1
|
Lai J, Liu B, Xiong G, Song S, Yang Y, Wei H, Xie S, Jiang J. Functional Characterization of the Subtilase Gene Cg043 Downregulated by 4-Ethyl-1,2-dimethoxybenzene in the Growth and Pathogenicity of Colletotrichum gloeosporioides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10292-10303. [PMID: 40251727 DOI: 10.1021/acs.jafc.5c00433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
Colletotrichum gloeosporioides, the causative agent of anthracnose, poses a significant threat to agricultural production. Previous studies identified 4-ethyl-1,2-dimethoxybenzene as a potent antifungal compound that downregulates the expression of the subtilase gene Cg043, although the underlying molecular mechanism remains unclear. Here, we generated Cg043 knockout mutants (ΔCg043) and found that their sensitivity to 4-ethyl-1,2-dimethoxybenzene was significantly reduced, identifying Cg043 as a key molecular target. Phenotypic assays and transcriptomic analyses revealed that Cg043 downregulation inhibits hyphal growth, spore production, and germination while impairing cell wall and membrane integrity and reducing pathogenicity. Furthermore, functional verification of the signal peptide and subcellular localization analysis confirmed that Cg043 is a secreted protein specifically localized to the plant cell nucleus, suggesting its role in virulence. These findings elucidate a novel antifungal mechanism by which 4-ethyl-1,2-dimethoxybenzene suppresses the growth, development, and pathogenicity of C. gloeosporioides via Cg043 downregulation, highlighting a promising molecular target for sustainable anthracnose management.
Collapse
Affiliation(s)
- Jiahao Lai
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Bing Liu
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Guihong Xiong
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Shuilin Song
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Youxin Yang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Hongyi Wei
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Shuilong Xie
- Ji'an Jinggang Honey Pomeloes Developmental Services Center, Ji'an, Jiangxi 343000, China
| | - Junxi Jiang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| |
Collapse
|
2
|
Dutta A, Dracatos PM, Khan GA. Balancing act: The dynamic relationship between nutrient availability and plant defence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1724-1734. [PMID: 39446893 DOI: 10.1111/tpj.17098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Plants depend heavily on soil nutrients for growth, development and defence. Nutrient availability is crucial not only for sustaining vital biochemical processes but also for mounting effective defences against a diverse array of pathogens. Macronutrients such as nitrogen, phosphorus and potassium significantly influence plant defence mechanisms by providing essential building blocks for the synthesis of defence compounds, immune signalling and physiological responses like stomatal regulation. Micronutrients like zinc, copper and iron are essential for balancing reactive oxygen species and other reactive compounds in plant immune responses. Although substantial circumstantial evidence links nutrient availability to plant defence, the molecular mechanisms underlying this process have only recently started to be understood. This review focuses on summarizing recent advances in understanding the molecular mechanisms by which nitrogen, phosphorus and iron interact with plant defence mechanisms and explores the potential for engineering nutritional immunity in crops to enhance their resilience against pathogens.
Collapse
Affiliation(s)
- Arka Dutta
- La Trobe Institute of Sustainable Agriculture & Food (LISAF), Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Peter M Dracatos
- La Trobe Institute of Sustainable Agriculture & Food (LISAF), Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Ghazanfar Abbas Khan
- La Trobe Institute of Sustainable Agriculture & Food (LISAF), Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3086, Australia
- School of Life and Environmental Sciences & Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, Victoria, Australia
| |
Collapse
|
3
|
Pereira ED, Moreira TR, Cruz-Leite VRM, Tomazett MV, Souza Silva LO, Graziani D, Martins JA, Amaral AC, Weber SS, Parente-Rocha JA, Soares CMDA, Borges CL. Paracoccidioides lutzii Infects Galleria mellonella Employing Formamidase as a Virulence Factor. PLoS Negl Trop Dis 2024; 18:e0012452. [PMID: 39226308 PMCID: PMC11398694 DOI: 10.1371/journal.pntd.0012452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/13/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024] Open
Abstract
The formamidase (FMD) enzyme plays an important role in fungal thriving by releasing a secondary nitrogen source as a product of its activity. In Paracoccidioides species, previous studies have demonstrated the upregulation of this enzyme in a wide range of starvation and infective-like conditions. However, Paracoccidioides lutzii formamidase has not yet been defined as a virulence factor. Here, by employing in vivo infections using an fmd-silenced strain in Galleria mellonella larvae model, we demonstrate the influence of formamidase in P. lutzii's immune stimulation and pathogenicity. The formamidase silencing resulted in improper arrangement of the nodules, poor melanogenesis and decreased fungal burden. Thus, we suggest that formamidase may be a piece composing the process of molecular recognition by Galleria immune cells. Furthermore, formamidase silencing doubled the observed survival rate of the larvae, demonstrating its importance in fungal virulence in vivo. Therefore, our findings indicate that formamidase contributes to Galleria's immune incitement and establishes the role of this enzyme as a P. lutzii virulence factor.
Collapse
Affiliation(s)
- Elisa Dias Pereira
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia, Brazil
| | - Thalison Rodrigues Moreira
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia, Brazil
| | | | - Mariana Vieira Tomazett
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia, Brazil
| | - Lana O’Hara Souza Silva
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia, Brazil
| | - Daniel Graziani
- Multiuser Laboratory for the Evaluation of Molecules, Cells and Tissues, Federal University of Goiás, Goiânia, Brazil
| | - Juliana Assis Martins
- Laboratory of Nano&Biotechnology, Department of Biotechnology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - André Corrêa Amaral
- Laboratory of Nano&Biotechnology, Department of Biotechnology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Simone Schneider Weber
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Juliana Alves Parente-Rocha
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia, Brazil
| | - Célia Maria de Almeida Soares
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia, Brazil
| | - Clayton Luiz Borges
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
4
|
Ghosh K, Das S, Sorongpong S, Das N, Pandey P. Emergence of Lasiodiplodia theobromae induced leaf necrosis in tea (Camellia sinensis [L.] O. Kuntze) from India. Arch Microbiol 2024; 206:284. [PMID: 38814366 DOI: 10.1007/s00203-024-04018-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/11/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
The tea plant, Camellia sinensis [L.] O. Kuntze, is a vital global agricultural commodity, yet faces challenges from fungal infections, which affects its production. To reduce the loss in the tea production, the fungal infections must be removed which is managed with fungicides, which are harmful to the environment. Leaf necrosis, which decreases tea quality and quantity, was investigated across Assam, revealing Lasiodiplodia theobromae as the causative agent. Pathogenicity tests, alongside morphological and molecular analyses, confirmed its role in leaf necrosis. Genome and gene analysis of L. theobromae showed multiple genes related to its pathogenicity. The study also assessed the impact of chemical pesticides on this pathogen. Additionally, the findings in this study highlight the significance of re-assessing management approaches in considering the fungal infection in tea.
Collapse
Affiliation(s)
- Kheyali Ghosh
- Assam University Silchar, Cachar, 788011, Assam, India
| | - Sandeep Das
- Assam University Silchar, Cachar, 788011, Assam, India
| | | | - Nandita Das
- Assam University Silchar, Cachar, 788011, Assam, India
| | - Piyush Pandey
- Assam University Silchar, Cachar, 788011, Assam, India.
| |
Collapse
|
5
|
Kerkaert JD, Huberman LB. Regulation of nutrient utilization in filamentous fungi. Appl Microbiol Biotechnol 2023; 107:5873-5898. [PMID: 37540250 PMCID: PMC10983054 DOI: 10.1007/s00253-023-12680-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023]
Abstract
Organisms must accurately sense and respond to nutrients to survive. In filamentous fungi, accurate nutrient sensing is important in the establishment of fungal colonies and in continued, rapid growth for the exploitation of environmental resources. To ensure efficient nutrient utilization, fungi have evolved a combination of activating and repressing genetic networks to tightly regulate metabolic pathways and distinguish between preferred nutrients, which require minimal energy and resources to utilize, and nonpreferred nutrients, which have more energy-intensive catabolic requirements. Genes necessary for the utilization of nonpreferred carbon sources are activated by transcription factors that respond to the presence of the specific nutrient and repressed by transcription factors that respond to the presence of preferred carbohydrates. Utilization of nonpreferred nitrogen sources generally requires two transcription factors. Pathway-specific transcription factors respond to the presence of a specific nonpreferred nitrogen source, while another transcription factor activates genes in the absence of preferred nitrogen sources. In this review, we discuss the roles of transcription factors and upstream regulatory genes that respond to preferred and nonpreferred carbon and nitrogen sources and their roles in regulating carbon and nitrogen catabolism. KEY POINTS: • Interplay of activating and repressing transcriptional networks regulates catabolism. • Nutrient-specific activating transcriptional pathways provide metabolic specificity. • Repressing regulatory systems differentiate nutrients in mixed nutrient environments.
