAKATA A, NOMOTO T, TOYOTA T, FUJINAMI M. Tip-enhanced Raman Spectroscopy of Lipid Bilayers in Water with an Alumina- and Silver-coated Tungsten Tip. ANAL SCI 2013; 29:865-9. [DOI: 10.2116/analsci.29.865] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Atsushi NAKATA
- Department of Applied Chemistry and Biotechnology, Chiba University
| | - Tomonori NOMOTO
- Department of Applied Chemistry and Biotechnology, Chiba University
| | - Taro TOYOTA
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo
| | | |
Collapse
|
20
|
Chtcheglova LA, Hinterdorfer P. Functional AFM imaging of cellular membranes using functionalized tips. Methods Mol Biol 2013; 950:359-371. [PMID: 23086885 DOI: 10.1007/978-1-62703-137-0_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The real-time visualization of specific binding sites on biological samples with high spatial resolution, in order of several nanometers, is an important undertaking in many fields of biology. During the past 5 years, simultaneous topography and recognition imaging (TREC) has become a powerful tool to quickly obtain local receptor nanomaps on complex heterogeneous biosurfaces, such as cells and membranes. In this chapter, we present the TREC technique and explain how to unravel the nano-landscape of cells of the immune system, such as macrophages. We describe the procedures for all steps of the experiment including tip functionalization with Fc fragments via flexible PEG-linker, sample preparation, and localization of Fcγ receptors on macrophages.
Collapse
|
21
|
Manzo C, Torreno-Pina JA, Joosten B, Reinieren-Beeren I, Gualda EJ, Loza-Alvarez P, Figdor CG, Garcia-Parajo MF, Cambi A. The neck region of the C-type lectin DC-SIGN regulates its surface spatiotemporal organization and virus-binding capacity on antigen-presenting cells. J Biol Chem 2012; 287:38946-55. [PMID: 23019323 DOI: 10.1074/jbc.m112.380121] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The C-type lectin DC-SIGN expressed on dendritic cells (DCs) facilitates capture and internalization of a plethora of different pathogens. Although it is known that DC-SIGN organizes in nanoclusters at the surface of DCs, the molecular mechanisms responsible for this well defined nanopatterning and role in viral binding remain enigmatic. By combining biochemical and advanced biophysical techniques, including optical superresolution and single particle tracking, we demonstrate that DC-SIGN intrinsic nanoclustering strictly depends on its molecular structure. DC-SIGN nanoclusters exhibited free, Brownian diffusion on the cell membrane. Truncation of the extracellular neck region, known to abrogate tetramerization, significantly reduced nanoclustering and concomitantly increased lateral diffusion. Importantly, DC-SIGN nanocluster dissolution exclusively compromised binding to nanoscale size pathogens. Monte Carlo simulations revealed that heterogeneity on nanocluster density and spatial distribution confers broader binding capabilities to DC-SIGN. As such, our results underscore a direct relationship between spatial nanopatterning, driven by intermolecular interactions between the neck regions, and receptor diffusion to provide DC-SIGN with the exquisite ability to dock pathogens at the virus length scale. Insight into how virus receptors are organized prior to virus binding and how they assemble into functional platforms for virus docking is helpful to develop novel strategies to prevent virus entry and infection.
Collapse
Affiliation(s)
- Carlo Manzo
- Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Transmission Near-Field Scanning Optical Microscopy Investigation on Cellular Uptake Behavior of Iron Oxide Nanoparticles. BIONANOSCIENCE 2012. [DOI: 10.1007/s12668-012-0043-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
23
|
Abstract
AbstractThe ability of metal surfaces and nanostructures to localize and enhance optical fields is the primary reason for their application in biosensing and imaging. Local field enhancement boosts the signal-to-noise ratio in measurements and provides the possibility of imaging with resolutions significantly better than the diffraction limit. In fluorescence imaging, local field enhancement leads to improved brightness of molecular emission and to higher detection sensitivity and better discrimination. We review the principles of plasmonic fluorescence enhancement and discuss applications ranging from biosensing to bioimaging.
