1
|
Jiang B, Weinstock DM, Donovan KA, Sun HW, Wolfe A, Amaka S, Donaldson NL, Wu G, Jiang Y, Wilcox RA, Fischer ES, Gray NS, Wu W. ITK degradation to block T cell receptor signaling and overcome therapeutic resistance in T cell lymphomas. Cell Chem Biol 2023; 30:383-393.e6. [PMID: 37015223 PMCID: PMC10151063 DOI: 10.1016/j.chembiol.2023.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 01/06/2023] [Accepted: 03/13/2023] [Indexed: 04/05/2023]
Abstract
Interleukin (IL)-2-inducible T cell kinase (ITK) is essential for T cell receptor (TCR) signaling and plays an integral role in T cell proliferation and differentiation. Unlike the ITK homolog BTK, no inhibitors of ITK are currently US Food and Drug Administration (FDA) approved. In addition, recent studies have identified mutations within BTK that confer resistance to both covalent and non-covalent inhibitors. Here, as an alternative strategy, we report the development of BSJ-05-037, a potent and selective heterobifunctional degrader of ITK. BSJ-05-037 displayed enhanced anti-proliferative effects relative to its parent inhibitor BMS-509744, blocked the activation of NF-kB/GATA-3 signaling, and increased the sensitivity of T cell lymphoma cells to cytotoxic chemotherapy both in vitro and in vivo. In summary, targeted degradation of ITK is a novel approach to modulate TCR signal strength that could have broad application for the investigation and treatment of T cell-mediated diseases.
Collapse
Affiliation(s)
- Baishan Jiang
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - David M Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hong-Wei Sun
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital, Jinan University, Zhuhai, China
| | - Ashley Wolfe
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Sam Amaka
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nicholas L Donaldson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Gongwei Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yuan Jiang
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Ryan A Wilcox
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, ChEM-H, Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Wenchao Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
2
|
August A. Degrading the signal amplifier: ITK as a target for targeted protein degradation. Cell Chem Biol 2023; 30:337-339. [PMID: 37084715 DOI: 10.1016/j.chembiol.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/23/2023]
Abstract
In this issue of Cell Chemical Biology, Jiang and colleagues show for the first time that the Tec kinase ITK can be targeted using PROTAC approaches. This new modality has implications for the treatment of T cell lymphomas, but also potentially for the treatment of T cell-mediated inflammatory diseases, that depend on ITK signaling.
Collapse
Affiliation(s)
- Avery August
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; Cornell Center for Immunology, Cornell University, Ithaca, NY 14853, USA; Cornell Institute of Host-Microbe Interactions and Defense, Cornell University, Ithaca, NY 14853, USA; Cornell Center for Health Equity, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
3
|
McGee MC, August A, Huang W. TCR/ITK Signaling in Type 1 Regulatory T cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1278:115-124. [PMID: 33523446 DOI: 10.1007/978-981-15-6407-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Type 1 regulatory T (Tr1) cells can modulate inflammation through multiple direct and indirect molecular and cellular mechanisms and have demonstrated potential for anti-inflammatory therapies. Tr1 cells do not express the master transcription factor of conventional regulatory T cells, Foxp3, but express high levels of the immunomodulatory cytokine, IL-10. IL-2-inducible T-cell kinase (ITK) is conserved between mouse and human and is highly expressed in T cells. ITK signaling downstream of the T-cell receptor (TCR) is critical for T-cell subset differentiation and function. Upon activation by TCR, ITK is critical for Ras activation, leading to downstream activation of MAPKs and upregulation of IRF4, which further enable Tr1 cell differentiation and suppressive function. We summarize here the structure, signaling pathway, and function of ITK in T-cell lineage designation, with an emphasis on Tr1 cell development and function.
