1
|
Gelalcha BD, Brown SM, Crocker HE, Agga GE, Kerro Dego O. Regulation Mechanisms of Virulence Genes in Enterohemorrhagic Escherichia coli. Foodborne Pathog Dis 2022; 19:598-612. [PMID: 35921067 DOI: 10.1089/fpd.2021.0103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is one of the most common E. coli pathotypes reported to cause several outbreaks of foodborne illnesses. EHEC is a zoonotic pathogen, and ruminants, especially cattle, are considered important reservoirs for the most common EHEC serotype, E. coli O157:H7. Humans are infected indirectly through the consumption of food (milk, meat, leafy vegetables, and fruits) and water contaminated by animal feces or direct contact with carrier animals or humans. E. coli O157:H7 is one of the most frequently reported causes of foodborne illnesses in developed countries. It employs two essential virulence mechanisms to trigger damage to the host. These are the development of attaching and effacing (AE) phenotypes on the intestinal mucosa of the host and the production of Shiga toxin (Stx) that causes hemorrhagic colitis and hemolytic uremic syndrome. The AE phenotype is controlled by the pathogenicity island, the locus of enterocyte effacement (LEE). The induction of both AE and Stx is under strict and highly complex regulatory mechanisms. Thus, a good understanding of these mechanisms, major proteins expressed, and environmental cues involved in the regulation of the expression of the virulence genes is vital to finding a method to control the colonization of reservoir hosts, especially cattle, and disease development in humans. This review is a concise account of the current state of knowledge of virulence gene regulation in the LEE-positive EHEC.
Collapse
Affiliation(s)
- Benti D Gelalcha
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Selina M Brown
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Hannah E Crocker
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Getahun E Agga
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, Bowling Green, Kentucky, USA
| | - Oudessa Kerro Dego
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| |
Collapse
|
2
|
Warr AR, Hubbard TP, Munera D, Blondel CJ, Abel zur Wiesch P, Abel S, Wang X, Davis BM, Waldor MK. Transposon-insertion sequencing screens unveil requirements for EHEC growth and intestinal colonization. PLoS Pathog 2019; 15:e1007652. [PMID: 31404118 PMCID: PMC6705877 DOI: 10.1371/journal.ppat.1007652] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 08/22/2019] [Accepted: 08/01/2019] [Indexed: 12/28/2022] Open
Abstract
Enterohemorrhagic Escherichia coli O157:H7 (EHEC) is an important food-borne pathogen that colonizes the colon. Transposon-insertion sequencing (TIS) was used to identify genes required for EHEC and E. coli K-12 growth in vitro and for EHEC growth in vivo in the infant rabbit colon. Surprisingly, many conserved loci contribute to EHEC's but not to K-12's growth in vitro. There was a restrictive bottleneck for EHEC colonization of the rabbit colon, which complicated identification of EHEC genes facilitating growth in vivo. Both a refined version of an existing analytic framework as well as PCA-based analysis were used to compensate for the effects of the infection bottleneck. These analyses confirmed that the EHEC LEE-encoded type III secretion apparatus is required for growth in vivo and revealed that only a few effectors are critical for in vivo fitness. Over 200 mutants not previously associated with EHEC survival/growth in vivo also appeared attenuated in vivo, and a subset of these putative in vivo fitness factors were validated. Some were found to contribute to efficient type-three secretion while others, including tatABC, oxyR, envC, acrAB, and cvpA, promote EHEC resistance to host-derived stresses. cvpA is also required for intestinal growth of several other enteric pathogens, and proved to be required for EHEC, Vibrio cholerae and Vibrio parahaemolyticus resistance to the bile salt deoxycholate, highlighting the important role of this previously uncharacterized protein in pathogen survival. Collectively, our findings provide a comprehensive framework for understanding EHEC growth in the intestine.
Collapse
Affiliation(s)
- Alyson R. Warr
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Troy P. Hubbard
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Diana Munera
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Carlos J. Blondel
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Pia Abel zur Wiesch
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sören Abel
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xiaoxue Wang
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brigid M. Davis
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- HHMI, Boston, Massachusetts, United States of America
| |
Collapse
|
3
|
Egan M, Critelli B, Cleary SP, Marino M, Upreti C, Kalman D, Bhatt S. Transcriptional and posttranscriptional regulation of the locus of enterocyte effacement in Escherichia albertii. Microb Pathog 2019; 135:103643. [PMID: 31336143 DOI: 10.1016/j.micpath.2019.103643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 12/21/2022]
Abstract
The diarrheic bacterium Escherichia albertii is a recent addition to the attaching and effacing (A/E) morphotype of pathogens. A/E pathogens cause disease by tightly attaching to intestinal cells, destroying their actin-rich microvilli, and triggering re-localization and repolymerization of actin at the bacterial-host interface to form actin-filled membranous protrusions, termed A/E lesions, beneath the adherent bacterium. The locus of enterocyte effacement (LEE) is required for the biogenesis of these lesions. Whereas regulation of the LEE has been intensively investigated in EPEC and EHEC, it remains cryptic in E. albertii. In this study we characterized the very first transcriptional and posttranscriptional regulators of the LEE in this emerging pathogen. Our results suggest that Ler and GrlA globally activate transcription from the LEE, whereas GrlR negatively regulates the LEE. Additionally, we demonstrate that the RNA chaperone Hfq posttranscriptionally represses the LEE by specifically targeting the 5' UTR of grlR. In summary, our findings provide the very first glimpse of the regulatory landscape of the LEE in E. albertii - a bacterium that has been implicated in multiple diarrheal outbreaks worldwide.
