1
|
Cambria E, Blazeski A, Ko EC, Thai T, Dantes S, Barbie DA, Shelton SE, Kamm RD. Myofibroblasts reduce angiogenesis and vasculogenesis in a vascularized microphysiological model of lung fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632378. [PMID: 39868191 PMCID: PMC11760796 DOI: 10.1101/2025.01.10.632378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Lung fibrosis, characterized by chronic and progressive scarring, has no cure. Hallmarks are the accumulation of myofibroblasts and extracellular matrix, as well as vascular remodeling. The crosstalk between myofibroblasts and vasculature is poorly understood, with conflicting reports on whether angiogenesis and vessel density are increased or decreased in lung fibrosis. We developed a microphysiological system that recapitulates the pathophysiology of lung fibrosis and disentangles myofibroblast-vascular interactions. Lung myofibroblasts maintained their phenotype in 3D without exogenous TGF-β and displayed anti-angiogenic and anti-vasculogenic activities when cultured with endothelial cells in a microfluidic device. These effects, including decreased endothelial sprouting, altered vascular morphology, and increased vascular permeability, were mediated by increased TGF-β1 and reduced VEGF secretion. Pharmacological interventions targeting these cytokines restored vascular morphology and permeability, demonstrating the potential of this model to screen anti-fibrotic drugs. This system provides insights into myofibroblast-vascular crosstalk in lung fibrosis and offers a platform for therapeutic development.
Collapse
Affiliation(s)
- Elena Cambria
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adriana Blazeski
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Eunkyung Clare Ko
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tran Thai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shania Dantes
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - David A. Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sarah E. Shelton
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Roger D. Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
2
|
Sun W, Wu W, Fang X, Ge X, Zhang Y, Han J, Guo X, Zhou L, Yang H. Disruption of pulmonary microvascular endothelial barrier by dysregulated claudin-8 and claudin-4: uncovered mechanisms in porcine reproductive and respiratory syndrome virus infection. Cell Mol Life Sci 2024; 81:240. [PMID: 38806818 PMCID: PMC11133251 DOI: 10.1007/s00018-024-05282-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
The pulmonary endothelium is a dynamic and metabolically active monolayer of endothelial cells. Dysfunction of the pulmonary endothelial barrier plays a crucial role in the acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), frequently observed in the context of viral pneumonia. Dysregulation of tight junction proteins can lead to the disruption of the endothelial barrier and subsequent leakage. Here, the highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) served as an ideal model for studying ALI and ARDS. The alveolar lavage fluid of pigs infected with HP-PRRSV, and the supernatant of HP-PRRSV infected pulmonary alveolar macrophages were respectively collected to treat the pulmonary microvascular endothelial cells (PMVECs) in Transwell culture system to explore the mechanism of pulmonary microvascular endothelial barrier leakage caused by viral infection. Cytokine screening, addition and blocking experiments revealed that proinflammatory cytokines IL-1β and TNF-α, secreted by HP-PRRSV-infected macrophages, disrupt the pulmonary microvascular endothelial barrier by downregulating claudin-8 and upregulating claudin-4 synergistically. Additionally, three transcription factors interleukin enhancer binding factor 2 (ILF2), general transcription factor III C subunit 2 (GTF3C2), and thyroid hormone receptor-associated protein 3 (THRAP3), were identified to accumulate in the nucleus of PMVECs, regulating the transcription of claudin-8 and claudin-4. Meanwhile, the upregulation of ssc-miR-185 was found to suppress claudin-8 expression via post-transcriptional inhibition. This study not only reveals the molecular mechanisms by which HP-PRRSV infection causes endothelial barrier leakage in acute lung injury, but also provides novel insights into the function and regulation of tight junctions in vascular homeostasis.
Collapse
Affiliation(s)
- Weifeng Sun
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
- China Institute of Veterinary Drug Control, Beijing, 100081, People's Republic of China
| | - Weixin Wu
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xinyu Fang
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xinna Ge
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yongning Zhang
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jun Han
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xin Guo
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Lei Zhou
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China.
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Hanchun Yang
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China.
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
3
|
Atis M, Akcan U, Altunsu D, Ayvaz E, Uğur Yılmaz C, Sarıkaya D, Temizyürek A, Ahıshalı B, Girouard H, Kaya M. Targeting the blood-brain barrier disruption in hypertension by ALK5/TGF-Β type I receptor inhibitor SB-431542 and dynamin inhibitor dynasore. Brain Res 2022; 1794:148071. [PMID: 36058283 DOI: 10.1016/j.brainres.2022.148071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 11/02/2022]
Abstract
INTRODUCTION In this study, we aimed to target two molecules, transforming growth factor-beta (TGF-β) and dynamin to explore their roles in blood-brain barrier (BBB) disruption in hypertension. METHODS For this purpose, angiotensin (ANG) II-induced hypertensive mice were treated with SB-431542, an inhibitor of the ALK5/TGF-β type I receptor, and dynasore, an inhibitor of dynamin. Albumin-Alexa fluor 594 was used to assess BBB permeability. The alterations in the expression of claudin-5, caveolin (Cav)-1, glucose transporter (Glut)-1, and SMAD4 in the cerebral cortex and the hippocampus were evaluated by quantification of immunofluorescence staining intensity. RESULTS ANG II infusion increased BBB permeability to albumin-Alexa fluor 594 which was reduced by SB-431542 (P < 0.01), but not by dynasore. In hypertensive animals treated with dynasore, claudin-5 immunofluorescence intensity increased in the cerebral cortex and hippocampus while it decreased in the cerebral cortex of SB-431542 treated hypertensive mice (P < 0.01). Both dynasore and SB-431542 prevented the increased Cav-1 immunofluorescence intensity in the cerebral cortex and hippocampus of hypertensive animals (P < 0.01). SB-431542 and dynasore decreased Glut-1 immunofluorescence intensity in the cerebral cortex and hippocampus of mice receiving ANG II (P < 0.01). SB-431542 increased SMAD4 immunofluorescence intensity in the cerebral cortex of hypertensive animals, while in the hippocampus a significant decrease was noted by both SB-431542 and dynasore (P < 0.01). CONCLUSION Our data suggest that inhibition of the TGFβ type I receptor prevents BBB disruption under hypertensive conditions. These results emphasize the therapeutic potential of targeting TGFβ signaling as a novel treatment modality to protect the brain of hypertensive patients.
Collapse
Affiliation(s)
- Muge Atis
- Graduate School of Health Sciences, Koç University, 34450 Istanbul, Turkey
| | - Uğur Akcan
- Graduate School of Health Sciences, Koç University, 34450 Istanbul, Turkey
| | - Deniz Altunsu
- Graduate School of Health Sciences, Koç University, 34450 Istanbul, Turkey
| | - Ecem Ayvaz
- Graduate School of Health Sciences, Koç University, 34450 Istanbul, Turkey
| | - Canan Uğur Yılmaz
- Department of Pharmaceutical Bioscience, Biomedical Centrum, Uppsala University, Sweden
| | - Deniz Sarıkaya
- Department of Physiology, Koç University School of Medicine, 34450 Istanbul, Turkey
| | - Arzu Temizyürek
- Koç University Research Center for Translational Medicine, 34450 Istanbul, Turkey
| | - Bülent Ahıshalı
- Department of Histology and Embryology, Koç University School of Medicine, 34450, Istanbul, Turkey
| | - Hélène Girouard
- Department of Pharmacology and Physiology, Faculty of Medicine, Montreal University, Montreal, QC, Canada
| | - Mehmet Kaya
- Department of Physiology, Koç University School of Medicine, 34450 Istanbul, Turkey; Koç University Research Center for Translational Medicine, 34450 Istanbul, Turkey.
| |
Collapse
|
4
|
Hachana S, Larrivée B. TGF-β Superfamily Signaling in the Eye: Implications for Ocular Pathologies. Cells 2022; 11:2336. [PMID: 35954181 PMCID: PMC9367584 DOI: 10.3390/cells11152336] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023] Open
Abstract
The TGF-β signaling pathway plays a crucial role in several key aspects of development and tissue homeostasis. TGF-β ligands and their mediators have been shown to be important regulators of ocular physiology and their dysregulation has been described in several eye pathologies. TGF-β signaling participates in regulating several key developmental processes in the eye, including angiogenesis and neurogenesis. Inadequate TGF-β signaling has been associated with defective angiogenesis, vascular barrier function, unfavorable inflammatory responses, and tissue fibrosis. In addition, experimental models of corneal neovascularization, diabetic retinopathy, proliferative vitreoretinopathy, glaucoma, or corneal injury suggest that aberrant TGF-β signaling may contribute to the pathological features of these conditions, showing the potential of modulating TGF-β signaling to treat eye diseases. This review highlights the key roles of TGF-β family members in ocular physiology and in eye diseases, and reviews approaches targeting the TGF-β signaling as potential treatment options.
