1
|
Yokobori K, Kawasaki Y, Sekine Y, Nobusawa S, Sakaki T, Negishi M, Kakizaki S. Androgen receptor phosphorylated at Ser815: The expression and function in the prostate and tumor-derived cells. Biochem Pharmacol 2021; 194:114794. [PMID: 34715066 DOI: 10.1016/j.bcp.2021.114794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 12/29/2022]
Abstract
Androgen is beneficial for the prostate with normal functions but creates a risk for prostate cancer progression. How androgen receptor (AR) mediates these various androgen actions remains elusive. AR conserves a phosphorylation motif within its ligand-binding domain throughout species. Here, we have found AR phosphorylated at Ser815 (P-AR) is expressed in normal tissues of both human and mouse prostates. P-AR begins expression in association with prostatic development and castration decreases its expression levels in the mouse prostate. Functional analysis of AR in prostate cancer PC-3 cells showed ligand-induced AR nuclear translocation and transactivation were disturbed by its phosphorylation at Ser815. Moreover, P-AR suppressed oncogenic AKT signaling suggesting a suppressive function for prostate cancer development. In fact, AR phosphorylation levels progressively decrease in human prostates as cancer worsens. These findings showed androgen might utilize P-AR to self-antagonize oncogenic signals and cancer progression believed to be regulated by non-phosphorylated AR (NonP-AR). By differing its target genes and signal regulations from those of NonP-AR, P-AR co-expression with NonP-AR may be the molecular basis for androgen to balance its actions and to control disease developments.
Collapse
Affiliation(s)
- Kosuke Yokobori
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | - Yuki Kawasaki
- Laboratory of Public Health, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Gunma 370-0033, Japan
| | - Yoshitaka Sekine
- Department of Urology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Sumihito Nobusawa
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Toshiyuki Sakaki
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
| | - Masahiko Negishi
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | - Satoru Kakizaki
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan; Department of Clinical Research, National Hospital Organization Takasaki General Medical Center, Takasaki, Gunma 370-0829, Japan
| |
Collapse
|
2
|
Noncanonical Constitutive Androstane Receptor Signaling in Gene Regulation. Int J Mol Sci 2020; 21:ijms21186735. [PMID: 32937916 PMCID: PMC7555422 DOI: 10.3390/ijms21186735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 11/17/2022] Open
Abstract
The constitutive androstane receptor (CAR, NR1I3) is extremely important for the regulation of many physiological processes, especially xenobiotic (drug) metabolism and transporters. CAR differs from steroid hormone receptors in that it can be activated using structurally unrelated chemicals, both through direct ligand-binding and ligand-independent (indirect) mechanisms. By binding to specific responsive elements on DNA, CAR increases the expression of its target genes encoding drug-metabolizing enzymes and transporters. Therefore, CAR is mainly characterized as a ligand-dependent or ligand-independent transcription factor, and the induction of gene expression is considered the canonical mode of CAR action. Consistent with its central role in xenobiotic metabolism, CAR signaling includes a collection of mechanisms that are employed alongside the core transcriptional machinery of the receptor. These so-called noncanonical CAR pathways allow the receptor to coordinate the regulation of many aspects of cell biology. In this mini-review, we review noncanonical CAR signaling, paying special attention to the role of CAR in energy homeostasis and cell proliferation.
Collapse
|
3
|
Duszka K, Wahli W. Enteric Microbiota⁻Gut⁻Brain Axis from the Perspective of Nuclear Receptors. Int J Mol Sci 2018; 19:ijms19082210. [PMID: 30060580 PMCID: PMC6121494 DOI: 10.3390/ijms19082210] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Nuclear receptors (NRs) play a key role in regulating virtually all body functions, thus maintaining a healthy operating body with all its complex systems. Recently, gut microbiota emerged as major factor contributing to the health of the whole organism. Enteric bacteria have multiple ways to influence their host and several of them involve communication with the brain. Mounting evidence of cooperation between gut flora and NRs is already available. However, the full potential of the microbiota interconnection with NRs remains to be uncovered. Herewith, we present the current state of knowledge on the multifaceted roles of NRs in the enteric microbiota–gut–brain axis.