Collapse
Affiliation(s)
- Marisa Egan
- Department of Biology, Saint Joseph's University, 5600 City Avenue, Philadelphia, 19131, PA, USA; Department of Microbiology, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, 19104, PA, USA
| | - Brian Critelli
- Department of Biology, Saint Joseph's University, 5600 City Avenue, Philadelphia, 19131, PA, USA
| | - Sean P Cleary
- Department of Biology, Saint Joseph's University, 5600 City Avenue, Philadelphia, 19131, PA, USA
| | - Mary Marino
- Department of Biology, Saint Joseph's University, 5600 City Avenue, Philadelphia, 19131, PA, USA
| | - Chirag Upreti
- Department of Neuroscience, New York State Psychiatric Institute, Columbia University Medical Center, New York, 10032, USA
| | - Daniel Kalman
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, 30341, GA, USA
| | - Shantanu Bhatt
- Department of Biology, Saint Joseph's University, 5600 City Avenue, Philadelphia, 19131, PA, USA.
| |
Collapse
|
4
|
After the Fact(or): Posttranscriptional Gene Regulation in Enterohemorrhagic Escherichia coli O157:H7. J Bacteriol 2018; 200:JB.00228-18. [PMID: 29967119 DOI: 10.1128/jb.00228-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To adapt to ever-changing environments, pathogens quickly alter gene expression. This can occur through transcriptional, posttranscriptional, or posttranslational regulation. Historically, transcriptional regulation has been thoroughly studied to understand pathogen niche adaptation, whereas posttranscriptional and posttranslational gene regulation has only relatively recently been appreciated to play a central role in bacterial pathogenesis. Posttranscriptional regulation may involve chaperones, nucleases, and/or noncoding small RNAs (sRNAs) and typically controls gene expression by altering the stability and/or translation of the target mRNA. In this review, we highlight the global importance of posttranscriptional regulation to enterohemorrhagic Escherichia coli (EHEC) gene expression and discuss specific mechanisms of how EHEC regulates expression of virulence factors critical to host colonization and disease progression. The low infectious dose of this intestinal pathogen suggests that EHEC is particularly well adapted to respond to the host environment.
Collapse
|
5
|
Wang H, Yang Z, Du S, Ma L, Liao Y, Wang Y, Toth I, Fan J. Characterization of Pectobacterium carotovorum proteins differentially expressed during infection of Zantedeschia elliotiana in vivo and in vitro which are essential for virulence. MOLECULAR PLANT PATHOLOGY 2018; 19:35-48. [PMID: 27671364 PMCID: PMC6638092 DOI: 10.1111/mpp.12493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/05/2016] [Accepted: 09/19/2016] [Indexed: 05/22/2023]
Abstract
The identification of phytopathogen proteins that are differentially expressed during the course of the establishment of an infection is important to better understand the infection process. In vitro approaches, using plant extracts added to culture medium, have been used to identify such proteins, but the biological relevance of these findings for in planta infection are often uncertain until confirmed by in vivo studies. Here, we compared the proteins of Pectobacterium carotovorum ssp. carotovorum strain PccS1 differentially expressed in Luria-Bertani medium supplemented with extracts of the ornamental plant Zantedeschia elliotiana cultivar 'Black Magic' (in vitro) and in plant tissues (in vivo) by two-dimensional electrophoresis coupled with mass spectrometry. A total of 53 differentially expressed proteins (>1.5-fold) were identified (up-regulated or down-regulated in vitro, in vivo or both). Proteins that exhibited increased expression in vivo but not in vitro, or in both conditions, were identified, and deletions were made in a number of genes encoding these proteins, four of which (clpP, mreB, flgK and eda) led to a loss of virulence on Z. elliotiana, although clpP and mreB were later also shown to be reduced in growth in rich and minimal media. Although clpP, flgK and mreB have previously been reported as playing a role in virulence in plants, this is the first report of such a role for eda, which encodes 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase, a key enzyme in Entner-Doudoroff metabolism. The results highlight the value of undertaking in vivo as well as in vitro approaches for the identification of new bacterial virulence factors.
Collapse
Affiliation(s)
- Huan Wang
- College of Plant ProtectionNanjing Agricultural UniversityNanjing210095China
| | - Zhongling Yang
- College of Plant ProtectionNanjing Agricultural UniversityNanjing210095China
| | - Shuo Du
- College of Plant ProtectionNanjing Agricultural UniversityNanjing210095China
| | - Lin Ma
- College of Plant ProtectionNanjing Agricultural UniversityNanjing210095China
| | - Yao Liao
- College of Plant ProtectionNanjing Agricultural UniversityNanjing210095China
| | - Yujie Wang
- College of Plant ProtectionNanjing Agricultural UniversityNanjing210095China
| | - Ian Toth
- Cell and Molecular SciencesJames Hutton InstituteDundeeDD2 5DAUK
| | - Jiaqin Fan
- College of Plant ProtectionNanjing Agricultural UniversityNanjing210095China
| |
Collapse
|
6
|
Mata GMSC, Ferreira GM, Spira B. RpoS role in virulence and fitness in enteropathogenic Escherichia coli. PLoS One 2017; 12:e0180381. [PMID: 28662183 PMCID: PMC5491219 DOI: 10.1371/journal.pone.0180381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/14/2017] [Indexed: 12/18/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is a diarrheagenic pathogen that afflicts infants in developing countries. The most important virulence trait of EPEC is its ability to intimately adhere to cells in the small intestine, and to elicit diarrhea. The alternative sigma factor RpoS is involved in the virulence of several bacterial species. RpoS coordinates the general stress response and accumulates in cells under stress or in the stationary phase. RpoS levels differ across E. coli strains. High-RpoS strains are highly resistant to environmental stresses, but usually display low nutritional competence, while low-RpoS strains show the opposite phenotype. Here we investigated whether RpoS plays a role in the virulence and fitness of two different EPEC strains, E2348/69 and LRT9. A rpoS null mutation had a small positive effect on LRT9 adherence to epithelial cells, but the expression of the EPEC adhesins BfpA and intimin was not significantly affected by the mutation. E2348/69 adherence was not significantly affected by the rpoS mutation. The intrinsic level of RpoS was higher in LRT9 than in E2348/69 while the latter adhered more strongly and expressed higher levels of the adhesin BfpA than the former. Knockout of rpoS strongly impaired resistance to oxidative, osmotic and acid stress in both E2348/69 and LRT9. However, strain E2348/69 was significantly more sensitive to oxidative stress than LRT9. Finally, competition assays showed that the rpoS mutant of LRT9 displayed higher fitness under continuous culture than its isogenic wild-type strain, while E2348/69 outcompeted its rpoS mutant. In conclusion, RpoS plays mostly a positive role in EPEC biology and at least in the case of strain E2348/69 it is not constrained by the trade-off between vegetative growth and stress resistance.
