1
|
Li X, Xu Z. Applications of Matrix Metalloproteinase-9-Related Nanomedicines in Tumors and Vascular Diseases. Pharmaceutics 2025; 17:479. [PMID: 40284474 PMCID: PMC12030376 DOI: 10.3390/pharmaceutics17040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/25/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) is implicated in tumor progression and vascular diseases, contributing to angiogenesis, metastasis, and extracellular matrix degradation. This review comprehensively examines the relationship between MMP-9 and these pathologies, exploring the underlying molecular mechanisms and signaling pathways involved. Specifically, we discuss the contribution of MMP-9 to tumor epithelial-mesenchymal transition, angiogenesis, and metastasis, as well as its involvement in a spectrum of vascular diseases, including macrovascular, cerebrovascular, and ocular vascular diseases. This review focuses on recent advances in MMP-9-targeted nanomedicine strategies, highlighting the design and application of responsive nanoparticles for enhanced drug delivery. These nanotherapeutic strategies leverage MMP-9 overexpression to achieve targeted drug release, improved tumor penetration, and reduced systemic toxicity. We explore various nanoparticle platforms, such as liposomes and polymer nanoparticles, and discuss their mechanisms of action, including degradation, drug release, and targeting specificity. Finally, we address the challenges posed by the heterogeneity of MMP-9 expression and their implications for personalized therapies. Ultimately, this review underscores the diagnostic and therapeutic potential of MMP-9-targeted nanomedicines against tumors and vascular diseases.
Collapse
Affiliation(s)
| | - Zhuping Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China;
| |
Collapse
|
2
|
Mou Y, Yang S, Yu J, Chen X, Zhu Y, Wang C, Wan X, Yuan K, Huang X, Jin X. Histone methylation regulates neutrophil extracellular traps to attenuate corneal neovascularization. Int Immunopharmacol 2024; 143:113525. [PMID: 39500081 DOI: 10.1016/j.intimp.2024.113525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/03/2024] [Accepted: 10/25/2024] [Indexed: 12/08/2024]
Abstract
Corneal neovascularization (CNV) severely affects corneal transparency and disrupts the homeostasis of the ocular environment. However, the underlying mechanism of CNV remains unclear. In this study, we investigated the role of neutrophil extracellular traps (NETs) played in CNV and how histone methylation regulates the characterization of NETs. We used an alkali-burn-induced mice CNV model and human primary neutrophils to observe the involvement of NETs during CNV and change in its histone methylation. Transcriptomic analysis was performed to demonstrate the involvement of NETs during corneal alkali burn. We used the histone demethylase inhibitor JIB-04 to regulate the histone methylation of NETs and explored the related effects on CNV formation. NETs were obviously involved in corneal alkali burn and could be stimulated by NaOH in vitro. Isolated NETs aggravated CNV and promoted migration, proliferation and tube formation of vascular endothelial cells, while disruption of NETs significantly ameliorated angiogenesis and inflammation in vivo and in vitro. Mechanistically, histone methylation of NETs was inhibited by alkali burn and restored by JIB-04. Furthermore, we discovered that JIB-04 reduced CNV and NETs formation by regulating the NF-κB/ERK/ROS pathway. In conclusion, this study claims a novel role for histone methylation in regulating NETs formation and thereby affecting angiogenesis, which indicates a novel therapeutic target for CNV and other neovascularization-related diseases.
Collapse
Affiliation(s)
- Yujie Mou
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China
| | - Shuo Yang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China
| | - Jiayun Yu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China
| | - Xueping Chen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China
| | - Yirui Zhu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China
| | - Chunyang Wang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China
| | - Xiaojie Wan
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China
| | - Kelan Yuan
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China
| | - Xiaodan Huang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China.
| | - Xiuming Jin
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China.
| |
Collapse
|
3
|
Jiang Y, Zhang J, Shi C, Li X, Jiang Y, Mao R. NF- κB: a mediator that promotes or inhibits angiogenesis in human diseases? Expert Rev Mol Med 2023; 25:e25. [PMID: 37503730 DOI: 10.1017/erm.2023.20] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The nuclear factor of κ-light chain of enhancer-activated B cells (NF-κB) signaling pathway, which is conserved in invertebrates, plays a significant role in human diseases such as inflammation-related diseases and carcinogenesis. Angiogenesis refers to the growth of new capillary vessels derived from already existing capillaries and postcapillary venules. Maintaining normal angiogenesis and effective vascular function is a prerequisite for the stability of organ tissue function, and abnormal angiogenesis often leads to a variety of diseases. It has been suggested that NK-κB signalling molecules under pathological conditions play an important role in vascular differentiation, proliferation, apoptosis and tumourigenesis by regulating the transcription of multiple target genes. Many NF-κB inhibitors are being tested in clinical trials for cancer treatment and their effect on angiogenesis is summarised. In this review, we will summarise the role of NF-κB signalling in various neovascular diseases, especially in tumours, and explore whether NF-κB can be used as an attack target or activation medium to inhibit tumour angiogenesis.
Collapse
Affiliation(s)
- Yijing Jiang
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Jie Zhang
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, 30Tongyang North Road, Pingchao Town, Nantong 226361, Jiangsu, People's Republic of China
| | - Conglin Shi
- Department of Pathogenic Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Xingjuan Li
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Yongying Jiang
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Renfang Mao
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| |
Collapse
|
4
|
Hamel-Côté G, Lapointe F, Véronneau S, Mayhue M, Rola-Pleszczynski M, Stankova J. Regulation of platelet-activating factor-mediated interleukin-6 promoter activation by the 48 kDa but not the 45 kDa isoform of protein tyrosine phosphatase non-receptor type 2. Cell Biosci 2019; 9:51. [PMID: 31289638 PMCID: PMC6593612 DOI: 10.1186/s13578-019-0316-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/20/2019] [Indexed: 12/20/2022] Open
Abstract
Background An underlying state of inflammation is thought to be an important cause of cardiovascular disease. Among cells involved in the early steps of atherosclerosis, monocyte-derived dendritic cells (Mo-DCs) respond to inflammatory stimuli, including platelet-activating factor (PAF), by the induction of various cytokines, such as interleukin 6 (IL-6). PAF is a potent phospholipid mediator involved in both the onset and progression of atherosclerosis. It mediates its effects by binding to its cognate G-protein coupled receptor, PAFR. Activation of PAFR-induced signaling pathways is tightly coordinated to ensure specific cell responses. Results Here, we report that PAF stimulated the phosphatase activity of both the 45 and 48 kDa isoforms of the protein tyrosine phosphatase non-receptor type 2 (PTPN2). However, we found that only the 48 kDa PTPN2 isoform has a role in PAFR-induced signal transduction, leading to activation of the IL-6 promoter. In luciferase reporter assays, expression of the 48 kDa, but not the 45 kDa, PTPN2 isoform increased human IL-6 (hIL-6) promoter activity by 40% after PAF stimulation of HEK-293 cells, stably transfected with PAFR (HEK-PAFR). Our results suggest that the differential localization of the PTPN2 isoforms and the differences in PAF-induced phosphatase activation may contribute to the divergent modulation of PAF-induced IL-6 promoter activation. The involvement of PTPN2 in PAF-induced IL-6 expression was confirmed in immature Mo-DCs (iMo-DCs), using siRNAs targeting the two isoforms of PTPN2, where siRNAs against the 48 kDa PTPN2 significantly inhibited PAF-stimulated IL-6 mRNA expression. Pharmacological inhibition of several signaling pathways suggested a role for PTPN2 in early signaling events. Results obtained by Western blot confirmed that PTPN2 increased the activation of the PI3K/Akt pathway via the modulation of protein kinase D (PKD) activity. WT PKD expression counteracted the effect of PTPN2 on PAF-induced IL-6 promoter transactivation and phosphorylation of Akt. Using siRNAs targeting the individual isoforms of PTPN2, we confirmed that these pathways were also active in iMo-DCs. Conclusion Taken together, our data suggest that PTPN2, in an isoform-specific manner, could be involved in the positive regulation of PI3K/Akt activation, via the modulation of PKD activity, allowing for the maximal induction of PAF-stimulated IL-6 mRNA expression.