Collapse
Affiliation(s)
- Michael C McGee
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA. .,Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
4
|
Maurice D, Costello P, Sargent M, Treisman R. ERK Signaling Controls Innate-like CD8 + T Cell Differentiation via the ELK4 (SAP-1) and ELK1 Transcription Factors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:1681-1691. [PMID: 30068599 PMCID: PMC6121213 DOI: 10.4049/jimmunol.1800704] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/07/2018] [Indexed: 11/19/2022]
Abstract
In mouse thymocyte development, signaling by the TCR through the ERK pathway is required for positive selection of conventional naive T cells. The Ets transcription factor ELK4 (SAP-1), an ERK-regulated cofactor of the SRF transcription factor, plays an important role in positive selection by activating immediate-early genes such as the Egr transcription factor family. The role of ELK4-SRF signaling in development of other T cell types dependent on ERK signaling has been unclear. In this article, we show that ELK4, and its close relative ELK1, act cell autonomously in the thymus to control the generation of innate-like αβ CD8+ T cells with memory-like characteristics. Mice lacking ELK4 and ELK1 develop increased numbers of innate-like αβ CD8+ T cells, which populate the periphery. These cells develop cell autonomously rather than through expansion of PLZF+ thymocytes and concomitantly increased IL-4 signaling. Their development is associated with reduced TCR-mediated activation of ELK4-SRF target genes and can be partially suppressed by overexpression of the ELK4-SRF target gene EGR2. Consistent with this, partial inhibition of ERK signaling in peripheral CD8+T cells promotes the generation of cells with innate-like characteristics. These data establish that low-level ERK signaling through ELK4 (and ELK1) promotes innate-like αβ CD8+ T cell differentiation, tuning conventional versus innate-like development.
Collapse
Affiliation(s)
- Diane Maurice
- Signalling and Transcription Group, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Patrick Costello
- Signalling and Transcription Group, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Mathew Sargent
- Signalling and Transcription Group, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Richard Treisman
- Signalling and Transcription Group, The Francis Crick Institute, London NW1 1AT, United Kingdom
| |
Collapse
|
5
|
IL-2 Inducible Kinase ITK is Critical for HIV-1 Infection of Jurkat T-cells. Sci Rep 2018; 8:3217. [PMID: 29453458 PMCID: PMC5816632 DOI: 10.1038/s41598-018-21344-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/15/2018] [Indexed: 01/04/2023] Open
Abstract
Successful replication of Human immunodeficiency virus (HIV)-1 depends on the expression of various cellular host factors, such as the interleukin-2 inducible T-cell kinase (ITK), a member of the protein family of TEC-tyrosine kinases. ITK is selectively expressed in T-cells and coordinates signaling pathways downstream of the T-cell receptor and chemokine receptors, including PLC-1 activation, Ca2+-release, transcription factor mobilization, and actin rearrangements. The exact role of ITK during HIV-1 infection is still unknown. We analyzed the function of ITK during HIV-1 replication and showed that attachment, fusion of virions with the cell membrane and entry into Jurkat T-cells was inhibited when ITK was knocked down. In contrast, reverse transcription and provirus expression were not affected by ITK deficiency. Inhibited ITK expression did not affect the CXCR4 receptor on the cell surface, whereas CD4 and LFA-1 integrin levels were slightly enhanced in ITK knockdown cells and heparan sulfate (HS) expression was completely abolished in ITK depleted T-cells. However, neither HS expression nor other attachment factors could explain the impaired HIV-1 binding to ITK-deficient cells, which suggests that a more complex cellular process is influenced by ITK or that not yet discovered molecules contribute to restriction of HIV-1 binding and entry.
