1
|
Di Gregorio S, Niccolini L, Seggiani M, Strangis G, Barbani N, Vitiello V, Becarelli S, Petroni G, Yan X, Buttino I. Marine copepod culture as a potential source of bioplastic-degrading microbiome: The case of poly(butylene succinate-co-adipate). CHEMOSPHERE 2024; 362:142603. [PMID: 38885765 DOI: 10.1016/j.chemosphere.2024.142603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/21/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
The poly(butylene succinate-co-adipate) (PBSA) is emerging as environmentally sustainable polyester for applications in marine environment. In this work the capacity of microbiome associated with marine plankton culture to degrade PBSA, was tested. A taxonomic and functional characterization of the microbiome associated with the copepod Acartia tonsa, reared in controlled conditions, was analysed by 16S rDNA metabarcoding, in newly-formed adult stages and after 7 d of incubation. A predictive functional metagenomic profile was inferred for hydrolytic activities involved in bioplastic degradation with a particular focus on PBSA. The copepod-microbiome was also characterized in newly-formed carcasses of A. tonsa, and after 7 and 33 d of incubation in the plankton culture medium. Copepod-microbiome showed hydrolytic activities at all developmental stages of the alive copepods and their carcasses, however, the evenness of the hydrolytic bacterial community significantly increased with the time of incubation in carcasses. Microbial genera, never described in association with copepods: Devosia, Kordia, Lentibacter, Methylotenera, Rheinheimera, Marinagarivorans, Paraglaciecola, Pseudophaeobacter, Gaiella, Streptomyces and Kribbella sps., were retrieved. Kribbella sp. showed carboxylesterase activity and Streptomyces sp. showed carboxylesterase, triacylglycerol lipase and cutinase activities, that might be involved in PBSA degradation. A culturomic approach, adopted to isolate bacterial specimen from carcasses, led to the isolation of the bacterial strain, Vibrio sp. 01 tested for the capacity to promote the hydrolysis of the ester bonds. Granules of PBSA, incubated 82 d at 20 °C with Vibrio sp. 01, were characterized by scanning electron microscopy, infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry, showing fractures compared to the control sample, and hydrolysis of ester bonds. These preliminary results are encouraging for further investigation on the ability of the microbiome associated with plankton to biodegrade polyesters, such as PBSA, and increasing knowledge on microorganisms involved in bioplastic degradation in marine environment.
Collapse
Affiliation(s)
- Simona Di Gregorio
- Department of Biology, University of Pisa, Via Luca Ghini 13, 56123, Pisa, Italy
| | - Luca Niccolini
- Department of Biology, University of Pisa, Via Luca Ghini 13, 56123, Pisa, Italy; Functional Biology and Plankton Genomic Lab. ISPRA - Italian Institute for Environmental Protection and Research, Via del Cedro n.38, 57122, Livorno, Italy
| | - Maurizia Seggiani
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122, Pisa, Italy
| | - Giovanna Strangis
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122, Pisa, Italy
| | - Niccoletta Barbani
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122, Pisa, Italy
| | - Valentina Vitiello
- Functional Biology and Plankton Genomic Lab. ISPRA - Italian Institute for Environmental Protection and Research, Via del Cedro n.38, 57122, Livorno, Italy; Sino-Italian Joint Laboratory Functional Biology of Marine Biota, ISPRA, 57122, Livorno, Italy
| | - Simone Becarelli
- Department of Biology, University of Pisa, Via Luca Ghini 13, 56123, Pisa, Italy
| | - Giulio Petroni
- Department of Biology, University of Pisa, Via Luca Ghini 13, 56123, Pisa, Italy
| | - Xiaojun Yan
- Sino-Italian Joint Laboratory Functional Biology of Marine Biota, ISPRA, 57122, Livorno, Italy; Laboratory of Marine Biological Resources and Molecular Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City, 316022, Zhejiang, China
| | - Isabella Buttino
- Functional Biology and Plankton Genomic Lab. ISPRA - Italian Institute for Environmental Protection and Research, Via del Cedro n.38, 57122, Livorno, Italy; Sino-Italian Joint Laboratory Functional Biology of Marine Biota, ISPRA, 57122, Livorno, Italy.
| |
Collapse
|
2
|
EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Baker‐Austin C, Hervio‐Heath D, Martinez‐Urtaza J, Caro ES, Strauch E, Thébault A, Guerra B, Messens W, Simon AC, Barcia‐Cruz R, Suffredini E. Public health aspects of Vibrio spp. related to the consumption of seafood in the EU. EFSA J 2024; 22:e8896. [PMID: 39045511 PMCID: PMC11263920 DOI: 10.2903/j.efsa.2024.8896] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
Vibrio parahaemolyticus, Vibrio vulnificus and non-O1/non-O139 Vibrio cholerae are the Vibrio spp. of highest relevance for public health in the EU through seafood consumption. Infection with V. parahaemolyticus is associated with the haemolysins thermostable direct haemolysin (TDH) and TDH-related haemolysin (TRH) and mainly leads to acute gastroenteritis. V. vulnificus infections can lead to sepsis and death in susceptible individuals. V. cholerae non-O1/non-O139 can cause mild gastroenteritis or lead to severe infections, including sepsis, in susceptible individuals. The pooled prevalence estimate in seafood is 19.6% (95% CI 13.7-27.4), 6.1% (95% CI 3.0-11.8) and 4.1% (95% CI 2.4-6.9) for V. parahaemolyticus, V. vulnificus and non-choleragenic V. cholerae, respectively. Approximately one out of five V. parahaemolyticus-positive samples contain pathogenic strains. A large spectrum of antimicrobial resistances, some of which are intrinsic, has been found in vibrios isolated from seafood or food-borne infections in Europe. Genes conferring resistance to medically important antimicrobials and associated with mobile genetic elements are increasingly detected in vibrios. Temperature and salinity are the most relevant drivers for Vibrio abundance in the aquatic environment. It is anticipated that the occurrence and levels of the relevant Vibrio spp. in seafood will increase in response to coastal warming and extreme weather events, especially in low-salinity/brackish waters. While some measures, like high-pressure processing, irradiation or depuration reduce the levels of Vibrio spp. in seafood, maintaining the cold chain is important to prevent their growth. Available risk assessments addressed V. parahaemolyticus in various types of seafood and V. vulnificus in raw oysters and octopus. A quantitative microbiological risk assessment relevant in an EU context would be V. parahaemolyticus in bivalve molluscs (oysters), evaluating the effect of mitigations, especially in a climate change scenario. Knowledge gaps related to Vibrio spp. in seafood and aquatic environments are identified and future research needs are prioritised.