Collapse
Affiliation(s)
- Geneviève Hamel-Côté
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC Canada
| | - Fanny Lapointe
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC Canada
| | - Steeve Véronneau
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC Canada
| | - Marian Mayhue
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC Canada
| | - Marek Rola-Pleszczynski
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC Canada
| | - Jana Stankova
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC Canada
| |
Collapse
|
5
|
Hamel-Côté G, Lapointe F, Gendron D, Rola-Pleszczynski M, Stankova J. Regulation of platelet-activating factor-induced interleukin-8 expression by protein tyrosine phosphatase 1B. Cell Commun Signal 2019; 17:21. [PMID: 30832675 PMCID: PMC6399872 DOI: 10.1186/s12964-019-0334-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/22/2019] [Indexed: 12/21/2022] Open
Abstract
Background Platelet-activating factor (PAF) is a potent lipid mediator whose involvement in the onset and progression of atherosclerosis is mediated by, among others, the modulation of cytokine expression patterns. The presence of multiple potential protein-tyrosine phosphatase (PTP) 1B substrates in PAF receptor signaling pathways brought us to investigate its involvement in PAF-induced cytokine expression in monocyte-derived dendritic cells (Mo-DCs) and to study the pathways involved in this modulation. Methods We used in-vitro-matured human dendritic cells and the HEK-293 cell line in our studies. PTP1B inhibition was though siRNAs and a selective inhibitor. Cytokine expression was studied with RT-PCR, luciferase assays and ELISA. Phosphorylation status of kinases and transcription factors was studied with western blotting. Results Here, we report that PTP1B was involved in the modulation of cytokine expression in PAF-stimulated Mo-DCs. A study of the down-regulation of PAF-induced IL-8 expression, by PTP1B, showed modulation of PAF-induced transactivation of the IL-8 promoter which was dependent on the presence of the C/EBPß -binding site. Results also suggested that PTP1B decreased PAF-induced IL-8 production by a glycogen synthase kinase (GSK)-3-dependent pathway via activation of the Src family kinases (SFK). These kinases activated an unidentified pathway at early stimulation times and the PI3K/Akt signaling pathway in a later phase. This change in GSK-3 activity decreased the C/EBPß phosphorylation levels of the threonine 235, a residue whose phosphorylation is known to increase C/EBPß transactivation potential, and consequently modified IL-8 expression. Conclusion The negative regulation of GSK-3 activity by PTP1B and the consequent decrease in phosphorylation of the C/EBPß transactivation domain could be an important negative feedback loop by which cells control their cytokine production after PAF stimulation. Electronic supplementary material The online version of this article (10.1186/s12964-019-0334-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Geneviève Hamel-Côté
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, J1H 4N5, Canada
| | - Fanny Lapointe
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, J1H 4N5, Canada
| | - Daniel Gendron
- Agriculture and Agri-Food Canada, Dairy and Swine Research and Development Center, 2000 College Street, Sherbrooke, QC, Canada
| | - Marek Rola-Pleszczynski
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, J1H 4N5, Canada
| | - Jana Stankova
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, J1H 4N5, Canada.
| |
Collapse
|
6
|
Garczorz W, Gallego-Colon E, Kosowska A, Kłych-Ratuszny A, Woźniak M, Marcol W, Niesner KJ, Francuz T. Exenatide exhibits anti-inflammatory properties and modulates endothelial response to tumor necrosis factor α-mediated activation. Cardiovasc Ther 2018; 36. [PMID: 29283509 DOI: 10.1111/1755-5922.12317] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/30/2017] [Accepted: 12/20/2017] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Cardiovascular disease is the main cause of mortality and morbidity in the industrialized world. Incretin-mimetic compounds such as exenatide are currently used in the treatment of type 2 diabetes. AIMS We investigated the effects of incretin drugs on apoptosis, adhesion molecule expression, and concentration of extracellular matrix (ECM) metalloproteinases under inflammatory conditions within the context of atherosclerotic plaque formation of both human coronary artery endothelial cells (hCAECs) and human aortic endothelial cells (hAoECs). TNF-α-stimulated hCAEC and hAoEC were treated with exenatide (1 and 10 nmol/L) and GLP-1 (10 and 100 nmol/L) then evaluated for caspase 3/7 activity and assayed for protein levels of adhesion molecules sICAM-1, sVCAM-1, and P-selectin. Concentrations of matrix metalloproteinases (MMPs) MMP-1, MMP-2, MMP-9, and their inhibitors-tissue inhibitor of metalloproteinases (TIMPs), TIMP-1, TIMP-2 were also measured to evaluate the effects on extracellular matrix turnover within an inflammatory environment. Intracellular signaling pathways were evaluated via transfection of endothelial cells with a GFP vector under the NF-κB promoter. RESULTS Our experimental data suggest that GLP-1 receptor (GLP-1R) agonists downregulate activation of NF-κB and adhesion molecules ICAM and VCAM, but not P-selectin, in both endothelial cell lines. Exendin-4 and GLP-1 modulate the expression of MMPs and TIMPs, with statistically significant effects observed at high concentrations of both incretins. Expressive modulation may be mediated by NF-κB as observed by activation of the vector when stimulated under inflammatory conditions. CONCLUSION These findings indicate that GLP-1 analogs have anti-inflammatory properties in endothelial cells that may play an important role in preventing atherosclerosis.