Collapse
|
6
|
Sun Y, Peng I, Webster JD, Suto E, Lesch J, Wu X, Senger K, Francis G, Barrett K, Collier JL, Burch JD, Zhou M, Chen Y, Chan C, Eastham-Anderson J, Ngu H, Li O, Staton T, Havnar C, Jaochico A, Jackman J, Jeet S, Riol-Blanco L, Wu LC, Choy DF, Arron JR, McKenzie BS, Ghilardi N, Ismaili MHA, Pei Z, DeVoss J, Austin CD, Lee WP, Zarrin AA. Inhibition of the kinase ITK in a mouse model of asthma reduces cell death and fails to inhibit the inflammatory response. Sci Signal 2015; 8:ra122. [PMID: 26628680 DOI: 10.1126/scisignal.aab0949] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Interleukin-2 (IL-2)-inducible T cell kinase (ITK) mediates T cell receptor (TCR) signaling primarily to stimulate the production of cytokines, such as IL-4, IL-5, and IL-13, from T helper 2 (TH2) cells. Compared to wild-type mice, ITK knockout mice are resistant to asthma and exhibit reduced lung inflammation and decreased amounts of TH2-type cytokines in the bronchoalveolar lavage fluid. We found that a small-molecule selective inhibitor of ITK blocked TCR-mediated signaling in cultured TH2 cells, including the tyrosine phosphorylation of phospholipase C-γ1 (PLC-γ1) and the secretion of IL-2 and TH2-type cytokines. Unexpectedly, inhibition of the kinase activity of ITK during or after antigen rechallenge in an ovalbumin-induced mouse model of asthma failed to reduce airway hyperresponsiveness and inflammation. Rather, in mice, pharmacological inhibition of ITK resulted in T cell hyperplasia and the increased production of TH2-type cytokines. Thus, our studies predict that inhibition of the kinase activity of ITK may not be therapeutic in patients with asthma.
Collapse
Affiliation(s)
- Yonglian Sun
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Ivan Peng
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Joshua D Webster
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Eric Suto
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Justin Lesch
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Xiumin Wu
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Kate Senger
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - George Francis
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Kathy Barrett
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Jenna L Collier
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Jason D Burch
- Department of Discovery Chemistry, Genentech Inc., South San Francisco, CA 94080, USA
| | - Meijuan Zhou
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Yuan Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, USA
| | - Connie Chan
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, USA
| | | | - Hai Ngu
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Olga Li
- Department of Biomarker Development, Genentech Inc., South San Francisco, CA 94080, USA
| | - Tracy Staton
- Department of Biomarker Development, Genentech Inc., South San Francisco, CA 94080, USA
| | - Charles Havnar
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Allan Jaochico
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, USA
| | - Janet Jackman
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Surinder Jeet
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Lorena Riol-Blanco
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Lawren C Wu
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - David F Choy
- Department of Immunology, Tissue Growth, and Repair Diagnostics Discovery, Genentech Inc., South San Francisco, CA 94080, USA
| | - Joseph R Arron
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Brent S McKenzie
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Nico Ghilardi
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | | | - Zhonghua Pei
- Department of Discovery Chemistry, Genentech Inc., South San Francisco, CA 94080, USA
| | - Jason DeVoss
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Cary D Austin
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Wyne P Lee
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Ali A Zarrin
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
7
|
Himpe E, Abdul Rahim S, Verdood P, Mano H, Kooijman R. Tec kinase stimulates cell survival in transfected Hek293T cells and is regulated by the anti-apoptotic growth factor IGF-I in human neutrophils. Cell Signal 2013; 25:666-73. [DOI: 10.1016/j.cellsig.2012.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 12/11/2012] [Accepted: 12/11/2012] [Indexed: 01/20/2023]
|
8
|
The zinc-binding region of IL-2 inducible T cell kinase (Itk) is required for interaction with Gα13 and activation of serum response factor. Int J Biochem Cell Biol 2013; 45:1074-82. [PMID: 23454662 DOI: 10.1016/j.biocel.2013.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 02/04/2013] [Accepted: 02/18/2013] [Indexed: 11/20/2022]
Abstract
Tec family kinases play critical roles in the activation of immune cells. In particular, Itk is important for the activation of T cells via the T cell Receptor (TcR), however, molecules that cooperate with Itk to activate downstream targets remain little explored. Here we show that Itk interacts with the heterotrimeric G-protein α subunit Gα13 during TcR triggering. This interaction requires membrane localization of both partners, and is partially dependent on GDP- and GTP-bound states of Gα13. Furthermore, we find that Itk interacts with Gα13 via the zinc binding regions within its Tec homology domain. The interaction between Itk and Gα13 also results in tyrosine phosphorylation of Gα13, however this is not required for the interaction. Itk enhances Gα13 mediated activation of serum response factor (SRF) transcriptional activity dependent on its ability to interact with Gα13, but its kinase activity is not required to enhance SRF activity. These data reveal a new pathway regulated by Itk in cells, and suggest cross talk between Itk and G-protein signaling downstream of the TcR.