Collapse
Affiliation(s)
- Soumaya Hachana
- Maisonneuve-Rosemont Hospital Research Center, Montreal, QC H1T 2M4, Canada
- Department of Ophthalmology, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Bruno Larrivée
- Maisonneuve-Rosemont Hospital Research Center, Montreal, QC H1T 2M4, Canada
- Department of Ophthalmology, Université de Montréal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
5
|
Wong DCP, Lee EHC, Er J, Yow I, Koean RAG, Ang O, Xiao J, Low BC, Ding JL. Lung Cancer Induces NK Cell Contractility and Cytotoxicity Through Transcription Factor Nuclear Localization. Front Cell Dev Biol 2022; 10:871326. [PMID: 35652099 PMCID: PMC9149376 DOI: 10.3389/fcell.2022.871326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Actomyosin-mediated cellular contractility is highly conserved for mechanotransduction and signalling. While this phenomenon has been observed in adherent cell models, whether/how contractile forces regulate the function of suspension cells like natural killer (NK) cells during cancer surveillance, is unknown. Here, we demonstrated in coculture settings that the evolutionarily conserved NK cell transcription factor, Eomes, undergoes nuclear shuttling during lung cancer cell surveillance. Biophysical and biochemical analyses revealed mechanistic enhancement of NK cell actomyosin-mediated contractility, which is associated with nuclear flattening, thus enabling nuclear entry of Eomes associated with enhanced NK cytotoxicity. We found that NK cells responded to the presumed immunosuppressive TGFβ in the NK-lung cancer coculture medium to sustain its intracellular contractility through myosin light chain phosphorylation, thereby promoting Eomes nuclear localization. Therefore, our results demonstrate that lung cancer cells provoke NK cell contractility as an early phase activation mechanism and that Eomes is a plausible mechano-responsive protein for increased NK cytotoxicity. There is scope for strategic application of actomyosin-mediated contractility modulating drugs ex vivo, to reinvigorate NK cells prior to adoptive cancer immunotherapy in vivo (177 words).
Collapse
Affiliation(s)
- Darren Chen Pei Wong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Mechanobiology Institute Singapore, National University of Singapore, Singapore, Singapore
| | - E Hui Clarissa Lee
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Junzhi Er
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Ivan Yow
- Mechanobiology Institute Singapore, National University of Singapore, Singapore, Singapore
| | | | - Owen Ang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Jingwei Xiao
- Mechanobiology Institute Singapore, National University of Singapore, Singapore, Singapore
| | - Boon Chuan Low
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Mechanobiology Institute Singapore, National University of Singapore, Singapore, Singapore
- University Scholars Programme, National University of Singapore, Singapore, Singapore
| | - Jeak Ling Ding
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore, Singapore
| |
Collapse
|
6
|
Langston-Cox A, Marshall SA, Lu D, Palmer KR, Wallace EM. Melatonin for the Management of Preeclampsia: A Review. Antioxidants (Basel) 2021; 10:antiox10030376. [PMID: 33802558 PMCID: PMC8002171 DOI: 10.3390/antiox10030376] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022] Open
Abstract
Preeclampsia is a disease specific to pregnancy characterised by new-onset hypertension with maternal organ dysfunction and/or fetal growth restriction. It remains a major cause of maternal and perinatal morbidity and mortality. For sixty years, antihypertensives have been the mainstay of treating preeclampsia and only recently have insights into the pathogenesis of the disease opened new avenues for novel therapies. Melatonin is one such option, an endogenous and safe antioxidant, that may improve the maternal condition in preeclampsia while protecting the fetus from a hostile intrauterine environment. Here we review the evidence for melatonin as a possible adjuvant therapy for preeclampsia, including in vitro evidence supporting a role for melatonin in protecting the human placenta, preclinical models, vascular studies, and clinical studies in hypertension and pregnancy.
Collapse
Affiliation(s)
- Annie Langston-Cox
- The Ritchie Centre, Department of Obstetrics and Gynecology, School of Clinical Sciences, Monash University, 246 Clayton Road, Clayton, VIC 3168, Australia; (A.L.-C.); (S.A.M.); (D.L.); (K.R.P.)
| | - Sarah A. Marshall
- The Ritchie Centre, Department of Obstetrics and Gynecology, School of Clinical Sciences, Monash University, 246 Clayton Road, Clayton, VIC 3168, Australia; (A.L.-C.); (S.A.M.); (D.L.); (K.R.P.)
| | - Daisy Lu
- The Ritchie Centre, Department of Obstetrics and Gynecology, School of Clinical Sciences, Monash University, 246 Clayton Road, Clayton, VIC 3168, Australia; (A.L.-C.); (S.A.M.); (D.L.); (K.R.P.)
| | - Kirsten R. Palmer
- The Ritchie Centre, Department of Obstetrics and Gynecology, School of Clinical Sciences, Monash University, 246 Clayton Road, Clayton, VIC 3168, Australia; (A.L.-C.); (S.A.M.); (D.L.); (K.R.P.)
- Monash Health, Clayton, VIC 3168, Australia
| | - Euan M. Wallace
- The Ritchie Centre, Department of Obstetrics and Gynecology, School of Clinical Sciences, Monash University, 246 Clayton Road, Clayton, VIC 3168, Australia; (A.L.-C.); (S.A.M.); (D.L.); (K.R.P.)
- Correspondence: ; Tel.: +61-3-9594-5145; Fax: +61-3-9594-5003
| |
Collapse
|
7
|
Tsou PS, Palisoc PJ, Flavahan NA, Khanna D. Dissecting the Cellular Mechanism of Prostacyclin Analog Iloprost in Reversing Vascular Dysfunction in Scleroderma. Arthritis Rheumatol 2021; 73:520-529. [PMID: 33001586 PMCID: PMC7914149 DOI: 10.1002/art.41536] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/22/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Intravenous iloprost improves Raynaud's phenomenon (RP) and promotes healing of digital ulcers in systemic sclerosis (SSc; scleroderma). Despite a short half-life, its clinical efficacy lasts weeks. Endothelial adherens junctions, which are formed by VE-cadherin clustering between endothelial cells (ECs), regulate endothelial properties including barrier function, endothelial-to-mesenchymal transition (EndoMT), and angiogenesis. We undertook this study to investigate the hypothesis that junctional disruption contributes to vascular dysfunction in SSc, and that the protective effect of iloprost is mediated by strengthening of those junctions. METHODS Dermal ECs from SSc patients and healthy controls were isolated. The effect of iloprost on ECs was examined using immunofluorescence, permeability assays, Matrigel tube formation, and quantitative polymerase chain reaction. RESULTS Adherens junctions in SSc were disrupted compared to normal ECs, as indicated by reduced levels of VE-cadherin and increased permeability in SSc ECs (P < 0.05). Iloprost increased VE-cadherin clustering at junctions and restored junctional levels of VE-cadherin in SSc ECs (mean ± SD 37.3 ± 4.3 fluorescence units) compared to normal ECs (mean ± SD 29.7 ± 3.4 fluorescence units; P < 0.05), after 2 hours of iloprost incubation. In addition, iloprost reduced permeability of monolayers, increased tubulogenesis, and blocked EndoMT in both normal and SSc ECs (n ≥ 3; P < 0.05). The effects in normal ECs were inhibited by a function-blocking antibody that prevents junctional clustering of VE-cadherin. CONCLUSION Our data suggest that the long-lasting effects of iloprost reflect its ability to stabilize adherens junctions, resulting in increased tubulogenesis and barrier function and reduced EndoMT. These findings provide a mechanistic basis for the use of iloprost in treating SSc patients with RP and digital ulcers.
Collapse
Affiliation(s)
- Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- University of Michigan Scleroderma Program, Ann Arbor, MI
| | - Pamela J. Palisoc
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Nicholas A. Flavahan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Dinesh Khanna
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- University of Michigan Scleroderma Program, Ann Arbor, MI
| |
Collapse
|
8
|
ALK5 deficiency inhibits macrophage inflammation and lipid loading by targeting KLF4. Biosci Rep 2020; 40:222146. [PMID: 32065217 PMCID: PMC7056445 DOI: 10.1042/bsr20194188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 11/17/2022] Open
Abstract
The transforming growth factor type-β (TGF-β) has been demonstrated to play an important role in the development of atherosclerosis through binding to the serine/threonine kinase transmembrane type I and type II receptors. However, as a key type I receptor for TGF-β, the exact role and the underlying mechanism of Activin receptor-like kinase 5 (ALK5) on macrophage activation involved in atherogenesis remain unclear. In the present study, enhanced ALK5 expression was found in bone marrow derived macrophages (BMDMs) upon OX-LDL stimulation tested by RT-PCR and Western blot, which was further verified by co-immunofluorescence staining. Next, the loss-of-function of ALK5 used AdshALK5 transfection was performed to test the effect of ALK5 on macrophage activation. We observed that ALK5 silencing inhibited pro-inflammatory but promoted anti-inflammatory macrophage markers expression. Moreover, decreased foam cell formation was found in ALK5 knockdown macrophages accompanied by increased cholesterol efflux. Mechanistically, ALK5 knockdown significantly increased KLF4 expression that was responsible for the attenuated macrophage activation induced by ALK5 knockdown. Collectively, these findings suggested that neutralization of ALK5 may act as a promising strategy for the management of atherosclerosis.