Collapse
|
24
|
Haspot F, Lavault A, Sinzger C, Laib Sampaio K, Stierhof YD, Pilet P, Bressolette-Bodin C, Halary F. Human cytomegalovirus entry into dendritic cells occurs via a macropinocytosis-like pathway in a pH-independent and cholesterol-dependent manner. PLoS One 2012; 7:e34795. [PMID: 22496863 PMCID: PMC3322158 DOI: 10.1371/journal.pone.0034795] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 03/08/2012] [Indexed: 12/13/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus that is able to infect fibroblastic, epithelial, endothelial and hematopoietic cells. Over the past ten years, several groups have provided direct evidence that dendritic cells (DCs) fully support the HCMV lytic cycle. We previously demonstrated that the C-type lectin dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) has a prominent role in the docking of HCMV on monocyte-derived DCs (MDDCs). The DC-SIGN/HCMV interaction was demonstrated to be a crucial and early event that substantially enhanced infection in trans, i.e., from one CMV-bearing cell to another non-infected cell (or trans-infection), and rendered susceptible cells fully permissive to HCMV infection. Nevertheless, nothing is yet known about how HCMV enters MDDCs. In this study, we demonstrated that VHL/E HCMV virions (an endothelio/dendrotropic strain) are first internalized into MDDCs by a macropinocytosis-like process in an actin- and cholesterol-dependent, but pH-independent, manner. We observed the accumulation of virions in large uncoated vesicles with endosomal features, and the virions remained as intact particles that retained infectious potential for several hours. This trans-infection property was specific to MDDCs because monocyte-derived macrophages or monocytes from the same donor were unable to allow the accumulation of and the subsequent transmission of the virus. Together, these data allowed us to delineate the early mechanisms of the internalization and entry of an endothelio/dendrotropic HCMV strain into human MDDCs and to propose that DCs can serve as a "Trojan horse" to convey CMV from entry sites to other locations that may favor the occurrence of either latency or acute infection.
Collapse
Affiliation(s)
- Fabienne Haspot
- Unité Mixte de Recherche_S 1064, ex643, Institut National de la Santé et de la Recherche Médicale, Institute for Transplantation/Urology and Nephrology, Nantes, France.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Itano MS, Steinhauer C, Schmied JJ, Forthmann C, Liu P, Neumann AK, Thompson NL, Tinnefeld P, Jacobson K. Super-resolution imaging of C-type lectin and influenza hemagglutinin nanodomains on plasma membranes using blink microscopy. Biophys J 2012; 102:1534-42. [PMID: 22500753 DOI: 10.1016/j.bpj.2012.02.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 01/30/2012] [Accepted: 02/13/2012] [Indexed: 11/28/2022] Open
Abstract
Dendritic cells express DC-SIGN, a C-type lectin (CTL) that binds a variety of pathogens and facilitates their uptake for subsequent antigen presentation. DC-SIGN forms remarkably stable microdomains on the plasma membrane. However, inner leaflet lipid markers are able to diffuse through these microdomains suggesting that, rather than being densely packed with DC-SIGN proteins, an elemental substructure exists. Therefore, a super-resolution imaging technique, Blink Microscopy (Blink), was applied to further investigate the lateral distribution of DC-SIGN. Blink indicates that DC-SIGN, another CTL (CD206), and influenza hemagglutinin (HA) are all localized in small (∼80 nm in diameter) nanodomains. DC-SIGN and CD206 nanodomains are randomly distributed on the plasma membrane, whereas HA nanodomains cluster on length scales up to several microns. We estimate, as a lower limit, that DC-SIGN and HA nanodomains contain on average two tetramers or two trimers, respectively, whereas CD206 is often nonoligomerized. Two-color Blink determined that different CTLs rarely occupy the same nanodomain, although they appear colocalized using wide-field microscopy. What to our knowledge is a novel domain structure emerges in which elemental nanodomains, potentially capable of binding viruses, are organized in a random fashion; evidently, these nanodomains can be clustered into larger microdomains that act as receptor platforms for larger pathogens like yeasts.
Collapse
Affiliation(s)
- Michelle S Itano
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Liu P, Wang X, Itano MS, Neumann AK, Jacobson K, Thompson NL. The formation and stability of DC-SIGN microdomains require its extracellular moiety. Traffic 2012; 13:715-26. [PMID: 22292921 DOI: 10.1111/j.1600-0854.2012.01337.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 01/29/2012] [Accepted: 01/31/2012] [Indexed: 12/25/2022]
Abstract
Dendritic cell-specific intercellular adhesion molecule (ICAM)-3-grabbing non-integrin (DC-SIGN) is a Ca(2+) -dependent transmembrane lectin that binds a large variety of pathogens and facilitates their uptake for subsequent antigen presentation. This receptor is present in cell surface microdomains, but factors involved in microdomain formation and their exceptional stability are not clear. To determine which domain/motif of DC-SIGN facilitates its presence in microdomains, we studied mutations at key locations including truncation of the cytoplasmic tail, and ectodomain mutations that resulted in the removal of the N-linked glycosylation site, the tandem repeats and the carbohydrate recognition domain (CRD), as well as modification of the calcium sites in the CRD required for carbohydrate binding. Confocal imaging and fluorescence recovery after photobleaching measurements showed that the cytoplasmic domain and the N-linked glycosylation site do not affect the ability of DC-SIGN to form stable microdomains. However, truncation of the CRD results in complete loss of visible microdomains and subsequent lateral diffusion of the mutants. Apart from cell adhesions, membrane domains are thought to be localized primarily via the cytoskeleton. By contrast, we propose that interactions between the CRD of DC-SIGN and the extracellular matrix and/or cis interactions with transmembrane scaffolding protein(s) play an essential role in organizing these microdomains.