Collapse
|
3
|
Lo S, Ba BS, Niang AA, N'diaye I, Diop M, De Magny GC. Investigation of potentially pathogenic Vibrionaceae in Saint-Louis city, Senegal. Pan Afr Med J 2024; 48:5. [PMID: 38946740 PMCID: PMC11214138 DOI: 10.11604/pamj.2024.48.5.34685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 02/19/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction as cholera, due to toxigenic bacteria Vibrio cholera (serogroups O1 and O139), is a major public health threat in Africa, the aim of this work was to investigate potentially pathogenic Vibrionaceae bacteria firstly from human stool samples, and secondly from various environmental water points of Saint-Louis city in Senegal. Methods a hospital-based study was conducted between 2013 and 2015. Stool samples were taken and cultured from daily incoming patients or hospitalized for acute diarrhea at Saint-Louis´ regional hospital. For environment, a monthly longitudinal sampling from January to October 2016 was carried out at 10 sites in the city. We used total DNA extracted from APW (alkaline peptone water) broth solutions and on suspect bacterial colonies to run PCR Multiplex targeting specific DNA fragments to detect Vibrio genus and specific species. In case of positivity, a simplex PCR was performed to test for cholera toxins Ctx, and V. parahaemolyticus TRH and TDH. Results for 43 patients screened, bacterial culture was positive in 6% of cases but no strain of V. cholerae or other Vibrio sp. was isolated. PCR on 90 APW solutions were positive for Vibrio sp.(n = 43), V. cholera(n = 27), V. mimicus(n = 16), V. parahaemolyticus(8), V. alginolyticus(n = 4), and V. vulnificus(n = 2). Unlike for those on suspected colonies which were positive for a majority of V. parahaemolyticus (n = 40) and V. cholerae non-O1 / O139 (n = 35). Six strains of V. parahaemolyticus carried TRH gene, 3 of which expressed simultaneously virulence TRH and TDH genes. For physicochemical parameters, all temperatures varied similarly according to a unimodal seasonality, as well as salinity. Conclusion despite the presence of natural populations of Vibrionaceae, even toxigenic ones, was noted in water environment, along with favorable habitat conditions that could play a role in transmission of Vibriosis in the Saint Louis population, we did not isolate any of them from patients screened at the hospital.
Collapse
Affiliation(s)
- Seynabou Lo
- UFR Sciences of Health, Gaston Berger University, Saint-Louis, Senegal
- Laboratory of Biology, Regional Hospital Center of Saint-Louis, Senegal
| | | | - Aissatou Ahmet Niang
- Laboratory of Bacteriology and Virology, FMPOS, UCAD, Dakar, Senegal
- Laboratory of Bacteriology and Virology, Fann National University Hospital Center, Dakar, Senegal
| | - Issa N'diaye
- Pole of Microbiology, Pasteur Institute, Dakar, Senegal
| | - Mamadou Diop
- UFR Sciences of Health, Gaston Berger University, Saint-Louis, Senegal
| | - Guillaume Constantin De Magny
- Pole of Microbiology, Pasteur Institute, Dakar, Senegal
- Montpellier Ecology and Evolution of Disease Network (MEEDiN), Montpellier, France
- MIVEGEC (Université de Montpellier, UMR CNRS 5290, IRD 224), Institut de Recherche pour le Développement Délégation Occitanie, Montpellier, France
| |
Collapse
|
4
|
Brauge T, Mougin J, Ells T, Midelet G. Sources and contamination routes of seafood with human pathogenic Vibrio spp.: A Farm-to-Fork approach. Compr Rev Food Sci Food Saf 2024; 23:e13283. [PMID: 38284576 DOI: 10.1111/1541-4337.13283] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/03/2023] [Accepted: 11/29/2023] [Indexed: 01/30/2024]
Abstract
Vibrio spp., known human foodborne pathogens, thrive in freshwater, estuaries, and marine settings, causing vibriosis upon ingestion. The rising global vibriosis cases due to climate change necessitate a deeper understanding of Vibrio epidemiology and human transmission. This review delves into Vibrio contamination in seafood, scrutinizing its sources and pathways. We comprehensively assess the contamination of human-pathogenic Vibrio in the seafood chain, covering raw materials to processed products. A "Farm-to-Fork" approach, aligned with the One Health concept, is essential for grasping the complex nature of Vibrio contamination. Vibrio's widespread presence in natural and farmed aquatic environments establishes them as potential entry points into the seafood chain. Environmental factors, including climate, human activities, and wildlife, influence contamination sources and routes, underscoring the need to understand the origin and transmission of pathogens in raw seafood. Once within the seafood chain, the formation of protective biofilms on various surfaces in production and processing poses significant food safety risks, necessitating proper cleaning and disinfection to prevent microbial residue. In addition, inadequate seafood handling, from inappropriate processing procedures to cross-contamination via pests or seafood handlers, significantly contributes to Vibrio food contamination, thus warranting attention to reduce risks. Information presented here support the imperative for proactive measures, robust research, and interdisciplinary collaboration in order to effectively mitigate the risks posed by human pathogenic Vibrio contamination, safeguarding public health and global food security. This review serves as a crucial resource for researchers, industrials, and policymakers, equipping them with the knowledge to develop biosecurity measures associated with Vibrio-contaminated seafood.
Collapse
Affiliation(s)
- Thomas Brauge
- ANSES, Laboratory for Food Safety, Bacteriology and Parasitology of Fishery and Aquaculture Products Unit, Boulogne sur Mer, France
| | - Julia Mougin
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Timothy Ells
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, Nova Scotia, Canada
| | - Graziella Midelet
- ANSES, Laboratory for Food Safety, Bacteriology and Parasitology of Fishery and Aquaculture Products Unit, Boulogne sur Mer, France
| |
Collapse
|
5
|
Ayala AJ, Ogbunugafor CB. When Vibrios Take Flight: A Meta-Analysis of Pathogenic Vibrio Species in Wild and Domestic Birds. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:295-336. [PMID: 36792882 DOI: 10.1007/978-3-031-22997-8_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Of the over 100 species in the genus Vibrio, approximately twelve are associated with clinical disease, such as cholera and vibriosis. Crucially, eleven of those twelve, including Vibrio cholerae and Vibrio vulnificus, have been isolated from birds. Since 1965, pathogenic Vibrio species have been consistently isolated from aquatic and ground-foraging bird species, which has implications for public health, as well as the One Health paradigm defined as an ecology-inspired, integrative framework for the study of health and disease, inclusive of environmental, human, and animal health. In this meta-analysis, we identified 76 studies from the primary literature which report on or examine birds as hosts for pathogenic Vibrio species. We found that the burden of disease in birds was most commonly associated with V. cholerae, followed by V. metschnikovii and V. parahaemolyticus. Meta-analysis wide prevalence of our Vibrio pathogens varied from 19% for V. parahaemolyticus to 1% for V. mimicus. Wild and domestic birds were both affected, which may have implications for conservation, as well as agriculturally associated avian species. As pathogenic Vibrios become more abundant throughout the world as a result of warming estuaries and oceans, susceptible avian species should be continually monitored as potential reservoirs for these pathogens.