Collapse
Affiliation(s)
- Wojciech Garczorz
- Department of Biochemistry, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Enrique Gallego-Colon
- Department of Biochemistry, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agnieszka Kosowska
- Department of Biochemistry, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agnieszka Kłych-Ratuszny
- Department of Biochemistry, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Michał Woźniak
- Department of Biochemistry, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Wiesław Marcol
- Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - K J Niesner
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Tomasz Francuz
- Department of Biochemistry, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
7
|
Garrido D, Chanteloup NK, Trotereau A, Lion A, Bailleul G, Esnault E, Trapp S, Quéré P, Schouler C, Guabiraba R. Characterization of the Phospholipid Platelet-Activating Factor As a Mediator of Inflammation in Chickens. Front Vet Sci 2017; 4:226. [PMID: 29326957 PMCID: PMC5741692 DOI: 10.3389/fvets.2017.00226] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/06/2017] [Indexed: 12/19/2022] Open
Abstract
Lipid mediators are known to play important roles in the onset and resolution phases of the inflammatory response in mammals. The phospholipid platelet-activating factor (PAF) is a pro-inflammatory lipid mediator which participates in vascular- and innate immunity-associated processes by increasing vascular permeability, by facilitating leukocyte adhesion to the endothelium, and by contributing to phagocyte activation. PAF exerts its function upon binding to its specific receptor, PAF receptor (PAFR), which is abundantly expressed in leukocytes and endothelial cells (ECs). In chickens, lipid mediators and their functions are still poorly characterized, and the role of PAF as an inflammatory mediator has not yet been investigated. In the present study we demonstrate that primary chicken macrophages express PAFR and lysophosphatidylcholine acyltransferase 2 (LPCAT2), the latter being essential to PAF biosynthesis during inflammation. Also, exogenous PAF treatment induces intracellular calcium increase, reactive oxygen species release, and increased phagocytosis by primary chicken macrophages in a PAFR-dependent manner. We also show that PAF contributes to the Escherichia coli lipopolysaccharide (LPS)-induced pro-inflammatory response and boosts the macrophage response to E. coli LPS via phosphatidylinositol 3-kinase/Akt- and calmodulin kinase II-mediated intracellular signaling pathways. Exogenous PAF treatment also increases avian pathogenic E. coli intracellular killing by chicken macrophages, and PAFR and LPCAT2 are upregulated in chicken lungs and liver during experimental pulmonary colibacillosis. Finally, exogenous PAF treatment increases cell permeability and upregulates the expression of genes coding for proteins involved in leukocyte adhesion to the endothelium in primary chicken endothelial cells (chAEC). In addition to these vascular phenomena, PAF boosts the chAEC inflammatory response to bacteria-associated molecular patterns in a PAFR-dependent manner. In conclusion, we identified PAF as an inflammation amplifier in chicken macrophages and ECs, which suggests that PAF could play important roles in the endothelium-innate immunity interface in birds during major bacterial infectious diseases such as colibacillosis.
Collapse
Affiliation(s)
- Damien Garrido
- ISP, INRA, Université François Rabelais de Tours, Nouzilly, France
| | | | | | - Adrien Lion
- ISP, INRA, Université François Rabelais de Tours, Nouzilly, France
| | | | - Evelyne Esnault
- ISP, INRA, Université François Rabelais de Tours, Nouzilly, France
| | - Sascha Trapp
- ISP, INRA, Université François Rabelais de Tours, Nouzilly, France
| | - Pascale Quéré
- ISP, INRA, Université François Rabelais de Tours, Nouzilly, France
| | | | | |
Collapse
|
8
|
Hamel-Côté G, Gendron D, Rola-Pleszczynski M, Stankova J. Regulation of platelet-activating factor-mediated protein tyrosine phosphatase 1B activation by a Janus kinase 2/calpain pathway. PLoS One 2017; 12:e0180336. [PMID: 28686728 PMCID: PMC5501562 DOI: 10.1371/journal.pone.0180336] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 06/14/2017] [Indexed: 11/18/2022] Open
Abstract
Atherosclerosis is a pro-inflammatory condition underlying many cardiovascular diseases. Platelet-activating factor (PAF) and interleukin 6 (IL-6) are actively involved in the onset and progression of atherosclerotic plaques. The involvement of monocyte-derived macrophages is well characterized in the installation of inflammatory conditions in the plaque, but less is known about the contribution of monocyte-derived dendritic cells (Mo-DCs). In the same way, the involvement of calcium, phospholipase C and A2 in PAF-induced IL-6 production, in different cells types, has been shown; however, the importance of the Jak/STAT pathway and its regulation by protein-tyrosine phosphatases in this response have not been addressed. In this study, we report that PAF stimulates PTP1B activity via Jak2, thereby modulating PAF-induced IL-6 production. Using HEK 293 cells stably transfected with the PAF receptor in order to discriminate the pathway components, our results suggest that Jak2 modulates PAF-induced IL-6 production via both positive and negative pathways. Jak2 kinase activity was necessary for maximal transactivation of the IL-6 promoter, as seen by luciferase assays, whereas the same kinase also downregulated this promoter transactivation through the activation of a calcium/calpain/PTP1B pathway. The same pathways were operational in monocyte-derived dendritic cells, since PAF-induced PTP1B activation negatively regulated PAF-induced IL-6 mRNA production and, in addition, Jak2 activated calpain, one of the components involved in PAF-induced PTP1B activation. Results obtained in this study indicate that Jak2 activation is important for maximal IL-6 promoter transactivation by PAF and that PTP1B is involved in the negative regulation of this transactivation. However, PTP1B does not directly regulate Jak2 activation, but rather Jak2 regulates PAF-induced PTP1B activation.
Collapse
Affiliation(s)
- Geneviève Hamel-Côté
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Daniel Gendron
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marek Rola-Pleszczynski
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jana Stankova
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- * E-mail:
| |
Collapse
|
9
|
Extracellular matrix modulates angiogenesis in physiological and pathological conditions. BIOMED RESEARCH INTERNATIONAL 2014; 2014:756078. [PMID: 24949467 PMCID: PMC4052469 DOI: 10.1155/2014/756078] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/27/2014] [Indexed: 12/17/2022]
Abstract
Angiogenesis is a multistep process driven by a wide range of positive and negative regulatory factors. Extracellular matrix (ECM) plays a crucial role in the regulation of this process. The degradation of ECM, occurring in response to an angiogenic stimulus, leads to degradation or partial modification of matrix molecules, release of soluble factors, and exposure of cryptic sites with pro- and/or antiangiogenic activity. ECM molecules and fragments, resulting from proteolysis, can also act directly as inflammatory stimuli, and this can explain the exacerbated angiogenesis that drives and maintains several inflammatory diseases. In this review we have summarized some of the more recent literature data concerning the molecular control of ECM in angiogenesis in both physiological and pathological conditions.
Collapse
|
10
|
Alvira CM. Nuclear factor-kappa-B signaling in lung development and disease: one pathway, numerous functions. ACTA ACUST UNITED AC 2014; 100:202-16. [PMID: 24639404 PMCID: PMC4158903 DOI: 10.1002/bdra.23233] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/28/2014] [Accepted: 01/29/2014] [Indexed: 01/04/2023]
Abstract
In contrast to other organs, the lung completes a significant portion of its development after term birth. During this stage of alveolarization, division of the alveolar ducts into alveolar sacs by secondary septation, and expansion of the pulmonary vasculature by means of angiogenesis markedly increase the gas exchange surface area of the lung. However, postnatal completion of growth renders the lung highly susceptible to environmental insults such as inflammation that disrupt this developmental program. This is particularly evident in the setting of preterm birth, where impairment of alveolarization causes bronchopulmonary dysplasia, a chronic lung disease associated with significant morbidity. The nuclear factor κ-B (NFκB) family of transcription factors are ubiquitously expressed, and function to regulate diverse cellular processes including proliferation, survival, and immunity. Extensive evidence suggests that activation of NFκB is important in the regulation of inflammation and in the control of angiogenesis. Therefore, NFκB-mediated downstream effects likely influence the lung response to injury and may also mediate normal alveolar development. This review summarizes the main biologic functions of NFκB, and highlights the regulatory mechanisms that allow for diversity and specificity in downstream gene activation. This is followed by a description of the pro and anti-inflammatory functions of NFκB in the lung, and of NFκB-mediated angiogenic effects. Finally, this review summarizes the clinical and experimental data that support a role for NFκB in mediating postnatal angiogenesis and alveolarization, and discusses the challenges that remain in developing therapies that can selectively block the detrimental functions of NFκB yet preserve the beneficial effects.