Collapse
Affiliation(s)
- Ping Liu
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
27
|
Affiliation(s)
- Francisco Zaera
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
28
|
Abstract
Cells respond to biochemical and mechanical stimuli through a series of steps that begin at the molecular, nanometre level, and translate finally in global cell response. Defects in biochemical- and/or mechanical-sensing, transduction or cellular response are the cause of multiple diseases, including cancer and immune disorders among others. Within the booming field of regenerative medicine, there is an increasing need for developing and applying nanotechnology tools to bring understanding on the cellular machinery and molecular interactions at the nanoscale. Nanotechnology, nanophotonics and in particular, high-resolution-based fluorescence approaches are already delivering crucial information on the way that cells respond to their environment and how they organize their receptors to perform specialized functions. This chapter focuses on emerging super-resolution optical techniques, summarizing their principles, technical implementation, and reviewing some of the achievements reached so far.
Collapse
Affiliation(s)
- Maria F Garcia-Parajo
- BioNanoPhotonics Group, IBEC - Institute for Bioengineering of Catalonia and CIBER-BBN, Barcelona, Spain.
| |
Collapse
|
29
|
Chtcheglova LA, Hinterdorfer P. Atomic force microscopy functional imaging on vascular endothelial cells. Methods Mol Biol 2012; 931:331-44. [PMID: 23027010 DOI: 10.1007/978-1-62703-056-4_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
One of the challenging tasks in molecular cell biology is to identify and localize specific binding sites on biological samples with high spatial accuracy (in order of several nm). During the past 5 years, simultaneous topography and recognition imaging (TREC) has become a powerful AFM-based technique for quick and easy high-resolution receptor mapping. In this chapter, we provide a flavor of TREC application on vascular endothelial cells by describing the detailed procedures for all stages of the experiment from tip and sample preparations through the operating principles and visualization.
Collapse
|
30
|
Itano MS, Neumann AK, Liu P, Zhang F, Gratton E, Parak WJ, Thompson NL, Jacobson K. DC-SIGN and influenza hemagglutinin dynamics in plasma membrane microdomains are markedly different. Biophys J 2011; 100:2662-70. [PMID: 21641311 DOI: 10.1016/j.bpj.2011.04.044] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/11/2011] [Accepted: 04/14/2011] [Indexed: 11/24/2022] Open
Abstract
DC-SIGN, a Ca(2+)-dependent transmembrane lectin, is found assembled in microdomains on the plasma membranes of dendritic cells. These microdomains bind a large variety of pathogens and facilitate their uptake for subsequent antigen presentation. In this study, DC-SIGN dynamics in microdomains were explored with several fluorescence microscopy methods and compared with dynamics for influenza hemagglutinin (HA), which is also found in plasma membrane microdomains. Fluorescence imaging indicated that DC-SIGN microdomains may contain other C-type lectins and that the DC-SIGN cytoplasmic region is not required for microdomain formation. Fluorescence recovery after photobleaching measurements showed that neither full-length nor cytoplasmically truncated DC-SIGN in microdomains appreciably exchanged with like molecules in other microdomains and the membrane surround, whereas HA in microdomains exchanged almost completely. Line-scan fluorescence correlation spectroscopy indicated an essentially undetectable lateral mobility for DC-SIGN but an appreciable mobility for HA within their respective domains. Single-particle tracking with defined-valency quantum dots confirmed that HA has significant mobility within microdomains, whereas DC-SIGN does not. By contrast, fluorescence recovery after photobleaching indicated that inner leaflet lipids are able to move through DC-SIGN microdomains. The surprising stability of DC-SIGN microdomains may reflect structural features that enhance pathogen uptake either by providing high-avidity platforms and/or by protecting against rapid microdomain endocytosis.
Collapse
Affiliation(s)
- Michelle S Itano
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Chtcheglova LA, Hinterdorfer P. Simultaneous topography and recognition imaging on endothelial cells. J Mol Recognit 2011; 24:788-94. [DOI: 10.1002/jmr.1126] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Ayache M, Nezhad MP, Zamek S, Abashin M, Fainman Y. Near-field measurement of amplitude and phase in silicon waveguides with liquid cladding. OPTICS LETTERS 2011; 36:1869-1871. [PMID: 21593918 DOI: 10.1364/ol.36.001869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Heterodyne near-field scanning optical microscopy (H-NSOM) has proven useful as a tool for characterization of both amplitude and phase of on-chip photonic devices in air, but it has previously been unable to characterize devices with a dielectric overcladding, which is commonly used in practice for such devices. Here we demonstrate H-NSOM of a silicon waveguide with a liquid cladding emulating the solid dielectric. This technique allows characterization of practical devices with realistic refractive index profiles. Fourier analysis is used to estimate the effective refractive index of the mode from the measured data, showing an index shift of 0.08 from air to water cladding, which is seen to correspond well to simulations.