Collapse
Affiliation(s)
- Joshua D Kerkaert
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Lori B Huberman
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
6
|
Chen X, Li X, Duan Y, Pei Z, Liu H, Yin W, Huang J, Luo C, Chen X, Li G, Xie K, Hsiang T, Zheng L. A secreted fungal subtilase interferes with rice immunity via degradation of SUPPRESSOR OF G2 ALLELE OF skp1. PLANT PHYSIOLOGY 2022; 190:1474-1489. [PMID: 35861434 PMCID: PMC9516721 DOI: 10.1093/plphys/kiac334] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Serine protease subtilase, found widely in both eukaryotes and prokaryotes, participates in various biological processes. However, how fungal subtilase regulates plant immunity is a major concern. Here, we identified a secreted fungal subtilase, UvPr1a, from the rice false smut (RFS) fungus Ustilaginoidea virens. We characterized UvPr1a as a virulence effector localized to the plant cytoplasm that inhibits plant cell death induced by Bax. Heterologous expression of UvPr1a in rice (Oryza sativa) enhanced plant susceptibility to rice pathogens. UvPr1a interacted with the important rice protein SUPPRESSOR OF G2 ALLELE OF skp1 (OsSGT1), a positive regulator of innate immunity against multiple rice pathogens, degrading OsSGT1 in a protease activity-dependent manner. Furthermore, host-induced gene silencing of UvPr1a compromised disease resistance of rice plants. Our work reveals a previously uncharacterized fungal virulence strategy in which a fungal pathogen secretes a subtilase to interfere with rice immunity through degradation of OsSGT1, thereby promoting infection. These genetic resources provide tools for introducing RFS resistance and further our understanding of plant-pathogen interactions.
Collapse
Affiliation(s)
| | | | - Yuhang Duan
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhangxin Pei
- Wuhan Institute of Landscape Architecture, Wuhan 430081, China
| | - Hao Liu
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Weixiao Yin
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Junbin Huang
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaoxi Luo
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaolin Chen
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guotian Li
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kabin Xie
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph N1G 2W1, Canada
| | | |
Collapse
|
7
|
Plett JM, Plett KL. Leveraging genomics to understand the broader role of fungal small secreted proteins in niche colonization and nutrition. ISME COMMUNICATIONS 2022; 2:49. [PMID: 37938664 PMCID: PMC9723739 DOI: 10.1038/s43705-022-00139-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 08/09/2023]
Abstract
The last few years have seen significant advances in the breadth of fungi for which we have genomic resources and our understanding of the biological mechanisms evolved to enable fungi to interact with their environment and other organisms. One field of research that has seen a paradigm shift in our understanding concerns the role of fungal small secreted proteins (SSPs) classified as effectors. Classically thought to be a class of proteins utilized by pathogenic microbes to manipulate host physiology in support of colonization, comparative genomic studies have demonstrated that mutualistic fungi and fungi not associated with a living host (i.e., saprotrophic fungi) also encode inducible effector and candidate effector gene sequences. In this review, we discuss the latest advances in understanding how fungi utilize these secreted proteins to colonize a particular niche and affect nutrition and nutrient cycles. Recent studies show that candidate effector SSPs in fungi may have just as significant a role in modulating hyphosphere microbiomes and in orchestrating fungal growth as they do in supporting colonization of a living host. We conclude with suggestions on how comparative genomics may direct future studies seeking to characterize and differentiate effector from other more generalized functions of these enigmatic secreted proteins across all fungal lifestyles.
Collapse
Affiliation(s)
- Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| | - Krista L Plett
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW, 2568, Australia
| |
Collapse
|
8
|
Zhang P, Fang Z, Song Y, Wang S, Bao L, Liu M, Dang Y, Wei Y, Zhang SH. Aspartate Transaminase AST2 Involved in Sporulation and Necrotrophic Pathogenesis in the Hemibiotrophs Magnaporthe oryzae and Colletotrichum graminicola. Front Microbiol 2022; 13:864866. [PMID: 35479642 PMCID: PMC9037547 DOI: 10.3389/fmicb.2022.864866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 11/23/2022] Open
Abstract
Aspartate family includes five additional amino acids other than aspartate, among which most except aspartate have been reported for their action in pathogenesis by amino acid biosynthesis. However, how aspartate, the initial substrate of this family metabolic pathway, is involved in pathogenesis remains unknown. Here, we focused on aspartate transaminase (AST) that catalyzes transamination reaction between glutamate-aspartate in Magnaporthe oryzae. Three MoAST genes were bioinformatically analyzed, of which MoAST2 was uniquely upregulated when invasive hyphae switched to necrotrophic pathogenesis. MoAST2 deletion (ΔMoast2) caused a drastic reduction in conidiogenesis and appressorium formation. Particularly, ΔMoast2 was observed to be proliferated at the biotrophic phase but inhibited at the necrotrophic stage, and with invisible symptoms detected, suggesting a critical role in necrotrophic phase. Glutamate family restored the ΔMoast2 defects but aspartate family did not, inferring that transamination occurs from aspartate to glutamine. MoAST2 is cytosolic and possessed H2O2 stress tolerance. In parallel, Colletotrichum graminicola AST2, CgAST2 was proven to be a player in necrotrophic anthracnose development. Therefore, conserved AST2 is qualified to be a drug target for disease control.
Collapse
Affiliation(s)
- Penghui Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Zhenyu Fang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yanyue Song
- College of Plant Sciences, Jilin University, Changchun, China
| | - Shaowei Wang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Lina Bao
- College of Plant Sciences, Jilin University, Changchun, China
| | - Mingyu Liu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yuejia Dang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yi Wei
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Shi-Hong Zhang
- College of Plant Sciences, Jilin University, Changchun, China.,College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
9
|
Aigu Y, Daval S, Gazengel K, Marnet N, Lariagon C, Laperche A, Legeai F, Manzanares-Dauleux MJ, Gravot A. Multi-Omic Investigation of Low-Nitrogen Conditional Resistance to Clubroot Reveals Brassica napus Genes Involved in Nitrate Assimilation. FRONTIERS IN PLANT SCIENCE 2022; 13:790563. [PMID: 35222461 PMCID: PMC8874135 DOI: 10.3389/fpls.2022.790563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/21/2022] [Indexed: 05/10/2023]
Abstract
Nitrogen fertilization has been reported to influence the development of clubroot, a root disease of Brassicaceae species, caused by the obligate protist Plasmodiophora brassicae. Our previous works highlighted that low-nitrogen fertilization induced a strong reduction of clubroot symptoms in some oilseed rape genotypes. To further understand the underlying mechanisms, the response to P. brassicae infection was investigated in two genotypes "Yudal" and HD018 harboring sharply contrasted nitrogen-driven modulation of resistance toward P. brassicae. Targeted hormone and metabolic profiling, as well as RNA-seq analysis, were performed in inoculated and non-inoculated roots at 14 and 27 days post-inoculation, under high and low-nitrogen conditions. Clubroot infection triggered a large increase of SA concentration and an induction of the SA gene markers expression whatever the genotype and nitrogen conditions. Overall, metabolic profiles suggested that N-driven induction of resistance was independent of SA signaling, soluble carbohydrate and amino acid concentrations. Low-nitrogen-driven resistance in "Yudal" was associated with the transcriptional regulation of a small set of genes, among which the induction of NRT2- and NR-encoding genes. Altogether, our results indicate a possible role of nitrate transporters and auxin signaling in the crosstalk between plant nutrition and partial resistance to pathogens.
Collapse
Affiliation(s)
- Yoann Aigu
- IGEPP, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
| | - Stéphanie Daval
- IGEPP, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
| | - Kévin Gazengel
- IGEPP, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
| | | | | | - Anne Laperche
- IGEPP, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
| | - Fabrice Legeai
- IGEPP, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
| | | | - Antoine Gravot
- IGEPP, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
- *Correspondence: Gravot Antoine,
| |
Collapse
|
10
|
Khanal S, Schroeder L, Nava-Mercado OA, Mendoza H, Perlin MH. Role for nitrate assimilatory genes in virulence of Ustilago maydis. Fungal Biol 2021; 125:764-775. [PMID: 34537172 DOI: 10.1016/j.funbio.2021.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/14/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022]
Abstract
Ustilago maydis can utilize nitrate as a sole source of nitrogen. This process is initiated by transporting nitrate from the extracellular environment into the cell by a nitrate transporter and followed by a two-step reduction of nitrate to ammonium via nitrate reductase and nitrite reductase enzymes, respectively. Here, we characterize the genes encoding nitrate transporter, um03849 and nitrite reductase, um03848 in U. maydis based on their roles in mating and virulence. The deletion mutants for um03848, um03849 or both genes were constructed in mating compatible haploid strains 1/2 and 2/9. In addition, CRISPR-Cas9 gene editing technique was used for um03849 gene to create INDEL mutations in U. maydis mating strains. For all the mutants, phenotypes such as growth ability, mating efficiency and pathogenesis were examined. The growth of all the mutants was diminished when grown in a medium with nitrate as the source of nitrogen. Although no clear effects on haploid filamentation or mating were observed for either single mutant, double Δum03848 Δum03849 mutants showed reduction in mating, but increased filamentation on low ammonium, particularly in the 1/2 background. With respect to pathogenesis on the host, all the mutants showed reduced degrees of disease symptoms. Further, when the deletion mutants were paired with wild type of opposite mating-type, reduced virulence was observed, in a manner specific to the genetic background of the mutant's progenitor. This background specific reduction of plant pathogenicity was correlated with differential expression of genes for the mating program in U. maydis.