Collapse
Affiliation(s)
- Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological, 11 Mandalay Road, Singapore 308232, Singapore.
- Center for Integrative Genomics, University of Lausanne, Génopode, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
4
|
Kobayashi K, Hashimoto M, Honkakoski P, Negishi M. Regulation of gene expression by CAR: an update. Arch Toxicol 2015; 89:1045-55. [PMID: 25975989 DOI: 10.1007/s00204-015-1522-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/27/2015] [Indexed: 11/30/2022]
Abstract
The constitutive androstane receptor (CAR), a member of the nuclear receptor superfamily, is a well-known xenosensor that regulates hepatic drug metabolism and detoxification. CAR activation can be elicited by a large variety of xenobiotics, including phenobarbital (PB) which is not a directly binding CAR ligand. The mechanism of CAR activation is complex and involves translocation from the cytoplasm into the nucleus, followed by further activation steps in the nucleus. Recently, epidermal growth factor receptor (EGFR) has been identified as a PB-responsive receptor, and PB activates CAR by inhibiting the EGFR signaling. In addition to regulation of drug metabolism, activation of CAR has multiple biological end points such as modulation of xenobiotic-elicited liver injury, and the role of CAR in endobiotic functions such as glucose metabolism and cholesterol homeostasis is increasingly recognized. Thus, investigations on the molecular mechanism of CAR activation are critical for the real understanding of CAR-mediated processes. Here, we summarize the current understanding of mechanisms by which CAR activators regulate gene expression through cellular signaling pathways and the roles of CAR on xenobiotic-elicited hepatocellular carcinoma, liver injury, glucose metabolism and cholesterol homeostasis.
Collapse
Affiliation(s)
- Kaoru Kobayashi
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan,
| | | | | | | |
Collapse
|
5
|
Timsit YE, Negishi M. Coordinated regulation of nuclear receptor CAR by CCRP/DNAJC7, HSP70 and the ubiquitin-proteasome system. PLoS One 2014; 9:e96092. [PMID: 24789201 PMCID: PMC4008524 DOI: 10.1371/journal.pone.0096092] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 04/03/2014] [Indexed: 01/14/2023] Open
Abstract
The constitutive active/androstane receptor (CAR) plays an important role as a coordinate transcription factor in the regulation of various hepatic metabolic pathways for chemicals such as drugs, glucose, fatty acids, bilirubin, and bile acids. Currently, it is known that in its inactive state, CAR is retained in the cytoplasm in a protein complex with HSP90 and the tetratricopeptide repeat protein cytosoplasmic CAR retention protein (CCRP). Upon activation by phenobarbital (PB) or the PB-like inducer 1,4-bis[2-(3,5-dichloropyridyloxy)]-benzene (TCPOBOP), CAR translocates into the nucleus. We have identified two new components to the cytoplasmic regulation of CAR: ubiquitin-dependent degradation of CCRP and protein-protein interaction with HSP70. Treatment with the proteasome inhibitor MG132 (5 µM) causes CAR to accumulate in the cytoplasm of transfected HepG2 cells. In the presence of MG132, TCPOBOP increases CCRP ubiquitination in HepG2 cells co-expressing CAR, while CAR ubiquitination was not detected. MG132 treatment of HepG2 also attenuated of TCPOBOP-induced CAR transcriptional activation on reporter constructs which contain CAR-binding DNA elements derived from the human CYP2B6 gene. The elevation of cytoplasmic CAR protein with MG132 correlated with an increase of HSP70, and to a lesser extent HSP60. Both CCRP and CAR were found to interact with endogenous HSP70 in HepG2 cells by immunoprecipitation analysis. Induction of HSP70 levels by heat shock also increased cytoplasmic CAR levels, similar to the effect of MG132. Lastly, heat shock attenuated TCPOBOP-induced CAR transcriptional activation, also similar to the effect of MG132. Collectively, these data suggest that ubiquitin-proteasomal regulation of CCRP and HSP70 are important contributors to the regulation of cytoplasmic CAR levels, and hence the ability of CAR to respond to PB or PB-like inducers.