Collapse
Affiliation(s)
- Maurice Ayache
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0407, USA.
| | | | | | | | | |
Collapse
|
33
|
Meilhac N, Destainville N. Clusters of proteins in biomembranes: insights into the roles of interaction potential shapes and of protein diversity. J Phys Chem B 2011; 115:7190-9. [PMID: 21528886 DOI: 10.1021/jp1099865] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
It has recently been proposed that proteins embedded in lipidic biomembranes can spontaneously self-organize into stable small clusters, or membrane nanodomains, due to the competition between short-range attractive and longer-range repulsive forces between proteins, specific to these systems. In this paper, we carry on our investigation, by Monte Carlo simulations, of different aspects of cluster phases of proteins in biomembranes. First, we compare different long-range potentials (including notably three-body terms) to demonstrate that the existence of cluster phases should be quite generic. Furthermore, a real membrane contains hundreds of different protein species that are far from being randomly distributed in these nanodomains. We take this protein diversity into account by modulating protein-protein interaction potentials both at short and longer range. We confirm theoretical predictions in terms of biological cluster specialization by deciphering how clusters recruit only a few protein species. In this respect, we highlight that cluster phases can turn out to be an advantage at the biological level, for example by enhancing the cell response to external stimuli.
Collapse
Affiliation(s)
- Nicolas Meilhac
- Université de Toulouse, UPS, Laboratoire de Physique Théorique (IRSAMC), Toulouse, France
| | | |
Collapse
|
34
|
Gjelstrup LC, Boesen T, Kragstrup TW, Jørgensen A, Klein NJ, Thiel S, Deleuran BW, Vorup-Jensen T. Shedding of large functionally active CD11/CD18 Integrin complexes from leukocyte membranes during synovial inflammation distinguishes three types of arthritis through differential epitope exposure. THE JOURNAL OF IMMUNOLOGY 2010; 185:4154-68. [PMID: 20826754 DOI: 10.4049/jimmunol.1000952] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD18 integrins are adhesion molecules expressed on the cell surface of leukocytes and play a central role in the molecular mechanisms supporting leukocyte migration to zones of inflammation. Recently, it was discovered that CD11a/CD18 is shed from the leukocyte surface in models of inflammation. In this study, we show that shedding of human CD11/CD18 complexes is a part of synovial inflammation in rheumatoid arthritis and spondyloarthritis but not in osteoarthritis. In vivo and in vitro data suggest that the shedding is driven by TNF-α, which links the process to central events in the inflammatory response. The shed complexes contain multiple heterodimers of CD11/CD18, are variable in size, and differ according to the type of synovial inflammation. Furthermore, the differential structures determine the avidity of binding of the complexes to the ICAM-1. With the estimated concentrations of CD11/CD18 in plasma and synovial fluid a significant coverage of binding sites in ICAM-1 for CD18 integrins is expected. Based on cell adhesion experiments in vitro, we hypothesize that the large soluble complexes of CD11/CD18 act in vivo to buffer leukocyte adhesion by competing with the membrane-bound receptors for ICAM-1 binding sites. As reported here for synovial inflammation changes in the concentration or structure of these complexes should be considered as likely contributors to disease activity.
Collapse
|
35
|
Neumann AK, Itano MS, Jacobson K. Understanding lipid rafts and other related membrane domains. F1000 BIOLOGY REPORTS 2010; 2:31. [PMID: 20606718 PMCID: PMC2894464 DOI: 10.3410/b2-31] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Evidence in support of the classical lipid raft hypothesis has remained elusive. Data suggests that transmembrane proteins and the actin-containing cortical cytoskeleton can organize lipids into short-lived nanoscale assemblies that can be assembled into larger domains under certain conditions. This supports an evolving view in which interactions between lipids, cholesterol, and proteins create and maintain lateral heterogeneity in the cell membrane.
Collapse
Affiliation(s)
- Aaron K Neumann
- Department of Cell and Developmental Biology, University of North CarolinaCB# 7090, Chapel Hill, NC 27599-7090USA
| | - Michelle S Itano
- Department of Cell and Developmental Biology, University of North CarolinaCB# 7090, Chapel Hill, NC 27599-7090USA
| | - Ken Jacobson
- Department of Cell and Developmental Biology, University of North CarolinaCB# 7090, Chapel Hill, NC 27599-7090USA
- Lineberger Comprehensive Cancer Center, University of North CarolinaCB# 7295, Chapel Hill, NC 27599-7295USA
| |
Collapse
|
36
|
C-type lectin DC-SIGN: an adhesion, signalling and antigen-uptake molecule that guides dendritic cells in immunity. Cell Signal 2010; 22:1397-405. [PMID: 20363321 PMCID: PMC7127357 DOI: 10.1016/j.cellsig.2010.03.018] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 03/25/2010] [Indexed: 11/30/2022]
Abstract
The dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) is a type II C-type lectin whose expression is restricted to the most potent antigen-presenting cells (APCs), the dendritic cells (DCs). In recent years, DC-SIGN has gained an exponential increase in attention because of its involvement in multiple aspects of immune function. Besides being an adhesion molecule, particularly in binding ICAM-2 and ICAM-3, it is also crucial in recognizing several endogenous and exogenous antigens. Additionally, the intracellular domain of DC-SIGN includes molecular motifs, which enable the activation of signal transduction pathways involving Raf-1 and subsequent modulation of DC-maturation status, through direct modification of nuclear factor Nf-κB in DCs. Upon DC-SIGN engagement by mannose- or fucose-containing oligosaccharides, the latter leads to a tailored Toll-like receptor signalling, resulting in an altered DC-cytokine profile and skewing of Th1/Th2 responses. In this article, we will discuss recent advances on a broad perspective concerning DC-SIGN structure, signalling and immune function.