Collapse
Affiliation(s)
- Sunita Khanal
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, USA
| | - Luke Schroeder
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, USA
| | | | - Hector Mendoza
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, USA
| | - Michael H Perlin
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
11
|
Gazengel K, Aigu Y, Lariagon C, Humeau M, Gravot A, Manzanares-Dauleux MJ, Daval S. Nitrogen Supply and Host-Plant Genotype Modulate the Transcriptomic Profile of Plasmodiophora brassicae. Front Microbiol 2021; 12:701067. [PMID: 34305867 PMCID: PMC8298192 DOI: 10.3389/fmicb.2021.701067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
Nitrogen fertilization can affect the susceptibility of Brassica napus to the telluric pathogen Plasmodiophora brassicae. Our previous works highlighted that the influence of nitrogen can strongly vary regarding plant cultivar/pathogen strain combinations, but the underlying mechanisms are unknown. The present work aims to explore how nitrogen supply can affect the molecular physiology of P. brassicae through its life epidemiological cycle. A time-course transcriptome experiment was conducted to study the interaction, under two conditions of nitrogen supply, between isolate eH and two B. napus genotypes (Yudal and HD-018), harboring (or not harboring) low nitrogen-conditional resistance toward this isolate (respectively). P. brassicae transcriptional patterns were modulated by nitrogen supply, these modulations being dependent on both host-plant genotype and kinetic time. Functional analysis allowed the identification of P. brassicae genes expressed during the secondary phase of infection, which may play a role in the reduction of Yudal disease symptoms in low-nitrogen conditions. Candidate genes included pathogenicity-related genes ("NUDIX," "carboxypeptidase," and "NEP-proteins") and genes associated to obligate biotrophic functions of P. brassicae. This work illustrates the importance of considering pathogen's physiological responses to get a better understanding of the influence of abiotic factors on clubroot resistance/susceptibility.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stéphanie Daval
- IGEPP, INRAE, Institut Agro, Université Rennes 1, Le Rheu, France
| |
Collapse
|
12
|
The Destructive Fungal Pathogen Botrytis cinerea-Insights from Genes Studied with Mutant Analysis. Pathogens 2020; 9:pathogens9110923. [PMID: 33171745 PMCID: PMC7695001 DOI: 10.3390/pathogens9110923] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 12/03/2022] Open
Abstract
Botrytis cinerea is one of the most destructive fungal pathogens affecting numerous plant hosts, including many important crop species. As a molecularly under-studied organism, its genome was only sequenced at the beginning of this century and it was recently updated with improved gene annotation and completeness. In this review, we summarize key molecular studies on B. cinerea developmental and pathogenesis processes, specifically on genes studied comprehensively with mutant analysis. Analyses of these studies have unveiled key genes in the biological processes of this pathogen, including hyphal growth, sclerotial formation, conidiation, pathogenicity and melanization. In addition, our synthesis has uncovered gaps in the present knowledge regarding development and virulence mechanisms. We hope this review will serve to enhance the knowledge of the biological mechanisms behind this notorious fungal pathogen.
Collapse
|
13
|
Soulie M, Koka SM, Floch K, Vancostenoble B, Barbe D, Daviere A, Soubigou‐Taconnat L, Brunaud V, Poussereau N, Loisel E, Devallee A, Expert D, Fagard M. Plant nitrogen supply affects the Botrytis cinerea infection process and modulates known and novel virulence factors. MOLECULAR PLANT PATHOLOGY 2020; 21:1436-1450. [PMID: 32939948 PMCID: PMC7549004 DOI: 10.1111/mpp.12984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/25/2020] [Accepted: 07/28/2020] [Indexed: 05/05/2023]
Abstract
Plant nitrogen (N) fertilization is known to affect disease; however, the underlying mechanisms remain mostly unknown. We investigated the impact of N supply on the Arabidopsis thaliana-Botrytis cinerea interaction. A. thaliana plants grown in low nitrate were more tolerant to all wild-type B. cinerea strains tested. We determined leaf nitrate concentrations and showed that they had a limited impact on B. cinerea growth in vitro. For the first time, we performed a dual RNA-Seq of infected leaves of plants grown with different nitrate concentrations. Transcriptome analysis showed that plant and fungal transcriptomes were marginally affected by plant nitrate supply. Indeed, only a limited set of plant (182) and fungal (22) genes displayed expression profiles altered by nitrate supply. The expression of selected genes was confirmed by quantitative reverse transcription PCR at 6 hr postinfection (hpi) and analysed at a later time point (24 hpi). We selected three of the 22 B. cinerea genes identified for further analysis. B. cinerea mutants affected in these genes were less aggressive than the wild-type strain. We also showed that plants grown in ammonium were more tolerant to B. cinerea. Furthermore, expression of the selected B. cinerea genes in planta was altered when plants were grown with ammonium instead of nitrate, demonstrating an impact of the nature of N supplied to plants on the interaction. Identification of B. cinerea genes expressed differentially in planta according to plant N supply unveils two novel virulence functions required for full virulence in A. thaliana: a secondary metabolite (SM) and an acidic protease (AP).
Collapse
Affiliation(s)
- Marie‐Christine Soulie
- Sorbonne UniversitésUPMC Université Paris 06ParisFrance
- Institut Jean‐Pierre BourginINRAEUniversité Paris‐SaclayVersaillesFrance
| | | | - Kévin Floch
- Institut Jean‐Pierre BourginINRAEUniversité Paris‐SaclayVersaillesFrance
| | | | - Deborah Barbe
- Institut Jean‐Pierre BourginINRAEUniversité Paris‐SaclayVersaillesFrance
| | - Antoine Daviere
- Institut Jean‐Pierre BourginINRAEUniversité Paris‐SaclayVersaillesFrance
| | - Ludivine Soubigou‐Taconnat
- Institute of Plant Sciences Paris‐SaclayCNRSINRAUniversité Paris‐SudUniversité d'EvryUniversité Paris‐SaclayGif sur YvetteFrance
- Institute of Plant Sciences Paris‐SaclayCNRSINRA Université Paris‐DiderotSorbonne Paris‐CitéGif sur YvetteFrance
| | - Veronique Brunaud
- Institute of Plant Sciences Paris‐SaclayCNRSINRAUniversité Paris‐SudUniversité d'EvryUniversité Paris‐SaclayGif sur YvetteFrance
- Institute of Plant Sciences Paris‐SaclayCNRSINRA Université Paris‐DiderotSorbonne Paris‐CitéGif sur YvetteFrance
| | | | - Elise Loisel
- Univ LyonUniversité Lyon 1CNRSBayer SAS, UMR5240, PathogénieLyonFrance
| | - Amelie Devallee
- Univ LyonUniversité Lyon 1CNRSBayer SAS, UMR5240, PathogénieLyonFrance
| | - Dominique Expert
- Institut Jean‐Pierre BourginINRAEUniversité Paris‐SaclayVersaillesFrance
| | - Mathilde Fagard
- Institut Jean‐Pierre BourginINRAEUniversité Paris‐SaclayVersaillesFrance
| |
Collapse
|
14
|
Xu L, Wang H, Zhang C, Wang J, Chen A, Chen Y, Ma Z. System-wide characterization of subtilases reveals that subtilisin-like protease FgPrb1 of Fusarium graminearum regulates fungal development and virulence. Fungal Genet Biol 2020; 144:103449. [PMID: 32890707 DOI: 10.1016/j.fgb.2020.103449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/30/2022]
Abstract
Subtilases represent the second largest subfamily of serine proteases, and are important for various biological processes. However, the biological function of subtilases has not been systematically characterized in plant pathogens. In present study, 32 subtilases were identified in the genome of wheat scab fungus Fusarium graminearum, a devastating cereal plant pathogen. Deletion mutants of each subtilase were obtained and functionally characterized. Among them, the deletion of FgPrb1 resulted in greatly reduced virulence of F. graminearum. The regulatory mechanisms of FgPrb1 in virulence were investigated in details. Our results showed that the loss of FgPrb1 led to defects in deoxynivalenol (DON) production, responses to environmental stimuli, and lipid metabolism. Additionally, we found that FgPrb1 was involved in autophagy regulation. Taken together, the systematic functional characterization of subtilases showed that the FgPrb1 of F. graminearum is critical for plant infection by regulating multiple different cellular processes.