Collapse
|
9
|
Motallebnejad P, Thomas A, Swisher SL, Azarin SM. An isogenic hiPSC-derived BBB-on-a-chip. BIOMICROFLUIDICS 2019; 13:064119. [PMID: 31768205 PMCID: PMC6874510 DOI: 10.1063/1.5123476] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/07/2019] [Indexed: 05/03/2023]
Abstract
The blood-brain barrier (BBB) is composed of brain microvascular endothelial cells (BMECs) that regulate brain homeostasis, and astrocytes within the brain are involved in the maintenance of the BBB or modulation of its integrity in disease states via secreted factors. A major challenge in modeling the normal or diseased BBB is that conventional in vitro models lack either the physiological complexity of the BBB or key functional features such as formation of a sufficiently tight barrier. In this study, we utilized human induced pluripotent stem cell (hiPSC)-derived BMECs in a BBB-on-a-chip device that supports flow and coculture with an astrocyte-laden 3D hydrogel. The BMECs are separated from the hydrogel by a porous membrane with either 0.4 or 8.0 μm pore size, making the device suitable for studying the transport of molecules or cells, respectively, across the BBB. In addition, all cells seeded in the device are differentiated from the same hiPSC line, which could enable genetic and rare disease modeling. Formation of a confluent BMEC barrier was confirmed by immunocytochemistry of tight junction proteins and measurement of fluorescein permeability. Integrity of the barrier was further assessed by performing impedance spectroscopy in the device. Finally, the ability of this device to recapitulate a disease model of BBB disruption was demonstrated, with apical addition of TGF-β1 leading to transendothelial electrical resistance reduction and indicators of astrocyte activation. These results demonstrate the utility of the fabricated device for a broad range of applications such as drug screening and mechanistic studies of BBB disruption.
Collapse
Affiliation(s)
- Pedram Motallebnejad
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Andrew Thomas
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Sarah L. Swisher
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Samira M. Azarin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
10
|
Debreczeni ML, Németh Z, Kajdácsi E, Schwaner E, Makó V, Masszi A, Doleschall Z, Rigó J, Walter FR, Deli MA, Pál G, Dobó J, Gál P, Cervenak L. MASP-1 Increases Endothelial Permeability. Front Immunol 2019; 10:991. [PMID: 31130964 PMCID: PMC6509239 DOI: 10.3389/fimmu.2019.00991] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/17/2019] [Indexed: 01/13/2023] Open
Abstract
Pathologically increased vascular permeability is an important dysfunction in the pathomechanism of life-threatening conditions, such as sepsis, ischemia/reperfusion, or hereditary angioedema (HAE), diseases accompanied by uncontrolled activation of the complement system. HAE for example is caused by the deficiency of C1-inhibitor (the main regulator of early complement activation), which leads to edematous attacks threatening with circulatory collapse. We have previously reported that endothelial cells become activated during HAE attacks. A natural target of C1-inhibitor is mannan-binding lectin-associated serine protease-1 (MASP-1), a multifunctional serine protease, which plays a key role in the activation of complement lectin pathway. We have previously shown that MASP-1 induces the pro-inflammatory activation of endothelial cells and in this study we investigated whether MASP-1 can directly affect endothelial permeability. All experiments were performed on human umbilical vein endothelial cells (HUVECs). Real-time micro electric sensing revealed that MASP-1 decreases the impedance of HUVEC monolayers and in a recently developed permeability test (XperT), MASP-1 dose-dependently increased endothelial paracellular transport. We show that protease activated receptor-1 mediated intracellular Ca2+-mobilization, Rho-kinase activation dependent myosin light chain (MLC) phosphorylation, cytoskeletal actin rearrangement, and disruption of interendothelial junctions are underlying this phenomenon. Furthermore, in a whole-transcriptome microarray analysis MASP-1 significantly changed the expression of 25 permeability-related genes in HUVECs-for example it up-regulated bradykinin B2 receptor expression. According to our results, MASP-1 has potent permeability increasing effects. During infections or injuries MASP-1 may help eliminate the microbes and/or tissue debris by enhancing the extravasation of soluble and cellular components of the immune system, however, it may also play a role in the pathomechanism of diseases, where edema formation and complement lectin pathway activation are simultaneously present. Our findings also raise the possibility that MASP-1 may be a promising target of anti-edema drug development.
Collapse
Affiliation(s)
- Márta L. Debreczeni
- Research Laboratory, 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Németh
- Research Laboratory, 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Erika Kajdácsi
- Research Laboratory, 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Endre Schwaner
- Research Laboratory, 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Veronika Makó
- MTA-SE Research Group of Immunology and Hematology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - András Masszi
- Research Laboratory, 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltán Doleschall
- Department of Pathogenetics, National Institute of Oncology, Budapest, Hungary
| | - János Rigó
- First Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
| | - Fruzsina R. Walter
- Biological Research Centre, Institute of Biophysics, Hungarian Academy of Sciences, Szeged, Hungary
| | - Mária A. Deli
- Biological Research Centre, Institute of Biophysics, Hungarian Academy of Sciences, Szeged, Hungary
| | - Gábor Pál
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - József Dobó
- Research Centre for Natural Sciences, Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
| | - Péter Gál
- Research Centre for Natural Sciences, Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
| | - László Cervenak
- Research Laboratory, 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
11
|
Feng Y, Wang N, Xu J, Zou J, Liang X, Liu H, Chen Y. Alpha-1-antitrypsin functions as a protective factor in preeclampsia through activating Smad2 and inhibitor of DNA binding 4. Oncotarget 2017; 8:113002-113012. [PMID: 29348884 PMCID: PMC5762569 DOI: 10.18632/oncotarget.22949] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 11/13/2017] [Indexed: 12/18/2022] Open
Abstract
Pre-eclampsia (PE) is one of the most common reason for high morbidity and mortality of maternal and prenatal infants. Production from oxidative stress results in maternal ROS system and anti-oxidation defense system imbalance to promote tissue ischemia and hypoxia, and ultimately impairs the maternal organs and placenta. Our previous study showed that exogenous Alpha-1-antitrypsin (AAT) and overexpression of AAT in umbilical vein cell (HUVEC) hypoxia-reoxygenation model could increase the activity of antioxidant enzymes, and played a protective role in preeclampsia animal model. In this study, we aim to investigate the underlying mechanism by which AAT prevents PE progress. Whole-exome sequencing was performed to screen the genes altered by AAT. We found that AAT knockdown altered the expression of Smad family and Id family genes, and further demonstrated that AAT positively regulated Id4 expression through activating Smad2. Reduced Id4 expression and Smad2 phosphorylation were observed in preeclampsia animal model, which was also confirmed in human placenta tissues. In addition, AAT protected HUVEC cells from hypoxia/reoxygenation injury and relieved preeclampsia symptoms through Smad2/Id4 axis. Our data illustrate AAT/Smad2/Id4 axis is an important mediator of placenta and vascular function during pregnancy. These findings provide insights into events governing pregnancy-associated disorders, such as preeclampsia.
Collapse
Affiliation(s)
- Yaling Feng
- Department of Obstetrics and Gynecology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, PR China
| | - Nan Wang
- Department of Obstetrics, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, PR China
| | - Jianjuan Xu
- Department of Obstetrics and Gynecology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, PR China
| | - Jinfang Zou
- Department of Obstetrics and Gynecology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, PR China
| | - Xi Liang
- Department of Obstetrics and Gynecology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, PR China
| | - Huan Liu
- Department of Obstetrics and Gynecology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, PR China
| | - Ying Chen
- Central Lab, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, PR China
| |
Collapse
|
12
|
Boratkó A, Csortos C. TIMAP, the versatile protein phosphatase 1 regulator in endothelial cells. IUBMB Life 2017; 69:918-928. [DOI: 10.1002/iub.1695] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/26/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Anita Boratkó
- Department of Medical Chemistry; Faculty of Medicine, University of Debrecen, Egyetem tér 1; Debrecen Hungary
| | - Csilla Csortos
- Department of Medical Chemistry; Faculty of Medicine, University of Debrecen, Egyetem tér 1; Debrecen Hungary
| |
Collapse
|
13
|
Hormetic and anti-inflammatory properties of oxidized phospholipids. Mol Aspects Med 2016; 49:78-90. [DOI: 10.1016/j.mam.2016.02.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/04/2016] [Accepted: 02/04/2016] [Indexed: 12/15/2022]
|
14
|
Eiselein L, Nyunt T, Lamé MW, Ng KF, Wilson DW, Rutledge JC, Aung HH. TGRL Lipolysis Products Induce Stress Protein ATF3 via the TGF-β Receptor Pathway in Human Aortic Endothelial Cells. PLoS One 2015; 10:e0145523. [PMID: 26709509 PMCID: PMC4699200 DOI: 10.1371/journal.pone.0145523] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 12/05/2015] [Indexed: 01/24/2023] Open
Abstract
Studies have suggested a link between the transforming growth factor beta 1 (TGF-β1) signaling cascade and the stress-inducible activating transcription factor 3 (ATF3). We have demonstrated that triglyceride-rich lipoproteins (TGRL) lipolysis products activate MAP kinase stress associated JNK/c-Jun pathways resulting in up-regulation of ATF3, pro-inflammatory genes and induction of apoptosis in human aortic endothelial cells. Here we demonstrate increased release of active TGF-β at 15 min, phosphorylation of Smad2 and translocation of co-Smad4 from cytosol to nucleus after a 1.5 h treatment with lipolysis products. Activation and translocation of Smad2 and 4 was blocked by addition of SB431542 (10 μM), a specific inhibitor of TGF-β-activin receptor ALKs 4, 5, 7. Both ALK receptor inhibition and anti TGF-β1 antibody prevented lipolysis product induced up-regulation of ATF3 mRNA and protein. ALK inhibition prevented lipolysis product-induced nuclear accumulation of ATF3. ALKs 4, 5, 7 inhibition also prevented phosphorylation of c-Jun and TGRL lipolysis product-induced p53 and caspase-3 protein expression. These findings demonstrate that TGRL lipolysis products cause release of active TGF-β and lipolysis product-induced apoptosis is dependent on TGF-β signaling. Furthermore, signaling through the stress associated JNK/c-Jun pathway is dependent on TGF-β signaling suggesting that TGF-β signaling is necessary for nuclear accumulation of the ATF3/cJun transcription complex and induction of pro-inflammatory responses.