Collapse
|
9
|
Guo W, Liu R, Ono Y, Ma AH, Martinez A, Sanchez E, Wang Y, Huang W, Mazloom A, Li J, Ning J, Maverakis E, Lam KS, Kung HJ. Molecular characteristics of CTA056, a novel interleukin-2-inducible T-cell kinase inhibitor that selectively targets malignant T cells and modulates oncomirs. Mol Pharmacol 2012; 82:938-47. [PMID: 22899868 PMCID: PMC3477223 DOI: 10.1124/mol.112.079889] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 08/16/2012] [Indexed: 12/19/2022] Open
Abstract
Interleukin-2-inducible T-cell kinase (Itk) is a member of the Btk (Bruton's tyrosine kinase) family of tyrosine kinases. Itk plays an important role in normal T-cell functions and in the pathophysiology of both autoimmune diseases and T-cell malignancies. Here, we describe the initial characterization of a selective inhibitor, 7-benzyl-1-(3-(piperidin-1-yl)propyl)-2-(4-(pyridin-4-yl)phenyl)-1H-imidazo[4,5-g]quinoxalin-6(5H)-one (CTA056), that was developed through screening a 9600-compound combinatorial solution phase library, followed by molecular modeling, and extensive structure-activity relationship studies. CTA056 exhibits the highest inhibitory effects toward Itk, followed by Btk and endothelial and epithelial tyrosine kinase. Among the 41 cancer cell lines analyzed, CTA056 selectively targets acute lymphoblastic T-cell leukemia and cutaneous T-cell lymphoma. Normal T cells are minimally affected. Incubation of Jurkat and MOLT-4 cells with CTA056 resulted in the inhibition of the phosphorylation of Itk and its effectors including PLC-γ, Akt, and extracellular signal-regulated kinase, as well as the decreased secretion of targeted genes such as interleukin-2 and interferon-γ. Jurkat cells also underwent apoptosis in a dose-dependent manner when incubated with CTA056. The potent apoptosis-inducing potential of CTA056 is reflected by the significant modulation of microRNAs involved in survival pathways and oncogenesis. The in vitro cytotoxic effect on malignant T cells is further validated in a xenograft model. The selective expression and activation of Itk in malignant T cells, as well as the specificity of CTA056 for Itk, make this molecule a potential therapeutic agent for the treatment of T-cell leukemia and lymphoma.
Collapse
Affiliation(s)
- Wenchang Guo
- Department of Biochemistry and Molecular Medicine,,University of California Davis, Sacramento, California 95817, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
The secret life of kinases: functions beyond catalysis. Cell Commun Signal 2011; 9:23. [PMID: 22035226 PMCID: PMC3215182 DOI: 10.1186/1478-811x-9-23] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 10/28/2011] [Indexed: 02/07/2023] Open
Abstract
Protein phosphorylation participates in the regulation of all fundamental biological processes, and protein kinases have been intensively studied. However, while the focus was on catalytic activities, accumulating evidence suggests that non-catalytic properties of protein kinases are essential, and in some cases even sufficient for their functions. These non-catalytic functions include the scaffolding of protein complexes, the competition for protein interactions, allosteric effects on other enzymes, subcellular targeting, and DNA binding. This rich repertoire often is used to coordinate phosphorylation events and enhance the specificity of substrate phosphorylation, but also can adopt functions that do not rely on kinase activity. Here, we discuss such kinase independent functions of protein and lipid kinases focussing on kinases that play a role in the regulation of cell proliferation, differentiation, apoptosis, and motility.
Collapse
|
11
|
Qi Q, Kannan AK, August A. Structure and function of Tec family kinase Itk. Biomol Concepts 2011; 2:223-32. [PMID: 25962031 DOI: 10.1515/bmc.2011.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Accepted: 05/11/2011] [Indexed: 11/15/2022] Open
Abstract
Itk is a member of the Tec family of kinases that is expressed predominantly in T cells. Itk regulates the T cell receptor signaling pathway to modulate T cell development and T helper cell differentiation, particularly Th2 differentiation. Itk is also important for the development and function of iNKT cells. In this review we discuss current progress on our understanding of the structure, activation and signaling pathway of Itk, in addition to inhibitors that have been developed, which target this kinase. We also place in context the function of Itk, available inhibitors and potential use in treating disease.