Collapse
Affiliation(s)
- Cristina M Alvira
- Division of Critical Care Medicine Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
11
|
Zhao F, Li L, Guan L, Yang H, Wu C, Liu Y. Roles for GP IIb/IIIa and αvβ3 integrins in MDA-MB-231 cell invasion and shear flow-induced cancer cell mechanotransduction. Cancer Lett 2014; 344:62-73. [DOI: 10.1016/j.canlet.2013.10.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 10/10/2013] [Accepted: 10/18/2013] [Indexed: 02/07/2023]
|
12
|
Kim YH, Lee SJ, Seo KW, Bae JU, Park SY, Kim EK, Bae SS, Kim JH, Kim CD. PAF enhances MMP-2 production in rat aortic VSMCs via a β-arrestin2-dependent ERK signaling pathway. J Lipid Res 2013; 54:2678-86. [PMID: 23911909 PMCID: PMC3770081 DOI: 10.1194/jlr.m037176] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Platelet-activating factor (PAF), 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine, is a potent phospholipid mediator and has been reported to be localized in atherosclerotic plaque. However, its role in the progression of atherosclerosis remains unclear. In the present study, we investigated the role of PAF in the production of matrix metalloproteinase (MMP) in primary vascular smooth muscle cells (VSMCs). When rat aortic primary VSMCs were stimulated with PAF (1 nmol/l), the expressions of MMP-2 mRNA and protein, but not of MMP-9, were significantly increased, and these upregulations were markedly attenuated by inhibiting extracellular signal-regulated kinases (ERKs) using molecular and pharmacological inhibitors, but not by using inhibitors of p38 mitogen-activated protein kinase or c-Jun N-terminal kinase. Likewise, ERK phosphorylation was markedly enhanced in PAF-stimulated VSMCs, and this was attenuated by WEB2086, but not by EGF receptor inhibitor, demonstrating the specificity of PAF receptor (PAFR) in PAF-induced ERK phosphorylation. In immunofluorescence studies, β-arrestin2 in PAF-stimulated VSMCs colocalized with PAFR and phosphorylated ERK (P-ERK). Coimmunoprecipitation results suggest that β-arrestin2-bound PAFRs existed as a complex with P-ERK. In addition, PAF-induced ERK phosphorylation and MMP-2 production were significantly attenuated by β-arrestin2 depletion. Taken together, the study shows that PAF enhances MMP-2 production in VSMCs via a β-arrestin2-dependent ERK signaling pathway.
Collapse
Affiliation(s)
- Yun H Kim
- Departments of Pharmacology and Pusan National University, Yangsan, Gyeongnam 626-870, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Liu O, Jia L, Liu X, Wang Y, Wang X, Qin Y, Du J, Zhang H. Clopidogrel, a platelet P2Y12 receptor inhibitor, reduces vascular inflammation and angiotensin II induced-abdominal aortic aneurysm progression. PLoS One 2012; 7:e51707. [PMID: 23284748 PMCID: PMC3527447 DOI: 10.1371/journal.pone.0051707] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 11/05/2012] [Indexed: 12/28/2022] Open
Abstract
Medial degeneration and inflammation are features of abdominal aortic aneurysms (AAAs). However, the early inflammatory event initiating aneurysm formation remains to be identified. Activated platelets release abundant proinflammatory cytokines and are involved in initial inflammation in various vascular diseases. We investigated the role of platelets in progression of AAA in vivo and in vitro. Histological studies of tissues of patients with AAA revealed that the number of platelets was increased in aneurysm sites along with the increased infiltration of T lymphocytes and augmented angiogenesis. In a murine model of AAA, apolipoprotein E-knockout mice infused with 1,000 ng/kg/min angiotensin II, treatment with clopidogrel, an inhibitor of platelets, significantly suppressed aneurysm formation (47% decrease, P<0.05). The clopidogrel also suppressed changes in aortic expansion, elastic lamina degradation and inflammatory cytokine expression. Moreover, the infiltration of macrophages and production of matrix metalloproteinases (MMPs) were also significantly reduced by clopidogrel treatment. In vitro incubation of macrophages with isolated platelets stimulated MMP activity by 45%. These results demonstrate a critical role for platelets in vascular inflammation and AAA progression.
Collapse
MESH Headings
- Angiotensin II/toxicity
- Animals
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/prevention & control
- Apolipoproteins E/physiology
- Blood Platelets/drug effects
- Blood Platelets/metabolism
- Blood Pressure Determination
- Clopidogrel
- Cytokines/metabolism
- Immunoenzyme Techniques
- Inflammation/metabolism
- Inflammation/prevention & control
- Macrophages, Peritoneal/cytology
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/metabolism
- Matrix Metalloproteinases/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Platelet Aggregation Inhibitors/pharmacology
- Reactive Oxygen Species/metabolism
- Receptors, Purinergic P2Y12/chemistry
- Receptors, Purinergic P2Y12/metabolism
- Ticlopidine/analogs & derivatives
- Ticlopidine/pharmacology
- Vasculitis/metabolism
- Vasculitis/prevention & control
- Vasoconstrictor Agents/toxicity
Collapse
Affiliation(s)
- Ou Liu
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Capital Medical University, Ministry of Education; Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Lixin Jia
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Capital Medical University, Ministry of Education; Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Xiaoxi Liu
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Capital Medical University, Ministry of Education; Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Yueli Wang
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Capital Medical University, Ministry of Education; Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Xiaolong Wang
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yanwen Qin
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Capital Medical University, Ministry of Education; Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Jie Du
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Capital Medical University, Ministry of Education; Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- * E-mail: (JD); (HZ)
| | - Hongjia Zhang
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Capital Medical University, Ministry of Education; Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- * E-mail: (JD); (HZ)
| |
Collapse
|
14
|
Wang SJ, Sun B, Cheng ZX, Zhou HX, Gao Y, Kong R, Chen H, Jiang HC, Pan SH, Xue DB, Bai XW. Dihydroartemisinin inhibits angiogenesis in pancreatic cancer by targeting the NF-κB pathway. Cancer Chemother Pharmacol 2011; 68:1421-30. [PMID: 21479633 DOI: 10.1007/s00280-011-1643-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 03/26/2011] [Indexed: 10/18/2022]
Abstract
PURPOSE Dihydroartemisinin (DHA) has recently shown antitumor activity in human pancreatic cancer cells. However, its effect on antiangiogenic activity in pancreatic cancer is unknown, and the mechanism is unclear. This study was aimed to investigate whether DHA would inhibit angiogenesis in human pancreatic cancer. METHODS Cell viability and proliferation, tube formation of human umbilical vein endothelial cells (HUVECs), nuclear factor (NF)-κB DNA-binding activity, expressions of vascular endothelial growth factor (VEGF), interleukin (IL)-8, cyclooxygenase (COX)-2, and matrix metalloproteinase (MMP)-9 were examined in vitro. The effect of DHA on antiangiogenic activity in pancreatic cancer was also assessed using BxPC-3 xenografts subcutaneously established in BALB/c nude mice. RESULTS DHA inhibited cell proliferation and tube formation of HUVECs in a time- and dose-dependent manner and also reduced cell viability in pancreatic cancer cells. DHA significantly inhibited NF-κB DNA-binding activity, so as to tremendously decrease the expression of NF-κB-targeted proangiogenic gene products: VEGF, IL-8, COX-2, and MMP-9 in vitro. In vivo studies, DHA remarkably reduced tumor volume, decreased microvessel density, and down-regulated the expression of NF-κB-related proangiogenic gene products. CONCLUSIONS Inhibition of NF-κB activation is one of the mechanisms that DHA inhibits angiogenesis in human pancreatic cancer. We also suggest that DHA could be developed as a novel agent against pancreatic cancer.