Collapse
Affiliation(s)
- Andrea J Ayala
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - C Brandon Ogbunugafor
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
6
|
Investigating the Relationship between Nitrate, Total Dissolved Nitrogen, and Phosphate with Abundance of Pathogenic Vibrios and Harmful Algal Blooms in Rehoboth Bay, Delaware. Appl Environ Microbiol 2022; 88:e0035622. [DOI: 10.1128/aem.00356-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio-associated illnesses have been expanding globally over the past several decades (A. Newton, M.
Collapse
|
7
|
Miyoshi SI, Kumagai M, Tanida R, Soda K, Yoshimoto Y, Mizuno T. Inhibitory Effects of Polymyxin B and Human LL-37 on the Flagellin Expression in Vibrio vulnificus. Biocontrol Sci 2022; 27:57-64. [PMID: 35753794 DOI: 10.4265/bio.27.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Vibrio vulnificus, an opportunistic human pathogen responsible for primary septicemia, initiates pathogenesis by attachment to the intestinal epithelial cells for which the motility by the polar flagellum plays an essential role. The proteomic analysis of outer membrane proteins showed that the treatment with the 1/2 minimum inhibitory concentration (MIC) of polymyxin B (a bacterial antimicrobial peptide) led to the reduced production of flagellin (a major component of the polar flagellum). Furthermore, the bacterial motility was inhibited in the presence of 1/2 MIC of polymyxin B. V. vulnificus has six flagellin genes organized into the flaFBA and flaCDE loci. The flaA was found to be expressed higher than flaC, and its expression was significantly decreased by polymyxin B. As well as polymyxin B, the 1/2 MIC of LL-37 (a human intestinal antimicrobial peptide) reduced the expression of flaA. In addition, among four fragments of LL-37, KI-18 and FK-13 containing F17KRIVQRIKDELR29 could lead to the decreased expression of flaA. Because the motility closely relates to virulence of V. vulnificus, the findings obtained herein indicate that LL-37 may reduce the bacterial virulence through inhibition of the motility via the polar flagellum.
Collapse
Affiliation(s)
- Shin-Ichi Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Mika Kumagai
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Ryousuke Tanida
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Kohei Soda
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Yuri Yoshimoto
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Tamaki Mizuno
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| |
Collapse
|
8
|
Brumfield KD, Usmani M, Chen KM, Gangwar M, Jutla AS, Huq A, Colwell RR. Environmental parameters associated with incidence and transmission of pathogenic Vibrio spp. Environ Microbiol 2021; 23:7314-7340. [PMID: 34390611 DOI: 10.1111/1462-2920.15716] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/27/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
Vibrio spp. thrive in warm water and moderate salinity, and they are associated with aquatic invertebrates, notably crustaceans and zooplankton. At least 12 Vibrio spp. are known to cause infection in humans, and Vibrio cholerae is well documented as the etiological agent of pandemic cholera. Pathogenic non-cholera Vibrio spp., e.g., Vibrio parahaemolyticus and Vibrio vulnificus, cause gastroenteritis, septicemia, and other extra-intestinal infections. Incidence of vibriosis is rising globally, with evidence that anthropogenic factors, primarily emissions of carbon dioxide associated with atmospheric warming and more frequent and intense heatwaves, significantly influence environmental parameters, e.g., temperature, salinity, and nutrients, all of which can enhance growth of Vibrio spp. in aquatic ecosystems. It is not possible to eliminate Vibrio spp., as they are autochthonous to the aquatic environment and many play a critical role in carbon and nitrogen cycling. Risk prediction models provide an early warning that is essential for safeguarding public health. This is especially important for regions of the world vulnerable to infrastructure instability, including lack of 'water, sanitation, and hygiene' (WASH), and a less resilient infrastructure that is vulnerable to natural calamity, e.g., hurricanes, floods, and earthquakes, and/or social disruption and civil unrest, arising from war, coups, political crisis, and economic recession. Incorporating environmental, social, and behavioural parameters into such models allows improved prediction, particularly of cholera epidemics. We have reported that damage to WASH infrastructure, coupled with elevated air temperatures and followed by above average rainfall, promotes exposure of a population to contaminated water and increases the risk of an outbreak of cholera. Interestingly, global predictive risk models successful for cholera have the potential, with modification, to predict diseases caused by other clinically relevant Vibrio spp. In the research reported here, the focus was on environmental parameters associated with incidence and distribution of clinically relevant Vibrio spp. and their role in disease transmission. In addition, molecular methods designed for detection and enumeration proved useful for predictive modelling and are described, namely in the context of prediction of environmental conditions favourable to Vibrio spp., hence human health risk.
Collapse
Affiliation(s)
- Kyle D Brumfield
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA.,University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA
| | - Moiz Usmani
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Kristine M Chen
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Mayank Gangwar
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Antarpreet S Jutla
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - Rita R Colwell
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA.,University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA
| |
Collapse
|
9
|
Abioye OE, Osunla AC, Okoh AI. Molecular Detection and Distribution of Six Medically Important Vibrio spp. in Selected Freshwater and Brackish Water Resources in Eastern Cape Province, South Africa. Front Microbiol 2021; 12:617703. [PMID: 34149632 PMCID: PMC8208477 DOI: 10.3389/fmicb.2021.617703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/29/2021] [Indexed: 01/22/2023] Open
Abstract
Water resources contaminated with pathogenic Vibrio species are usually a source of devastating infection outbreaks that have been a public health concern in both developed and developing countries over the decades. The present study assessed the prevalence of six medically significant Vibrio species in some water resources in Eastern Cape Province, South Africa for 12 months. We detected vibrios in all the 194 water samples analyzed using polymerase chain reaction (PCR). The prevalence of Vibrio cholerae, Vibrio mimicus, Vibrio fluvialis, Vibrio vulnificus, Vibrio alginolyticus, and Vibrio parahaemolyticus in freshwater samples was 34, 19, 9, 2, 3, and 2%, and that in brackish water samples was 44, 28, 10, 7, 46, and 51%, respectively. The population of the presumptive Vibrio spp. isolated from freshwater (628) and brackish water (342) samples that were confirmed by PCR was 79% (497/628) and 85% (291/342), respectively. Twenty-two percent of the PCR-confirmed Vibrio isolates from freshwater (n = 497) samples and 41% of the PCR-confirmed Vibrio isolates from brackish water samples (n = 291) fall among the Vibrio species of interest. The incidences of V. cholerae, V. mimicus, V. fluvialis, V. vulnificus, V. alginolyticus, and V. parahaemolyticus amidst these Vibrio spp. of interest that were recovered from freshwater samples were 75, 14, 4, 6, 1, and 1%, whereas those from brackish water samples were 24, 7, 3, 3, 47, and 18%, respectively. Our observation during the study suggests pollution as the reason for the unusual isolation of medically important vibrios in winter. Correlation analysis revealed that temperature drives the frequency of isolation, whereas salinity drives the composition of the targeted Vibrio species at our sampling sites. The finding of the study is of public health importance going by the usefulness of the water resources investigated. Although controlling and preventing most of the factors that contribute to the prevalence of medically important bacteria, such as Vibrio species, at the sampling points might be difficult, regular monitoring for creating health risk awareness will go a long way to prevent possible Vibrio-related infection outbreaks at the sampling sites and their immediate environment.