Collapse
Affiliation(s)
- Luona Xu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Hongkai Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Chengqi Zhang
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Jinli Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Ahai Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China.
| | - Yun Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
15
|
Fu H, Chung KR, Liu X, Li H. Aaprb1, a subtilsin-like protease, required for autophagy and virulence of the tangerine pathotype of Alternaria alternata. Microbiol Res 2020; 240:126537. [PMID: 32739584 DOI: 10.1016/j.micres.2020.126537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 02/06/2023]
Abstract
Subtilisin-like serine protease secreted by pathogenic fungi can facilitate the infection and acquisition of nutrients. Functions of subtilisin-like serine proteases in the phytopathogenic fungus Alternaria alternata remains unknown. In the current study, 15 subtilisin-like serine proteases were individually deleted in the citrus fungal pathogen A. alternata. Only one, designated AaPrb1, was found to be required for A. alternata pathogenesis. The AaPrb1 deficiency strain (ΔAaprb1) reduced growth, conidiation, the formation of aerial hyphae, protease production, and virulence on citrus leaves. However, biochemical analyses and bioassays revealed that ΔAaprb1 plays no role in the production of ACT toxin. Through Y2H assays, Aaprb1 was found to interact with Aapep4, a vacuole-localized proteinase A in A. alternata. Furthermore, silencing AaPep4 in A. alternata resulted in phenotypes similar with those of ΔAaprb1. Expression of AaPrb1 was found to be regulated by AaPep4. TEM showed that AaPrb1and AaPep4 were involved in the suppression of the degradation of autophagosomes. Deletion of the autophagy gene AaAtg8 in A. alternata decreased conidiation, the formation of aerial hyphae and pathogenicity similar to ΔAaprb1, implying that some phenotypes of ΔAaprb1 were due to the impairment of autophagy. Overall, this study expands our understanding of how A. alternata utilizes the subtilisin-like serine protease to achieve successful infection in the plant host.
Collapse
Affiliation(s)
- Huilan Fu
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Kuang-Ren Chung
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung-Hsing University, Taichung, Taiwan
| | - Xiaohong Liu
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Hongye Li
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
| |
Collapse
|
16
|
Gu X, Yang S, Yang X, Yao L, Gao X, Zhang M, Liu W, Zhao H, Wang Q, Li Z, Li Z, Ding J. Comparative transcriptome analysis of two Cercospora sojina strains reveals differences in virulence under nitrogen starvation stress. BMC Microbiol 2020; 20:166. [PMID: 32546122 PMCID: PMC7298872 DOI: 10.1186/s12866-020-01853-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/12/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cercospora sojina is a fungal pathogen that causes frogeye leaf spot in soybean-producing regions, leading to severe yield losses worldwide. It exhibits variations in virulence due to race differentiation between strains. However, the candidate virulence-related genes are unknown because the infection process is slow, making it difficult to collect transcriptome samples. RESULTS In this study, virulence-related differentially expressed genes (DEGs) were obtained from the highly virulent Race 15 strain and mildly virulent Race1 strain under nitrogen starvation stress, which mimics the physiology of the pathogen during infection. Weighted gene co-expression network analysis (WGCNA) was then used to find co-expressed gene modules and assess the relationship between gene networks and phenotypes. Upon comparison of the transcriptomic differences in virulence between the strains, a total of 378 and 124 DEGs were upregulated, while 294 and 220 were downregulated in Race 1 and Race 15, respectively. Annotation of these DEGs revealed that many were associated with virulence differences, including scytalone dehydratase, 1,3,8-trihydroxynaphthalene reductase, and β-1,3-glucanase. In addition, two modules highly correlated with the highly virulent strain Race 15 and 36 virulence-related DEGs were found to contain mostly β-1,4-glucanase, β-1,4-xylanas, and cellobiose dehydrogenase. CONCLUSIONS These important nitrogen starvation-responsive DEGs are frequently involved in the synthesis of melanin, polyphosphate storage in the vacuole, lignocellulose degradation, and cellulose degradation during fungal development and differentiation. Transcriptome analysis indicated unique gene expression patterns, providing further insight into pathogenesis.
Collapse
Affiliation(s)
- Xin Gu
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Shuai Yang
- Potato Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Xiaohe Yang
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Liangliang Yao
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Xuedong Gao
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Maoming Zhang
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Wei Liu
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Haihong Zhao
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Qingsheng Wang
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Zengjie Li
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Zhimin Li
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Junjie Ding
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China.
| |
Collapse
|
17
|
The Subtilisin-Like Protease Bcser2 Affects the Sclerotial Formation, Conidiation and Virulence of Botrytis cinerea. Int J Mol Sci 2020; 21:ijms21020603. [PMID: 31963451 PMCID: PMC7013506 DOI: 10.3390/ijms21020603] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/16/2022] Open
Abstract
Botrytis cinerea, a ubiquitous necrotrophic plant-pathogenic fungus, is responsible for grey mold and rot disease in a very wide range of plant species. Subtilisin-like proteases (or subtilases) are a very diverse family of serine proteases present in many organisms and are reported to have a broad spectrum of biological functions. Here, we identified two genes encoding subtilisin-like proteases (Bcser1 and Bcser2) in the genome of B. cinerea, both of which contain an inhibitor I9 domain and a peptidase S8 domain. The expression levels of Bcser1 and Bcser2 increased during the sclerotial forming stage, as well as during a later stage of hyphal infection on Arabidopsis thaliana leaves, but the up-regulation of Bcser1 was significantly higher than that of Bcser2. Interestingly, deletion of Bcser1 had no effect on the fungal development or virulence of B. cinerea. However, deletion of Bcser2 or double deletion of Bcser1 and Bcser2 severely impaired the hyphal growth, sclerotial formation and conidiation of B. cinerea. We also found that ∆Bcser2 and ∆Bcser1/2 could not form complete infection cushions and then lost the ability to infect intact plant leaves of Arabidopsis and tomato but could infect wounded plant tissues. Taken together, our results indicate that the subtilisin-like protease Bcser2 is crucial for the sclerotial formation, conidiation, and virulence of B. cinerea.
Collapse
|
18
|
Unravelling the Roles of Nitrogen Nutrition in Plant Disease Defences. Int J Mol Sci 2020; 21:ijms21020572. [PMID: 31963138 PMCID: PMC7014335 DOI: 10.3390/ijms21020572] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 02/06/2023] Open
Abstract
Nitrogen (N) is one of the most important elements that has a central impact on plant growth and yield. N is also widely involved in plant stress responses, but its roles in host-pathogen interactions are complex as each affects the other. In this review, we summarize the relationship between N nutrition and plant disease and stress its importance for both host and pathogen. From the perspective of the pathogen, we describe how N can affect the pathogen’s infection strategy, whether necrotrophic or biotrophic. N can influence the deployment of virulence factors such as type III secretion systems in bacterial pathogen or contribute nutrients such as gamma-aminobutyric acid to the invader. Considering the host, the association between N nutrition and plant defence is considered in terms of physical, biochemical and genetic mechanisms. Generally, N has negative effects on physical defences and the production of anti-microbial phytoalexins but positive effects on defence-related enzymes and proteins to affect local defence as well as systemic resistance. N nutrition can also influence defence via amino acid metabolism and hormone production to affect downstream defence-related gene expression via transcriptional regulation and nitric oxide (NO) production, which represents a direct link with N. Although the critical role of N nutrition in plant defences is stressed in this review, further work is urgently needed to provide a comprehensive understanding of how opposing virulence and defence mechanisms are influenced by interacting networks.
Collapse
|
19
|
Ogawa W, Takeda Y, Endo N, Yamashita S, Takayama T, Fukuda M, Yamada A. Repeated fruiting of Japanese golden chanterelle in pot culture with host seedlings. MYCORRHIZA 2019; 29:519-530. [PMID: 31342139 DOI: 10.1007/s00572-019-00908-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Yellow chanterelles are among the most popular wild edible ectomycorrhizal mushrooms worldwide. The representative European golden chanterelle, Cantharellus cibarius, has only once been reported to fruit under greenhouse conditions, due to the difficulty of establishing pure culture. Recently, we developed a new technique for establishing a pure culture of a Japanese golden chanterelle (Cantharellus anzutake), and conducted in vitro ectomycorrhizal synthesis using established strains and Pinus densiflora. Acclimated pine mycorrhizal seedlings colonized with C. anzutake in a pot system under laboratory conditions produced small but distinct basidiomata with developed basidiospores. C. anzutake mycorrhizae were established on Quercus serrata seedlings by inoculation of mycorrhizal root tips of the fungus synthesized on P. densiflora. A scaled-up C. anzutake-host system in larger pots (4 L soil volume) exhibited repeated fruiting at 20-24 °C under continuous light illumination at 150 μmol m-2 s-1 during a 2-year incubation period. Therefore, a C. anzutake cultivation trial is practical under controlled environmental conditions.