Collapse
Affiliation(s)
| | - Gerson Moura Ferreira
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo-SP, Brazil
| | - Beny Spira
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo-SP, Brazil
- * E-mail:
| |
Collapse
|
7
|
Locus of enterocyte effacement: a pathogenicity island involved in the virulence of enteropathogenic and enterohemorragic Escherichia coli subjected to a complex network of gene regulation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:534738. [PMID: 25710006 PMCID: PMC4332760 DOI: 10.1155/2015/534738] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/03/2014] [Indexed: 12/18/2022]
Abstract
The locus of enterocyte effacement (LEE) is a 35.6 kb pathogenicity island inserted in the genome of some bacteria such as enteropathogenic Escherichia coli, enterohemorrhagic E.coli, Citrobacter rodentium, and Escherichia albertii. LEE comprises the genes responsible for causing attaching and effacing lesions, a characteristic lesion that involves intimate adherence of bacteria to enterocytes, a signaling cascade leading to brush border and microvilli destruction, and loss of ions, causing severe diarrhea. It is composed of 41 open reading frames and five major operons encoding a type three system apparatus, secreted proteins, an adhesin, called intimin, and its receptor called translocated intimin receptor (Tir). LEE is subjected to various levels of regulation, including transcriptional and posttranscriptional regulators located both inside and outside of the pathogenicity island. Several molecules were described being related to feedback inhibition, transcriptional activation, and transcriptional repression. These molecules are involved in a complex network of regulation, including mechanisms such as quorum sensing and temporal control of LEE genes transcription and translation. In this mini review we have detailed the complex network that regulates transcription and expression of genes involved in this kind of lesion.
Collapse
|
8
|
Morgan JK, Ortiz JA, Riordan JT. The role for TolA in enterohemorrhagic Escherichia coli pathogenesis and virulence gene transcription. Microb Pathog 2014; 77:42-52. [DOI: 10.1016/j.micpath.2014.10.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/14/2014] [Accepted: 10/21/2014] [Indexed: 01/16/2023]
|
9
|
Mitra A, Fay PA, Vendura KW, Alla Z, Carroll RK, Shaw LN, Riordan JT. σ(N) -dependent control of acid resistance and the locus of enterocyte effacement in enterohemorrhagic Escherichia coli is activated by acetyl phosphate in a manner requiring flagellar regulator FlhDC and the σ(S) antagonist FliZ. Microbiologyopen 2014; 3:497-512. [PMID: 24931910 PMCID: PMC4287178 DOI: 10.1002/mbo3.183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/30/2014] [Accepted: 05/15/2014] [Indexed: 12/02/2022] Open
Abstract
In enterohemorrhagic Escherichia coli (EHEC), sigma factor N (σN) regulates glutamate-dependent acid resistance (GDAR) and the locus of enterocyte effacement (LEE); discrete genetic systems that are required for transmission and virulence of this intestinal pathogen. Regulation of these systems requires nitrogen regulatory protein C, NtrC, and is a consequence of NtrC-σN-dependent reduction in the activity of sigma factor S (σS). This study elucidates pathway components and stimuli for σN-directed regulation of GDAR and the LEE in EHEC. Deletion of fliZ, the product of which reduces σS activity, phenocopied rpoN (σN) and ntrC null strains for GDAR and LEE control, acid resistance, and adherence. Upregulation of fliZ by NtrC-σN was shown to be indirect and required an intact flagellar regulator flhDC. Activation of flhDC by NtrC-σN and FlhDC-dependent regulation of GDAR and the LEE was dependent on σN-promoter flhDP2, and a newly described NtrC upstream activator sequence. Addition of ammonium chloride significantly altered expression of GDAR and LEE, acid resistance, and adherence, independently of rpoN, ntrC, and the NtrC sensor kinase, ntrB. Altering the availability of NtrC phosphodonor acetyl phosphate by growth without glucose, with acetate addition, or by deletion of acetate kinase ackA, abrogated NtrC-σN-dependent control of flhDC, fliZ, GDAR, and the LEE.
Collapse
Affiliation(s)
- Avishek Mitra
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida, 33620
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
ABSTRACT: Bacterial adaptation to suboptimal nutrient environments, including host and/or extreme environments, is subject to complex, coordinated control involving many proteins and RNAs. Among the γ-proteobacteria, which includes many pathogens, the RpoS regulon has been a key focus for many years. Although the RpoS regulator was first identified as a growth phase-dependent regulator, our current understanding of RpoS is now more nuanced as this central regulator also has roles in exponential phase, biofilm development, bacterial virulence and bacterial persistence, as well as in stress adaptation. Induction of RpoS can also exert substantial metabolic effects by negatively regulating key systems including flagella biosynthesis, cryptic phage gene expression and the tricarboxylic acid cycle. Although core RpoS-controlled metabolic functions are conserved, there are substantial differences in RpoS regulation even among closely related bacteria, indicating that regulatory plasticity may be an important aspect of RpoS regulation, which is important in evolutionary adaptation to specialized environments.