Collapse
Affiliation(s)
- Yoav E. Timsit
- The Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Masahiko Negishi
- The Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
6
|
Li H, Wang H. Activation of xenobiotic receptors: driving into the nucleus. Expert Opin Drug Metab Toxicol 2010; 6:409-26. [PMID: 20113149 DOI: 10.1517/17425251003598886] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
IMPORTANCE OF THE FIELD Xenobiotic receptors (XRs) play pivotal roles in regulating the expression of genes that determine the clearance and detoxification of xenobiotics, such as drugs and environmental chemicals. Recently, it has become increasingly evident that most XRs shuttle between the cytoplasm and nucleus, and activation of such receptors is directly associated with xenobiotic-induced nuclear import. AREAS COVERED IN THIS REVIEW The scope of this review covers research literature that discusses nuclear translocation and activation of XRs, as well as unpublished data generated from this laboratory. Specific emphasis is given to the constitutive androstane receptor (CAR), the pregnane X receptor and the aryl hydrocarbon receptor. WHAT THE READERS WILL GAIN A number of molecular chaperons presumably associated with cellular localization of XRs have been identified. Primary hepatocyte cultures have been established as a unique model retaining inactive CAR in the cytoplasm. Moreover, several splicing variants of human CAR exhibit altered cellular localization and chemical activation. TAKE HOME MESSAGE Nuclear accumulation is an essential step in the activation of XRs. Although great strides have been made, much remains to be understood concerning the mechanisms underlying intracellular localization and trafficking of XRs, which involve both direct ligand-binding and indirect pathways.
Collapse
Affiliation(s)
- Haishan Li
- University of Maryland School of Pharmacy, Department of Pharmaceutical Sciences, 20 Penn Street, Baltimore, MD 21201, USA
| | | |
Collapse
|
7
|
Wang X, Sykes DB, Miller DS. Constitutive androstane receptor-mediated up-regulation of ATP-driven xenobiotic efflux transporters at the blood-brain barrier. Mol Pharmacol 2010; 78:376-83. [PMID: 20547735 PMCID: PMC2939489 DOI: 10.1124/mol.110.063685] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 06/14/2010] [Indexed: 12/11/2022] Open
Abstract
ATP-driven efflux transporters at the blood-brain barrier both protect against neurotoxicants and limit drug delivery to the brain. In other barrier and excretory tissues, efflux transporter expression is regulated by certain ligand-activated nuclear receptors. Here we identified constitutive androstane receptor (CAR) as a positive regulator of P-glycoprotein, multidrug resistance-associated protein 2 (Mrp2), and breast cancer resistance protein (BCRP) expression in rat and mouse brain capillaries. Exposing rat brain capillaries to the CAR activator, phenobarbital (PB), increased the transport activity and protein expression (Western blots) of P-glycoprotein, Mrp2, and BCRP. Induction of transport was abolished by the protein phosphatase 2A inhibitor, OA. Similar effects on transporter activity and expression were found when mouse brain capillaries were exposed to the mouse-specific CAR ligand, 1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP). In brain capillaries from CAR-null mice, TCPOBOP did not increase transporter activity. Finally, treating mice with 0.33 mg/kg TCPOBOP or rats with 80 mg/kg PB increased P-glycoprotein-, Mrp2-, and BCRP-mediated transport and protein expression in brain capillaries assayed ex vivo. Thus, CAR activation selectively tightens the blood-brain barrier by increasing transport activity and protein expression of three xenobiotic efflux pumps.