Collapse
Affiliation(s)
- Wakana Ogawa
- Department of Bioscience and Food Production Science, Interdisciplinary Graduate School of Science and Technology, Shinshu University, 8304, Minami-minowa, Nagano, 399-4598, Japan
| | - Yumi Takeda
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Shinshu University, 8304, Minami-minowa, Nagano, 399-4598, Japan
| | - Naoki Endo
- Department of Bioscience and Food Production Science, Interdisciplinary Graduate School of Science and Technology, Shinshu University, 8304, Minami-minowa, Nagano, 399-4598, Japan
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, 4-101 Koyama, Tottori, 680-8553, Japan
| | | | | | - Masaki Fukuda
- Department of Bioscience and Food Production Science, Interdisciplinary Graduate School of Science and Technology, Shinshu University, 8304, Minami-minowa, Nagano, 399-4598, Japan
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Shinshu University, 8304, Minami-minowa, Nagano, 399-4598, Japan
| | - Akiyoshi Yamada
- Department of Bioscience and Food Production Science, Interdisciplinary Graduate School of Science and Technology, Shinshu University, 8304, Minami-minowa, Nagano, 399-4598, Japan.
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Shinshu University, 8304, Minami-minowa, Nagano, 399-4598, Japan.
- Division of Terrestrial Ecosystem, Institute of Mountain Science, Shinshu University, 8304, Minami-minowa, Nagano, 399-4598, Japan.
| |
Collapse
|
20
|
Wang Z, Zhu H, Cheng Y, Jiang Y, Li Y, Huang B. The polyubiquitin gene MrUBI4 is required for conidiation, conidial germination, and stress tolerance in the filamentous fungus Metarhizium robertsii. Genes (Basel) 2019; 10:genes10060412. [PMID: 31146457 PMCID: PMC6627135 DOI: 10.3390/genes10060412] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/21/2019] [Accepted: 05/27/2019] [Indexed: 11/18/2022] Open
Abstract
The polyubiquitin gene is a highly conserved open reading frame that encodes different numbers of tandem ubiquitin repeats from different species, which play important roles in different biological processes. Metarhizium robertsii is a fungal entomopathogen that is widely applied in the biological control of pest insects. However, it is unclear whether the polyubiquitin gene is required for fungal development, stress tolerance, and virulence in the entomopathogenic fungus. In the present study, the polyubiquitin gene (MrUBI4, MAA_02160) was functionally characterized via gene deletion in M. robertsii. Compared to the control strains, the MrUBI4 deletion mutant showed delayed conidial germination and significantly decreased conidial yields (39% of the wild-type 14 days post-incubation). Correspondingly, the transcript levels of several genes from the central regulatory pathways associated with conidiation, including brlA, abaA, and wetA, were significantly downregulated, which indicated that MrUBI4 played an important role in asexual sporulation. Deletion of MrUBI4 especially resulted in increased sensitivity to ultraviolet (UV) and heat-shock stress based on conidial germination analysis between mutant and control strains. The significant increase in sensitivity to heat-shock was accompanied with reduced transcript levels of genes related to heat-shock protein (hsp), trehalose, and mannitol accumulation (tps, tpp, nth, and mpd) in the MrUBI4 deletion mutant. Deletion of MrUBI4 has no effect on fungal virulence. Altogether, MrUBI4 is involved in the regulation of conidiation, conidial germination, UV stress, and heat-shock response in M. robertsii.
Collapse
Affiliation(s)
- Zhangxun Wang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China.
| | - Hong Zhu
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China.
| | - Yuran Cheng
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China.
| | - Yuanyuan Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China.
| | - Yuandong Li
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China.
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
21
|
Rodríguez-Romero J, Marconi M, Ortega-Campayo V, Demuez M, Wilkinson MD, Sesma A. Virulence- and signaling-associated genes display a preference for long 3'UTRs during rice infection and metabolic stress in the rice blast fungus. THE NEW PHYTOLOGIST 2019; 221:399-414. [PMID: 30169888 DOI: 10.1111/nph.15405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
Generation of mRNA isoforms by alternative polyadenylation (APA) and their involvement in regulation of fungal cellular processes, including virulence, remains elusive. Here, we investigated genome-wide polyadenylation site (PAS) selection in the rice blast fungus to understand how APA regulates pathogenicity. More than half of Magnaporthe oryzae transcripts undergo APA and show novel motifs in their PAS region. Transcripts with shorter 3'UTRs are more stable and abundant in polysomal fractions, suggesting they are being translated more efficiently. Importantly, rice colonization increases the use of distal PASs of pathogenicity genes, especially those participating in signalling pathways like 14-3-3B, whose long 3'UTR is required for infection. Cleavage factor I (CFI) Rbp35 regulates expression and distal PAS selection of virulence and signalling-associated genes, tRNAs and transposable elements, pointing its potential to drive genomic rearrangements and pathogen evolution. We propose a noncanonical PAS selection mechanism for Rbp35 that recognizes UGUAH, unlike humans, without CFI25. Our results showed that APA controls turnover and translation of transcripts involved in fungal growth and environmental adaptation. Furthermore, these data provide useful information for enhancing genome annotations and for cross-species comparisons of PASs and PAS usage within the fungal kingdom and the tree of life.
Collapse
Affiliation(s)
- Julio Rodríguez-Romero
- Centre for Plant Biotechnology and Genomics (CBGP UPM-INIA), Universidad Politécnica de Madrid (UPM) & Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal, UPM, Campus Ciudad Universitaria, 28040, Madrid, Spain
| | - Marco Marconi
- Centre for Plant Biotechnology and Genomics (CBGP UPM-INIA), Universidad Politécnica de Madrid (UPM) & Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal, UPM, Campus Ciudad Universitaria, 28040, Madrid, Spain
| | - Víctor Ortega-Campayo
- Centre for Plant Biotechnology and Genomics (CBGP UPM-INIA), Universidad Politécnica de Madrid (UPM) & Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal, UPM, Campus Ciudad Universitaria, 28040, Madrid, Spain
| | - Marie Demuez
- Centre for Plant Biotechnology and Genomics (CBGP UPM-INIA), Universidad Politécnica de Madrid (UPM) & Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal, UPM, Campus Ciudad Universitaria, 28040, Madrid, Spain
| | - Mark D Wilkinson
- Centre for Plant Biotechnology and Genomics (CBGP UPM-INIA), Universidad Politécnica de Madrid (UPM) & Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal, UPM, Campus Ciudad Universitaria, 28040, Madrid, Spain
| | - Ane Sesma
- Centre for Plant Biotechnology and Genomics (CBGP UPM-INIA), Universidad Politécnica de Madrid (UPM) & Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal, UPM, Campus Ciudad Universitaria, 28040, Madrid, Spain
| |
Collapse
|
22
|
Sephton-Clark PCS, Muñoz JF, Ballou ER, Cuomo CA, Voelz K. Pathways of Pathogenicity: Transcriptional Stages of Germination in the Fatal Fungal Pathogen Rhizopus delemar. mSphere 2018; 3:e00403-18. [PMID: 30258038 PMCID: PMC6158513 DOI: 10.1128/msphere.00403-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/22/2018] [Indexed: 12/19/2022] Open
Abstract
Rhizopus delemar is an invasive fungal pathogen responsible for the frequently fatal disease mucormycosis. Germination, a crucial mechanism by which infectious spores of Rhizopus delemar cause disease, is a key developmental process that transforms the dormant spore state into a vegetative one. The molecular mechanisms that underpin this transformation may be key to controlling mucormycosis; however, the regulation of germination remains poorly understood. This study describes the phenotypic and transcriptional changes that take place over the course of germination. This process is characterized by four distinct stages: dormancy, isotropic swelling, germ tube emergence, and hyphal growth. Dormant spores are shown to be transcriptionally unique, expressing a subset of transcripts absent in later developmental stages. A large shift in the expression profile is prompted by the initiation of germination, with genes involved in respiration, chitin, cytoskeleton, and actin regulation appearing to be important for this transition. A period of transcriptional consistency can be seen throughout isotropic swelling, before the transcriptional landscape shifts again at the onset of hyphal growth. This study provides a greater understanding of the regulation of germination and highlights processes involved in transforming Rhizopus delemar from a single-cellular to multicellular organism.IMPORTANCE Germination is key to the growth of many organisms, including fungal spores. Mucormycete spores exist abundantly within the environment and germinate to form hyphae. These spores are capable of infecting immunocompromised individuals, causing the disease mucormycosis. Germination from spore to hyphae within patients leads to angioinvasion, tissue necrosis, and often fatal infections. This study advances our understanding of how spore germination occurs in the mucormycetes, identifying processes we may be able to inhibit to help prevent or treat mucormycosis.