Collapse
Affiliation(s)
- Larissa Eiselein
- Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, California, 95616, United States of America
| | - Tun Nyunt
- Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, California, 95616, United States of America
| | - Michael W. Lamé
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California, 95616, United States of America
| | - Kit F. Ng
- Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, California, 95616, United States of America
| | - Dennis W. Wilson
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, 95616, United States of America
| | - John C. Rutledge
- Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, California, 95616, United States of America
| | - Hnin H. Aung
- Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, California, 95616, United States of America
- * E-mail:
| |
Collapse
|
15
|
Kurakula K, Goumans MJ, Ten Dijke P. Regulatory RNAs controlling vascular (dys)function by affecting TGF-ß family signalling. EXCLI JOURNAL 2015; 14:832-50. [PMID: 26862319 PMCID: PMC4743484 DOI: 10.17179/excli2015-423] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 06/30/2015] [Indexed: 01/15/2023]
Abstract
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide. Over the last few years, microRNAs (miRNAs) have emerged as master regulators of gene expression in cardiovascular biology and disease. miRNAs are small endogenous non-coding RNAs that usually bind to 3′ untranslated region (UTR) of their target mRNAs and inhibit mRNA stability or translation of their target genes. miRNAs play a dynamic role in the pathophysiology of many CVDs through their effects on target mRNAs in vascular cells. Recently, numerous miRNAs have been implicated in the regulation of the transforming growth factor-β (TGF-β)/bone morphogenetic protein (BMP) signalling pathway which plays crucial roles in diverse biological processes, and is involved in pathogenesis of many diseases including CVD. This review gives an overview of current literature on the role of miRNAs targeting TGF-β/BMP signalling in vascular cells, including endothelial cells and smooth muscle cells. We also provide insight into how this miRNA-mediated regulation of TGF-β/BMP signalling might be used to harness CVD.
Collapse
Affiliation(s)
- Kondababu Kurakula
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands, Leiden University Medical Center, Leiden, The Netherlands
| | - Marie-Jose Goumans
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Ten Dijke
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
16
|
Denker E, Sehring IM, Dong B, Audisso J, Mathiesen B, Jiang D. Regulation by a TGFβ-ROCK-actomyosin axis secures a non-linear lumen expansion that is essential for tubulogenesis. Development 2015; 142:1639-50. [PMID: 25834020 DOI: 10.1242/dev.117150] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 03/04/2015] [Indexed: 02/01/2023]
Abstract
Regulation of lumen growth is crucial to ensure the correct morphology, dimensions and function of a tubular structure. How this is controlled is still poorly understood. During Ciona intestinalis notochord tubulogenesis, single extracellular lumen pockets grow between pairs of cells and eventually fuse into a continuous tube. Here, we show that lumen growth exhibits a lag phase, during which the luminal membranes continue to grow but the expansion of the apical/lateral junction pauses for ∼30 min. Inhibition of non-muscle myosin II activity abolishes this lag phase and accelerates expansion of the junction, resulting in the formation of narrower lumen pockets partially fusing into a tube of reduced size. Disruption of actin dynamics, conversely, causes a reversal of apical/lateral junction expansion, leading to a dramatic conversion of extracellular lumen pockets to intracellular vacuoles and a tubulogenesis arrest. The onset of the lag phase is correlated with a de novo accumulation of actin that forms a contractile ring at the apical/lateral junctions. This actin ring actively restricts the opening of the lumen in the transverse plane, allowing sufficient time for lumen growth via an osmotic process along the longitudinal dimension. The dynamics of lumen formation is controlled by the TGFβ pathway and ROCK activity. Our findings reveal a TGFβ-ROCK-actomyosin contractility axis that coordinates lumen growth, which is powered by the dynamics of luminal osmolarity. The regulatory system may function like a sensor/checkpoint that responds to the change of luminal pressure and fine-tunes actomyosin contractility to effect proper tubulogenesis.
Collapse
Affiliation(s)
- Elsa Denker
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt. 55, Bergen N-5008, Norway
| | - Ivonne M Sehring
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt. 55, Bergen N-5008, Norway
| | - Bo Dong
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt. 55, Bergen N-5008, Norway College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China Institute of Evolution and Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Julien Audisso
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt. 55, Bergen N-5008, Norway
| | - Birthe Mathiesen
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt. 55, Bergen N-5008, Norway
| | - Di Jiang
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt. 55, Bergen N-5008, Norway
| |
Collapse
|
17
|
Porter KM, Kang BY, Adesina SE, Murphy TC, Hart CM, Sutliff RL. Chronic hypoxia promotes pulmonary artery endothelial cell proliferation through H2O2-induced 5-lipoxygenase. PLoS One 2014; 9:e98532. [PMID: 24906007 PMCID: PMC4048210 DOI: 10.1371/journal.pone.0098532] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 05/05/2014] [Indexed: 01/11/2023] Open
Abstract
Pulmonary Hypertension (PH) is a progressive disorder characterized by endothelial dysfunction and proliferation. Hypoxia induces PH by increasing vascular remodeling. A potential mediator in hypoxia-induced PH development is arachidonate 5-Lipoxygenase (ALOX5). While ALOX5 metabolites have been shown to promote pulmonary vasoconstriction and endothelial cell proliferation, the contribution of ALOX5 to hypoxia-induced proliferation remains unknown. We hypothesize that hypoxia exposure stimulates HPAEC proliferation by increasing ALOX5 expression and activity. To test this, human pulmonary artery endothelial cells (HPAEC) were cultured under normoxic (21% O2) or hypoxic (1% O2) conditions for 24-, 48-, or 72 hours. In a subset of cells, the ALOX5 inhibitor, zileuton, or the 5-lipoxygenase activating protein inhibitor, MK-886, was administered during hypoxia exposure. ALOX5 expression was measured by qRT-PCR and western blot and HPAEC proliferation was assessed. Our results demonstrate that 24 and 48 hours of hypoxia exposure have no effect on HPAEC proliferation or ALOX5 expression. Seventy two hours of hypoxia significantly increases HPAEC ALOX5 expression, hydrogen peroxide (H2O2) release, and HPAEC proliferation. We also demonstrate that targeted ALOX5 gene silencing or inhibition of the ALOX5 pathway by pharmacological blockade attenuates hypoxia-induced HPAEC proliferation. Furthermore, our findings indicate that hypoxia-induced increases in cell proliferation and ALOX5 expression are dependent on H2O2 production, as administration of the antioxidant PEG-catalase blocks these effects and addition of H2O2 to HPAEC promotes proliferation. Overall, these studies indicate that hypoxia exposure induces HPAEC proliferation by activating the ALOX5 pathway via the generation of H2O2.
Collapse
Affiliation(s)
- Kristi M. Porter
- Emory University School of Medicine/Atlanta Veterans Affairs Medical Center, Department of Pulmonary, Allergy and Critical Care Medicine, Atlanta, Georgia, United States of America
| | - Bum-Yong Kang
- Emory University School of Medicine/Atlanta Veterans Affairs Medical Center, Department of Pulmonary, Allergy and Critical Care Medicine, Atlanta, Georgia, United States of America
| | - Sherry E. Adesina
- Emory University School of Medicine/Atlanta Veterans Affairs Medical Center, Department of Pulmonary, Allergy and Critical Care Medicine, Atlanta, Georgia, United States of America
| | - Tamara C. Murphy
- Emory University School of Medicine/Atlanta Veterans Affairs Medical Center, Department of Pulmonary, Allergy and Critical Care Medicine, Atlanta, Georgia, United States of America
| | - C. Michael Hart
- Emory University School of Medicine/Atlanta Veterans Affairs Medical Center, Department of Pulmonary, Allergy and Critical Care Medicine, Atlanta, Georgia, United States of America
| | - Roy L. Sutliff
- Emory University School of Medicine/Atlanta Veterans Affairs Medical Center, Department of Pulmonary, Allergy and Critical Care Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
18
|
Armatas AA, Pratsinis H, Mavrogonatou E, Angelopoulou MT, Kouroumalis A, Karamanos NK, Kletsas D. The differential proliferative response of fetal and adult human skin fibroblasts to TGF-β is retained when cultured in the presence of fibronectin or collagen. Biochim Biophys Acta Gen Subj 2014; 1840:2635-42. [PMID: 24735795 DOI: 10.1016/j.bbagen.2014.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 04/02/2014] [Accepted: 04/04/2014] [Indexed: 01/11/2023]
Abstract
BACKGROUND Transforming growth factor-β is a multifunctional and pleiotropic factor with decisive role in tissue repair. In this context, we have shown previously that TGF-β inhibits the proliferation of fetal human skin fibroblasts but stimulates that of adult ones. Given the dynamic reciprocity between fibroblasts, growth factors and extracellular matrix (ECM) in tissue homeostasis, the present study aims to investigate the role of fibronectin and collagen in the proliferative effects of TGF-β on fetal and adult cells. METHODS Human fetal and adult skin fibroblasts were grown either on plastic surfaces or on surfaces coated with fibronectin or collagen type-I, as well as, on top or within three-dimensional matrices of polymerized collagen. Their proliferative response to TGF-β was studied using tritiated thymidine incorporation, while the signaling pathways involved were investigated by Western analysis and using specific kinase inhibitors. RESULTS Fetal skin fibroblast-proliferation was inhibited by TGF-β, while that of adult cells was stimulated by this factor, irrespective of the presence of fibronectin or collagen. Both inhibitory and stimulatory activities of TGF-β on the proliferation of fetal and adult fibroblasts, respectively, were abrogated when the Smad pathway was blocked. Moreover, inhibition of fetal fibroblasts was mediated by PKA activation, while stimulation of adult ones was effected through the autocrine activation of FGF receptor and the MEK-ERK pathway. CONCLUSIONS Fetal and adult human skin fibroblasts retain their differential proliferative response to TGF-β when cultured in the presence of fibronectin and unpolymerized or polymerized collagen. GENERAL SIGNIFICANCE The interplay between TGF-β and ECM supports the pleiotropic nature of this growth factor, in concordance with the different repair strategies between fetuses and adults. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
Affiliation(s)
- Andreas A Armatas
- Laboratory for Cell Proliferation & Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", 153 10 Athens, Greece
| | - Harris Pratsinis
- Laboratory for Cell Proliferation & Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", 153 10 Athens, Greece
| | - Eleni Mavrogonatou
- Laboratory for Cell Proliferation & Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", 153 10 Athens, Greece
| | - Maria T Angelopoulou
- Laboratory for Cell Proliferation & Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", 153 10 Athens, Greece
| | - Anastasios Kouroumalis
- Laboratory for Cell Proliferation & Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", 153 10 Athens, Greece
| | - Nikos K Karamanos
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26110 Patras, Greece
| | - Dimitris Kletsas
- Laboratory for Cell Proliferation & Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", 153 10 Athens, Greece.