Collapse
Affiliation(s)
- Herb E Schellhorn
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
11
|
ClpP deletion causes attenuation of Salmonella Typhimurium virulence through mis-regulation of RpoS and indirect control of CsrA and the SPI genes. Microbiology (Reading) 2013; 159:1497-1509. [DOI: 10.1099/mic.0.065797-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
12
|
Mitra A, Fay PA, Morgan JK, Vendura KW, Versaggi SL, Riordan JT. Sigma factor N, liaison to an ntrC and rpoS dependent regulatory pathway controlling acid resistance and the LEE in enterohemorrhagic Escherichia coli. PLoS One 2012; 7:e46288. [PMID: 23029465 PMCID: PMC3459932 DOI: 10.1371/journal.pone.0046288] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/28/2012] [Indexed: 11/19/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is dependent on acid resistance for gastric passage and low oral infectious dose, and the locus of enterocyte effacement (LEE) for intestinal colonization. Mutation of rpoN, encoding sigma factor N (σ(N)), dramatically alters the growth-phase dependent regulation of both acid resistance and the LEE. This study reports on the determinants of σ(N)-directed acid resistance and LEE expression, and the underlying mechanism attributable to this phenotype. Glutamate-dependent acid resistance (GDAR) in TW14359ΔrpoN correlated with increased expression of the gadX-gadW regulatory circuit during exponential growth, whereas upregulation of arginine-dependent acid resistance (ADAR) genes adiA and adiC in TW14359ΔrpoN did not confer acid resistance by the ADAR mechanism. LEE regulatory (ler), structural (espA and cesT) and effector (tir) genes were downregulated in TW14359ΔrpoN, and mutation of rpoS encoding sigma factor 38 (σ(S)) in TW14359ΔrpoN restored acid resistance and LEE genes to WT levels. Stability, but not the absolute level, of σ(S) was increased in TW14359ΔrpoN; however, increased stability was not solely attributable to the GDAR and LEE expression phenotype. Complementation of TW14359ΔrpoN with a σ(N) allele that binds RNA polymerase (RNAP) but not DNA, did not restore WT levels of σ(S) stability, gadE, ler or GDAR, indicating a dependence on transcription from a σ(N) promoter(s) and not RNAP competition for the phenotype. Among a library of σ(N) enhancer binding protein mutants, only TW14359ΔntrC, inactivated for nitrogen regulatory protein NtrC, phenocopied TW14359ΔrpoN for σ(S) stability, GDAR and ler expression. The results of this study suggest that during exponential growth, NtrC-σ(N) regulate GDAR and LEE expression through downregulation of σ(S) at the post-translational level; likely by altering σ(S) stability or activity. The regulatory interplay between NtrC, other EBPs, and σ(N)-σ(S), represents a mechanism by which EHEC can coordinate GDAR, LEE expression and other cellular functions, with nitrogen availability and physiologic stimuli.
Collapse
Affiliation(s)
- Avishek Mitra
- Department of Cell Biology, Microbiology, and Molecular Biology (CMMB), University of South Florida, Tampa, Florida, United States of America
| | - Pamela A. Fay
- Department of Cell Biology, Microbiology, and Molecular Biology (CMMB), University of South Florida, Tampa, Florida, United States of America
| | - Jason K. Morgan
- Department of Cell Biology, Microbiology, and Molecular Biology (CMMB), University of South Florida, Tampa, Florida, United States of America
| | - Khoury W. Vendura
- Department of Cell Biology, Microbiology, and Molecular Biology (CMMB), University of South Florida, Tampa, Florida, United States of America
| | - Salvatore L. Versaggi
- Department of Cell Biology, Microbiology, and Molecular Biology (CMMB), University of South Florida, Tampa, Florida, United States of America
| | - James T. Riordan
- Department of Cell Biology, Microbiology, and Molecular Biology (CMMB), University of South Florida, Tampa, Florida, United States of America
| |
Collapse
|
13
|
Tomoyasu T, Tabata A, Imaki H, Tsuruno K, Miyazaki A, Sonomoto K, Whiley RA, Nagamune H. Role of Streptococcus intermedius DnaK chaperone system in stress tolerance and pathogenicity. Cell Stress Chaperones 2012; 17:41-55. [PMID: 21822788 PMCID: PMC3227844 DOI: 10.1007/s12192-011-0284-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/04/2011] [Accepted: 07/13/2011] [Indexed: 01/13/2023] Open
Abstract
Streptococcus intermedius is a facultatively anaerobic, opportunistic pathogen that causes purulent infections and abscess formation. The DnaK chaperone system has been characterized in several pathogenic bacteria and seems to have important functions in stress resistance and pathogenicity. However, the role of DnaK in S. intermedius remains unclear. Therefore, we constructed a dnaK knockout mutant that exhibited slow growth, thermosensitivity, accumulation of GroEL in the cell, and reduced cytotoxicity to HepG2 cells. The level of secretion of a major pathogenic factor, intermedilysin, was not affected by dnaK mutation. We further examined the function and property of the S. intermedius DnaK chaperone system by using Escherichia coli ΔdnaK and ΔrpoH mutant strains. S. intermedius DnaK could not complement the thermosensitivity of E. coli ΔdnaK mutant. However, the intact S. intermedius DnaK chaperone system could complement the thermosensitivity and acid sensitivity of E. coli ΔdnaK mutant. The S. intermedius DnaK chaperone system could regulate the activity and stability of the heat shock transcription factor σ(32) in E. coli, although S. intermedius does not utilize σ(32) for heat shock transcription. The S. intermedius DnaK chaperone system was also able to efficiently eliminate the aggregated proteins from ΔrpoH mutant cells. Overall, our data showed that the S. intermedius DnaK chaperone system has important functions in quality control of cellular proteins but has less participation in the modulation of expression of pathogenic factors.