Collapse
Affiliation(s)
- Poppy C S Sephton-Clark
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Jose F Muñoz
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Elizabeth R Ballou
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Christina A Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Kerstin Voelz
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
23
|
Wang M, Yang X, Ruan R, Fu H, Li H. Csn5 Is Required for the Conidiogenesis and Pathogenesis of the Alternaria alternata Tangerine Pathotype. Front Microbiol 2018; 9:508. [PMID: 29616013 PMCID: PMC5870056 DOI: 10.3389/fmicb.2018.00508] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/06/2018] [Indexed: 11/13/2022] Open
Abstract
The COP9 signalosome (CSN) is a highly conserved protein complex involved in the ubiquitin-proteasome system. Its metalloisopeptidase activity resides in subunit 5 (CSN5). Functions of csn5 in phytopathogenic fungi are poorly understood. Here, we knocked out the csn5 ortholog (Aacsn5) in the tangerine pathotype of Alternaria alternata. The ΔAacsn5 mutant showed a moderately reduced growth rate compared to the wildtype strain and was unable to produce conidia. The growth of ΔAacsn5 mutant was not affected in response to oxidative and osmotic stresses. Virulence assays revealed that ΔAacsn5 induced no or significantly reduced necrotic lesions on detached citrus leaves. The defects in hyphal growth, conidial sporulation, and pathogenicity of ΔAacsn5 were restored by genetic complementation of the mutant with wildtype Aacsn5. To explore the molecular mechanisms of conidiation and pathogenesis underlying Aacsn5 regulation, we systematically examined the transcriptomes of both ΔAacsn5 and the wildtype. Generally, 881 genes were overexpressed and 777 were underexpressed in the ΔAacsn5 mutant during conidiation while 694 overexpressed and 993 underexpressed during infection. During asexual development, genes related to the transport processes and nitrogen metabolism were significantly downregulated; the expression of csn1-4 and csn7 in ΔAacsn5 was significantly elevated; secondary metabolism gene clusters were broadly affected; especially, the transcript level of the whole of cluster 28 and 30 was strongly induced. During infection, the expression of the host-specific ACT toxin gene cluster which controls the biosynthesis of the citrus specific toxin was significantly repressed; many other SM clusters with unknown products were also regulated; 86 out of 373 carbohydrate-active enzymes responsible for breaking down the plant dead tissues showed uniquely decreased expression. Taken together, our results expand our understanding of the roles of csn5 on conidiation and pathogenicity in plant pathogenic fungi and provide a foundation for future investigations.
Collapse
Affiliation(s)
- Mingshuang Wang
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiao Yang
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Ruoxin Ruan
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China.,Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Huilan Fu
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Hongye Li
- Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Liu Y, Koh CMJ, Yap SA, Du M, Hlaing MM, Ji L. Identification of novel genes in the carotenogenic and oleaginous yeast Rhodotorula toruloides through genome-wide insertional mutagenesis. BMC Microbiol 2018; 18:14. [PMID: 29466942 PMCID: PMC5822628 DOI: 10.1186/s12866-018-1151-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 01/30/2018] [Indexed: 01/15/2023] Open
Abstract
Background Rhodotorula toruloides is an outstanding producer of lipids and carotenoids. Currently, information on the key metabolic pathways and their molecular basis of regulation remains scarce, severely limiting efforts to engineer it as an industrial host. Results We have adapted Agrobacterium tumefaciens-mediated transformation (ATMT) as a gene-tagging tool for the identification of novel genes in R. toruloides. Multiple factors affecting transformation efficiency in several species in the Pucciniomycotina subphylum were optimized. The Agrobacterium transfer DNA (T-DNA) showed predominantly single-copy chromosomal integrations in R. toruloides, which were trackable by high efficiency thermal asymmetric interlaced PCR (hiTAIL-PCR). To demonstrate the application of random T-DNA insertions for strain improvement and gene hunting, 3 T-DNA insertional libraries were screened against cerulenin, nile red and tetrazolium violet respectively, resulting in the identification of 22 mutants with obvious phenotypes in fatty acid or lipid metabolism. Similarly, 5 carotenoid biosynthetic mutants were obtained through visual screening of the transformants. To further validate the gene tagging strategy, one of the carotenoid production mutants, RAM5, was analyzed in detail. The mutant had a T-DNA inserted at the putative phytoene desaturase gene CAR1. Deletion of CAR1 by homologous recombination led to a phenotype similar to RAM5 and it could be genetically complemented by re-introduction of the wild-type CAR1 genome sequence. Conclusions T-DNA insertional mutagenesis is an efficient forward genetic tool for gene discovery in R. toruloides and related oleaginous yeast species. It is also valuable for metabolic engineering in these hosts. Further analysis of the 27 mutants identified in this study should augment our knowledge of the lipid and carotenoid biosynthesis, which may be exploited for oil and isoprenoid metabolic engineering. Electronic supplementary material The online version of this article (10.1186/s12866-018-1151-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanbin Liu
- Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.
| | - Chong Mei John Koh
- Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Sihui Amy Yap
- Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Minge Du
- Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Mya Myintzu Hlaing
- Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Lianghui Ji
- Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore. .,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
25
|
Oh Y, Robertson SL, Parker J, Muddiman DC, Dean RA. Comparative proteomic analysis between nitrogen supplemented and starved conditions in Magnaporthe oryzae. Proteome Sci 2017; 15:20. [PMID: 29158724 PMCID: PMC5684745 DOI: 10.1186/s12953-017-0128-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/02/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Fungi are constantly exposed to nitrogen limiting environments, and thus the efficient regulation of nitrogen metabolism is essential for their survival, growth, development and pathogenicity. To understand how the rice blast pathogen Magnaporthe oryzae copes with limited nitrogen availability, a global proteome analysis under nitrogen supplemented and nitrogen starved conditions was completed. METHODS M. oryzae strain 70-15 was cultivated in liquid minimal media and transferred to media with nitrate or without a nitrogen source. Proteins were isolated and subjected to unfractionated gel-free based liquid chromatography-tandem mass spectrometry (LC-MS/MS). The subcellular localization and function of the identified proteins were predicted using bioinformatics tools. RESULTS A total of 5498 M. oryzae proteins were identified. Comparative analysis of protein expression showed 363 proteins and 266 proteins significantly induced or uniquely expressed under nitrogen starved or nitrogen supplemented conditions, respectively. A functional analysis of differentially expressed proteins revealed that during nitrogen starvation nitrogen catabolite repression, melanin biosynthesis, protein degradation and protein translation pathways underwent extensive alterations. In addition, nitrogen starvation induced accumulation of various extracellular proteins including small extracellular proteins consistent with observations of a link between nitrogen starvation and the development of pathogenicity in M. oryzae. CONCLUSION The results from this study provide a comprehensive understanding of fungal responses to nitrogen availability.
Collapse
Affiliation(s)
- Yeonyee Oh
- Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695 USA
| | - Suzanne L. Robertson
- W. M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC 27695 USA
| | - Jennifer Parker
- W. M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC 27695 USA
| | - David C. Muddiman
- W. M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC 27695 USA
| | - Ralph A. Dean
- Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695 USA
| |
Collapse
|
26
|
Guzmán-Guzmán P, Alemán-Duarte MI, Delaye L, Herrera-Estrella A, Olmedo-Monfil V. Identification of effector-like proteins in Trichoderma spp. and role of a hydrophobin in the plant-fungus interaction and mycoparasitism. BMC Genet 2017; 18:16. [PMID: 28201981 PMCID: PMC5310080 DOI: 10.1186/s12863-017-0481-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 02/07/2017] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Trichoderma spp. can establish beneficial interactions with plants by promoting plant growth and defense systems, as well as, antagonizing fungal phytopathogens in mycoparasitic interactions. Such interactions depend on signal exchange between both participants and can be mediated by effector proteins that alter the host cell structure and function, allowing the establishment of the relationship. The main purpose of this work was to identify, using computational methods, candidates of effector proteins from T. virens, T. atroviride and T. reesei, validate the expression of some of the genes during a beneficial interaction and mycoparasitism and to define the biological function for one of them. RESULTS We defined a catalogue of putative effector proteins from T. virens, T. atroviride and T. reesei. We further validated the expression of 16 genes encoding putative effector proteins from T. virens and T. atroviride during the interaction with the plant Arabidopsis thaliana, and with two anastomosis groups of the phytopathogenic fungus Rhizoctonia solani. We found genes which transcript levels are modified in response to the presence of both plant fungi, as well as genes that respond only to either a plant or a fungal host. Further, we show that overexpression of the gene tvhydii1, a Class II hydrophobin family member, enhances the antagonistic activity of T. virens against R. solani AG2. Further, deletion of tvhydii1 results in reduced colonization of plant roots, while its overexpression increases it. CONCLUSIONS Our results show that Trichoderma is able to respond in different ways to the presence of a plant or a fungal host, and it can even distinguish between different strains of fungi of a given species. The putative effector proteins identified here may play roles in preventing perception of the fungus by its hosts, favoring host colonization or protecting it from the host's defense response. Finally, the novel effector protein TVHYDII1 plays a role in plant root colonization by T, virens, and participates in its antagonistic activity against R. solani.