Collapse
Affiliation(s)
- Shuang-Jia Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 23 Youzheng Str, Nangang, Harbin, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ranzato E, Martinotti S, Volante A, Mazzucco L, Burlando B. Platelet lysate modulates MMP-2 and MMP-9 expression, matrix deposition and cell-to-matrix adhesion in keratinocytes and fibroblasts. Exp Dermatol 2010; 20:308-13. [PMID: 20955204 DOI: 10.1111/j.1600-0625.2010.01173.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cell-matrix interactions are an essential element of wound healing, while platelet derivatives are used in clinical settings for the treatment of chronic wounds. We used a platelet lysate (PL), which had been previously shown to accelerate in vitro the wounding of HaCaT keratinocytes and fibroblasts (J Cell Mol Med, 13, 2009, 2030; Br J Dermatol, 159, 2008, 537), to study the modulation of MMP-2 and MMP-9 collagenase expression, collagen type I and III production and syndecan-4 expression and rearrangement in these cells. Zymography and Western blot analyses showed that exposure to 20% (v/v) PL for 24 h induced an apparently ERK1/2- and p38-dependent, NF-kappaB-independent, translational upregulation of MMP-9 in HaCaT, while HaCaT MMP-2 and fibroblast collagenases were almost unaffected. The use of in-cell ELISA showed that PL induced an increase in the collagen III production of fibroblasts. In-cell ELISA and immunofluorescence microscopy revealed an increase in the expression of syndecan-4 and its rearrangement to form focal adhesions in both cell types after PL exposure. Taken together, data indicate that PL promotes keratinocyte epithelialization and regulates fibroblast matrix deposition, thus providing a molecular basis for the ability of this platelet derivative to heal severe and problematic wounds without leading to heavy scarring and keloid formation.
Collapse
Affiliation(s)
- Elia Ranzato
- Molecular Histology and Cell Growth Unit, San Raffaele Scientific Institute, Milan, Italy.
| | | | | | | | | |
Collapse
|
16
|
Adamova Z, Ozkan S, Khalil RA. Vascular and cellular calcium in normal and hypertensive pregnancy. CURRENT CLINICAL PHARMACOLOGY 2009; 4:172-90. [PMID: 19500073 PMCID: PMC2852626 DOI: 10.2174/157488409789375320] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 02/16/2009] [Indexed: 01/23/2023]
Abstract
Normal pregnancy is associated with significant hemodynamic changes in the cardiovascular system in order to meet the metabolic demands of mother and fetus. These changes include increased cardiac output, decreased vascular resistance, and vascular remodeling in the uterine and systemic circulation. Preeclampsia (PE) is a major complication of pregnancy characterized by proteinuria and hypertension. Several risk factors have been implicated in the pathogenesis of PE including genetic and dietary factors. Ca2+ is an essential dietary element and an important regulator of many cellular processes including vascular function. The importance of adequate dietary Ca2+ intake during pregnancy is supported by many studies. Pregnancy-associated changes in Ca2+ metabolism and plasma Ca2+ have been observed. During pregnancy, changes in intracellular free Ca2+ concentration ([Ca2+](i)) have been described in red blood cells, platelets and immune cells. Also, during pregnancy, an increase in [Ca2+](i) in endothelial cells (EC) stimulates the production of vasodilator substances such as nitric oxide and prostacyclin. Normal pregnancy is also associated with decreased vascular smooth muscle (VSM) [Ca2+](i) and possibly the Ca2+-sensitization pathways of VSM contraction including protein kinase C, Rho-kinase, and mitogen-activated protein kinase. Ca2+-dependent matrix metalloproteinases could also promote extracellular matrix degradation and vascular remodeling during pregnancy. Disruption in the balance between dietary, plasma and vascular cell Ca2+ may be responsible for some of the manifestation of PE including procoagulation, decreased vasodilation, and increased vasoconstriction and vascular resistance. The potential benefits of Ca2+ supplements during pregnancy, and the use of modulators of vascular Ca2+ to reduce the manifestations of PE in susceptible women remain an important area for experimental and clinical research.
Collapse
MESH Headings
- Blood Coagulation
- Blood Platelets/metabolism
- Calcium Channel Blockers/therapeutic use
- Calcium Signaling/drug effects
- Calcium, Dietary/blood
- Calcium, Dietary/metabolism
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Erythrocytes/metabolism
- Extracellular Matrix/metabolism
- Female
- Hemodynamics/drug effects
- Humans
- Hypertension, Pregnancy-Induced/drug therapy
- Hypertension, Pregnancy-Induced/metabolism
- Hypertension, Pregnancy-Induced/physiopathology
- Immune System/metabolism
- Maternal Nutritional Physiological Phenomena
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Pregnancy
- Vascular Resistance
- Vasoconstriction
- Vasodilation
- Vitamin D/metabolism
Collapse
Affiliation(s)
- Zuzana Adamova
- Division of Vascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
17
|
Moshal KS, Zeldin DC, Sithu SD, Sen U, Tyagi N, Kumar M, Hughes WM, Metreveli N, Rosenberger DSE, Singh M, Vacek TP, Rodriguez WE, Ayotunde A, Tyagi SC. Cytochrome P450 (CYP) 2J2 gene transfection attenuates MMP-9 via inhibition of NF-kappabeta in hyperhomocysteinemia. J Cell Physiol 2008; 215:771-81. [PMID: 18181170 PMCID: PMC2364732 DOI: 10.1002/jcp.21356] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Hyperhomocysteinemia (HHcy) is associated with atherosclerotic events involving the modulation of arachidonic acid (AA) metabolism and the activation of matrix metalloproteinase-9 (MMP-9). Cytochrome P450 (CYP) epoxygenase-2J2 (CYP2J2) is abundant in the heart endothelium, and its AA metabolites epoxyeicosatrienoic acids (EETs) mitigates inflammation through NF-kappabeta. However, the underlying molecular mechanisms for MMP-9 regulation by CYP2J2 in HHcy remain obscure. We sought to determine the molecular mechanisms by which P450 epoxygenase gene transfection or EETs supplementation attenuate homocysteine (Hcy)-induced MMP-9 activation. CYP2J2 was over-expressed in mouse aortic endothelial cells (MAECs) by transfection with the pcDNA3.1/CYP2J2 vector. The effects of P450 epoxygenase transfection or exogenous supplementation of EETs on NF-kappabeta-mediated MMP-9 regulation were evaluated using Western blot, in-gel gelatin zymography, electromobility shift assay, immunocytochemistry. The result suggested that Hcy downregulated CYP2J2 protein expression and dephosphorylated PI3K-dependent AKT signal. Hcy induced the nuclear translocation of NF-kappabeta via downregulation of IKbetaalpha (endogenous cytoplasmic inhibitor of NF-kappabeta). Hcy induced MMP-9 activation by increasing NF-kappabeta-DNA binding. Moreover, P450 epoxygenase transfection or exogenous addition of 8,9-EET phosphorylated the AKT and attenuated Hcy-induced MMP-9 activation. This occurred, in part, by the inhibition of NF-kappabeta nuclear translocation, NF-kappabeta-DNA binding and activation of IKbetaalpha. The study unequivocally suggested the pivotal role of EETs in the modulation of Hcy/MMP-9 signal.