Collapse
Affiliation(s)
- Toshifumi Tomoyasu
- Department of Biological Science and Technology, Institute of Technology and Science, The University of Tokushima Graduate School, 2 chome, Minami-josanjima, Tokushima, 770-8506 Japan
- Department of Resource Circulation Engineering, Center for Frontier Research of Engineering, The University of Tokushima Graduate School, 2 chome, Minami-josanjima, Tokushima, 770-8506 Japan
| | - Atsushi Tabata
- Department of Biological Science and Technology, Institute of Technology and Science, The University of Tokushima Graduate School, 2 chome, Minami-josanjima, Tokushima, 770-8506 Japan
| | - Hidenori Imaki
- Department of Biological Science and Technology, Institute of Technology and Science, The University of Tokushima Graduate School, 2 chome, Minami-josanjima, Tokushima, 770-8506 Japan
| | - Keigo Tsuruno
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581 Japan
| | - Aya Miyazaki
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581 Japan
| | - Kenji Sonomoto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581 Japan
| | - Robert Alan Whiley
- Department of Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Bart’s and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London, E1 2 AD UK
| | - Hideaki Nagamune
- Department of Biological Science and Technology, Institute of Technology and Science, The University of Tokushima Graduate School, 2 chome, Minami-josanjima, Tokushima, 770-8506 Japan
| |
Collapse
|
14
|
Abstract
In their stressful natural environments, bacteria often are in stationary phase and use their limited resources for maintenance and stress survival. Underlying this activity is the general stress response, which in Escherichia coli depends on the σS (RpoS) subunit of RNA polymerase. σS is closely related to the vegetative sigma factor σ70 (RpoD), and these two sigmas recognize similar but not identical promoter sequences. During the postexponential phase and entry into stationary phase, σS is induced by a fine-tuned combination of transcriptional, translational, and proteolytic control. In addition, regulatory "short-cuts" to high cellular σS levels, which mainly rely on the rapid inhibition of σS proteolysis, are triggered by sudden starvation for various nutrients and other stressful shift conditons. σS directly or indirectly activates more than 500 genes. Additional signal input is integrated by σS cooperating with various transcription factors in complex cascades and feedforward loops. Target gene products have stress-protective functions, redirect metabolism, affect cell envelope and cell shape, are involved in biofilm formation or pathogenesis, or can increased stationary phase and stress-induced mutagenesis. This review summarizes these diverse functions and the amazingly complex regulation of σS. At the molecular level, these processes are integrated with the partitioning of global transcription space by sigma factor competition for RNA polymerase core enzyme and signaling by nucleotide second messengers that include cAMP, (p)ppGpp, and c-di-GMP. Physiologically, σS is the key player in choosing between a lifestyle associated with postexponential growth based on nutrient scavenging and motility and a lifestyle focused on maintenance, strong stress resistance, and increased adhesiveness. Finally, research with other proteobacteria is beginning to reveal how evolution has further adapted function and regulation of σS to specific environmental niches.
Collapse
|
15
|
Hfq virulence regulation in enterohemorrhagic Escherichia coli O157:H7 strain 86-24. J Bacteriol 2011; 193:6843-51. [PMID: 21984790 DOI: 10.1128/jb.06141-11] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Enterohemorrhagic Escherichia coli O157:H7 (EHEC) causes bloody diarrhea and hemolytic-uremic syndrome. EHEC encodes the sRNA chaperone Hfq, which is important in posttranscriptional regulation. In EHEC strain EDL933, Hfq acts as a negative regulator of the locus of enterocyte effacement (LEE), which encodes most of the proteins involved in type III secretion and attaching and effacing (AE) lesions. Here, we deleted hfq in the EHEC strain 86-24 and compared global transcription profiles of the hfq mutant and wild-type (WT) strains in exponential growth phase. Deletion of hfq affected transcription of genes common to nonpathogenic and pathogenic strains of E. coli as well as pathogen-specific genes. Downregulated genes in the hfq mutant included ler, the transcriptional activator of all the LEE genes, as well as genes encoded in the LEE2 to -5 operons. Decreased expression of the LEE genes in the hfq mutant occurred at middle, late, and stationary growth phases. We also confirmed decreased regulation of the LEE genes by examining the proteins secreted and AE lesion formation by the hfq mutant and WT strains. Deletion of hfq also caused decreased expression of the two-component system qseBC, which is involved in interkingdom signaling and virulence gene regulation in EHEC, as well as an increase in expression of stx(2AB), which encodes the deadly Shiga toxin. Altogether, these data indicate that Hfq plays a regulatory role in EHEC 86-24 that is different from what has been reported for EHEC strain EDL933 and that the role of Hfq in EHEC virulence regulation extends beyond the LEE.
Collapse
|
16
|
Kitagawa R, Takaya A, Yamamoto T. Dual regulatory pathways of flagellar gene expression by ClpXP protease in enterohaemorrhagic Escherichia coli. MICROBIOLOGY-SGM 2011; 157:3094-3103. [PMID: 21903756 DOI: 10.1099/mic.0.051151-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In enterobacteria such as Escherichia coli and Salmonella species, flagellar biogenesis is strictly dependent upon the master regulator flhDC. Here, we demonstrate that in enterohaemorrhagic E. coli (EHEC), the flagellar regulon is controlled by ClpXP, a member of the ATP-dependent protease family, through two pathways: (i) post-translational control of the FlhD/FlhC master regulator and (ii) transcriptional control of the flhDC operon. Both FlhD and FlhC proteins accumulated markedly following ClpXP depletion, and their half-lives were significantly longer in the mutant cells, suggesting that ClpXP is responsible for degrading FlhD and FlhC proteins, leading to downregulation of flagellar expression. ClpXP was involved in regulating the transcription of the flhD promoter only when the cells had entered stationary phase in a culture medium that markedly induced expression of the locus of enterocyte effacement (LEE). Comparative analyses of transcription from the flhD promoter in EHEC cells with different genetic backgrounds suggested that the downregulation of flhDC expression by ClpXP is dependent on the LEE-encoded GrlR-GrlA system. We have also shown that the degradation of FlhD and FlhC by ClpXP is responsible for downregulating flagellar expression even when LEE expression is induced.