| |
Collapse
|
19
|
Bosmann M, Ward PA. Protein-based therapies for acute lung injury: targeting neutrophil extracellular traps. Expert Opin Ther Targets 2014; 18:703-14. [PMID: 24670033 DOI: 10.1517/14728222.2014.902938] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are the acute onset of noncardiac respiratory insufficiency associated with bilateral lung infiltrations. During the past decade, mechanical ventilation strategies using low tidal volumes have reduced the mortality of ALI/ARDS to ∼ 20 - 40%. However, ALI/ARDS continues to be a major factor in global burden of diseases, with no pharmacological agents currently available. AREAS COVERED In this review, we discuss several inflammatory proteins involved in the molecular pathogenesis of ALI/ARDS. The complement cleavage product, C5a, is a peptide acting as a potent anaphylatoxin. C5a may trigger the formation of neutrophil extracellular traps (NETs) and release of histone proteins to the extracellular compartment during ALI/ARDS. NETs may activate platelets to release TGF-β, which is involved in tissue remodeling during the later phases of ALI/ARDS. Interception of C5a signaling or blockade of extracellular histones has recently shown promising beneficial effects in small animal models of ALI/ARDS. EXPERT OPINION Novel protein-based strategies for the treatment of ALI/ARDS may inspire the hopes of scientists, clinicians, and patients. Although neutralization of extracellular histones/NETs, C5a, and TGF-β is effective in experimental models of ALI/ARDS, controlled clinical trials will be necessary for further evaluation in future.
Collapse
Affiliation(s)
- Markus Bosmann
- University Medical Center, Center for Thrombosis and Hemostasis , Langenbeckstrasse 1, Mainz, 55131 , Germany +49 6131 17 8277 ; +49 6131 17 6238 ;
| | | |
Collapse
|
20
|
Li W, Li Q, Jiao Y, Qin L, Ali R, Zhou J, Ferruzzi J, Kim RW, Geirsson A, Dietz HC, Offermanns S, Humphrey JD, Tellides G. Tgfbr2 disruption in postnatal smooth muscle impairs aortic wall homeostasis. J Clin Invest 2014; 124:755-67. [PMID: 24401272 DOI: 10.1172/jci69942] [Citation(s) in RCA: 233] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 10/31/2013] [Indexed: 12/13/2022] Open
Abstract
TGF-β is essential for vascular development; however, excess TGF-β signaling promotes thoracic aortic aneurysm and dissection in multiple disorders, including Marfan syndrome. Since the pathology of TGF-β overactivity manifests primarily within the arterial media, it is widely assumed that suppression of TGF-β signaling in vascular smooth muscle cells will ameliorate aortic disease. We tested this hypothesis by conditional inactivation of Tgfbr2, which encodes the TGF-β type II receptor, in smooth muscle cells of postweanling mice. Surprisingly, the thoracic aorta rapidly thickened, dilated, and dissected in these animals. Tgfbr2 disruption predictably decreased canonical Smad signaling, but unexpectedly increased MAPK signaling. Type II receptor-independent effects of TGF-β and pathological responses by nonrecombined smooth muscle cells were excluded by serologic neutralization. Aortic disease was caused by a perturbed contractile apparatus in medial cells and growth factor production by adventitial cells, both of which resulted in maladaptive paracrine interactions between the vessel wall compartments. Treatment with rapamycin restored a quiescent smooth muscle phenotype and prevented dissection. Tgfbr2 disruption in smooth muscle cells also accelerated aneurysm growth in a murine model of Marfan syndrome. Our data indicate that basal TGF-β signaling in smooth muscle promotes postnatal aortic wall homeostasis and impedes disease progression.
Collapse
|
21
|
Abstract
Increased endothelial permeability and reduction of alveolar liquid clearance capacity are two leading pathogenic mechanisms of pulmonary edema, which is a major complication of acute lung injury, severe pneumonia, and acute respiratory distress syndrome, the pathologies characterized by unacceptably high rates of morbidity and mortality. Besides the success in protective ventilation strategies, no efficient pharmacological approaches exist to treat this devastating condition. Understanding of fundamental mechanisms involved in regulation of endothelial permeability is essential for development of barrier protective therapeutic strategies. Ongoing studies characterized specific barrier protective mechanisms and identified intracellular targets directly involved in regulation of endothelial permeability. Growing evidence suggests that, although each protective agonist triggers a unique pattern of signaling pathways, selected common mechanisms contributing to endothelial barrier protection may be shared by different barrier protective agents. Therefore, understanding of basic barrier protective mechanisms in pulmonary endothelium is essential for selection of optimal treatment of pulmonary edema of different etiology. This article focuses on mechanisms of lung vascular permeability, reviews major intracellular signaling cascades involved in endothelial monolayer barrier preservation and summarizes a current knowledge regarding recently identified compounds which either reduce pulmonary endothelial barrier disruption and hyperpermeability, or reverse preexisting lung vascular barrier compromise induced by pathologic insults.
Collapse
Affiliation(s)
- Konstantin G Birukov
- Lung Injury Center, Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, Illinois, USA.
| | | | | |
Collapse
|
22
|
Mammoto T, Jiang E, Jiang A, Lu Y, Juan AM, Chen J, Mammoto A. Twist1 controls lung vascular permeability and endotoxin-induced pulmonary edema by altering Tie2 expression. PLoS One 2013; 8:e73407. [PMID: 24023872 PMCID: PMC3759405 DOI: 10.1371/journal.pone.0073407] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 07/20/2013] [Indexed: 11/19/2022] Open
Abstract
Tight regulation of vascular permeability is necessary for normal development and deregulated vascular barrier function contributes to the pathogenesis of various diseases, including acute respiratory distress syndrome, cancer and inflammation. The angiopoietin (Ang)-Tie2 pathway is known to control vascular permeability. However, the mechanism by which the expression of Tie2 is regulated to control vascular permeability has not been fully elucidated. Here we show that transcription factor Twist1 modulates pulmonary vascular leakage by altering the expression of Tie2 in a context-dependent way. Twist1 knockdown in cultured human lung microvascular endothelial cells decreases Tie2 expression and phosphorylation and increases RhoA activity, which disrupts cell-cell junctional integrity and increases vascular permeability in vitro. In physiological conditions, where Ang1 is dominant, pulmonary vascular permeability is elevated in the Tie2-specific Twist1 knockout mice. However, depletion of Twist1 and resultant suppression of Tie2 expression prevent increase in vascular permeability in an endotoxin-induced lung injury model, where the balance of Angs shifts toward Ang2. These results suggest that Twist1-Tie2-Angs signaling is important for controlling vascular permeability and modulation of this mechanism may lead to the development of new therapeutic approaches for pulmonary edema and other diseases caused by abnormal vascular permeability.
Collapse
Affiliation(s)
- Tadanori Mammoto
- 1 Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Elisabeth Jiang
- 1 Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amanda Jiang
- 1 Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yongbo Lu
- 2 Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Texas, United States of America
| | - Aimee M. Juan
- 3 Department of Ophthalmology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jing Chen
- 3 Department of Ophthalmology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Akiko Mammoto
- 1 Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
23
|
Control of lung vascular permeability and endotoxin-induced pulmonary oedema by changes in extracellular matrix mechanics. Nat Commun 2013; 4:1759. [DOI: 10.1038/ncomms2774] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 03/21/2013] [Indexed: 02/05/2023] Open
|
24
|
Budd DC, Holmes AM. Targeting TGFβ superfamily ligand accessory proteins as novel therapeutics for chronic lung disorders. Pharmacol Ther 2012; 135:279-91. [PMID: 22722064 DOI: 10.1016/j.pharmthera.2012.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Dysregulation of the transforming growth factor β (TGFβ) pathway has been implicated to underlie a number of disease indications including chronic lung disorders such as asthma, chronic obstructive pulmonary disease (COPD), interstitial pneumonias, and pulmonary arterial hypertension (PAH). Consequently, the pharmaceutical industry has devoted significant resources in the pursuit of TGFβ pathway inhibitors that target the cognate type I and II receptors and respective ligands. The progress of these approaches has been painfully slow, due in part to dose-limiting safety issues that result from the antagonism of a pathway that is responsible for regulating many fundamental biological processes including immune surveillance and cardiovascular responses. These disappointments have led many in the field to conclude that modulating the TGFβ pathway for chronic indications with a sufficient safety window using conventional approaches may be extremely difficult to achieve. Here we review the rationale and limitations of the use of TGFβ pathway inhibitors in chronic lung disorders and the possibility of targeting TGFβ superfamily ligand accessory proteins to allow rheostatic regulation of signaling to achieve efficacy while maintaining a sufficient therapeutic index.