Collapse
Affiliation(s)
- Karni S. Moshal
- Department of Physiology and Biophysics, School of Medicine University of Louisville, Louisville, KY 40292, USA
| | - Darryl C. Zeldin
- Division of Intramural Research, NIEHS, National Institute of Health, Research Triangle Park, NC 27709, USA
| | - Srinivas D. Sithu
- Department of Physiology and Biophysics, School of Medicine University of Louisville, Louisville, KY 40292, USA
| | - Utpal Sen
- Department of Physiology and Biophysics, School of Medicine University of Louisville, Louisville, KY 40292, USA
| | - Neetu Tyagi
- Department of Physiology and Biophysics, School of Medicine University of Louisville, Louisville, KY 40292, USA
| | - Munish Kumar
- Department of Physiology and Biophysics, School of Medicine University of Louisville, Louisville, KY 40292, USA
| | - William M. Hughes
- Department of Physiology and Biophysics, School of Medicine University of Louisville, Louisville, KY 40292, USA
| | - Naira Metreveli
- Department of Physiology and Biophysics, School of Medicine University of Louisville, Louisville, KY 40292, USA
| | - Dorothea S. E. Rosenberger
- Department of Physiology and Biophysics, School of Medicine University of Louisville, Louisville, KY 40292, USA
| | - Mahavir Singh
- Department of Physiology and Biophysics, School of Medicine University of Louisville, Louisville, KY 40292, USA
- Biotechnology & Cell Biology, Research & Development Division, Potentia Pharmaceuticals Inc., Louisville, KY 40202
| | - Thomas P. Vacek
- Department of Physiology and Biophysics, School of Medicine University of Louisville, Louisville, KY 40292, USA
| | - Walter E. Rodriguez
- Department of Physiology and Biophysics, School of Medicine University of Louisville, Louisville, KY 40292, USA
| | - Adeagbo Ayotunde
- Department of Physiology and Biophysics, School of Medicine University of Louisville, Louisville, KY 40292, USA
| | - Suresh C. Tyagi
- Department of Physiology and Biophysics, School of Medicine University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
18
|
El Zein N, Badran B, Sariban E. The neuropeptide pituitary adenylate cyclase activating polypeptide modulates Ca2+ and pro-inflammatory functions in human monocytes through the G protein-coupled receptors VPAC-1 and formyl peptide receptor-like 1. Cell Calcium 2008; 43:270-84. [PMID: 17651798 DOI: 10.1016/j.ceca.2007.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 05/18/2007] [Accepted: 05/30/2007] [Indexed: 12/01/2022]
Abstract
In human neutrophils, the neuropeptide pituitary adenylate cyclase activating polypeptide (PACAP) acting via the G protein-coupled receptors vasoactive intestinal peptide/PACAP receptor 1 (VPAC-1) and formyl peptide receptor-like 1 (FPRL1) modulates Ca2+ and pro-inflammatory activities. We evaluated in human monocytes the importance of the Ca2+ signal and the participation of FPRL1 in PACAP-associated signaling pathways and pro-inflammatory activities. PACAP-evoked Ca2+ transient involved both Ca2+ influx and intracytoplasmic Ca2+ mobilisation. This was pertussis toxin, protein kinase A and adenylate cyclase dependent indicating the participation of Galphai and Galphas with mobilisation of both InsP3 sensitive and insensitive stores. Intra- or extracellular Ca2+ depletion resulted in the inhibition of PACAP-induced, Akt, ERK, p38 and NF-kappaB activations as well as a decrease in PACAP-associated reactive oxygen species (ROS) production and integrin CD11b membrane upregulation. The FPRL1 antagonist, Trp-Arg-Trp-Trp-Trp (WRW4), decreased PACAP-evoked Ca2+ signal, Akt, ERK phosphorylation, ROS and CD11b upregulation without affecting p38 phosphorylation. NF-kappaB inhibitors prevented PACAP-induced Ca2+ mobilisation. Monocytes pre-treatment with fMLP but not with LPS desensitised cells to the pro-inflammatory effects of PACAP. Thus, both intra- and extracellular Ca2+ play a role in controlling pro-inflammatory functions stimulated by PACAP which acts through a VPAC-1, FPRL1/Galphai/PI3K/ERK pathway and a VPAC-1/Galphas/PKA/p38 pathway to fully activate monocytes.
Collapse
Affiliation(s)
- Nabil El Zein
- Hemato-Oncology Unit and Laboratory of Pediatric Oncology, Hôpital Universitaire des Enfants, 1020 Brussels, Belgium
| | | | | |
Collapse
|
19
|
Abstract
Angiogenesis is considered a promising target in the treatment of cancer. Most of the angiogenesis inhibitors in late-stage clinical testing or approved for the treatment of cancer act indirectly on endothelial cells. They either neutralize angiogenic growth factors from the circulation or block the signaling pathways activated by these growth factors. Another group of angiogenesis inhibitors are the direct angiostatic compounds. These agents have a direct effect on the endothelium, affecting cellular regulatory pathways, independently of the tumor cells. The reason that this category of agents is lagging behind regarding their translation to the clinic may be the lack of sufficient knowledge on the mechanism of action of these compounds. The transcription factor NF-κB has been recently connected with multiple aspects of angiogenesis. In addition, several recent studies report that angiogenesis inhibition is associated to NF-κB activation. This is of special interest since in tumor cells NF-κB activation has been associated to inhibition of apoptosis and currently novel treatment strategies are being developed based on inhibition of NF-κB. The paradigm that systemic NF-κB inhibition can serve as an anti-cancer strategy, therefore, might need to be re-evaluated. Based on recent data, it might be speculated that NF-κB activation, when performed specifically in endothelial cells, could be an efficient strategy for the treatment of cancer.