Collapse
Affiliation(s)
- Xueqian Wang
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
8
|
Argikar UA, Senekeo-Effenberger K, Larson EE, Tukey RH, Remmel RP. Studies on induction of lamotrigine metabolism in transgenic UGT1 mice. Xenobiotica 2009; 39:826-35. [PMID: 19845433 DOI: 10.3109/00498250903188985] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A transgenic 'knock-in' mouse model expressing a human UGT1 locus (Tg-UGT1) was recently developed and validated. Although these animals express mouse UGT1A proteins, UGT1A4 is a pseudo-gene in mice. Therefore, Tg-UGT1 mice serve as a 'humanized' UGT1A4 animal model. Lamotrigine (LTG) is primarily metabolized to its N-glucuronide (LTGG) by hUGT1A4. This investigation aimed at examining the impact of pregnane X receptor (PXR), constitutive androstane receptor (CAR) and peroxisome proliferator-activated receptor (PPAR) activators on LTG glucuronidation in vivo and in vitro. Tg-UGT1 mice were administered the inducers phenobarbital (CAR), pregnenolone-16alpha-carbonitrile (PXR), WY-14643 (PPAR-alpha), ciglitazone (PPAR-gamma), or L-165041 (PPAR-beta), once daily for 3 or 4 days. Thereafter, LTG was administered orally and blood samples were collected over 24 h. LTG was measured in blood and formation of LTGG was measured in pooled microsomes made from the livers of treated animals. A three-fold increase in in vivo LTG clearance was seen after phenobarbital administration. In microsomes prepared from phenobarbital-treated Tg-UGT1 animals, 13-fold higher CL(int) (Vmax/K(m)) value was observed as compared with the untreated transgenic mice. A trend toward induction of catalytic activity in vitro and in vivo was also observed following pregnenolone-16alpha-carbonitrile and WY-14643 treatment. This study demonstrates the successful application of Tg-UGT1 mice as a novel tool to study the impact of induction and regulation on metabolism of UGT1A4 substrates.
Collapse
Affiliation(s)
- U A Argikar
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
9
|
Hernandez J, Mota L, Baldwin W. Activation of CAR and PXR by Dietary, Environmental and Occupational Chemicals Alters Drug Metabolism, Intermediary Metabolism, and Cell Proliferation. CURRENT PHARMACOGENOMICS AND PERSONALIZED MEDICINE 2009; 7:81-105. [PMID: 20871735 PMCID: PMC2944248 DOI: 10.2174/187569209788654005] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The constitutive androstane receptor (CAR) and the pregnane × receptor (PXR) are activated by a variety of endogenous and exogenous ligands, such as steroid hormones, bile acids, pharmaceuticals, and environmental, dietary, and occupational chemicals. In turn, they induce phase I-III detoxification enzymes and transporters that help eliminate these chemicals. Because many of the chemicals that activate CAR and PXR are environmentally-relevant (dietary and anthropogenic), studies need to address whether these chemicals or mixtures of these chemicals may increase the susceptibility to adverse drug interactions. In addition, CAR and PXR are involved in hepatic proliferation, intermediary metabolism, and protection from cholestasis. Therefore, activation of CAR and PXR may have a wide variety of implications for personalized medicine through physiological effects on metabolism and cell proliferation; some beneficial and others adverse. Identifying the chemicals that activate these promiscuous nuclear receptors and understanding how these chemicals may act in concert will help us predict adverse drug reactions (ADRs), predict cholestasis and steatosis, and regulate intermediary metabolism. This review summarizes the available data on CAR and PXR, including the environmental chemicals that activate these receptors, the genes they control, and the physiological processes that are perturbed or depend on CAR and PXR action. This knowledge contributes to a foundation that will be necessary to discern interindividual differences in the downstream biological pathways regulated by these key nuclear receptors.