Collapse
Affiliation(s)
- David C Budd
- Respiratory Drug Discovery, Inflammation, Hoffmann-La Roche Inc., Nutley, NJ, USA.
| | | |
Collapse
|
25
|
Antonov AS, Antonova GN, Fujii M, ten Dijke P, Handa V, Catravas JD, Verin AD. Regulation of endothelial barrier function by TGF-β type I receptor ALK5: potential role of contractile mechanisms and heat shock protein 90. J Cell Physiol 2012; 227:759-71. [PMID: 21465483 DOI: 10.1002/jcp.22785] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Multifunctional cytokine transforming growth factor-beta (TGF-β1) plays a critical role in the pathogenesis of acute lung inflammation by controlling endothelial monolayer permeability. TGF-β1 regulates endothelial cell (EC) functions via two distinct receptors, activin receptor-like kinase 1 (ALK1) and activin receptor-like kinase 5 (ALK5). The precise roles of ALK1 and ALK5 in the regulation of TGF-β1-induced lung endothelium dysfunction remain mostly unknown. We now report that adenoviral infection with constitutively active ALK5 (caALK5), but not caALK1, induces EC retraction and that this receptor predominantly controls EC permeability. We demonstrate that ubiquitinated ALK5 and phosphorylated heat shock protein 27 (phospho-Hsp27) specifically accumulate in the cytoskeleton fraction, which parallels with microtubule collapse, cortical actin disassembly and increased EC permeability. We have found that ALK1 and ALK5 interact with heat shock protein 90 (Hsp90). Moreover, the Hsp90 inhibitor radicicol (RA) prevents accumulation of ubiquitinated caALK5 and phospho-Hsp27 in the cytoskeletal fraction and restore the decreased EC permeability induced by caALK5. We hypothesize that specific translocation of ubiquitinated ALK5 receptor into the cytoskeleton compartment due to its lack of degradation is the mechanism that causes the divergence of caALK1 and caALK5 signaling.
Collapse
Affiliation(s)
- Alexander S Antonov
- Vascular Biology Center, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Pardali E, Ten Dijke P. TGFβ signaling and cardiovascular diseases. Int J Biol Sci 2012; 8:195-213. [PMID: 22253564 PMCID: PMC3258560 DOI: 10.7150/ijbs.3805] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 12/01/2011] [Indexed: 12/19/2022] Open
Abstract
Transforming growth factor β (TGFβ) family members are involved in a wide range of diverse functions and play key roles in embryogenesis, development and tissue homeostasis. Perturbation of TGFβ signaling may lead to vascular and other diseases. In vitro studies have provided evidence that TGFβ family members have a wide range of diverse effects on vascular cells, which are highly dependent on cellular context. Consistent with these observations genetic studies in mice and humans showed that TGFβ family members have ambiguous effects on the function of the cardiovascular system. In this review we discuss the recent advances on TGFβ signaling in (cardio)vascular diseases, and describe the value of TGFβ signaling as both a disease marker and therapeutic target for (cardio)vascular diseases.
Collapse
Affiliation(s)
- Evangelia Pardali
- Department of Cardiology and Angiology, University Hospital Münster, Münster, Germany.
| | | |
Collapse
|
27
|
van Meeteren LA, ten Dijke P. Regulation of endothelial cell plasticity by TGF-β. Cell Tissue Res 2012; 347:177-86. [PMID: 21866313 PMCID: PMC3250609 DOI: 10.1007/s00441-011-1222-6] [Citation(s) in RCA: 264] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Accepted: 07/18/2011] [Indexed: 12/25/2022]
Abstract
Recent evidence has demonstrated that endothelial cells can have a remarkable plasticity. By a process called Endothelial-to-Mesenchymal Transition (EndMT) endothelial cells convert to a more mesenchymal cell type that can give rise to cells such as fibroblasts, but also bone cells. EndMT is essential during embryonic development and tissue regeneration. Interestingly, it also plays a role in pathological conditions like fibrosis of organs such as the heart and kidney. In addition, EndMT contributes to the generation of cancer associated fibroblasts that are known to influence the tumor-microenvironment favorable for the tumor cells. EndMT is a form of the more widely known and studied Epithelial-to-Mesenchymal Transition (EMT). Like EMT, EndMT can be induced by transforming growth factor (TGF)-β. Indeed many studies have pointed to the important role of TGF-β receptor/Smad signaling and downstream targets, such as Snail transcriptional repressor in EndMT. By selective targeting of TGF-β receptor signaling pathological EndMT may be inhibited for the therapeutic benefit of patients with cancer and fibrosis.
Collapse
Affiliation(s)
- Laurens A van Meeteren
- Department of Molecular Cell Biology and Centre for Biomedical Genetics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands.
| | | |
Collapse
|
28
|
Birukova AA, Zebda N, Cokic I, Fu P, Wu T, Dubrovskyi O, Birukov KG. p190RhoGAP mediates protective effects of oxidized phospholipids in the models of ventilator-induced lung injury. Exp Cell Res 2011; 317:859-72. [PMID: 21111731 PMCID: PMC3057230 DOI: 10.1016/j.yexcr.2010.11.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 11/01/2010] [Accepted: 11/18/2010] [Indexed: 10/18/2022]
Abstract
Products resulting from oxidation of cell membrane phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC) exhibit potent protective effects against lung endothelial cell (EC) barrier dysfunction caused by pathologically relevant mechanical forces and inflammatory agents. These effects were linked to enhancement of peripheral cytoskeleton and cell adhesion interactions mediated by small GTPase Rac and inhibition of Rho-mediated barrier-disruptive signaling. However, the mechanism of OxPAPC-induced, Rac-dependent Rho downregulation critical for vascular barrier protection remains unclear. This study tested the hypothesis that Rho negative regulator p190RhoGAP is essential for OxPAPC-induced lung barrier protection against ventilator-induced lung injury (VILI), and investigated potential mechanism of p190RhoGAP targeting to adherens junctions (AJ) via p120-catenin. OxPAPC induced peripheral translocation of p190RhoGAP, which was abolished by knockdown of Rac-specific guanine nucleotide exchange factors Tiam1 and Vav2. OxPAPC also induced Rac-dependent tyrosine phosphorylation and association of p190RhoGAP with AJ protein p120-catenin. siRNA-induced knockdown of p190RhoGAP attenuated protective effects of OxPAPC against EC barrier compromise induced by thrombin and pathologically relevant cyclic stretch (18% CS). In vivo, p190RhoGAP knockdown significantly attenuated protective effects of OxPAPC against ventilator-induced lung vascular leak, as detected by increased cell count and protein content in the bronchoalveolar lavage fluid, and tissue neutrophil accumulation in the lung. These results demonstrate for the first time a key role of p190RhoGAP for the vascular endothelial barrier protection in VILI.
Collapse
Affiliation(s)
- Anna A Birukova
- Lung Injury Center, Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
p38 MAP kinase mediates burn serum-induced endothelial barrier dysfunction: involvement of F-actin rearrangement and L-caldesmon phosphorylation. Shock 2011; 34:222-8. [PMID: 20160665 DOI: 10.1097/shk.0b013e3181d75a66] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The aim of this study was to test the hypothesis that circulating factors released after a severe burn cause endothelial barrier dysfunction by triggering endothelial cell (EC) contraction through a p38 mitogen-activated protein (MAP) kinase-dependent mechanism. Human umbilical vein ECs (ECV304 cell line) were cultured to create a monolayer of cells that were then cultured with 20% human normal or burn serum. Monolayer permeability was measured by the influx of labeled albumin across the cells. Endothelial cells contraction was determined by alterations of cell surface area and formation of intracellular gaps. P38 MAP kinase activation, F-actin arrangement, and L-caldesmon phosphorylation were assessed by Western blots or immunofluorescence staining. These studies showed that exposure to burn serum resulted in a significant increase in endothelial permeability in a time-dependent manner, which was paralleled by a rapid and persistent activation of p38 MAP kinases. Morphologically, increased intercellular gaps, reduced cell surface area, and a unique rearrangement of F-actin cytoskeleton were observed in burn serum-treated ECs. Inhibition of p38 MAP kinase suppressed the rearrangement of F-actin cytoskeleton, reduced the occurrence of burn serum-induced formation of intercellular gaps, and ameliorated endothelial hyperpermeability. Further study showed that phosphorylation of L-caldesmon was enhanced in burn serum-treated cells via p38 MAP kinase; overexpression of L-caldesmon by adenovirus transfection, however, attenuated the increase in endothelial permeability by burn serum challenge. Collectively, these results have demonstrated for the first time that p38 MAP kinase is an important participant in mediating burn serum-induced endothelial barrier dysfunction through rearrangement of the F-actin cytoskeleton and phosphorylation of L-caldesmon. Inhibition of p38 MAP kinase in vivo, thus, would be a promising therapeutic strategy in ameliorating burn shock development.