Collapse
Affiliation(s)
- Paulina Guzmán-Guzmán
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Guanajuato, Gto, Mexico
| | - Mario Iván Alemán-Duarte
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Gto, Mexico
- Unidad Irapuato, Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Gto, Mexico
| | - Luis Delaye
- Unidad Irapuato, Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Gto, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Gto, Mexico
| | - Vianey Olmedo-Monfil
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Guanajuato, Gto, Mexico
| |
Collapse
|
27
|
Valueva TA, Zaichik BT, Kudryavtseva NN. Role of proteolytic enzymes in the interaction of phytopathogenic microorganisms with plants. BIOCHEMISTRY (MOSCOW) 2017; 81:1709-1718. [DOI: 10.1134/s0006297916130083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Huang H, Nguyen Thi Thu T, He X, Gravot A, Bernillon S, Ballini E, Morel JB. Increase of Fungal Pathogenicity and Role of Plant Glutamine in Nitrogen-Induced Susceptibility (NIS) To Rice Blast. FRONTIERS IN PLANT SCIENCE 2017; 8:265. [PMID: 28293247 PMCID: PMC5329020 DOI: 10.3389/fpls.2017.00265] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 02/13/2017] [Indexed: 05/20/2023]
Abstract
Highlight Modifications in glutamine synthetase OsGS1-2 expression and fungal pathogenicity underlie nitrogen-induced susceptibility to rice blast. Understanding why nitrogen fertilization increase the impact of many plant diseases is of major importance. The interaction between Magnaporthe oryzae and rice was used as a model for analyzing the molecular mechanisms underlying Nitrogen-Induced Susceptibility (NIS). We show that our experimental system in which nitrogen supply strongly affects rice blast susceptibility only slightly affects plant growth. In order to get insights into the mechanisms of NIS, we conducted a dual RNA-seq experiment on rice infected tissues under two nitrogen fertilization regimes. On the one hand, we show that enhanced susceptibility was visible despite an over-induction of defense gene expression by infection under high nitrogen regime. On the other hand, the fungus expressed to high levels effectors and pathogenicity-related genes in plants under high nitrogen regime. We propose that in plants supplied with elevated nitrogen fertilization, the observed enhanced induction of plant defense is over-passed by an increase in the expression of the fungal pathogenicity program, thus leading to enhanced susceptibility. Moreover, some rice genes implicated in nitrogen recycling were highly induced during NIS. We further demonstrate that the OsGS1-2 glutamine synthetase gene enhances plant resistance to M. oryzae and abolishes NIS and pinpoint glutamine as a potential key nutrient during NIS.
Collapse
Affiliation(s)
- Huichuan Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural UniversityKunming, China
| | | | - Xiahong He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural UniversityKunming, China
| | | | - Stéphane Bernillon
- INRA, UMR1332, Biologie du Fruit et Pathologie, Plateforme Métabolome de BordeauxVillenave d'Ornon, France
| | - Elsa Ballini
- SupAgro, UMR BGPI Institut National de la Recherche Agronomique/CIRAD/SupAgro, Campus International de BaillarguetMontpellier, France
| | - Jean-Benoit Morel
- Institut National de la Recherche Agronomique, UMR BGPI Institut National de la Recherche Agronomique/CIRAD/SupAgro, Campus International de BaillarguetMontpellier, France
- *Correspondence: Jean-Benoit Morel
| |
Collapse
|
29
|
Palacios OA, Choix FJ, Bashan Y, de-Bashan LE. Influence of tryptophan and indole-3-acetic acid on starch accumulation in the synthetic mutualistic Chlorella sorokiniana – Azospirillum brasilense system under heterotrophic conditions. Res Microbiol 2016; 167:367-79. [DOI: 10.1016/j.resmic.2016.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 09/07/2015] [Accepted: 02/15/2016] [Indexed: 01/08/2023]
|
30
|
Cetz-Chel JE, Balcázar-López E, Esquivel-Naranjo EU, Herrera-Estrella A. The Trichoderma atroviride putative transcription factor Blu7 controls light responsiveness and tolerance. BMC Genomics 2016; 17:327. [PMID: 27142227 PMCID: PMC4855978 DOI: 10.1186/s12864-016-2639-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 04/22/2016] [Indexed: 11/23/2022] Open
Abstract
Background Most living organisms use sunlight as a source of energy and/or information about their environment. Consequently, they have developed mechanisms to sense light quality and quantity. In the fungus Trichoderma atroviride blue-light is perceived through the Blue Light Regulator Complex, which in turn up-regulates a set of genes (blu) and down-regulates another set (bld), triggering asexual reproduction. To gain insight into this process, we characterized the blu7 gene, which encodes a protein containing a C2H2 zinc finger domain. Results Δblu7 mutants show reduced conidiation at low light fluences, which is still clear even when exposed to saturating light. For the first time we show a genome wide survey of light regulated gene expression in T. atroviride, including RNA-seq analyses of the wild type and the Δblu7 strains after brief exposure to blue-light. Our data show a reduction in the number of induced genes and an increase in down-regulated genes in the mutant. Light activates stress responses and several metabolic processes in the wild type strain that are no longer activated in the mutant. In agreement with the misregulation of metabolic processes, continuous exposure to white light strongly inhibited growth of the ∆blu7 mutant, in a carbon source dependent fashion. RNA-seq analyses under constant white light using glucose as sole carbon source revealed that localization and transport process present the opposite regulation pattern in the ∆blu7 and wild type strains. Genes related to amino acid, sugar and general transporters were enriched in the induced genes in the mutant and the repressed genes of the wild type. Peptone supplemented in the media restored growth of the ∆blu7 mutant in constant light, suggesting a role of Blu7 in the regulation of nitrogen metabolism in the presence of light. Conclusions Blu7 appears to regulate light sensitivity in terms of induction of conidiation, and to play a major role in supporting growth under continuous exposure to light. The diminished conidiation observed in ∆blu7 mutants is likely due to misregulation of the cAMP signaling pathway and ROS production, whereas their low tolerance to continuous exposure to light indicates that Blu7 is required for adaptation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2639-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- José E Cetz-Chel
- Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Sede Irapuato, Km 9.6 Libramiento Norte Carretera Irapuato-León, 36821, Irapuato, Guanajuato, Mexico
| | - Edgar Balcázar-López
- Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Sede Irapuato, Km 9.6 Libramiento Norte Carretera Irapuato-León, 36821, Irapuato, Guanajuato, Mexico
| | - Edgardo U Esquivel-Naranjo
- Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Sede Irapuato, Km 9.6 Libramiento Norte Carretera Irapuato-León, 36821, Irapuato, Guanajuato, Mexico.,Present Address: Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Querétaro, Querétaro, 76230, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Sede Irapuato, Km 9.6 Libramiento Norte Carretera Irapuato-León, 36821, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
31
|
Liu JJ, Sturrock RN, Sniezko RA, Williams H, Benton R, Zamany A. Transcriptome analysis of the white pine blister rust pathogen Cronartium ribicola: de novo assembly, expression profiling, and identification of candidate effectors. BMC Genomics 2015; 16:678. [PMID: 26338692 PMCID: PMC4559923 DOI: 10.1186/s12864-015-1861-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 08/18/2015] [Indexed: 12/21/2022] Open
Abstract
Background The fungus Cronartium ribicola (Cri) is an economically and ecologically important forest pathogen that causes white pine blister rust (WPBR) disease on five-needle pines. To cause stem cankers and kill white pine trees the fungus elaborates a life cycle with five stages of spore development on five-needle pines and the alternate host Ribes plants. To increase our understanding of molecular WP-BR interactions, here we report genome-wide transcriptional profile analysis of C. ribicola using RNA-seq. Results cDNA libraries were constructed from aeciospore, urediniospore, and western white pine (Pinus monticola) tissues post Cri infection. Over 200 million RNA-seq 100-bp paired-end (PE) reads from rust fungal spores were de novo assembled and a reference transcriptome was generated with 17,880 transcripts that were expressed from 13,629 unigenes. A total of 734 unique proteins were predicted as a part of the Cri secretome from complete open reading frames (ORFs), and 41 % of them were Cronartium-specific. This study further identified a repertoire of candidate effectors and other pathogenicity determinants. Differentially expressed genes (DEGs) were identified to gain an understanding of molecular events important during the WPBR fungus life cycle by comparing Cri transcriptomes at different infection stages. Large-scale changes of in planta gene expression profiles were observed, revealing that multiple fungal biosynthetic pathways were enhanced during mycelium growth inside infected pine stem tissues. Conversely, many fungal genes that were up-regulated at the urediniospore stage appeared to be signalling components and transporters. The secreted fungal protein genes that were up-regulated in pine needle tissues during early infection were primarily associated with cell wall modifications, possibly to mask the rust pathogen from plant defenses. Conclusion This comprehensive transcriptome profiling substantially improves our current understanding of molecular WP-BR interactions. The repertoire of candidate effectors and other putative pathogenicity determinants identified here are valuable for future functional analysis of Cri virulence and pathogenicity. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1861-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun-Jun Liu
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC, V8Z 1M5, Canada.
| | - Rona N Sturrock
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC, V8Z 1M5, Canada.
| | - Richard A Sniezko
- USDA Forest Service, Dorena Genetic Resource Center, 34963 Shoreview Road, Cottage Grove, OR, 97424, USA.
| | - Holly Williams
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC, V8Z 1M5, Canada.