Collapse
|
12
|
Qi Q, Xia M, Bai Y, Yu S, Cantorna M, August A. Interleukin-2-inducible T cell kinase (Itk) network edge dependence for the maturation of iNKT cell. J Biol Chem 2010; 286:138-46. [PMID: 21036902 DOI: 10.1074/jbc.m110.148205] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are a unique subset of innate T lymphocytes that are selected by CD1d. They have diverse immune regulatory functions via the rapid production of interferon-γ (IFN-γ) and interleukin-4 (IL-4). In the absence of signaling nodes Itk and Txk, Tec family non-receptor tyrosine kinases, mice exhibit a significant block in iNKT cell development. We now show here that although the Itk node is required for iNKT cell maturation, the kinase domain edge of Itk is not required for continued maturation iNKT cells in the thymus compared with Itk-null mice. This rescue is dependent on the expression of the Txk node. Furthermore, this kinase domain independent edge rescue correlates with the increased expression of the transcription factors T-bet, the IL-2/IL-15 receptor β chain CD122, and suppression of eomesodermin expression. By contrast, α-galactosyl ceramide induced cytokine secretion is dependent on the kinase domain edge of Itk. These findings indicate that the Itk node uses a kinase domain independent edge, a scaffolding function, in the signaling pathway leading to the maturation of iNKT cells. Furthermore, the findings indicate that phosphorylation of substrates by the Itk node is only partially required for maturation of iNKT cells, while functional activation of iNKT cells is dependent on the kinase domain/activity edge of Itk.
Collapse
Affiliation(s)
- Qian Qi
- Center for Molecular Immunology & Infectious Disease and Department of Veterinary & Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | |
Collapse
|
13
|
Andreotti AH, Schwartzberg PL, Joseph RE, Berg LJ. T-cell signaling regulated by the Tec family kinase, Itk. Cold Spring Harb Perspect Biol 2010; 2:a002287. [PMID: 20519342 DOI: 10.1101/cshperspect.a002287] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Tec family tyrosine kinases regulate lymphocyte development, activation, and differentiation. In T cells, the predominant Tec kinase is Itk, which functions downstream of the T-cell receptor to regulate phospholipase C-gamma. This review highlights recent advances in our understanding of Itk kinase structure and enzymatic regulation, focusing on Itk protein domain interactions and mechanisms of substrate recognition. We also discuss the role of Itk in the development of conventional versus innate T-cell lineages, including both alphabeta and gammadelta T-cell subsets. Finally, we describe the complex role of Itk signaling in effector T-cell differentiation and the regulation of cytokine gene expression. Together, these data implicate Itk as an important modulator of T-cell signaling and function.
Collapse
Affiliation(s)
- Amy H Andreotti
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA.
| | | | | | | |
Collapse
|
14
|
Sahu N, August A. ITK inhibitors in inflammation and immune-mediated disorders. Curr Top Med Chem 2009; 9:690-703. [PMID: 19689375 DOI: 10.2174/156802609789044443] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Interleukin-2-inducible T cell kinase (ITK) is a non-receptor tyrosine kinase expressed in T cells, NKT cells and mast cells which plays a crucial role in regulating the T cell receptor (TCR), CD28, CD2, chemokine receptor CXCR4, and FcepsilonR-mediated signaling pathways. In T cells, ITK is an important mediator for actin reorganization, activation of PLCgamma, mobilization of calcium, and activation of the NFAT transcription factor. ITK plays an important role in the secretion of IL-2, but more critically, also has a pivotal role in the secretion of Th2 cytokines, IL-4, IL-5 and IL-13. As such, ITK has been shown to regulate the development of effective Th2 response during allergic asthma as well as infections of parasitic worms. This ability of ITK to regulate Th2 responses, along with its pattern of expression, has led to the proposal that it would represent an excellent target for Th2-mediated inflammation. We discuss here the possibilities and pitfalls of targeting ITK for inflammatory disorders.