Collapse
|
30
|
Bone morphogenetic protein receptor II regulates pulmonary artery endothelial cell barrier function. Blood 2011; 117:333-41. [PMID: 20724539 DOI: 10.1182/blood-2010-05-285973] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Mutations in bone morphogenetic protein receptor II (BMPR-II) underlie most heritable cases of pulmonary arterial hypertension (PAH). However, less than half the individuals who harbor mutations develop the disease. Interestingly, heterozygous null BMPR-II mice fail to develop PAH unless an additional inflammatory insult is applied, suggesting that BMPR-II plays a fundamental role in dampening inflammatory signals in the pulmonary vasculature. Using static- and flow-based in vitro systems, we demonstrate that BMPR-II maintains the barrier function of the pulmonary artery endothelial monolayer suppressing leukocyte transmigration. Similar findings were also observed in vivo using a murine model with loss of endothelial BMPR-II expression. In vitro, the enhanced transmigration of leukocytes after tumor necrosis factor α or transforming growth factor β1 stimulation was CXCR2 dependent. Our data define how loss of BMPR-II in the endothelial layer of the pulmonary vasculature could lead to a heightened susceptibility to inflammation by promoting the extravasation of leukocytes into the pulmonary artery wall. We speculate that this may be a key mechanism involved in the initiation of the disease in heritable PAH that results from defects in BMPR-II expression.
Collapse
|
31
|
Santoro SP, Maas NL. Vascular homeostasis: insights from a fibrotic mouse. Dis Model Mech 2010; 4:5-6. [PMID: 21183480 PMCID: PMC3014339 DOI: 10.1242/dmm.006726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Stephen P Santoro
- Gene Therapy and Vaccines Program, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA. (;
| | | |
Collapse
|
32
|
|
33
|
TGF-β and microvessel homeostasis. Microvasc Res 2010; 80:166-73. [DOI: 10.1016/j.mvr.2010.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 02/23/2010] [Accepted: 03/04/2010] [Indexed: 12/17/2022]
|
34
|
Birukova AA, Fu P, Xing J, Yakubov B, Cokic I, Birukov KG. Mechanotransduction by GEF-H1 as a novel mechanism of ventilator-induced vascular endothelial permeability. Am J Physiol Lung Cell Mol Physiol 2010; 298:L837-48. [PMID: 20348280 DOI: 10.1152/ajplung.00263.2009] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Pathological lung overdistention associated with mechanical ventilation at high tidal volumes (ventilator-induced lung injury; VILI) compromises endothelial cell (EC) barrier leading to development of pulmonary edema and increased morbidity and mortality. We have previously shown involvement of microtubule (MT)-associated Rho-specific guanine nucleotide exchange factor GEF-H1 in the agonist-induced regulation of EC permeability. Using an in vitro model of human pulmonary EC exposed to VILI-relevant magnitude of cyclic stretch (18% CS) we tested a hypothesis that CS-induced alterations in MT dynamics contribute to the activation of Rho-dependent signaling via GEF-H1 and mediate early EC response to pathological mechanical stretch. Acute CS (30 min) induced disassembly of MT network, cell reorientation, and activation of Rho pathway, which was prevented by MT stabilizer taxol. siRNA-based GEF-H1 knockdown suppressed CS-induced disassembly of MT network, abolished Rho signaling, and attenuated CS-induced stress fiber formation and EC realignment compared with nonspecific RNA controls. Depletion of GEF-H1 in the murine two-hit model of VILI attenuated vascular leak induced by lung ventilation at high tidal volume and thrombin-derived peptide TRAP6. These data show for the first time the critical involvement of microtubules and microtubule-associated GEF-H1 in lung vascular endothelial barrier dysfunction induced by pathological mechanical strain.
Collapse
Affiliation(s)
- Anna A Birukova
- Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
35
|
Transforming growth factor-beta signaling alters substrate permeability and tight junction protein expression at the blood-brain barrier during inflammatory pain. J Cereb Blood Flow Metab 2009; 29:1084-98. [PMID: 19319146 PMCID: PMC3910515 DOI: 10.1038/jcbfm.2009.32] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Our laboratory has shown that peripheral inflammatory pain induced by lambda-carrageenan (CIP) can increase blood-brain barrier (BBB) permeability and alter tight junction (TJ) protein expression leading to changes in BBB functional integrity. However, the intracellular signaling mechanisms involved in this pathophysiologic response have not been elucidated. Transforming growth factor (TGF)-beta signaling pathways are known to regulate vascular integrity and permeability. Therefore, we examined the function of TGF-beta signaling at the BBB in rats subjected to CIP. During CIP, serum TGF-beta1 and protein expression of the TGF-beta receptor activin receptor-like kinase-5 (ALK5) were reduced. Brain permeability to (14)C-sucrose was increased and expression of TJ proteins (i.e., claudin-5, occludin, zonula occluden (ZO-1)) were also altered after 3 h CIP. Pharmacological inhibition of ALK5 with the selective inhibitor SB431542 further enhanced brain uptake of (14)C-sucrose, increased TJ protein expression (i.e., claudin-3, claudin-5, occludin, ZO-1), and decreased nuclear expression of TGF-beta/ALK5 signaling molecules (i.e., Smad2, Smad3), which suggests a role for TGF-beta/ALK5 signaling in the regulation of BBB integrity. Interestingly, administration of exogenous TGF-beta1 before CIP activated the TGF-beta/ALK5 pathway and reduced BBB permeability to (14)C-sucrose. Taken together, our data show that TGF-beta/ALK5 signaling is, in part, involved in the regulation of BBB functional integrity.
Collapse
|
36
|
Goumans MJ, Liu Z, ten Dijke P. TGF-beta signaling in vascular biology and dysfunction. Cell Res 2009; 19:116-27. [PMID: 19114994 DOI: 10.1038/cr.2008.326] [Citation(s) in RCA: 449] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Transforming growth factor (TGF)-beta family members are multifunctional cytokines that elicit their effects on cells, including endothelial and mural cells, via specific type I and type II serine/threonine kinase receptors and intracellular Smad transcription factors. Knock-out mouse models for TGF-beta family signaling pathway components have revealed their critical importance in proper yolk sac angiogenesis. Genetic studies in humans have linked mutations in these signaling components to specific cardiovascular syndromes such as hereditary hemorrhagic telangiectasia, primary pulmonary hypertension and Marfan syndrome. In this review, we present recent advances in our understanding of the role of TGF-beta receptor signaling in vascular biology and disease, and discuss how this may be applied for therapy.
Collapse
Affiliation(s)
- Marie-José Goumans
- Department of Molecular Cell Biology and Centre for Biomedical Genetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | | | | |
Collapse
|
37
|
You QH, Sun GY, Wang N, Shen JL, Wang Y. Interleukin-17F-induced pulmonary microvascular endothelial monolayer hyperpermeability via the protein kinase C pathway. J Surg Res 2009; 162:110-21. [PMID: 19577259 DOI: 10.1016/j.jss.2009.01.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 01/06/2009] [Accepted: 01/13/2009] [Indexed: 01/05/2023]
Abstract
BACKGROUND Interleukin (IL)-17F is involved in lung inflammation, but the effect of IL-17F on endothelial permeability and its signaling pathway remain ill-defined. The current study sought to investigate the effect of IL-17F on endothelium and assess the role of protein kinase C (PKC) and src-suppressed C kinase substrate (SSeCKS) in this process. METHODS Rat pulmonary microvascular endothelial monolayers were constructed to determine changes of permeability as measured by means of FITC-dextran and Hank's solution flux across monolayers and transendothelial electrical resistance with or without IL-17F and PKC inhibitors. Additional monolayers were stained using FITC-phalloidin for filamentous actin (F-actin). The gene expression of SSeCKS was analyzed by the reverse transcription-polymerase chains. Alterations of SSeCKS protein were investigated by immunoblotting and immunoprecipitation. RESULTS IL-17F increased endothelial monolayer permeability in a dose- and time-dependent manner. F-actin staining revealed that permeability changes were accompanied by reorganization of cytoskeleton. In the presence of PKC inhibitors, the IL-17F-induced hyperpermeability and reorganization of F-actin were attenuated. The gene and protein expression of SSeCKS were conspicuously elevated after IL-17F challenge. The process of SSeCKS phosphorylation followed a time course that mirrored the time course of hyperpermeability induced by IL-17F. IL-17F-induced SSeCKS phosphorylation was abrogated after PKC inhibitors pretreatment. The translocation of SSeCKS from the cytosol to the membrane and a significant increase in the SSeCKS association with the cytoskeleton were found after IL-17F treatment. CONCLUSIONS IL-17F is an important mediator of increased endothelial permeability. PKC and SSeCKS are integral signaling components essential for IL-17F-induced hyperpermeability.