Collapse
Affiliation(s)
- J.P. Hernandez
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - L.C. Mota
- Institute of Environmental Toxicology, Clemson University, Pendleton, SC, USA
| | - W.S. Baldwin
- Institute of Environmental Toxicology, Clemson University, Pendleton, SC, USA
| |
Collapse
|
10
|
Dail MB, Shack LA, Chambers JE, Burgess SC. Global liver proteomics of rats exposed for 5 days to phenobarbital identifies changes associated with cancer and with CYP metabolism. Toxicol Sci 2008; 106:556-69. [PMID: 18796496 PMCID: PMC2581678 DOI: 10.1093/toxsci/kfn198] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 09/10/2008] [Indexed: 12/14/2022] Open
Abstract
A global proteomics approach was applied to model the hepatic response elicited by the toxicologically well-characterized xenobiotic phenobarbital (PB), a prototypical inducer of hepatic xenobiotic metabolizing enzymes and a well-known nongenotoxic liver carcinogen in rats. Differential detergent fractionation two-dimensional liquid chromatography electrospray ionization tandem mass spectrometry and systems biology modeling were used to identify alterations in toxicologically relevant hepatic molecular functions and biological processes in the livers of rats following a 5-day exposure to PB at 80 mg/kg/day or a vehicle control. Of the 3342 proteins identified, expression of 121 (3.6% of the total proteins) was significantly increased and 127 (3.8%) significantly decreased in the PB group compared to controls. The greatest increase was seen for cytochrome P450 (CYP) 2B2 (167-fold). All proteins with statistically significant differences from control were then analyzed using both Gene Ontology (GO) and Ingenuity Pathways Analysis (IPA, 5.0 IPA-Tox) for cellular location, function, network connectivity, and possible disease processes, especially as they relate to CYP-mediated metabolism and nongenotoxic carcinogenesis mechanisms. The GO results suggested that PB's mechanism of nongenotoxic carcinogenesis involves both increased xenobiotic metabolism, especially induction of the 2B subfamily of CYP enzymes, and increased cell cycle activity. Apoptosis, however, also increased, perhaps, as an attempt to counter the rising cancer threat. Of the IPA-mapped proteins, 41 have functions which are procarcinogenic and 14 anticarcinogenic according to the hypothesized nongenotoxic mechanism of imbalance between apoptosis and cellular proliferation. Twenty-two additional IPA nodes can be classified as procarcinogenic by the competing theory of increased metabolism resulting in the formation of reactive oxygen species. Since the systems biology modeling corresponded well to PB effects previously elucidated via more traditional methods, the global proteomic approach is proposed as a new screening methodology that can be incorporated into future toxicological studies.
Collapse
Affiliation(s)
- Mary B. Dail
- Center for Environmental Health Sciences, College of Veterinary Medicine
- Department of Basic Sciences, College of Veterinary Medicine
| | - L. Allen Shack
- Department of Basic Sciences, College of Veterinary Medicine
| | - Janice E. Chambers
- Center for Environmental Health Sciences, College of Veterinary Medicine
- Department of Basic Sciences, College of Veterinary Medicine
| | - Shane C. Burgess
- Department of Basic Sciences, College of Veterinary Medicine
- Mississippi Agriculture and Forestry Experiment Station
- Institute for Digital Biology
- Life Sciences and Biotechnology Institute, Mississippi State University, Mississippi State, Mississippi 39762
| |
Collapse
|
11
|
Sueyoshi T, Moore R, Sugatani J, Matsumura Y, Negishi M. PPP1R16A, the membrane subunit of protein phosphatase 1beta, signals nuclear translocation of the nuclear receptor constitutive active/androstane receptor. Mol Pharmacol 2008; 73:1113-21. [PMID: 18202305 DOI: 10.1124/mol.107.042960] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Constitutive active/androstane receptor (CAR), a member of the nuclear steroid/thyroid hormone receptor family, activates transcription of numerous hepatic genes upon exposure to therapeutic drugs and environmental pollutants. Sequestered in the cytoplasm, this receptor signals xenobiotic exposure, such as phenobarbital (PB), by translocating into the nucleus. Unlike other hormone receptors, translocation can be triggered indirectly without binding to xenobiotics. We have now identified a membrane-associated subunit of protein phosphatase 1 (PPP1R16A, or abbreviated as R16A) as a novel CAR-binding protein. When CAR and R16A are coexpressed in mouse liver, CAR translocates into the nucleus. Close association of R16A and CAR molecule on liver membrane was shown by fluorescence resonance energy transfer (FRET) analysis using expressed yellow fluorescent protein (YFP)-CAR and CFP-R16A fusion proteins. R16A can form dimer through its middle region, where protein kinase A phosphorylation sites are recently identified. Translocation of CAR by R16A correlates with the ability of R16A to form an intermolecular interaction via the middle region. Moreover, this interaction is enhanced by PB treatment in mouse liver. R16A specifically interacted with PP1beta in HepG2 cells despite the highly conserved structure of PP1 family molecules. PP1beta activity was inhibited by R16A in vitro and coexpression of PP1beta in liver can prevent YFP-CAR translocation into mouse liver. Taken together, R16A at the membrane may mediate the PB signal to initiate CAR nuclear translocation, through a mechanism including its dimerization and inhibition of PP1beta activity, providing a novel model for the translocation of nuclear receptors in which direct interaction of ligands and the receptors may not be crucial.