Collapse
Affiliation(s)
- Oluwatayo E Abioye
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa.,Department of Microbiology, Obafemi Awolowo University, Ife, Nigeria
| | - Ayodeji Charles Osunla
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa.,Department of Microbiology, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa.,Department of Environmental Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
10
|
The Impact of Water Intrusion on Pathogenic Vibrio Species to Inland Brackish Waters of China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17186781. [PMID: 32957572 PMCID: PMC7558382 DOI: 10.3390/ijerph17186781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022]
Abstract
The estuary is the ecological niche of pathogenic Vibrio spp. as it provides abundant organic and inorganic nutrients from seawater and rivers. However, little is known about the ecology of these Vibrio species in the inland brackish water area. In this study, their co-occurrence and relationships to key environmental constraints (salinity and temperature) in the Hun-Tai River of China were examined using the most probable number polymerase chain reaction (MPN-PCR) approach. We hereby report 2-year continuous surveillance based on six water indices of the Hun-Tai River. The results showed that seawater intrusion maximally reached inland as far as 26.5 km for the Hun-Tai River. Pathogenic Vibrio spp. were detected in 21.9% of the water samples. In particular, V. cholerae, V. parahaemolyticus, and V. vulnificus were isolated in 10 (10.4%), 20 (20.8.5%), and 2 (2.08%) samples, respectively. All V. parahaemolyticus strains were tdh gene negative, 10% were positive for the trh gene. Multi-locus sequence typing (MLST) divided V. parahaemolyticus strains into 12 sequence types (STs) for the Hun-Tai River. Five STs were respectively present in various locations along the Hun-Tai River. The PCR assay for detecting six virulence genes and Vibrio seventh pandemic island I and II revealed three genotypes in 12 V. cholerae isolates. The results of our study showed that seawater intrusion and salinity have profound effects on the distribution of pathogenic Vibrio spp. in the inland river, suggesting a potential health risk associated with the waters of the Hun-Tai River used for irrigation and drinking.
Collapse
|
11
|
|
12
|
Hassard F, Gwyther CL, Farkas K, Andrews A, Jones V, Cox B, Brett H, Jones DL, McDonald JE, Malham SK. Abundance and Distribution of Enteric Bacteria and Viruses in Coastal and Estuarine Sediments-a Review. Front Microbiol 2016; 7:1692. [PMID: 27847499 PMCID: PMC5088438 DOI: 10.3389/fmicb.2016.01692] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/10/2016] [Indexed: 11/26/2022] Open
Abstract
The long term survival of fecal indicator organisms (FIOs) and human pathogenic microorganisms in sediments is important from a water quality, human health and ecological perspective. Typically, both bacteria and viruses strongly associate with particulate matter present in freshwater, estuarine and marine environments. This association tends to be stronger in finer textured sediments and is strongly influenced by the type and quantity of clay minerals and organic matter present. Binding to particle surfaces promotes the persistence of bacteria in the environment by offering physical and chemical protection from biotic and abiotic stresses. How bacterial and viral viability and pathogenicity is influenced by surface attachment requires further study. Typically, long-term association with surfaces including sediments induces bacteria to enter a viable-but-non-culturable (VBNC) state. Inherent methodological challenges of quantifying VBNC bacteria may lead to the frequent under-reporting of their abundance in sediments. The implications of this in a quantitative risk assessment context remain unclear. Similarly, sediments can harbor significant amounts of enteric viruses, however, the factors regulating their persistence remains poorly understood. Quantification of viruses in sediment remains problematic due to our poor ability to recover intact viral particles from sediment surfaces (typically <10%), our inability to distinguish between infective and damaged (non-infective) viral particles, aggregation of viral particles, and inhibition during qPCR. This suggests that the true viral titre in sediments may be being vastly underestimated. In turn, this is limiting our ability to understand the fate and transport of viruses in sediments. Model systems (e.g., human cell culture) are also lacking for some key viruses, preventing our ability to evaluate the infectivity of viruses recovered from sediments (e.g., norovirus). The release of particle-bound bacteria and viruses into the water column during sediment resuspension also represents a risk to water quality. In conclusion, our poor process level understanding of viral/bacterial-sediment interactions combined with methodological challenges is limiting the accurate source apportionment and quantitative microbial risk assessment for pathogenic organisms associated with sediments in aquatic environments.
Collapse
Affiliation(s)
| | - Ceri L. Gwyther
- Department of Engineering and Innovation, Open UniversityMilton Keynes, UK
| | - Kata Farkas
- School of Environment, Natural Resources and Geography, Bangor UniversityBangor, UK
| | | | | | | | | | - Davey L. Jones
- School of Environment, Natural Resources and Geography, Bangor UniversityBangor, UK
| | | | | |
Collapse
|
13
|
Machado A, Bordalo AA. Detection and Quantification of Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus in Coastal Waters of Guinea-Bissau (West Africa). ECOHEALTH 2016; 13:339-349. [PMID: 26940502 DOI: 10.1007/s10393-016-1104-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 01/27/2016] [Accepted: 02/10/2016] [Indexed: 06/05/2023]
Abstract
V. cholerae, V. parahaemolyticus, and V. vulnificus are recognized human pathogens. Although several studies are available worldwide, both on environmental and clinical contexts, little is known about the ecology of these vibrios in African coastal waters. In this study, their co-occurrence and relationships to key environmental constraints in the coastal waters of Guinea-Bissau were examined using the most probable number-polymerase chain reaction (MPN-PCR) approach. All Vibrio species were universally detected showing higher concentrations by the end of the wet season. The abundance of V. cholerae (ISR 16S-23S rRNA) ranged 0-1.2 × 10(4) MPN/L, whereas V. parahaemolyticus (toxR) varied from 47.9 to 1.2 × 10(5) MPN/L. Although the presence of genotypes associated with virulence was found in environmental V. cholerae isolates, ctxA+ V. cholerae was detected, by MPN-PCR, only on two occasions. Enteropathogenic (tdh+ and trh+) V. parahaemolyticus were detected at concentrations up to 1.2 × 10(3) MPN/L. V. vulnificus (vvhA) was detected simultaneously in all surveyed sites only at the end of the wet season, with maximum concentrations of 1.2 × 10(5) MPN/L. Our results suggest that sea surface water temperature and salinity were the major environmental controls to all Vibrio species. This study represents the first detection and quantification of co-occurring Vibrio species in West African coastal waters, highlighting the potential health risk associated with the persistence of human pathogenic Vibrio species.