Collapse
|
37
|
A nanometer scale optical view on the compartmentalization of cell membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:777-87. [DOI: 10.1016/j.bbamem.2009.09.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 09/13/2009] [Accepted: 09/20/2009] [Indexed: 12/30/2022]
|
38
|
van Zanten TS, Lopez-Bosque MJ, Garcia-Parajo MF. Imaging individual proteins and nanodomains on intact cell membranes with a probe-based optical antenna. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2010; 6:270-275. [PMID: 19943247 DOI: 10.1002/smll.200901204] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Optical antennas that confine and enhance electromagnetic fields in a nanometric region hold great potential for nanobioimaging and biosensing. Probe-based monopole optical antennas are fabricated to enhance fields localized to <30 nm near the antenna apex in aqueous conditions. These probes are used under appropriate excitation antenna conditions to image individual antibodies with an unprecedented resolution of 26 +/- 4 nm and virtually no surrounding background. On intact cell membranes in physiological conditions, the obtained resolution is 30 +/- 6 nm. Importantly, the method allows individual proteins to be distinguished from nanodomains and the degree of clustering to be quantified by directly measuring physical size and intensity of individual fluorescent spots. Improved antenna geometries should lead to true live cell imaging below 10-nm resolution with position accuracy in the subnanometric range.
Collapse
Affiliation(s)
- Thomas S van Zanten
- BioNanoPhotonics Group, IBEC-Institute for Bioengineering of Catalonia and CIBER-bbn, Baldiri Reixac 15-21, Barcelona, Spain
| | | | | |
Collapse
|
39
|
Abulrob A, Lu Z, Baumann E, Vobornik D, Taylor R, Stanimirovic D, Johnston LJ. Nanoscale imaging of epidermal growth factor receptor clustering: effects of inhibitors. J Biol Chem 2009; 285:3145-56. [PMID: 19959837 DOI: 10.1074/jbc.m109.073338] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The development of some solid tumors is associated with overexpression of the epidermal growth factor receptor (EGFR) and often correlates with poor prognosis. Near field scanning optical microscopy, a technique with subdiffraction-limited optical resolution, was used to examine the influence of two inhibitors (the chimeric 225 antibody and tyrosine phosphorylation inhibitor AG1478) on the nanoscale clustering of EGFR in HeLa cells. The EGFR is organized in small clusters, average diameter of 150 nm, on the plasma membrane for both control and EGF-treated cells. The numbers of receptors in individual clusters vary from as few as one or two proteins to greater than 100. Both inhibitors yield an increased cluster density and an increase in the fraction of clusters with smaller diameters and fewer receptors. Exposure to AG1478 also decreases the fraction of EGFR that colocalizes with both rafts and caveolae. EGF stimulation results in a significant loss of the full-length EGFR from the plasma membrane with the concomitant appearance of low molecular mass proteolytic products. By contrast, AG1478 reduces the level of EGFR degradation. Changes in receptor clustering provide one mechanism for regulating EGFR signaling and are relevant to the design of strategies for therapeutic interventions based on modulating EGFR signaling.
Collapse
Affiliation(s)
- Abedelnasser Abulrob
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario K1A 0R5, Canada.