Collapse
Affiliation(s)
- Tatsuya Sueyoshi
- Pharmacogenetics section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | | | | | | | | |
Collapse
|
12
|
Takahashi T, Moriyama Y, Ikari A, Sugatani J, Suzuki T, Miwa M. Surface localization of the nuclear receptor CAR in influenza A virus-infected cells. Biochem Biophys Res Commun 2008; 368:550-5. [DOI: 10.1016/j.bbrc.2008.01.145] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 01/18/2008] [Indexed: 11/25/2022]
|
13
|
Lundin A, Bok CM, Aronsson L, Björkholm B, Gustafsson JA, Pott S, Arulampalam V, Hibberd M, Rafter J, Pettersson S. Gut flora, Toll-like receptors and nuclear receptors: a tripartite communication that tunes innate immunity in large intestine. Cell Microbiol 2007; 10:1093-103. [PMID: 18088401 DOI: 10.1111/j.1462-5822.2007.01108.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Separating the large intestine from gut flora is a robust layer of epithelial cells. This barrier is armed with an array of recognizing receptors that collectively set the host innate response. Here, we use nuclear receptors (NRs) and Toll-like receptors (TLRs), suggested to act as second messengers in the communication between microorganisms and epithelial cells, as probes to assess the impact of gut flora on innate immunity in germ-free (GF) mice. Using quantitative real-time polymerase chain reaction analyses, we show that 37/49 NRs are expressed in colonic cells of GF mice. Of these, 5 can be modulated by resident flora: LXRalpha, RORgamma and CAR show reduced expression and Nur77 and GCNF display elevated expression in conventionally raised mice compared with GF. Moreover, increased expression levels of TLR-2 and TLR-5 are observed in specific pathogen-free (SPF) mice compared with GF mice, and CAR expression is connected to the TLR-2 signalling pathway. Infections of GF or SPF mice with Yersinia pseudotuberculosis, show that GF intestinal epithelial cells fail to respond, except for CAR, which is downregulated. In contrast, SPF epithelial cells show a downregulation of all the NRs except CAR, which appears to be unaffected. Our findings indicate that gut flora contributes to the development of an intact barrier function.
Collapse
Affiliation(s)
- Annelie Lundin
- Department of Microbiology, Cell and Tumor Biology, Karolinska Institutet, Stockholm 171 77, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Guo D, Sarkar J, Suino-Powell K, Xu Y, Matsumoto K, Jia Y, Yu S, Khare S, Haldar K, Rao MS, Foreman JE, Monga SPS, Peters JM, Xu HE, Reddy JK. Induction of nuclear translocation of constitutive androstane receptor by peroxisome proliferator-activated receptor alpha synthetic ligands in mouse liver. J Biol Chem 2007; 282:36766-76. [PMID: 17962186 DOI: 10.1074/jbc.m707183200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peroxisome proliferators activate nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha) and enhance the transcription of several genes in liver. We report here that synthetic PPARalpha ligands Wy-14,643, ciprofibrate, clofibrate, and others induce the nuclear translocation of constitutive androstane receptor (CAR) in mouse liver cells in vivo. Adenoviral-enhanced green fluorescent protein-CAR expression demonstrated that PPARalpha synthetic ligands drive CAR into the hepatocyte nucleus in a PPARalpha- and PPARbeta-independent manner. This translocation is dependent on the transcription coactivator PPAR-binding protein but independent of coactivators PRIP and SRC-1. PPARalpha ligand-induced nuclear translocation of CAR is not associated with induction of Cyp2b10 mRNA in mouse liver. PPARalpha ligands interfered with coactivator recruitment to the CAR ligand binding domain and reduced the constitutive transactivation of CAR. Both Wy-14,643 and ciprofibrate occupied the ligand binding pocket of CAR and adapted a binding mode similar to that of the CAR inverse agonist androstenol. These observations, therefore, provide information for the first time to indicate that PPARalpha ligands not only serve as PPARalpha agonists but possibly act as CAR antagonists.