Collapse
Affiliation(s)
- Ana Machado
- Laboratory of Hydrobiology and Ecology, Institute of Biomedical Sciences (ICBAS-UP), University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123, Porto, Portugal.
| | - Adriano A Bordalo
- Laboratory of Hydrobiology and Ecology, Institute of Biomedical Sciences (ICBAS-UP), University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123, Porto, Portugal
| |
Collapse
|
14
|
Tiruvayipati S, Bhassu S. Host, pathogen and the environment: the case of Macrobrachium rosenbergii, Vibrio parahaemolyticus and magnesium. Gut Pathog 2016; 8:15. [PMID: 27114742 PMCID: PMC4843205 DOI: 10.1186/s13099-016-0097-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/18/2016] [Indexed: 12/18/2022] Open
Abstract
Macrobrachium rosenbergii is well-known as the giant freshwater prawn, and is a commercially significant source of seafood. Its production can be affected by various bacterial contaminations. Among which, the genus Vibrio shows a higher prevalence in aquatic organisms, especially M. rosenbergii, causing food-borne illnesses. Vibrio parahaemolyticus, a species of Vibrio is reported as the main causative of the early mortality syndrome. Vibrio parahaemolyticus infection in M. rosenbergii was studied previously in relation to the prawn's differentially expressed immune genes. In the current review, we will discuss the growth conditions for both V. parahaemolyticus and M. rosenbergii and highlight the role of magnesium in common, which need to be fully understood. Till date, there has not been much research on this aspect of magnesium. We postulate a model that screens a magnesium-dependent pathway which probably might take effect in connection with N-acetylglucosamine binding protein and chitin from V. parahaemolyticus and M. rosenbergii, respectively. Further studies on magnesium as an environment for V. parahaemolyticus and M. rosenbergii interaction studies will provide seafood industry with completely new strategies to employ and to avoid seafood related contaminations.
Collapse
Affiliation(s)
- Suma Tiruvayipati
- Department of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Subha Bhassu
- Department of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia ; Centre of Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Moisander PH, Sexton AD, Daley MC. Stable Associations Masked by Temporal Variability in the Marine Copepod Microbiome. PLoS One 2015; 10:e0138967. [PMID: 26393930 PMCID: PMC4579122 DOI: 10.1371/journal.pone.0138967] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/08/2015] [Indexed: 11/25/2022] Open
Abstract
Copepod-bacteria interactions include permanent and transient epi- and endobiotic associations that may play roles in copepod health, transfer of elements in the food web, and biogeochemical cycling. Microbiomes of three temperate copepod species (Acartia longiremis, Centropages hamatus, and Calanus finmarchicus) from the Gulf of Maine were investigated during the early summer season using high throughput amplicon sequencing. The most prominent stable component of the microbiome included several taxa within Gammaproteobacteria, with Pseudoalteromonas spp. especially abundant across copepod species. These Gammaproteobacteria appear to be promoted by the copepod association, likely benefitting from nutrient enriched microenvironments on copepods, and forming a more important part of the copepod-associated community than Vibrio spp. during the cold-water season in this temperate system. Taxon-specific associations included an elevated relative abundance of Piscirickettsiaceae and Colwelliaceae on Calanus, and Marinomonas sp. in Centropages. The communities in full and voided gut copepods had distinct characteristics, thus the presence of a food-associated microbiome was evident, including higher abundance of Rhodobacteraceae and chloroplast sequences in the transient communities. The observed variability was partially explained by collection date that may be linked to factors such as variable time since molting, gender differences, and changes in food availability and type over the study period. While some taxon-specific and stable associations were identified, temporal changes in environmental conditions, including food type, appear to be key in controlling the composition of bacterial communities associated with copepods in this temperate coastal system during the early summer.
Collapse
Affiliation(s)
- Pia H. Moisander
- Department of Biology, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts, United States of America
- * E-mail:
| | - Andrew D. Sexton
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire, United States of America
| | - Meaghan C. Daley
- Department of Biology, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts, United States of America
| |
Collapse
|
16
|
Abstract
ABSTRACT
Various studies have examined the relationships between vibrios and the environmental conditions surrounding them. However, very few reviews have compiled these studies into cohesive points. This may be due to the fact that these studies examine different environmental parameters, use different sampling, detection, and enumeration methodologies, and occur in diverse geographic locations. The current article is one approach to compile these studies into a cohesive work that assesses the importance of environmental determinants on the abundance of vibrios in coastal ecosystems.
Collapse
|
17
|
Development of a matrix tool for the prediction of Vibrio species in oysters harvested from North Carolina. Appl Environ Microbiol 2014; 81:1111-9. [PMID: 25452288 DOI: 10.1128/aem.03206-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The United States has federal regulations in place to reduce the risk of seafood-related infection caused by the estuarine bacteria Vibrio vulnificus and Vibrio parahaemolyticus. However, data to support the development of regulations have been generated in a very few specific regions of the nation. More regionally specific data are needed to further understand the dynamics of human infection relating to shellfish-harvesting conditions in other areas. In this study, oysters and water were collected from four oyster harvest sites in North Carolina over an 11-month period. Samples were analyzed for the abundances of total Vibrio spp., V. vulnificus, and V. parahaemolyticus; environmental parameters, including salinity, water temperature, wind velocity, and precipitation, were also measured simultaneously. By utilizing these data, preliminary predictive management tools for estimating the abundance of V. vulnificus bacteria in shellfish were developed. This work highlights the need for further research to elucidate the full suite of factors that drive V. parahaemolyticus abundance.