Collapse
|
20
|
Yao H, de Boer WI, Rahman I. Targeting lung inflammation: novel therapies for the treatment of COPD. CURRENT RESPIRATORY MEDICINE REVIEWS 2008; 4:57-68. [PMID: 19672474 PMCID: PMC2723817 DOI: 10.2174/157339808783497873] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a global health problem. As understanding of pathology of COPD has increased it has been established that COPD is associated with the progressive pulmonary inflammation and destruction of lung parenchyma (emphysema) that relate to disease severity. Therefore, it is anticipated that drugs that reduce pulmonary inflammation will provide effective, disease modifying therapy for COPD. Several specific therapies are directed against the influx of inflammatory cells into the airways and lung parenchyma that occurs in COPD; these include agents directed against cytokines and chemokines. Broad-range anti-inflammatory drugs are now in phase III development for COPD; they include inhibitors of phosphodiesterase 4 (PDE4). Other drugs that inhibit cell signaling include inhibitors of p38 mitogen-activated protein kinase (MAPK), nuclear factor-κB (NF-κB), and phosphoinositide-3-kinase (PI3K). There is also a search for inhibitors of proteinases and matrix metalloproteinases (MMPs) to prevent lung destruction and the development of emphysema. This review highlights studies on novel or potential anti-inflammatory agents that might be considered in the development of new future therapies for COPD.
Collapse
Affiliation(s)
- Hongwei Yao
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Irfan Rahman
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
21
|
Doublier S, Ceretto M, Lupia E, Bravo S, Bussolati B, Camussi G. The proangiogenic phenotype of tumor-derived endothelial cells is reverted by the overexpression of platelet-activating factor acetylhydrolase. Clin Cancer Res 2007; 13:5710-8. [PMID: 17908960 DOI: 10.1158/1078-0432.ccr-07-0412] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We previously reported that human tumor-derived endothelial cells (TEC) have an angiogenic phenotype related to the autocrine production of several angiogenic factors. The purpose of the present study was to evaluate whether an enhanced synthesis of platelet-activating factor (PAF) might contribute to the proangiogenic characteristics of TEC and whether its inactivation might inhibit angiogenesis. EXPERIMENTAL DESIGN To address the potential role of PAF in the proangiogenic characteristics of TEC, we engineered TEC to stably overexpress human plasma PAF-acetylhydrolase (PAF-AH), the major PAF-inactivating enzyme, and we evaluated in vitro and in vivo angiogenesis. RESULTS TECs were able to synthesize a significantly enhanced amount of PAF compared with normal human microvascular endothelial cells when stimulated with thrombin, vascular endothelial growth factor, or soluble CD154. Transfection of TEC with PAF-AH (TEC-PAF-AH) significantly inhibited apoptosis resistance and spontaneous motility of TEC. In addition, PAF and vascular endothelial growth factor stimulation enhanced the motility and adhesion of TEC but not of TEC-PAF-AH. In vitro, TEC-PAF-AH lost the characteristic ability of TEC to form vessel-like structures when plated on Matrigel. Finally, when cells were injected s.c. within Matrigel in severe combined immunodeficiency mice or coimplanted with a renal carcinoma cell line, the overexpression of PAF-AH induced a significant reduction of functional vessel formation. CONCLUSIONS These results suggest that inactivation of PAF, produced by TEC, by the overexpression of plasma PAF-AH affects survival, migration, and the angiogenic response of TEC both in vitro and in vivo.
Collapse
Affiliation(s)
- Sophie Doublier
- Department of Internal Medicine, Centre for Molecular Biotechnology, University of Turin, Turin, Italy
| | | | | | | | | | | |
Collapse
|
22
|
Zou L, Yang R, Chai J, Pei G. Rapid xenograft tumor progression in beta-arrestin1 transgenic mice due to enhanced tumor angiogenesis. FASEB J 2007; 22:355-64. [PMID: 17890288 DOI: 10.1096/fj.07-9046com] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
beta-arrestins (beta-Arrs) are known to be associated with tumor signaling pathways such as transforming growth factor-beta1 (TGF-beta1), P53/Murine double minute (MDM2) and NF-kappaB. To investigate the role of beta-Arr in tumor progression in vivo, we generated beta-Arr transgenic mice by subcutaneously inoculating tumor cells in them. We found that the xenograft tumor initiated earlier and grew more rapidly in beta-Arr1 transgenic mice than in both the beta-Arr2 transgenic and wild-type mice after inoculating murine liver cancer Hepa1-6 cells or lymphoma EL4 cells. Moreover, matrix metalloproteinase 9 (MMP9) activity, vascular endothelial growth factor (VEGF) concentration in plasma and new small blood vessel formation in tumor tissues were enhanced in beta-Arr1 transgenic mice compared with those in control mice. In addition, injection of MMP9 inhibitors in beta-Arr1 transgenic mice abrogated all these effects and suppressed rapid tumor progression. Similar results were observed in human microvascular endothelial cells, where overexpressed beta-Arr1 did increase MMP9 activity and small blood vessel formation. Furthermore, phosphatidylinositol 3-kinase (PI3K) inhibitors could suppress beta-Arr1-enhanced MMP9 activity and the C-terminal 181-418 amino acids (aa) of beta-Arr1 was largely responsible for this effect. Our data reveal a functional role for beta-arrestin1 in tumor progression in vivo, in which overexpression of beta-Arr1 promotes MMP9 activity and tumor angiogenesis by providing a suitable microenvironment for tumor progression.
Collapse
Affiliation(s)
- Lin Zou
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | |
Collapse
|
23
|
Tabruyn SP, Griffioen AW. A new role for NF-kappaB in angiogenesis inhibition. Cell Death Differ 2007; 14:1393-7. [PMID: 17464324 DOI: 10.1038/sj.cdd.4402156] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- S P Tabruyn
- Angiogenesis Laboratory, Department of Pathology, Research Institute For Growth and Development (GROW), University of Maastricht, Maastricht, The Netherlands
| | | |
Collapse
|
24
|
Ko HM, Kang JH, Jung B, Kim HA, Park SJ, Kim KJ, Kang YR, Lee HK, Im SY. Critical role for matrix metalloproteinase-9 in platelet-activating factor-induced experimental tumor metastasis. Int J Cancer 2007; 120:1277-83. [PMID: 17187368 DOI: 10.1002/ijc.22450] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this study, the roles of matrix metalloproteinase (MMP)-2 and MMP-9 in platelet-activating factor (PAF)-induced experimental pulmonary metastasis of the murine melanoma cell, B16F10, were investigated. An injection of PAF resulted in increases in mRNA expression, protein levels and the activities of both MMP-2 and MMP-9 in the lungs. The overall expression of MMP-9 was stronger than that of MMP-2. The increased MMP-9 expression was inhibited by both NF-kappaB and AP-1 inhibitors, whereas the increased MMP-2 expression was inhibited by only AP-1 inhibitors. Immunohistochemical analysis revealed that MMP-9 was expressed in bronchial epithelial cells as well as in the walls of blood vessels, whereas MMP-2 expression was observed only in bronchial epithelial cells. PAF significantly enhanced the pulmonary metastasis of B16F10, which was inhibited by both NF-kappaB and c-jun inhibitors. MMP-9 inhibitor, but not that of MMP-2, completely inhibited PAF-induced B16F10 metastasis. These data indicate that MMP-9, the expression of which was regulated by NF-kappaB and AP-1, plays a critical role in PAF-induced enhancement of pulmonary melanoma metastasis.