| | | | | | | | | | | | | |
Collapse
|
40
|
Takahashi Y, Shiku H, Murata T, Yasukawa T, Matsue T. Transfected Single-Cell Imaging by Scanning Electrochemical Optical Microscopy with Shear Force Feedback Regulation. Anal Chem 2009; 81:9674-81. [DOI: 10.1021/ac901796r] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yasufumi Takahashi
- Graduate School of Environmental Studies, Tohoku University, Aramaki Aoba 6-6-11-605, Sendai 980-8579, Japan, and Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Hitoshi Shiku
- Graduate School of Environmental Studies, Tohoku University, Aramaki Aoba 6-6-11-605, Sendai 980-8579, Japan, and Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Tatsuya Murata
- Graduate School of Environmental Studies, Tohoku University, Aramaki Aoba 6-6-11-605, Sendai 980-8579, Japan, and Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Tomoyuki Yasukawa
- Graduate School of Environmental Studies, Tohoku University, Aramaki Aoba 6-6-11-605, Sendai 980-8579, Japan, and Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Tomokazu Matsue
- Graduate School of Environmental Studies, Tohoku University, Aramaki Aoba 6-6-11-605, Sendai 980-8579, Japan, and Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| |
Collapse
|
41
|
Hotspots of GPI-anchored proteins and integrin nanoclusters function as nucleation sites for cell adhesion. Proc Natl Acad Sci U S A 2009; 106:18557-62. [PMID: 19850864 DOI: 10.1073/pnas.0905217106] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Recruitment of receptor proteins to lipid rafts has been proposed as an important mechanism to regulate their cellular function. In particular, rafts have been implicated in regulation of integrin-mediated cell adhesion, although the underlying mechanism remains elusive. We used single-molecule near-field optical microscopy (NSOM) with localization accuracy of approximately 3 nm, to capture the spatio-functional relationship between the integrin LFA-1 and raft components (GPI-APs) on immune cells. Dual color nanoscale imaging revealed the existence of a nanodomain GPI-AP subpopulation that further concentrated in regions smaller than 250 nm, suggesting a hierarchical prearrangement of GPI-APs on resting monocytes. We previously demonstrated that in quiescent monocytes, LFA-1 preorganizes in nanoclusters. We now show that integrin nanoclusters are spatially different but reside proximal to GPI-AP nanodomains, forming hotspots on the cell surface. Ligand-mediated integrin activation resulted in an interconversion from monomers to nanodomains of GPI-APs and the generation of nascent adhesion sites where integrin and GPI-APs colocalized at the nanoscale. Cholesterol depletion significantly affected the reciprocal distribution pattern of LFA-1 and GPI-APs in the resting state, and LFA-1 adhesion to its ligand. As such, our data demonstrate the existence of nanoplatforms as essential intermediates in nascent cell adhesion. Since raft association with a variety of membrane proteins other than LFA-1 has been documented, we propose that hotspots regions enriched with raft components and functional receptors may constitute a prototype of nanoscale inter-receptor assembly and correspond to a generic mechanism to offer cells with privileged areas for rapid cellular function and responses to the outside world.
Collapse
|
42
|
Herrmann M, Neuberth N, Wissler J, Pérez J, Gradl D, Naber A. Near-field optical study of protein transport kinetics at a single nuclear pore. NANO LETTERS 2009; 9:3330-3336. [PMID: 19591452 DOI: 10.1021/nl901598z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The kinetics of proteins passing through individual nuclear pore complexes (NPCs) of the nuclear envelope (NE) was studied using near-field scanning optical microscopy (NSOM) in combination with fluorescence correlation spectroscopy (FCS). The NSOM probe was placed over a single pore in an unsupported native NE to observe fluorescence-labeled NTF2 moving in the transport channel. A correlation analysis of the arising fluorescence fluctuations enabled us to characterize the translocation as driven by Brownian motion and to determine the related kinetic constants. Though trapped in the pore, NTF2 turned out to be highly mobile within a large axial extension. Our findings support the idea that molecules in transit interact with NPC proteins containing phenylalanine-glycine-repeat domains at the periphery of the channel. NSOM-FCS may help to understand the facilitated translocation in more detail and offers a new way to study single molecule mobility on a nanoscale.
Collapse
Affiliation(s)
- Michael Herrmann
- DFG-Center for Functional Nanostructures (CFN), Universität Karlsruhe (TH), Wolfgang-Gaede-Strasse 1, D-76131 Karlsruhe, Germany
| | | | | | | | | | | |
Collapse
|
43
|
LeDue JM, Lopez-Ayon M, Burke SA, Miyahara Y, Grütter P. High Q optical fiber tips for NC-AFM in liquid. NANOTECHNOLOGY 2009; 20:264018. [PMID: 19509445 DOI: 10.1088/0957-4484/20/26/264018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Non-contact atomic force microscopy is rapidly expanding from ultra-high vacuum to include the study of surfaces and biomolecules in liquids by high resolution imaging and force spectroscopy. This is despite the additional frequency shift noise due to the inherently low Q factor of the cantilever oscillating in a liquid. In this paper we present a tip based on an optical fiber which can operate in liquid with Q factors in excess of 100 using a 'diving bell' arrangement which allows only a small portion of the tip to be submerged. We demonstrate stable imaging and force spectroscopy using this set-up. The tips are based on scanning near-field optical microscopy tips and, when used with NC-AFM, provide a method of combining both high resolution mechanical and fluorescence studies of biomolecules and cells.