Collapse
|
18
|
Narracci M, Acquaviva MI, Cavallo RA. Mar Piccolo of Taranto: Vibrio biodiversity in ecotoxicology approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:2378-2385. [PMID: 24072640 DOI: 10.1007/s11356-013-2049-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/31/2013] [Indexed: 06/02/2023]
Abstract
Microorganisms play an indispensable role in the ecological functioning of marine environment. Some species are sensitive while others are insensitive for a specific pollutant. The aim of this work is a preliminary study of the quantitative and qualitative distribution of cultivable vibrios in sediments and water samples characterized by different toxicity levels. For 1 year, in three suitably selected sampling stations of Mar Piccolo in Taranto (Ionian Sea, Italy), we have evaluated the toxicity level by Microtox® system, vibrios, total, and fecal coliform densities. The results of the Microtox® tests showed sediments characterized by an elevated level of toxicity, while the interstitial water of the same sites always showed biostimulatory phenomenon. The quantitative results show that vibrios and coliforms are more abundant in water than in sediment samples. The most often isolated strains were: Vibrio alginolyticus, Vibrio mediterranei, Vibrio metschinkovii, and Vibrio splendidus II. This work is the first example of study on the distribution of Vibrio species related to toxicity evaluation conducted by the Microtox® bioassay. The results show the different distribution of Vibrionaceae in two environmental matrices analyzed and characterized by different levels of toxicity.
Collapse
Affiliation(s)
- M Narracci
- , CNR-IAMC-Taranto, Via Roma 3, 74100, Taranto, Italy
| | - M I Acquaviva
- , CNR-IAMC-Taranto, Via Roma 3, 74100, Taranto, Italy.
| | - R A Cavallo
- , CNR-IAMC-Taranto, Via Roma 3, 74100, Taranto, Italy
| |
Collapse
|
19
|
Reichardt WT, Reyes JM, Pueblos MJ, Lluisma AO. Impact of milk fish farming in the tropics on potentially pathogenic vibrios. MARINE POLLUTION BULLETIN 2013; 77:325-332. [PMID: 24079922 DOI: 10.1016/j.marpolbul.2013.09.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 09/06/2013] [Accepted: 09/08/2013] [Indexed: 06/02/2023]
Abstract
Ratios of sucrose-negative to sucrose-positive vibrios on TCBS agar (suc-/suc+) indicate the abundance of potential human pathogenic non-cholera vibrios in coastal mariculture environments of the Lingayen Gulf (Philippines. In guts of adult maricultured milkfish (Chanos chanos) of suc- vibrios reached extreme peak values ranging between 2 and 545 million per g wet weight. Suc- vibrios outnumbered suc+ vibrios in anoxic sediments, too, and were rarely predominant in coastal waters or in oxidized sediments. Suc-/suc+ ratios in sediments increased toward the mariculture areas with distance from the open sea at decreasing redox potentials. There is circumstantial evidence that suc- vibrios can be dispersed from mariculture areas to adjacent environments including coral reefs. An immediate human health risk by pathogenic Vibrio species is discounted, since milkfish guts contained mainly members of the Enterovibrio group. A representative isolate of these contained proteolytic and other virulence factors, but no genes encoding toxins characteristic of clinical Vibrio species.
Collapse
Affiliation(s)
- W T Reichardt
- Marine Science Institute, University of the Philippines, Diliman, 1101 Quezon City, Philippines.
| | | | | | | |
Collapse
|
20
|
Cantet F, Hervio-Heath D, Caro A, Le Mennec C, Monteil C, Quéméré C, Jolivet-Gougeon A, Colwell RR, Monfort P. Quantification of Vibrio parahaemolyticus, Vibrio vulnificus and Vibrio cholerae in French Mediterranean coastal lagoons. Res Microbiol 2013; 164:867-74. [PMID: 23770313 DOI: 10.1016/j.resmic.2013.06.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 05/29/2013] [Indexed: 01/22/2023]
Abstract
Vibrio parahaemolyticus, Vibrio vulnificus and Vibrio cholerae are human pathogens. Little is known about these Vibrio spp. in the coastal lagoons of France. The purpose of this study was to investigate their incidence in water, shellfish and sediment of three French Mediterranean coastal lagoons using the most probable number-polymerase chain reaction (MPN-PCR). In summer, the total number of V. parahaemolyticus in water, sediment, mussels and clams collected from the three lagoons varied from 1 to >1.1 × 10³ MPN/l, 0.09 to 1.1 × 10³ MPN/ml, 9 to 210 MPN/g and 1.5 to 2.1 MPN/g, respectively. In winter, all samples except mussels contained V. parahaemolyticus, but at very low concentrations. Pathogenic (tdh- or trh2-positive) V. parahaemolyticus were present in water, sediment and shellfish samples collected from these lagoons. The number of V. vulnificus in water, sediment and shellfish samples ranged from 1 to 1.1 × 10³ MPN/l, 0.07 to 110 MPN/ml and 0.04 to 15 MPN/g, respectively, during summer. V. vulnificus was not detected during winter. V. cholerae was rarely detected in water and sediment during summer. In summary, results of this study highlight the finding that the three human pathogenic Vibrio spp. are present in the lagoons and constitute a potential public health hazard.
Collapse
Affiliation(s)
- Franck Cantet
- "Ecologie des Systèmes Marins Côtiers", UMR 5119 CNRS, IRD, Ifremer, Université Montpellier 2 & 1, Case 093, 34095 Montpellier Cedex 05, France
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Froelich B, Oliver JD. The interactions of Vibrio vulnificus and the oyster Crassostrea virginica. MICROBIAL ECOLOGY 2013; 65:807-816. [PMID: 23280497 DOI: 10.1007/s00248-012-0162-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 12/11/2012] [Indexed: 06/01/2023]
Abstract
The human bacterial pathogen, Vibrio vulnificus, is found in brackish waters and is concentrated by filter-feeding molluscan shellfish, especially oysters, which inhabit those waters. Ingestion of raw or undercooked oysters containing virulent strains of V. vulnificus can result in rapid septicemia and death in 50 % of victims. This review summarizes the current knowledge of the environmental interactions between these two organisms, including the effects of salinity and temperature on colonization, uptake, and depuration rates of various phenotypes and genotypes of the bacterium, and host-microbe immunological interactions.