Collapse
Affiliation(s)
- Nisebita Sahu
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology & Infectious Disease, The Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
15
|
August A. IL-2-inducible T-cell kinase (ITK) finds another (dance) partner...TFII-I. Eur J Immunol 2009; 39:2354-7. [PMID: 19688746 DOI: 10.1002/eji.200939813] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The signals that regulate T-cell activation have been studied for some time. We know that upon interaction with antigen/MHC complex, the TCR triggers the activation of a number of kinases, including tyrosine and serine/threonine kinases. The Tec family kinase IL-2- inducible T-cell kinase (ITK) plays a role in this response, but the signaling pathways that ITK regulates are less well known. Even less known are the binding partners and substrates of ITK. A paper in this issue of the European Journal of Immunology extends our knowledge on the subject by showing that ITK interacts with the transcriptional regulator TFII-I. The implications of this finding are discussed.
Collapse
Affiliation(s)
- Avery August
- Center for Molecular Immunology & Infectious Disease, Department of Veterinary & Biomedical Sciences, The Pennsylvania State University, PA 16802, USA.
| |
Collapse
|
16
|
Abstract
Tec family tyrosine kinases transduce signals from antigen and other receptors. In particular, Itk plays an important role in T-cell development and activation. Itk has an N-terminal pleckstrin homology domain, a Tec Homology domain with a proline-rich region, SH3 and SH2 domains and a kinase domain, the structure each of which has been determined. However, the full structure of Itk and other Tec kinases remain elusive. Models of Itk suggest either a head to tail dimer, with the SH2 domain interacting with the SH3 domain, or a folded monomer with the SH3 domain interacting with the proline-rich region. We show here that in vivo Itk exists as a monomer, with the pleckstrin homology domain less than 80 A from the C terminus. Zn2+ coordinating residues in the Tec Homology domain, not the proline-rich region, are critical for this intramolecular interaction. These data have implications for our understanding of Tec family kinase structure.
Collapse
Affiliation(s)
- Qian Qi
- Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
17
|
Sahu N, Mueller C, Fischer A, August A. Differential sensitivity to Itk kinase signals for T helper 2 cytokine production and chemokine-mediated migration. THE JOURNAL OF IMMUNOLOGY 2008; 180:3833-8. [PMID: 18322190 DOI: 10.4049/jimmunol.180.6.3833] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Allergic asthma is dependent on chemokine-mediated Th2 cell migration and Th2 cytokine secretion into the lungs. The inducible T cell tyrosine kinase Itk regulates the production of Th2 cytokines as well as migration in response to chemokine gradients. Mice lacking Itk are resistant to developing allergic asthma. However, the role of kinase activity of Itk in the development of this disease is unclear. In addition, whether distinct Itk-derived signals lead to T cell migration and secretion of Th2 cytokines is also unknown. Using transgenic mice specifically lacking Itk kinase activity, we show that active kinase signaling is required for control of Th2 responses and development of allergic asthma. Moreover, dominant suppression of kinase Itk activity led to normal Th2 responses, but significantly reduced chemokine-mediated migration, resulting in prevention of allergic asthma. These observations indicate that signals required for Th2 responses and migration are differentially sensitive to Itk activity. Manipulation of Itk's activity can thus provide a new strategy to treat allergic asthma by differentially affecting migration of T cells into the lungs, leaving Th2 responses intact.
Collapse
Affiliation(s)
- Nisebita Sahu
- Center for Molecular Immunology & Infectious Disease, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
18
|
Selective targeting of ITK blocks multiple steps of HIV replication. Proc Natl Acad Sci U S A 2008; 105:6684-9. [PMID: 18443296 DOI: 10.1073/pnas.0709659105] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Treatment for HIV has relied on the use of antiretroviral agents that can be subject to the development of resistant viruses. The study of inhibitors directed against cellular proteins required for HIV replication is therefore of growing interest. Inducible T cell kinase (ITK) is a Tec family tyrosine kinase that regulates T cell receptor (TCR)-induced activation of PLCgamma-1, Ca(2+) mobilization and transcription factor activation, and actin rearrangement downstream of both TCR and chemokine receptors. Because productive infection of T cells with HIV requires T cell activation, chemokine receptors and actin reorganization, we asked whether ITK affects HIV infection using ITK-specific siRNA, a kinase-inactive ITK mutant or an ITK inhibitor. We demonstrate that loss of ITK function resulted in marked reductions in intracellular p24 levels upon HIV infection. Loss of ITK function after establishment of HIV infection also decreased virus spread within the culture. Inhibition of ITK did not affect expression of the HIV coreceptors CD4 or CXCR4 but partially blocked HIV viral entry, an effect that correlated with decreased actin polarization to gp120. Additionally, ITK was required for efficient HIV transcription, and overexpression of ITK increased both viral transcription and virus-like particle formation. Our data suggest that inhibition of ITK blocks HIV infection by affecting multiple steps of HIV replication.