Collapse
Affiliation(s)
- Dongsheng Guo
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611-3008, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hosseinpour F, Timsit Y, Koike C, Matsui K, Yamamoto Y, Moore R, Negishi M. Overexpression of the Rho-guanine nucleotide exchange factor ECT2 inhibits nuclear translocation of nuclear receptor CAR in the mouse liver. FEBS Lett 2007; 581:4937-42. [PMID: 17904126 PMCID: PMC2367110 DOI: 10.1016/j.febslet.2007.09.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 09/10/2007] [Accepted: 09/13/2007] [Indexed: 11/29/2022]
Abstract
Various drugs such as phenobarbital (PB) trigger translocation of constitutive active/adrostane receptor (CAR) from the cytoplasm into the nucleus of mouse liver cells without directly binding to the receptor. We have now characterized the guanine nucleotide exchange factor epithelial cell-transforming gene 2 (ECT2) as a PB-inducible factor as well as a cellular signal that represses PB-triggered nuclear translocation of CAR. When CFP-tagged ECT2 was co-expressed with YFP-tagged CAR in the liver of Car(-/-) mice, ECT2 repressed CAR nuclear translocation. Coexpression of various deletion mutants delineated this repressive activity to the tandem Dbl homology/pleckstrin homology domains of ECT2 and to their cytosolic expression. CAR directly bound to the PH domain. Thus, ECT2 may comprise a part of the PB response signal regulating the intracellular trafficking of CAR.
Collapse
Affiliation(s)
- Fardin Hosseinpour
- Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States
| | | | | | | | | | | | | |
Collapse
|
16
|
Timsit YE, Negishi M. CAR and PXR: the xenobiotic-sensing receptors. Steroids 2007; 72:231-46. [PMID: 17284330 PMCID: PMC1950246 DOI: 10.1016/j.steroids.2006.12.006] [Citation(s) in RCA: 324] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 12/07/2006] [Accepted: 12/11/2006] [Indexed: 01/13/2023]
Abstract
The xenobiotic receptors CAR and PXR constitute two important members of the NR1I nuclear receptor family. They function as sensors of toxic byproducts derived from endogenous metabolism and of exogenous chemicals, in order to enhance their elimination. This unique function of CAR and PXR sets them apart from the steroid hormone receptors. In contrast, the steroid receptors, exemplified by the estrogen receptor (ER) and glucocorticoid receptor (GR), are the sensors that tightly monitor and respond to changes in circulating steroid hormone levels to maintain body homeostasis. This divergence of the chemical- and steroid-sensing functions has evolved to ensure the fidelity of the steroid hormone endocrine regulation while allowing development of metabolic elimination pathways for xenobiotics. The development of the xenobiotic receptors CAR and PXR also reflect the increasing complexity of metabolism in higher organisms, which necessitate novel mechanisms for handling and eliminating metabolic by-products and foreign compounds from the body. The purpose of this review is to discuss similarities and differences between the xenobiotic receptors CAR and PXR with the prototypical steroid hormone receptors ER and GR. Interesting differences in structure explain in part the divergence in function and activation mechanisms of CAR/PXR from ER/GR. In addition, the physiological roles of CAR and PXR will be reviewed, with discussion of interactions of CAR and PXR with endocrine signaling pathways.