Collapse
Affiliation(s)
- Brett Froelich
- The University of North Carolina at Chapel Hill, Institute of Marine Sciences, 3431 Arendell Street, Morehead City, NC 28557, USA.
| | | |
Collapse
|
22
|
Quantitative microbial risk assessment of pathogenic vibrios in marine recreational waters of southern california. Appl Environ Microbiol 2012; 79:294-302. [PMID: 23104412 DOI: 10.1128/aem.02674-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This study investigated the occurrence of three types of vibrios in Southern California recreational beach waters during the peak marine bathing season in 2007. Over 160 water samples were concentrated and enriched for the detection of vibrios. Four sets of PCR primers, specific for Vibrio cholerae, V. parahaemolyticus, and V. vulnificus species and the V. parahaemolyticus toxin gene, respectively, were used for the amplification of bacterial genomic DNA. Of 66 samples from Doheny State Beach, CA, 40.1% were positive for V. cholerae and 27.3% were positive for V. parahaemolyticus, and 1 sample (1.5%) was positive for the V. parahaemolyticus toxin gene. Of the 96 samples from Avalon Harbor, CA, 18.7% were positive for V. cholerae, 69.8% were positive for V. parahaemolyticus, and 5.2% were positive for the V. parahaemolyticus toxin gene. The detection of the V. cholerae genetic marker was significantly more frequent at Doheny State Beach, while the detection of the V. parahaemolyticus genetic marker was significantly more frequent at Avalon Harbor. A probability-of-illness model for V. parahaemolyticus was applied to the data. The risk for bathers exposed to recreational waters at two beaches was evaluated through Monte Carlo simulation techniques. The results suggest that the microbial risk from vibrios during beach recreation was below the illness benchmark set by the U.S. EPA. However, the risk varied with location and the type of water recreation activities. Surfers and children were exposed to a higher risk of vibrio diseases. Microbial risk assessment can serve as a useful tool for the management of risk related to opportunistic marine pathogens.
Collapse
|
23
|
Comparison of the effects of environmental parameters on growth rates of Vibrio vulnificus biotypes I, II, and III by culture and quantitative PCR analysis. Appl Environ Microbiol 2011; 77:4200-7. [PMID: 21515718 DOI: 10.1128/aem.00135-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Vibrio vulnificus is a natural inhabitant of estuarine waters. The three known biotypes include (i) most human pathogens, (ii) primarily eel pathogens, and (iii) pathogens associated with fish and with human wound infections in Israel. Despite the frequently lethal consequences of V. vulnificus infections, the growth rates of the various biotypes and their response to environmental changes are not well characterized. We compared the specific growth rates (μ) of a representative of each biotype by culture and quantitative PCR (qPCR) analysis in a defined medium under varied pH, temperature, and salinity. Growth rates based on culturable concentrations were always higher than those based on qPCR estimates; however, both enumeration methods yielded comparable results on the influence of environmental factors on growth rates. Temperature (25°C, 30°C, 37°C), pH (7.0, 8.0), and salinity (5 to 40‰) all had significant effects on the μ of each biotype. Temperature had the greatest effect on the μ of biotype 1 (CMCP6), whereas salinity had the greatest effect on the μ of biotypes 2 (ATCC 33147) and 3 (302/99). The biotypes' growth rates varied significantly; biotype 1 grew most rapidly, while biotype 3 grew most slowly. The highest growth rates were achieved at 37°C, pH 7.0, and salinities of 15 to 30‰ (μ = 4.0, 2.9, and 2.4 generations h(-1) for biotypes 1, 2, and 3, respectively). Other strains of the biotypes yielded comparable results, suggesting that the physiological responses of the biotypes are differentially affected by parameters that are highly variable both in estuarine environments and between the free-living and pathogen states of V. vulnificus.
Collapse
|
24
|
Rengpipat S, Pusiririt S, Rukpratanporn S. Differentiating between isolates of Vibrio vulnificus with monoclonal antibodies. J Microbiol Methods 2008; 75:398-404. [DOI: 10.1016/j.mimet.2008.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 07/14/2008] [Accepted: 07/17/2008] [Indexed: 02/02/2023]
|
25
|
The ecology of Vibrio vulnificus, Vibrio cholerae, and Vibrio parahaemolyticus in North Carolina estuaries. J Microbiol 2008; 46:146-53. [PMID: 18545963 DOI: 10.1007/s12275-007-0216-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2007] [Accepted: 02/06/2008] [Indexed: 12/19/2022]
Abstract
While numerous studies have characterized the distribution and/or ecology of various pathogenic Vibrio spp., here we have simultaneously examined several estuarine sites for Vibrio vulnificus, V. cholerae, and V. parahaemolyticus. For a one year period, waters and sediment were monitored for the presence of these three pathogens at six different sites on the east coast of North Carolina in the United States. All three pathogens, identified using colony hybridization and PCR methods, occurred in these estuarine environments, although V. cholerae occurred only infrequently and at very low levels. Seventeen chemical, physical, and biological parameters were investigated, including salinity, water temperature, turbidity, dissolved oxygen, levels of various inorganic nutrients and dissolved organic carbon, as well as total vibrios, total coliforms, and E. coli. We found each of the Vibrio spp. in water and sediment to correlate to several of these environmental measurements, with water temperature and total Vibrio levels correlating highly (P<0.0001) with occurrence of the three pathogens. Thus, these two parameters may represent simple assays for characterizing the potential public health hazard of estuarine waters.
Collapse
|
26
|
Wang J, Sasaki T, Maehara Y, Nakao H, Tsuchiya T, Miyoshi SI. Variation of extracellular proteases produced by Vibrio vulnificus clinical isolates: Genetic diversity of the metalloprotease gene (vvp), and serine protease secretion by vvp-negative strains. Microb Pathog 2008; 44:494-500. [DOI: 10.1016/j.micpath.2008.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2007] [Revised: 12/30/2007] [Accepted: 01/03/2008] [Indexed: 01/22/2023]
|
27
|
Comeau AM, Suttle CA. Distribution, genetic richness and phage sensitivity of Vibrio spp. from coastal British Columbia. Environ Microbiol 2008; 9:1790-800. [PMID: 17564612 DOI: 10.1111/j.1462-2920.2007.01299.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study examined the distribution, susceptibility to viral infection and genetic diversity of Vibrio spp. in the coastal waters and sediments of British Columbia during summer (July and August). Abundances of presumptive Vibrio spp. ranged from 1.5 to 346 ml(-1) within the water column (1-291 m); whereas, abundances at the water-sediment interface were much higher (up to approximately 3 x 10(4)Vibrio spp. cc(-1)), and decreased with sediment depth (down to 30 cm). The genetic diversity of Vibrio spp. isolates was not tied to the location from which they originated and was only influenced in a minor way by the type of environment. However, the environment had a greater effect on phage-typing patterns. Vibrio parahaemolyticus isolates from environments with high abundances of cells (sediments and oysters) were generally more susceptible to viral infection than those from the water column which were highly resistant. Therefore, although Vibrio spp. were widespread in the areas investigated, the results show that there is segregation of bacterial host strains in different environments, under differing selection pressures, which ultimately will affect in situ phage production.