Collapse
|
19
|
Hu J, Sahu N, Walsh E, August A. Memory phenotype CD8+ T cells with innate function selectively develop in the absence of active Itk. Eur J Immunol 2007; 37:2892-9. [PMID: 17724684 PMCID: PMC2770953 DOI: 10.1002/eji.200737311] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
T cells with a memory-like phenotype and possessing innate immune function have been previously identified as CD8(+)CD44(hi) cells. These cells rapidly secrete IFN-gamma upon stimulation with IL-12/IL-18 and are involved in innate responses to infection with Listeria monocytogenes. The signals regulating these cells are unclear. The Tec kinase Itk regulates T cell activation and we report here that a majority of the CD8(+) T cells in Itk null mice have a phenotype of CD44(hi) similar to memory-like innate T cells. These cells are observed in mice carrying an Itk mutant lacking the kinase domain, indicating that active Tec kinase signaling suppresses their presence. These cells carry preformed message for and are able to rapidly produce IFN-gamma upon stimulation in vitro with IL-12/IL-18, and endow Itk null mice the ability to effectively respond to infection with L. monocytogenes or exposure to lipopolysaccharides by secretion of IFN-gamma. Transfer of these cells rescues the ability of IFN-gamma null mice to reduce bacterial burden following L. monocytogenes infection, indicating that these cells are functional CD8(+)CD44(hi) T cells previously detected in vivo. These results indicate that active signals from Tec kinases regulate the development of memory-like CD8(+) T cells with innate function.
Collapse
Affiliation(s)
- Jianfang Hu
- Center for Molecular Immunology & Infectious Disease and Department of Veterinary & Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802
- Immunology & Infectious Disease Graduate Program, The Pennsylvania State University, University Park, PA 16802
| | - Nisebita Sahu
- Center for Molecular Immunology & Infectious Disease and Department of Veterinary & Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Elizabeth Walsh
- Center for Molecular Immunology & Infectious Disease and Department of Veterinary & Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802
- Pathobiology Graduate Program, The Pennsylvania State University, University Park, PA 16802
| | - Avery August
- Center for Molecular Immunology & Infectious Disease and Department of Veterinary & Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
20
|
Gomez-Rodriguez J, Readinger JA, Viorritto IC, Mueller KL, Houghtling RA, Schwartzberg PL. Tec kinases, actin, and cell adhesion. Immunol Rev 2007; 218:45-64. [PMID: 17624943 DOI: 10.1111/j.1600-065x.2007.00534.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Tec family non-receptor tyrosine kinases have been recognized for their roles in the regulation of phospholipase C-gamma and Ca(2+) mobilization downstream from antigen receptors on lymphocytes. Recent data, however, show that the Tec family kinase interleukin-2-inducible T-cell kinase (Itk) also participates in pathways regulating the actin cytoskeleton and 'inside-out' signaling to integrins downstream from the T-cell antigen receptor. Data suggest that Itk may function in a kinase-independent fashion to regulate proper recruitment of the Vav1 guanine nucleotide exchange factor. By enhancing actin cytoskeleton reorganization, recruitment of signaling molecules to the immune synapse, and integrin clustering in response to both antigen and chemokine receptors, the Tec kinases serve as modulators or amplifiers that can increase the duration of T-cell signaling and regulate T-cell functional responses.
Collapse
Affiliation(s)
- Julio Gomez-Rodriguez
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|