Collapse
Affiliation(s)
- Qing-hai You
- Department of Respiratory Medicine, First Affiliated Hospital of Anhui Medical University, Anhui, Hefei, China
| | | | | | | | | |
Collapse
|
38
|
Shan B, Yao TP, Nguyen HT, Zhuo Y, Levy DR, Klingsberg RC, Tao H, Palmer ML, Holder KN, Lasky JA. Requirement of HDAC6 for transforming growth factor-beta1-induced epithelial-mesenchymal transition. J Biol Chem 2008; 283:21065-73. [PMID: 18499657 PMCID: PMC2475688 DOI: 10.1074/jbc.m802786200] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 05/12/2008] [Indexed: 12/31/2022] Open
Abstract
The aberrant expression of transforming growth factor (TGF)-beta1 in the tumor microenvironment and fibrotic lesions plays a critical role in tumor progression and tissue fibrosis by inducing epithelial-mesenchymal transition (EMT). EMT promotes tumor cell motility and invasiveness. How EMT affects motility and invasion is not well understood. Here we report that HDAC6 is a novel modulator of TGF-beta1-induced EMT. HDAC6 is a microtubule-associated deacetylase that predominantly deacetylates nonhistone proteins, including alpha-tubulin, and regulates cell motility. We showed that TGF-beta1-induced EMT is accompanied by HDAC6-dependent deacetylation of alpha-tubulin. Importantly, inhibition of HDAC6 by small interfering RNA or the small molecule inhibitor tubacin attenuated the TGF-beta1-induced EMT markers, such as the aberrant expression of epithelial and mesenchymal peptides, as well as the formation of stress fibers. Reduced expression of HDAC6 also impaired the activation of SMAD3 in response to TGF-beta1. Conversely, inhibition of SMAD3 activation substantially impaired HDAC6-dependent deacetylation of alpha-tubulin as well as the expression of EMT markers. These findings reveal a novel function of HDAC6 in EMT by intercepting the TGF-beta-SMAD3 signaling cascade. Our results identify HDAC6 as a critical regulator of EMT and a potential therapeutic target against pathological EMT, a key event for tumor progression and fibrogenesis.
Collapse
Affiliation(s)
- Bin Shan
- Department of Medicine and Tulane Cancer Center, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Birukova AA, Zagranichnaya T, Alekseeva E, Bokoch GM, Birukov KG. Epac/Rap and PKA are novel mechanisms of ANP-induced Rac-mediated pulmonary endothelial barrier protection. J Cell Physiol 2008; 215:715-24. [PMID: 18064650 DOI: 10.1002/jcp.21354] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acute lung injury, sepsis, lung inflammation, and ventilator-induced lung injury are life-threatening conditions associated with lung vascular barrier dysfunction, which may lead to pulmonary edema. Increased levels of atrial natriuretic peptide (ANP) in lung circulation reported in these pathologies suggest its potential role in the modulation of lung injury. Besides well recognized physiological effects on vascular tone, plasma volume, and renal function, ANP may exhibit protective effects in models of lung vascular endothelial cell (EC) barrier dysfunction. However, the molecular mechanisms of ANP protective effects are not well understood. The recently described cAMP-dependent guanine nucleotide exchange factor (GEF) Epac activates small GTPase Rap1, which results in activation of small GTPase Rac-specific GEFs Tiam1 and Vav2 and Rac-mediated EC barrier protective responses. Our results show that ANP stimulated protein kinase A and the Epac/Rap1/Tiam/Vav/Rac cascade dramatically attenuated thrombin-induced pulmonary EC permeability and the disruption of EC monolayer integrity. Using pharmacological and molecular activation and inhibition of cAMP-and cGMP-dependent protein kinases (PKA and PKG), Epac, Rap1, Tiam1, Vav2, and Rac we linked ANP-mediated protective effects to the activation of Epac/Rap and PKA signaling cascades, which dramatically inhibited the Rho pathway of thrombin-induced EC hyper-permeability. These results suggest a novel mechanism of ANP protective effects against agonist-induced pulmonary EC barrier dysfunction via inhibition of Rho signaling by Epac/Rap1-Rac and PKA signaling cascades.
Collapse
Affiliation(s)
- Anna A Birukova
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | |
Collapse
|
40
|
Beisswenger C, Coyne CB, Shchepetov M, Weiser JN. Role of p38 MAP kinase and transforming growth factor-beta signaling in transepithelial migration of invasive bacterial pathogens. J Biol Chem 2007; 282:28700-28708. [PMID: 17650505 DOI: 10.1074/jbc.m703576200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Streptococcus pneumoniae and Haemophilus influenzae are human pathogens that often asymptomatically colonize the mucosal surface of the upper respiratory tract, but also occasionally cause invasive disease. The ability of these species to traverse the epithelium of the airway mucosa was modeled in vitro using polarized respiratory epithelial cells in culture. Migration across the epithelial barrier was preceded by loss of transepithelial resistance. Membrane products of S. pneumoniae that included lipoteichoic acid induced disruption of the epithelial barrier in a Toll-like receptor 2-dependent manner. This result correlates with a recent genetic study that associates increased TLR2 signaling with increased rates of invasive pneumococcal disease in humans. Loss of transepithelial resistance by the TLR2 ligand correlated with activation of p38 MAP kinase and transforming growth factor (TGF)-beta signaling. Activation of p38 MAPK and TGF-beta signaling in epithelial cells upon nasal infection with S. pneumoniae was also demonstrated in vivo. Inhibition of either p38 MAPK or TGF-beta signaling was sufficient to inhibit the migration of S. pneumoniae or H. influenzae. Our data shows that diverse bacteria utilize common mechanisms, including MAPK and TGF-beta signaling pathways to disrupt epithelial barriers and promote invasion.
Collapse
Affiliation(s)
- Christoph Beisswenger
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Carolyn B Coyne
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Mikhail Shchepetov
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Jeffrey N Weiser
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104; Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
41
|
Birukova AA, Chatchavalvanich S, Oskolkova O, Bochkov VN, Birukov KG. Signaling pathways involved in OxPAPC-induced pulmonary endothelial barrier protection. Microvasc Res 2007; 73:173-81. [PMID: 17292425 PMCID: PMC1934559 DOI: 10.1016/j.mvr.2006.12.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Accepted: 12/20/2006] [Indexed: 11/27/2022]
Abstract
Increased tissue or serum levels of oxidized phospholipids have been detected in a variety of chronic and acute pathological conditions such as hyperlipidemia, atherosclerosis, heart attack, cell apoptosis, acute inflammation and injury. We have recently described signaling cascades activated by oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC)in the human pulmonary artery endothelial cells (EC) and reported potent barrier-protective effects of OxPAPC, which were mediated by small GTPases Rac and Cdc42. In this study we have further characterized signal transduction pathways involved in the OxPAPC-mediated endothelial barrier protection. Inhibitors of small GTPases, protein kinase A (PKA), protein kinase C (PKC), Src family kinases and general inhibitors of tyrosine kinases attenuated OxPAPC-induced barrier-protective response and EC cytoskeletal remodeling. In contrast, small GTPase Rho, Rho kinase, Erk-1,2 MAP kinase and p38 MAP kinase and PI3-kinase were not involved in the barrier-protective effects of OxPAPC. Inhibitors of PKA, PKC, tyrosine kinases and small GTPase inhibitor toxin B suppressed OxPAPC-induced Rac activation and decreased phosphorylation of focal adhesion kinase (FAK) and paxillin. Barrier-protective effects of OxPAPC were not reproduced by platelet activating factor (PAF), which at high concentrations induced barrier dysfunction, but were partially attenuated by PAF receptor antagonist A85783. These results demonstrate for the first time upstream signaling cascades involved in the OxPAPC-induced Rac activation, cytoskeletal remodeling and barrier regulation and suggest PAF receptor-independent mechanisms of OxPAPC-mediated endothelial barrier protection.
Collapse
Affiliation(s)
- Anna A Birukova
- Section of Pulmonary and Critical Medicine, Department of Medicine, Division of Biomedical Sciences, University of Chicago, 929 East 57th Street, CIS Bldg., W410, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
42
|
Lu Q, Harrington EO, Jackson H, Morin N, Shannon C, Rounds S. Transforming growth factor-β1-induced endothelial barrier dysfunction involves Smad2-dependent p38 activation and subsequent RhoA activation. J Appl Physiol (1985) 2006; 101:375-84. [PMID: 16645187 DOI: 10.1152/japplphysiol.01515.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Lung edema due to increased vascular permeability is a hallmark of acute lung injury and acute respiratory distress syndrome. Both p38 and RhoA signaling events are involved in transforming growth factor (TGF)-β1-increased endothelial permeability; however, the mechanism by which these pathways cooperate is not clear. In this study, we hypothesized that TGF-β1-induced changes in endothelial monolayer permeability and in p38 and RhoA activation are dependent on Smad2 signaling. We assessed the role of Smad2 in p38 activation and the role of p38 in RhoA activation by TGF-β1. We found that TGF-β1caused Smad2 phosphorylation between 0.5 and 1 h of exposure in endothelial cells. Knockdown of Smad2 protein prevented TGF-β1-induced p38 activation and endothelial barrier dysfunction. Furthermore, TGF-β1-enhanced RhoA activation was dependent on p38 activation. Inhibition of the RhoA-Rho kinase signaling pathway blunted TGF-β1-induced adherens junction disruption and focal adhesion complex formation. In addition, depletion of heat shock protein 27, a downstream signaling molecule of p38, did not prevent TGF-β1-induced endothelial barrier dysfunction. Finally, inhibition of de novo protein expression blunted TGF-β1-induced RhoA activation and endothelial barrier dysfunction. Our data indicate that TGF-β1induces endothelial barrier dysfunction involving Smad2-dependent p38 activation, resulting in RhoA activation by possible transcriptional regulation.
Collapse
Affiliation(s)
- Qing Lu
- Vascular Research Laboratory, Providence VA Medical Center, Research Services, 151, 830 Chalkstone Ave., Providence, RI 02908, USA.
| | | | | | | | | | | |
Collapse
|