Collapse
Affiliation(s)
- Ryo Kitagawa
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan
| | - Akiko Takaya
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan
| | - Tomoko Yamamoto
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan
| |
Collapse
|
17
|
Coordinate control of the locus of enterocyte effacement and enterohemolysin genes by multiple common virulence regulators in enterohemorrhagic Escherichia coli. Infect Immun 2011; 79:4628-37. [PMID: 21844237 DOI: 10.1128/iai.05023-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The locus of enterocyte effacement (LEE) pathogenicity island is required for the intimate adhesion of enterohemorrhagic Escherichia coli (EHEC) to the intestinal epithelial cells. GrlR and GrlA are LEE-encoded negative and positive regulators, respectively. The interaction of these two regulators is important for controlling the transcription of LEE genes through Ler, a LEE-encoded central activator for the LEE. The GrlR-GrlA regulatory system controls not only LEE but also the expression of the flagellar and enterohemolysin (Ehx) genes in EHEC. Since Ehx levels were markedly induced in a grlR mutant but not in a grlR grlA double mutant and significantly increased by overexpression of GrlA in a ler mutant, GrlA is responsible for this regulation (T. Saitoh et al., J. Bacteriol. 190:4822-4830, 2008). In this study, additional investigations of the regulation of ehx gene expression determined that Ler also acts as an activator for Ehx expression without requiring GrlA function. We recently reported that the LysR-type regulator LrhA positively controls LEE expression (N. Honda et al., Mol. Microbiol. 74:1393-1411, 2009). The hemolytic activity of the lrhA mutant strain of EHEC was lower than that of the wild-type strain, and LrhA markedly induced ehx transcription in an E. coli K-12 strain, suggesting that LrhA also activates the transcription of ehx without GrlA and Ler. Gel mobility shift assays demonstrated that Ler and LrhA directly bind to the regulatory region of ehxC. Together, these results indicate that transcription of ehx is positively regulated by Ler, GrlA, and LrhA, which all act as positive regulators for LEE expression.
Collapse
|
18
|
Bhatt S, Romeo T, Kalman D. Honing the message: post-transcriptional and post-translational control in attaching and effacing pathogens. Trends Microbiol 2011; 19:217-24. [PMID: 21333542 PMCID: PMC3087826 DOI: 10.1016/j.tim.2011.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 01/12/2011] [Accepted: 01/14/2011] [Indexed: 01/05/2023]
Abstract
Bacteria evolve their capacity to cause disease by acquiring virulence genes that are usually clustered in discrete genetic modules termed pathogenicity islands (PAI). Stable integration of PAIs into pre-existing transcriptional networks coordinates expression from PAIs with ancestral genes in response to diverse environmental cues. Such transcriptional controls are evident in the regulation of the locus of enterocyte effacement (LEE), a PAI of enteropathogenic and enterohemorrhagic Escherichia coli. However, recent reports indicate that global post-transcriptional and post-translational regulators, including CsrA, Hfq and ClpXP, fine-tune the transcriptional output from the LEE. In this opinion article, we highlight recent advances in the understanding of post-transcriptional and post-translational regulation in attaching and effacing pathogens.
Collapse
Affiliation(s)
- Shantanu Bhatt
- Microbiology and Molecular Genetics Program, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
19
|
Li Y, Yamazaki A, Zou L, Biddle E, Zeng Q, Wang Y, Lin H, Wang Q, Yang CH. ClpXP protease regulates the type III secretion system of Dickeya dadantii 3937 and is essential for the bacterial virulence. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:871-878. [PMID: 20521950 DOI: 10.1094/mpmi-23-7-0871] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The type III secretion system (T3SS) is considered one of the major virulence factors in many bacterial pathogens. This report demonstrates that RssB, ClpXP, and RpoS play a role in T3SS regulation of Dickeya dadantii 3937. ClpP is a serine-type protease which associates with the ClpX chaperone to form a functional Clp proteolytic complex for degradation of proteins. With the assistance of recognition factor RssB, ClpXP degrades the RpoS sigma factor. RpoS positively regulates the expression of the rsmA gene encoding an RNA-binding regulatory protein. By interacting with the hrpL mRNA, RsmA reduces HrpL production and downregulates the T3SS genes in the HrpL regulon. In addition, ClpXP, RssB, and RpoS affect pectinolytic enzyme production in D. dadantii 3937, probably through RsmA. The ClpXP and RssB proteins are essential for bacterial virulence.
Collapse
Affiliation(s)
- Yan Li
- Department of Plant Pathology, College of Agronomy & Biotechnology, China Agricultural University, Bejing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abu-Ali GS, Ouellette LM, Henderson ST, Lacher DW, Riordan JT, Whittam TS, Manning SD. Increased adherence and expression of virulence genes in a lineage of Escherichia coli O157:H7 commonly associated with human infections. PLoS One 2010; 5:e10167. [PMID: 20422047 PMCID: PMC2858043 DOI: 10.1371/journal.pone.0010167] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 03/22/2010] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Enterohemorrhagic Escherichia coli (EHEC) O157:H7, a food and waterborne pathogen, can be classified into nine phylogenetically distinct lineages, as determined by single nucleotide polymorphism genotyping. One lineage (clade 8) was found to be associated with hemolytic uremic syndrome (HUS), which can lead to kidney failure and death in some cases, particularly young children. Another lineage (clade 2) differs considerably in gene content and is phylogenetically distinct from clade 8, but caused significantly fewer cases of HUS in a prior study. Little is known, however, about how these two lineages vary with regard to phenotypic traits important for disease pathogenesis and in the expression of shared virulence genes. METHODOLOGY/PRINCIPAL FINDINGS Here, we quantified the level of adherence to and invasion of MAC-T bovine epithelial cells, and examined the transcriptomes of 24 EHEC O157:H7 strains with varying Shiga toxin profiles from two common lineages. Adherence to epithelial cells was >2-fold higher for EHEC O157:H7 strains belonging to clade 8 versus clade 2, while no difference in invasiveness was observed between the two lineages. Whole-genome 70-mer oligo microarrays, which probe for 6088 genes from O157:H7 Sakai, O157:H7 EDL 933, pO157, and K12 MG1655, detected significant differential expression between clades in 604 genes following co-incubation with epithelial cells for 30 min; 186 of the 604 genes had a >1.5 fold change difference. Relative to clade 2, clade 8 strains showed upregulation of major virulence genes, including 29 of the 41 locus of enterocyte effacement (LEE) pathogenicity island genes, which are critical for adherence, as well as Shiga toxin genes and pO157 plasmid-encoded virulence genes. Differences in expression of 16 genes that encode colonization factors, toxins, and regulators were confirmed by qRT-PCR, which revealed a greater magnitude of change than microarrays. CONCLUSIONS/SIGNIFICANCE These findings demonstrate that the EHEC O157:H7 lineage associated with HUS expresses higher levels of virulence genes and has an enhanced ability to attach to epithelial cells relative to another common lineage.