Collapse
Affiliation(s)
| | - Masahiko Negishi
- *CORRESPONDING AUTHOR ADDRESS: Dr, Masahiko Negishi, Ph.D., Head, Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, Tel: (919) 541-2942, Fax (919) 541-0696,
| |
Collapse
|
17
|
Sarkar J, Qi C, Guo D, Ahmed MR, Jia Y, Usuda N, Viswakarma N, Rao MS, Reddy JK. Transcription coactivator PRIP, the peroxisome proliferator-activated receptor (PPAR)-interacting protein, is redundant for the function of nuclear receptors PParalpha and CAR, the constitutive androstane receptor, in mouse liver. Gene Expr 2007; 13:255-69. [PMID: 17605299 PMCID: PMC6032459 DOI: 10.3727/000000006780666948] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Disruption of the genes encoding for the transcription coactivators, peroxisome proliferator-activated receptor (PPAR)-interacting protein (PRIP/ASC-2/RAP250/TRBP/NRC) and PPAR-binding protein (PBP/TRAP220/DRIP205/MED1), results in embryonic lethality by affecting placental and multiorgan development. Targeted deletion of coactivator PBP gene in liver parenchymal cells (PBP(LIV-/-)) results in the near abrogation of the induction of PPARalpha and CAR (constitutive androstane receptor)-regulated genes in liver. Here, we show that targeted deletion of coactivator PRIP gene in liver (PRIP(LIV-/-)) does not affect the induction of PPARalpha-regulated pleiotropic responses, including hepatomegaly, hepatic peroxisome proliferation, and induction of mRNAs of genes involved in fatty acid oxidation system, indicating that PRIP is not essential for PPARalpha-mediated transcriptional activity. We also provide additional data to show that liver-specific deletion of PRIP gene does not interfere with the induction of genes regulated by nuclear receptor CAR. Furthermore, disruption of PRIP gene in liver did not alter zoxazolamine-induced paralysis, and acetaminophen-induced hepatotoxicity. Studies with adenovirally driven EGFP-CAR expression in liver demonstrated that, unlike PBP, the absence of PRIP does not prevent phenobarbital-mediated nuclear translocation/retention of the receptor CAR in liver in vivo and cultured hepatocytes in vitro. These results show that PRIP deficiency in liver does not interfere with the function of nuclear receptors PPARalpha and CAR. The dependence of PPARalpha- and CAR-regulated gene transcription on coactivator PBP but not on PRIP attests to the existence of coactivator selectivity in nuclear receptor function.
Collapse
Affiliation(s)
- Joy Sarkar
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Guo D, Sarkar J, Ahmed MR, Viswakarma N, Jia Y, Yu S, Sambasiva Rao M, Reddy JK. Peroxisome proliferator-activated receptor (PPAR)-binding protein (PBP) but not PPAR-interacting protein (PRIP) is required for nuclear translocation of constitutive androstane receptor in mouse liver. Biochem Biophys Res Commun 2006; 347:485-95. [PMID: 16828057 DOI: 10.1016/j.bbrc.2006.06.129] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 06/22/2006] [Indexed: 10/24/2022]
Abstract
The constitutive androstane receptor (CAR) regulates transcription of phenobarbital-inducible genes that encode xenobiotic-metabolizing enzymes in liver. CAR is localized to the hepatocyte cytoplasm but to be functional, it translocates into the nucleus in the presence of phenobarbital-like CAR ligands. We now demonstrate that adenovirally driven EGFP-CAR, as expected, translocates into the nucleus of normal wild-type hepatocytes following phenobarbital treatment under both in vivo and in vitro conditions. Using this approach we investigated the role of transcription coactivators PBP and PRIP in the translocation of EGFP-CAR into the nucleus of PBP and PRIP liver conditional null mouse hepatocytes. We show that coactivator PBP is essential for nuclear translocation of CAR but not PRIP. Adenoviral expression of both PBP and EGFP-CAR restored phenobarbital-mediated nuclear translocation of exogenously expressed CAR in PBP null livers in vivo and in PBP null primary hepatocytes in vitro. CAR translocation into the nucleus of PRIP null livers resulted in the induction of CAR target genes such as CYP2B10, necessary for the conversion of acetaminophen to its hepatotoxic intermediate metabolite, N-acetyl-p-benzoquinone imine. As a consequence, PRIP-deficiency in liver did not protect from acetaminophen-induced hepatic necrosis, unlike that exerted by PBP deficiency. These results establish that transcription coactivator PBP plays a pivotal role in nuclear localization of CAR, that it is likely that PBP either enhances nuclear import or nuclear retention of CAR in hepatocytes, and that PRIP is redundant for CAR function.
Collapse
Affiliation(s)
- Dongsheng Guo
- The Department of Pathology, Northwestern University, Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|