Collapse
Affiliation(s)
- J M LeDue
- Center for the Physics of Materials and Department of Physics, McGill University, Montreal, QC, H3A 2T8, Canada.
| | | | | | | | | |
Collapse
|
44
|
Chen Y, Qin J, Cai J, Chen ZW. Cold induces micro- and nano-scale reorganization of lipid raft markers at mounds of T-cell membrane fluctuations. PLoS One 2009; 4:e5386. [PMID: 19404395 PMCID: PMC2671402 DOI: 10.1371/journal.pone.0005386] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 03/23/2009] [Indexed: 02/06/2023] Open
Abstract
Whether and how cold causes changes in cell-membrane or lipid rafts remain poorly characterized. Using the NSOM/QD and confocal imaging systems, we found that cold caused microscale redistribution of lipid raft markers, GM1 for lipid and CD59 for protein, from the peripheral part of microdomains to the central part on Jurkat T cells, and that cold also induced the nanoscale size-enlargement (1/3- to 2/3-fold) of the nanoclusters of lipid raft markers and even the colocalization of GM1 and CD59 nanoclusters. These findings indicate cold-induced lateral rearrangement/coalescence of raft-related membrane heterogeneity. The cold-induced re-distribution of lipid raft markers under a nearly-natural condition provide clues for their alternations, and help to propose a model in which raft lipids associate themselves or interact with protein components to generate functional membrane heterogeneity in response to stimulus. The data also underscore the possible cold-induced artifacts in early-described cold-related experiments and the detergent-resistance-based analyses of lipid rafts at 4°C, and provide a biophysical explanation for recently-reported cold-induced activation of signaling pathways in T cells. Importantly, our fluorescence-topographic NSOM imaging demonstrated that GM1/CD59 raft markers distributed and re-distributed at mounds but not depressions of T-cell membrane fluctuations. Such mound-top distribution of lipid raft markers or lipid rafts provides spatial advantage for lipid rafts or contact molecules interacting readily with neighboring cells or free molecules.
Collapse
Affiliation(s)
- Yong Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, China
| | - Jie Qin
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Jiye Cai
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Department of Chemistry, Jinan University, Guangzhou, Guangdong, China
| | - Zheng W. Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
45
|
Abulrob A, Lu Z, Brunette E, Pulla D, Stanimirovic D, Johnston LJ. Near-field scanning optical microscopy detects nanoscale glycolipid domains in the plasma membrane. J Microsc 2008; 232:225-34. [PMID: 19017221 DOI: 10.1111/j.1365-2818.2008.02093.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The localization of asialo-GM1 in ordered membrane raft domains in HeLa cells has been examined using a combination of membrane fractionation and fluorescence imaging. The glycolipid is enriched in Triton X-100 insoluble membrane fractions that contain high concentrations of cholesterol and caveolin-1 but is also found in detergent soluble membrane fractions. Near-field fluorescence microscopy shows that a fraction of the asialo-GM1 is localized in small nanoscale clusters that have an upper limit for the average diameter of approximately 90 nm and are partially colocalized with caveolae membrane domains. In addition to clusters, a diffuse, non-clustered population of asialo-GM1 is observed and is hypothesized to correspond to glycolipid isolated in detergent soluble membrane fractions.
Collapse
Affiliation(s)
- A Abulrob
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, K1A 0R6, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Chen J, Wu Y, Wang C, Cai J. Nanoscale organization of CD4 molecules of human T helper cell mapped by NSOM and quantum dots. SCANNING 2008; 30:448-451. [PMID: 18828144 DOI: 10.1002/sca.20128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
CD4 molecule, the surface marker of T helper cell, has been confirmed to be the main cellular receptor for the human immunodeficiency viruses HIV-1, HIV-2 and SIV. Recent research demonstrated the importance of the spatial arrangement of CD4 on the cell membrane to its binding efficiency to virus. In this article, the combined near-field scanning optical microscopy (NSOM) and quantum dots (QDs) fluorescent labeling technology were performed to investigate the nanoscale organization of CD4 molecules with a spatial resolution about 100 nm. Simultaneous topographic image of the T helper cell and fluorescent image of QDs have been directly gained by NSOM/QDs-based system. Intensity- and size-distribution histograms of the QDs fluorescent spots verify that approximately 80% of the CD4 molecules are organized in nanosized domains randomly distributed on the cell surface. Intensity-size correlation analysis revealed heterogeneity in the molecular packing density of the domains. Our results also illustrated the combination of NSOM imaging and QDs labeling is an ultrasensitive, high-resolution technique to probe nanoscale organization of molecules on the cell surface.
Collapse
Affiliation(s)
- Jianan Chen
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | | | | | | |
Collapse
|
47
|
Höppener C, Novotny L. Imaging of membrane proteins using antenna-based optical microscopy. NANOTECHNOLOGY 2008; 19:384012. [PMID: 21832571 DOI: 10.1088/0957-4484/19/38/384012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The localization and identification of individual proteins is of key importance for the understanding of biological processes on the molecular scale. Here, we demonstrate near-field fluorescence imaging of single proteins in their native cell membrane. Incident laser radiation is localized and enhanced with an optical antenna in the form of a spherical gold particle attached to a pointed dielectric tip. Individual proteins can be identified with a diffraction-unlimited spatial resolution of ∼50 nm. Besides determining the concentration and distribution of specific membrane proteins, this approach makes it possible to study the colocalization of different membrane proteins. Moreover, it enables a simultaneous recording of the membrane topology. Protein distributions can be correlated with the local membrane topology, thereby providing important information on the chemical and structural organization of cellular membranes.