Collapse
Affiliation(s)
- Hyun-Mi Ko
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Kwangju 500-757, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Qian LW, Xie J, Ye F, Gao SJ. Kaposi's sarcoma-associated herpesvirus infection promotes invasion of primary human umbilical vein endothelial cells by inducing matrix metalloproteinases. J Virol 2007; 81:7001-10. [PMID: 17442715 PMCID: PMC1933284 DOI: 10.1128/jvi.00016-07] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Matrix metalloproteinases (MMPs) play important roles in cancer invasion, angiogenesis, and inflammatory infiltration. Kaposi's sarcoma is a highly disseminated angiogenic tumor of proliferative endothelial cells linked to infection by Kaposi's sarcoma-associated herpesvirus (KSHV). In this study, we showed that KSHV infection increased the invasiveness of primary human umbilical vein endothelial cells (HUVEC) in a Matrigel-based cell invasion assay. KSHV-induced cell invasion was abolished by an inhibitor of MMPs, BB-94, and occurred in both autocrine- and paracrine-dependent fashions. Analysis by zymography and Western blotting showed that KSHV-infected HUVEC cultures had increased secretion of MMP-1, -2, and -9. KSHV increased the secretion of MMP-2 within 1 h following infection without upregulating its mRNA expression level. In contrast, the secretion of MMP-1 and -9 was not increased until 6 h after KSHV infection and was correlated with the upregulation of their mRNA expression levels. Promoter analysis by reporter assays and electrophoretic mobility shift assays identified an AP-1 cis-element as the dominant KSHV-responsive site in the MMP-1 promoter. Together, these results suggest that KSHV infection modulates the production of multiple MMPs to increase cell invasiveness and thus contributes to the pathogenesis of KSHV-induced malignancies.
Collapse
MESH Headings
- Autocrine Communication/drug effects
- Cell Transformation, Viral
- Cells, Cultured
- Collagenases/biosynthesis
- Endothelial Cells/enzymology
- Endothelial Cells/pathology
- Endothelial Cells/virology
- Gene Expression Regulation, Enzymologic/drug effects
- Herpesvirus 8, Human/metabolism
- Humans
- Neoplasm Invasiveness/pathology
- Neovascularization, Pathologic/enzymology
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/virology
- Paracrine Communication/drug effects
- Phenylalanine/analogs & derivatives
- Phenylalanine/pharmacology
- Protease Inhibitors/pharmacology
- RNA, Messenger/biosynthesis
- RNA, Neoplasm/biosynthesis
- Response Elements
- Sarcoma, Kaposi/enzymology
- Sarcoma, Kaposi/pathology
- Thiophenes/pharmacology
- Transcription Factor AP-1/metabolism
- Umbilical Veins/enzymology
- Umbilical Veins/pathology
- Umbilical Veins/virology
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Li-Wu Qian
- Tumor Virology Program, Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | | |
Collapse
|
26
|
Ito K, Caramori G, Adcock IM. Therapeutic potential of phosphatidylinositol 3-kinase inhibitors in inflammatory respiratory disease. J Pharmacol Exp Ther 2007; 321:1-8. [PMID: 17021257 DOI: 10.1124/jpet.106.111674] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The phosphoinositide 3-kinase(s) (PI3K) are a family of proteins that catalyze the phosphorylation of the 3-OH position of phosphoinositides and generate lipids that control a wide variety of intracellular signaling pathways. They are classified into three families according to their structure and substrate specificity and are thought to have distinct biological roles. Recent studies suggested that numerous components of the PI3K pathway play a crucial role in the expression and activation of inflammatory mediators, inflammatory cell recruitment, immune cell function, airway remodeling, and corticosteroid insensitivity in chronic inflammatory respiratory disease. Selective PI3K inhibitors have been developed that reduce inflammation and some characteristics of disease in experimental animal models. Targeting specific PI3K isoforms that may be overexpressed or overactive in disease should allow for selective treatment of respiratory diseases. Encouraging data from animal models, primary cells and clinical studies in other diseases suggest that inhibitors of PI3K/Akt may prove to be useful novel therapies in the treatment of asthma and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Kazuhiro Ito
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW3, 6LY, UK.
| | | | | |
Collapse
|
27
|
Barthomeuf C. Inhibition of S1P-induced angiogenesis, metastasis and inflammation by dietary polyphenols. Free Radic Biol Med 2007; 42:312-3. [PMID: 17189837 DOI: 10.1016/j.freeradbiomed.2006.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 11/02/2006] [Indexed: 12/01/2022]
|
28
|
Hasebe Y, Egawa K, Shibanuma M, Nose K. Induction of matrix metalloproteinase gene expression in an endothelial cell line by direct interaction with malignant cells. Cancer Sci 2007; 98:58-67. [PMID: 17054435 PMCID: PMC11158646 DOI: 10.1111/j.1349-7006.2006.00344.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mouse endothelial TKD2 cells in monolayers were cocultured with various human cell lines for 24 h, and the expression of several secreted matrix metalloproteinases (MMP) and cell adhesion molecules was examined by real-time reverse transcription-polymerase chain reaction using mouse-specific primers. Coculture with normal fibroblasts did not elicit the expression of these molecules, but coculture with cancer cells induced the expression of MMP-3, MMP-9 and MMP-10 mRNA in endothelial cells, and in normal mouse embryonic fibroblasts. The induction of MMP mRNA was dependent on direct cell adhesion, as separate culture of A549 cells in Boyden chambers did not induce MMP mRNA, and neutralizing antibody against VLA-4 abolished the induction. An inhibitor of phosphatidylinositol-3-phosphate kinase strongly suppressed the induction of MMP-3, MMP-9 and MMP-10 mRNA, and expression of the dominant-negative mutant of phosphatidylinositol-3-phosphate kinase also decreased the induction. It was suggested that intracellular reactive oxygen species (ROS) levels were increased in TKD2 cells following adhesion to cancer cells. ROS scavengers decreased the levels of MMP induction, and roterone, an inhibitor of mitochondrial complex I, strongly suppressed the induction of MMP-3, MMP-9 and MMP-10. The depletion of mitochondria in TKD2 cells decreased the induction of MMP-9, but the induction of MMP-3 and MMP-10 was not affected. These results indicate that the adhesion of cancer cells to endothelial cells activates several distinct signaling pathways to induce MMP gene expression, and the pathways for MMP-3, MMP-9 and MMP-10 are partly different. For the induction of MMP-9, mitochondria participate in induction, possibly through the production of ROS.
Collapse
Affiliation(s)
- Yuki Hasebe
- Department of Microbiology, Showa University School of Pharmaceutical Sciences, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | | | | | | |
Collapse
|