Collapse
Affiliation(s)
- André M Comeau
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | | |
Collapse
|
28
|
Population structures of two genotypes of Vibrio vulnificus in oysters (Crassostrea virginica) and seawater. Appl Environ Microbiol 2007; 74:80-5. [PMID: 17993556 DOI: 10.1128/aem.01434-07] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio vulnificus biotype 1 strains can be classified into two genotypes based on the PCR analysis of variations in the virulence-correlated gene (vcg). Genotype has been correlated with human infection for 90% of isolates from human cases having the vcgC sequence type and 87% of environmental strains having the vcgE variant. In this study we examined the dynamics of V. vulnificus populations and the distribution of the two genotypes recovered from oysters and surrounding estuarine wasters. Analysis of 880 isolates recovered from oysters showed a disparity in the ratio of the two genotypes, with those of the vcgE (E) genotype accounting for 84.4% of the population. In contrast, 292 isolates recovered from the waters surrounding the oyster sites revealed an almost equal distribution of the two genotypes. The levels of vcgC (C genotype) strains from both sources increased as a percentage of the population as water temperatures increased, while no culturable V. vulnificus cells were recovered from December through February. Our results suggest that there is a selective advantage for strains of the E genotype within oysters while survival of the C genotype strains may be favored by increased water column temperatures. These data suggest that the low incidence of infections may be due to the comparatively rare consumption of an oyster that contains a greater number of V. vulnificus vcgC genotype strains than of vcgE genotype strains. Levels of the two genotypes as well as seasonal dynamics within both oyster tissue and the surrounding waters may aid in identifying risk factors associated with human infection.
Collapse
|
29
|
Abstract
Vibrio vulnificus is ubiquitous in aquatic environments; however, it occasionally causes serious and often fatal infections in humans. These include invasive septicemia contracted through consumption of raw seafood, as well as wound infections acquired through contact with brackish or marine waters. In most cases of septicemia, the patients have underlying disease(s), such as liver dysfunction or alcoholic cirrhosis, and the secondary skin lesions including cellulitis, edema and hemorrhagic bulla appear on the limbs. Although V. Vul produces various virulent factors including polysaccharide capsule, type IV pili, hemolysin and proteolytic enzymes, the 45-kDa metalloprotease may be a causative factor of the skin lesions, because the purified protease enhances vascular permeability through generation of chemical mediators and also induces serious hemorrhagic damage through digestion of the vascular basement membrane. As well as other bacteria, V. Vul can regulate the protease production through the quorum-sensing system depending on bacterial cell density. However, this system operates efficiently at 25 degrees C, but not at 37 degrees C. Therefore, V. vulnificus may produce sufficient amounts of the protease only in the interstitial tissue of the limbs, in which temperature is lower than the internal temperature of the human body.
Collapse
Affiliation(s)
- Shin-Ichi Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Tsushima-Naka, Okayama, Japan.
| |
Collapse
|
30
|
Maugeri TL, Carbone M, Fera MT, Gugliandolo C. Detection and differentiation of Vibrio vulnificus in seawater and plankton of a coastal zone of the Mediterranean Sea. Res Microbiol 2006; 157:194-200. [PMID: 16129581 DOI: 10.1016/j.resmic.2005.06.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Revised: 06/13/2005] [Accepted: 06/22/2005] [Indexed: 12/17/2022]
Abstract
Vibrio vulnificus, a human and animal pathogen, is present in low numbers in the Mediterranean Sea. Seawater and plankton samples were collected from a marine coastal zone of the Straits of Messina in the Mediterranean Sea (Italy) in order to investigate V. vulnificus as free-living (>0.2 microm) and associated with small (>64 microm) and large plankton (>200 microm) utilizing cultural and molecular techniques. Characteristic colonies, grown on thiosulfate, citrate, bile salts and sucrose agar plates, were identified using a biochemical protocol system. A PCR assay was used to confirm isolates and to directly detect V. vulnificus in environmental concentrated samples. Specific primers were used to target the structural cytotoxin/hemolysin gene and the variable regions of 16S rRNA species-specific for V. vulnificus. In addition, a tri-primer PCR of 16S rRNA was used for the differentiation of V. vulnificus strains. Direct detection in marine samples was more frequent than isolation of culturable forms. All isolates were assigned to V. vulnificus biotype 1, 16S rRNA type B. These results confirm the low incidence of V. vulnificus in Mediterranean coastal waters. The isolation of cultivable forms is limited to the warmest months. 16S rRNA primers were the most sensitive molecular tool as they allowed detection of V. vulnificus in 79.1% of samples. Due to the low incidence of V. vulnificus in the Mediterranean coastal environment, its detection requires a molecular approach. The occurrence of V. vulnificus as plankton-associated confirms the role of plankton as a potential reservoir for this pathogen.
Collapse
Affiliation(s)
- Teresa L Maugeri
- Dipartimento di Biologia Animale ed Ecologia Marina, Università di Messina, Salita Sperone 31, 98166 Messina, Italy.
| | | | | | | |
Collapse
|
31
|
Comeau AM, Buenaventura E, Suttle CA. A persistent, productive, and seasonally dynamic vibriophage population within Pacific oysters (Crassostrea gigas). Appl Environ Microbiol 2005; 71:5324-31. [PMID: 16151121 PMCID: PMC1214601 DOI: 10.1128/aem.71.9.5324-5331.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Accepted: 04/01/2005] [Indexed: 11/20/2022] Open
Abstract
In an effort to understand the relationship between Vibrio and vibriophage populations, abundances of Vibrio spp. and viruses infecting Vibrio parahaemolyticus (VpVs) were monitored for a year in Pacific oysters and water collected from Ladysmith Harbor, British Columbia, Canada. Bacterial abundances were highly seasonal, whereas high titers of VpVs (0.5 x 10(4) to 11 x 10(4) viruses cm(-3)) occurred year round in oysters, even when V. parahaemolyticus was undetectable (< 3 cells cm(-3)). Viruses were not detected (<10 ml(-1)) in the water column. Host-range studies demonstrated that 13 VpV strains could infect 62% of the V. parahaemolyticus strains from oysters (91 pairings) and 74% of the strains from sediments (65 pairings) but only 30% of the water-column strains (91 pairings). Ten viruses also infected more than one species among V. alginolyticus, V. natriegens, and V. vulnificus. As winter approached and potential hosts disappeared, the proportion of host strains that the viruses could infect decreased by approximately 50% and, in the middle of winter, only 14% of the VpV community could be plated on summer host strains. Estimates of virus-induced mortality on V. parahaemolyticus indicated that other host species were required to sustain viral production during winter when the putative host species was undetectable. The present study shows that oysters are likely one of the major sources of viruses infecting V. parahaemolyticus in oysters and in the water column. Furthermore, seasonal shifts in patterns of host range provide strong evidence that the composition of the virus community changes during winter.
Collapse
Affiliation(s)
- André M Comeau
- Department of Earth and Ocean Sciences, Rm. 1461, BioSciences Bldg., 6270 University Blvd., University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | | | | |
Collapse
|