Collapse
Affiliation(s)
- Christiane Höppener
- The Institute of Optics and Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
| | | |
Collapse
|
48
|
Kobayashi Y, Sakai M, Ueda A, Maruyama K, Saiki T, Suzuki K. Writing and reading methodology for biochips with sub-100-nm chemical patterns based on near-field scanning optical microscopy. ANAL SCI 2008; 24:571-6. [PMID: 18469460 DOI: 10.2116/analsci.24.571] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This paper demonstrates a writing and reading methodology, which allows both to create and to detect sub-100-nm carboxyl-terminated patterns on light-transmissive quartz substrates by the same instrumental system. Such a technique, capable of creating carboxyl-terminated nanopatterns, offers several benefits for the miniaturization of biochips, since the carboxyl-terminated nanopatterns allow the easy immobilization of biomolecules by amide bond formation. As a consequence, increasingly miniaturized biochips require suitable analytical methods for the detection of nanopatterns. In our approach, carboxyl-terminated nanopatterns of down to 80 nm width were created using a photolabile silane coupling agent and a UV laser coupled to a near-field scanning optical microscope (NSOM). The same NSOM system was then used in a next step to detect the fabricated carboxyl-terminated nanopatterns after modification with a fluorescent label. Furthermore, as a first step towards biochip applications, the successful immobilization of several biomolecules, such as streptavidin, IgG and DNA on carboxyl-terminated nanopatterns was demonstrated. We have shown that our approach has the potential to lead to a new bioanalytical method, which enables one to write and to read biochips on a sub-100-nm scale by the same system.
Collapse
Affiliation(s)
- Yasuhiro Kobayashi
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | | | | | | | | | | |
Collapse
|
49
|
de Bakker BI, Bodnár A, van Dijk EMHP, Vámosi G, Damjanovich S, Waldmann TA, van Hulst NF, Jenei A, Garcia-Parajo MF. Nanometer-scale organization of the alpha subunits of the receptors for IL2 and IL15 in human T lymphoma cells. J Cell Sci 2008; 121:627-33. [PMID: 18287585 DOI: 10.1242/jcs.019513] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Interleukin 2 and interleukin 15 (IL2 and IL15, respectively) provide quite distinct contributions to T-cell-mediated immunity, despite having similar receptor composition and signaling machinery. As most of the proposed mechanisms underlying this apparent paradox attribute key significance to the individual alpha-chains of IL2 and IL15 receptors, we investigated the spatial organization of the receptors IL2Ralpha and IL15Ralpha at the nanometer scale expressed on a human CD4+ leukemia T cell line using single-molecule-sensitive near-field scanning optical microscopy (NSOM). In agreement with previous findings, we here confirm clustering of IL2Ralpha and IL15Ralpha at the submicron scale. In addition to clustering, our single-molecule data reveal that a non-negligible percentage of the receptors are organized as monomers. Only a minor fraction of IL2Ralpha molecules reside outside the clustered domains, whereas approximately 30% of IL15Ralpha molecules organize as monomers or small clusters, excluded from the main domain regions. Interestingly, we also found that the packing densities per unit area of both IL2Ralpha and IL15Ralpha domains remained constant, suggesting a 'building block' type of assembly involving repeated structures and composition. Finally, dual-color NSOM demonstrated co-clustering of the two alpha-chains. Our results should aid understanding the action of the IL2R-IL15R system in T cell function and also might contribute to the more rationale design of IL2R- or IL15R-targeted immunotherapy agents for treating human leukemia.
Collapse
Affiliation(s)
- Bärbel I de Bakker
- Applied Optics group, Faculty of Science and Technology, MESA+ Research Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Frassanito MC, Piccoli C, Capozzi V, Boffoli D, Tabilio A, Capitanio N. Topological organization of NADPH-oxidase in haematopoietic stem cell membrane: preliminary study by fluorescence near-field optical microscopy. J Microsc 2008; 229:517-24. [PMID: 18331504 DOI: 10.1111/j.1365-2818.2008.01937.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aim of this study was to characterize the local distribution and organization of the plasma membrane NADPH-oxidase (NOX) in human haematopoietic stem cell (HSC) by means of the fluorescence scanning near-field optical microscopy approach. The presence of NOX in haematopoietic stem cells is thought to have a functional role as O(2) sensor and/or as low-level reactive oxygen species (ROS) producer to be used as redox messenger for controlling cell growth and differentiation. Given the harmful potential of ROS, a fine-tuning of NOX activity is needed. The high resolution imaging of haematopoietic stem cell membrane obtained in this study combined with the immunodetection of NOX indicates for this the occurrence of a cluster-organized structure. These membrane 'rafts'-like micro-compartments may constitute localized protein aggregates whereby the assembly/activation of the NOX components are functionally integrated with upstream factors constituting signal-transduction platforms.
Collapse
Affiliation(s)
- M C Frassanito
- Department of Biomedical Science, University of Foggia, Foggia, Italy 71100
| | | | | | | | | | | |
Collapse
|