Collapse
Affiliation(s)
- Galeb S. Abu-Ali
- Microbial Evolution Laboratory, National Food Safety & Toxicology Center, Michigan State University, East Lansing, Michigan, United States of America
| | - Lindsey M. Ouellette
- Microbial Evolution Laboratory, National Food Safety & Toxicology Center, Michigan State University, East Lansing, Michigan, United States of America
| | - Scott T. Henderson
- Microbial Evolution Laboratory, National Food Safety & Toxicology Center, Michigan State University, East Lansing, Michigan, United States of America
| | - David W. Lacher
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, United States of America
| | - James T. Riordan
- Microbial Evolution Laboratory, National Food Safety & Toxicology Center, Michigan State University, East Lansing, Michigan, United States of America
| | - Thomas S. Whittam
- Microbial Evolution Laboratory, National Food Safety & Toxicology Center, Michigan State University, East Lansing, Michigan, United States of America
| | - Shannon D. Manning
- Microbial Evolution Laboratory, National Food Safety & Toxicology Center, Michigan State University, East Lansing, Michigan, United States of America
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
21
|
Abstract
Understanding mechanisms of bacterial pathogenesis is critical for infectious disease control and treatment. Infection is a sophisticated process that requires the participation of global regulators to coordinate expression of not only genes coding for virulence factors but also those involved in other physiological processes, such as stress response and metabolic flux, to adapt to host environments. RpoS is a key response regulator to stress conditions in Escherichia coli and many other proteobacteria. In contrast to its conserved well-understood role in stress response, effects of RpoS on pathogenesis are highly variable and dependent on species. RpoS contributes to virulence through either enhancing survival against host defense systems or directly regulating expression of virulence factors in some pathogens, while RpoS is dispensable, or even inhibitory, to virulence in others. In this review, we focus on the distinct and niche-dependent role of RpoS in virulence by surveying recent findings in many pathogens.
Collapse
|
22
|
Dong T, Schellhorn HE. Global effect of RpoS on gene expression in pathogenic Escherichia coli O157:H7 strain EDL933. BMC Genomics 2009; 10:349. [PMID: 19650909 PMCID: PMC2907692 DOI: 10.1186/1471-2164-10-349] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 08/03/2009] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND RpoS is a conserved stress regulator that plays a critical role in survival under stress conditions in Escherichia coli and other gamma-proteobacteria. RpoS is also involved in virulence of many pathogens including Salmonella and Vibrio species. Though well characterized in non-pathogenic E. coli K12 strains, the effect of RpoS on transcriptome expression has not been examined in pathogenic isolates. E. coli O157:H7 is a serious human enteropathogen, possessing a genome 20% larger than that of E. coli K12, and many of the additional genes are required for virulence. The genomic difference may result in substantial changes in RpoS-regulated gene expression. To test this, we compared the transcriptional profile of wild type and rpoS mutants of the E. coli O157:H7 EDL933 type strain. RESULTS The rpoS mutation had a pronounced effect on gene expression in stationary phase, and more than 1,000 genes were differentially expressed (twofold, P<0.05). By contrast, we found 11 genes expressed differently in exponential phase. Western blot analysis revealed that, as expected, RpoS level was low in exponential phase and substantially increased in stationary phase. The defect in rpoS resulted in impaired expression of genes responsible for stress response (e.g., gadA, katE and osmY), arginine degradation (astCADBE), putrescine degradation (puuABCD), fatty acid oxidation (fadBA and fadE), and virulence (ler, espI and cesF). For EDL933-specific genes on O-islands, we found 50 genes expressed higher in wild type EDL933 and 49 genes expressed higher in the rpoS mutants. The protein levels of Tir and EspA, two LEE-encoded virulence factors, were elevated in the rpoS mutants under LEE induction conditions. CONCLUSION Our results show that RpoS has a profound effect on global gene expression in the pathogenic strain O157:H7 EDL933, and the identified RpoS regulon, including many EDL933-specific genes, differs substantially from that of laboratory K12 strains.
Collapse
Affiliation(s)
- Tao Dong
- Department of Biology Life Sciences Building, Rm, 433, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4K1, Canada.
| | | |
Collapse
|
23
|
Iyoda S. [Coordinate regulation of virulence gene expression in enterohemorrhagic Escherichia coli]. Nihon Saikingaku Zasshi 2009; 63:407-15. [PMID: 19317230 DOI: 10.3412/jsb.63.407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Sunao Iyoda
- Department of Bacteriology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640
| |
Collapse
|
24
|
Abstract
Citrobacter rodentium is a mouse enteropathogen that is closely related to Escherichia coli and causes severe colonic hyperplasia and bloody diarrhea. C. rodentium infection requires expression of genes of the locus of enterocyte effacement (LEE) pathogenicity island, which simulates infection by enteropathogenic E. coli and enterohemorrhagic E. coli in the human intestine, providing an effective model for studying enteropathogenesis. In this study we investigated the role of RpoS, the stationary phase sigma factor, in virulence in C. rodentium. Sequence analysis showed that the rpoS gene is highly conserved in C. rodentium and E. coli, exhibiting 92% identity. RpoS was critical for survival under heat shock conditions and during exposure to H(2)O(2) and positively regulated the expression of catalase KatE (HPII). The development of the RDAR (red dry and rough) morphotype, an important virulence trait in E. coli, was also mediated by RpoS in C. rodentium. Unlike E. coli, C. rodentium grew well in the mouse colon, and the wild-type strain colonized significantly better than rpoS mutants. However, a mutation in rpoS conferred a competitive growth advantage over the wild type both in vitro in Luria-Bertani medium and in vivo in the mouse colon. Survival analysis showed that the virulence of an rpoS mutant was attenuated. The expression of genes on the LEE pathogenicity island, which are essential for colonization and virulence, was reduced in the rpoS mutant. In conclusion, RpoS is important for the stress response and is required for full virulence in C. rodentium.
Collapse
|
25
|
Transcription of the ehx enterohemolysin gene is positively regulated by GrlA, a global regulator encoded within the locus of enterocyte effacement in enterohemorrhagic Escherichia coli. J Bacteriol 2008; 190:4822-30. [PMID: 18487325 DOI: 10.1128/jb.00231-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The pathogenicity island termed locus of enterocyte effacement (LEE) encodes a type 3 protein secretion system, whose function is required for full virulence of enterohemorrhagic Escherichia coli (EHEC). GrlR and GrlA are LEE-encoded negative and positive regulators, respectively, for controlling transcription of the ler gene, which encodes a central activator of LEE gene expression. We previously reported that the GrlR-GrlA regulatory system controls not only the LEE genes but also flagellar gene expression in EHEC (S. Iyoda et al., J. Bacteriol. 188:5682-5692, 2006). In order to further explore virulence-related genes under the control of the GrlR-GrlA regulatory system, we characterized a grlR-deleted EHEC O157 strain, which was found to have high and low levels of expression of LEE and flagellar genes, respectively. We report here that the grlR deletion significantly induced enterohemolysin (Ehx) activity of EHEC O157 on plates containing defibrinated sheep erythrocytes. Ehx levels were not induced in the grlR grlA double mutant strain but increased markedly by overexpression of GrlA even in the ler mutant, indicating that GrlA is responsible for this regulation. Ehx of the EHEC O157 Sakai strain is encoded by the ehxCABD genes, which are carried on the large plasmid pO157. The expression of ehxC fused with FLAG tag or a promoterless lacZ gene on pO157 was significantly induced under conditions in which GrlA was overproduced. These results together suggest that GrlA acts as a positive regulator for the ehx transcription in EHEC.
Collapse
|
26
|
Waldminghaus T, Heidrich N, Brantl S, Narberhaus F. FourU: a novel type of RNA thermometer in Salmonella. Mol Microbiol 2007; 65:413-24. [PMID: 17630972 DOI: 10.1111/j.1365-2958.2007.05794.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The translation of many heat shock and virulence genes is controlled by RNA thermometers. Usually, they are located in the 5'-untranslated region (5'-UTR) and block the Shine-Dalgarno (SD) sequence by base pairing. Destabilization of the structure at elevated temperature permits ribosome binding and translation initiation. We have identified a new type of RNA thermometer in the 5'-UTR of the Salmonella agsA gene, which codes for a small heat shock protein. Transcription of the agsA gene is controlled by the alternative sigma factor sigma(32). Additional translational control depends on a stretch of four uridines that pair with the SD sequence. Mutations in this region affect translation in vivo. Structure probing experiments demonstrate a temperature-controlled opening of the SD region in vitro. Toeprinting (primer extension inhibition) shows that ribosome binding is dependent on high temperatures. Together with a postulated RNA thermometer upstream of the Yersinia pestis virulence gene lcrF (virF), the 5'-UTR of Salmonella agsA might be the founding member of a new class of RNA thermometers that we propose to name 'fourU' thermometers.
Collapse
Affiliation(s)
- Torsten Waldminghaus
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | | | | | |
Collapse
|
27
|
Han HJ, Kondo H, Vivekanandhan G, Hirono I, Aoki T. Cloning of ATP-dependent protease ClpXP genes in Aeromonas veronii. JOURNAL OF FISH DISEASES 2006; 29:691-5. [PMID: 17169116 DOI: 10.1111/j.1365-2761.2006.00753.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- H-J Han
- Laboratory of Genome Science, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | | | | | | | | |
Collapse
|
28
|
Iyoda S, Koizumi N, Satou H, Lu Y, Saitoh T, Ohnishi M, Watanabe H. The GrlR-GrlA regulatory system coordinately controls the expression of flagellar and LEE-encoded type III protein secretion systems in enterohemorrhagic Escherichia coli. J Bacteriol 2006; 188:5682-92. [PMID: 16885436 PMCID: PMC1540053 DOI: 10.1128/jb.00352-06] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The gene function of the locus of enterocyte effacement (LEE) is essential for full virulence of enterohemorrhagic Escherichia coli (EHEC). Strict control of LEE gene expression is mediated by the coordinated activities of several regulatory elements. We previously reported that the ClpX/ClpP protease positively controls LEE expression by down-regulating intracellular levels of GrlR, a negative regulator of LEE gene expression. We further revealed that the negative effect of GrlR on LEE expression was mediated through GrlA, a positive regulator of LEE expression. In this study, we found that the FliC protein, a major component of flagellar filament, was overproduced in clpXP mutant EHEC, as previously reported for Salmonella. We further found that FliC expression was reduced in a clpXP grlR double mutant. To determine the mediators of this phenotype, FliC protein levels in wild-type, grlR, grlA, and grlR grlA strains were compared. Steady-state levels of FliC protein were reduced only in the grlR mutant, suggesting that positive regulation of FliC expression by GrlR is mediated by GrlA. Correspondingly, cell motility was also reduced in the grlR mutant, but not in the grlA or grlR grlA mutant. Because overexpression of grlA from a multicopy plasmid strongly represses the FliC level, as well as cell motility, we conclude that GrlA acts as a negative regulator of flagellar-gene expression. The fact that an EHEC strain constitutively expressing FlhD/FlhC cannot adhere to HeLa cells leads us to hypothesize that GrlA-dependent repression of the flagellar regulon is important for efficient cell adhesion of EHEC to host cells.
Collapse
Affiliation(s)
- Sunao Iyoda
- Department of Bacteriology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan.
| | | | | | | | | | | | | |
Collapse
|