| | - Ross Benton
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC, V8Z 1M5, Canada.
| | - Arezoo Zamany
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC, V8Z 1M5, Canada.
| |
Collapse
|
32
|
López-Pérez M, Ballester AR, González-Candelas L. Identification and functional analysis of Penicillium digitatum genes putatively involved in virulence towards citrus fruit. MOLECULAR PLANT PATHOLOGY 2015; 16:262-75. [PMID: 25099378 PMCID: PMC6638479 DOI: 10.1111/mpp.12179] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The fungus Penicillium digitatum, the causal agent of green mould rot, is the most destructive post-harvest pathogen of citrus fruit in Mediterranean regions. In order to identify P. digitatum genes up-regulated during the infection of oranges that may constitute putative virulence factors, we followed a polymerase chain reaction (PCR)-based suppression subtractive hybridization and cDNA macroarray hybridization approach. The origin of expressed sequence tags (ESTs) was determined by comparison against the available genome sequences of both organisms. Genes coding for fungal proteases and plant cell wall-degrading enzymes represent the largest categories in the subtracted cDNA library. Northern blot analysis of a selection of P. digitatum genes, including those coding for proteases, cell wall-related enzymes, redox homoeostasis and detoxification processes, confirmed their up-regulation at varying time points during the infection process. Agrobacterium tumefaciens-mediated transformation was used to generate knockout mutants for two genes encoding a pectin lyase (Pnl1) and a naphthalene dioxygenase (Ndo1). Two independent P. digitatum Δndo1 mutants were as virulent as the wild-type. However, the two Δpnl1 mutants analysed were less virulent than the parental strain or an ectopic transformant. Together, these results provide a significant advance in our understanding of the putative determinants of the virulence mechanisms of P. digitatum.
Collapse
Affiliation(s)
- Mario López-Pérez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Calle Catedrático Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | | | | |
Collapse
|
33
|
Chu J, Li WF, Cheng W, Lu M, Zhou KH, Zhu HQ, Li FG, Zhou CZ. Comparative analyses of secreted proteins from the phytopathogenic fungus Verticillium dahliae in response to nitrogen starvation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:437-48. [PMID: 25698221 DOI: 10.1016/j.bbapap.2015.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 02/06/2015] [Accepted: 02/09/2015] [Indexed: 01/04/2023]
Abstract
The soilborne fungus Verticillium dahliae is the major pathogen that causes the verticillium wilt disease of plants, which leads to huge economic loss worldwide. At the early stage of infection, growth of the pathogen is subject to the nutrition stress of limited nitrogen. To investigate the secreted pathogenic proteins that play indispensable roles during invasion at this stage, we compared the profiles of secreted proteins of V. dahliae under nitrogen starvation and normal conditions by using in-gel and in-solution digestion combined with liquid chromatography-nano-electrospray ionization tandem mass spectrometry (LC-nanoESI-MS). In total, we identified 212 proteins from the supernatant of liquid medium, including 109 putative secreted proteins. Comparative analysis indicated that the expression of 76 proteins was induced, whereas that of 9 proteins was suppressed under nitrogen starvation. Notably, 24 proteins are constitutively expressed. Further bioinformatic exploration enabled us to classify the stress-induced proteins into seven functional groups: cell wall degradation (10.5%), reactive oxygen species (ROS) scavenging and stress response (11.8%), lipid effectors (5.3%), protein metabolism (21.1%), carbohydrate metabolism (15.8%), electron-proton transport and energy metabolism (14.5%), and other (21.0%). In addition, most stress-suppressed proteins are involved in the cell-wall remodeling. Taken together, our analyses provide insights into the pathogenesis of V. dahliae and might give hints for the development of novel strategy against the verticillium wilt disease.
Collapse
Affiliation(s)
- Jun Chu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Wei-Fang Li
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Wang Cheng
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Mo Lu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Ke-Hai Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agriculture Sciences (CAAS), Anyang, Henan 455000, People's Republic of China
| | - He-Qin Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agriculture Sciences (CAAS), Anyang, Henan 455000, People's Republic of China
| | - Fu-Guang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agriculture Sciences (CAAS), Anyang, Henan 455000, People's Republic of China.
| | - Cong-Zhao Zhou
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China.
| |
Collapse
|
34
|
Sheng L, Zhu G, Tong Q. Comparative proteomic analysis of Aureobasidium pullulans in the presence of high and low levels of nitrogen source. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:10529-10534. [PMID: 25290967 DOI: 10.1021/jf503390f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Pullulan, produced by Aureobasidium pullulans strain, has been broadly used in the food and medical industries. However, relatively little is known concerning the molecular basis of pullulan biosynthesis of this strain. In this paper, the effect of different concentrations of (NH4)2SO4 on pullulan fermentation was studied. Proteomics containing two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF MS) were used to analyze the protein with different expressions of A. pullulans cells between the nitrogen limitation and nitrogen repletion. Maximum pullulan production reached 37.72 g/L when 0.6 g/L of initial (NH4)2SO4 was added. Excess nitrogen source would impel carbon flux flow toward biomass production, but decreased the pullulan production. Nitrogen limitation in A. pullulans seemed to influence the flux change of carbon flux flow toward exopolysaccharide accumulation. The findings indicated that 12 identified protein spots were involved in energy-generating enzymes, antioxidant-related enzymes, amino acid biosynthesis, glycogen biosynthesis, glycolysis, protein transport, and transcriptional regulation. These results presented more evidence of pullulan biosynthesis under nitrogen-limited environment, which would provide a molecular understanding of the physiological response of A. pullulans for optimizing the performance of industrial pullulan fermentation.
Collapse
Affiliation(s)
- Long Sheng
- The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University , Wuxi 214122, China
| | | | | |
Collapse
|
35
|
Lu J, Cao H, Zhang L, Huang P, Lin F. Systematic analysis of Zn2Cys6 transcription factors required for development and pathogenicity by high-throughput gene knockout in the rice blast fungus. PLoS Pathog 2014; 10:e1004432. [PMID: 25299517 PMCID: PMC4192604 DOI: 10.1371/journal.ppat.1004432] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/28/2014] [Indexed: 11/18/2022] Open
Abstract
Because of great challenges and workload in deleting genes on a large scale, the functions of most genes in pathogenic fungi are still unclear. In this study, we developed a high-throughput gene knockout system using a novel yeast-Escherichia-Agrobacterium shuttle vector, pKO1B, in the rice blast fungus Magnaporthe oryzae. Using this method, we deleted 104 fungal-specific Zn(2)Cys(6) transcription factor (TF) genes in M. oryzae. We then analyzed the phenotypes of these mutants with regard to growth, asexual and infection-related development, pathogenesis, and 9 abiotic stresses. The resulting data provide new insights into how this rice pathogen of global significance regulates important traits in the infection cycle through Zn(2)Cys(6)TF genes. A large variation in biological functions of Zn(2)Cys(6)TF genes was observed under the conditions tested. Sixty-one of 104 Zn(2)Cys(6) TF genes were found to be required for fungal development. In-depth analysis of TF genes revealed that TF genes involved in pathogenicity frequently tend to function in multiple development stages, and disclosed many highly conserved but unidentified functional TF genes of importance in the fungal kingdom. We further found that the virulence-required TF genes GPF1 and CNF2 have similar regulation mechanisms in the gene expression involved in pathogenicity. These experimental validations clearly demonstrated the value of a high-throughput gene knockout system in understanding the biological functions of genes on a genome scale in fungi, and provided a solid foundation for elucidating the gene expression network that regulates the development and pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Jianping Lu
- School of Life Sciences Zhejiang University, Hangzhou, Zhejiang Province, China
- * E-mail:
| | - Huijuan Cao
- Biotechnology Institute, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Lilin Zhang
- School of Life Sciences Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Pengyun Huang
- School of Life Sciences Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Fucheng Lin
- Biotechnology Institute, Zhejiang University, Hangzhou, Zhejiang Province, China
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan Province, China
| |
Collapse
|
36
|
Meijueiro ML, Santoyo F, Ramirez L, Pisabarro AG. Transcriptome characteristics of filamentous fungi deduced using high-throughput analytical technologies. Brief Funct Genomics 2014; 13:440-50. [DOI: 10.1093/bfgp/elu033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
37
|
Abstract
Most fungal genomes are poorly annotated, and many fungal traits of industrial and biomedical relevance are not well suited to classical genetic screens. Assigning genes to phenotypes on a genomic scale thus remains an urgent need in the field. We developed an approach to infer gene function from expression profiles of wild fungal isolates, and we applied our strategy to the filamentous fungus Neurospora crassa. Using transcriptome measurements in 70 strains from two well-defined clades of this microbe, we first identified 2,247 cases in which the expression of an unannotated gene rose and fell across N. crassa strains in parallel with the expression of well-characterized genes. We then used image analysis of hyphal morphologies, quantitative growth assays, and expression profiling to test the functions of four genes predicted from our population analyses. The results revealed two factors that influenced regulation of metabolism of nonpreferred carbon and nitrogen sources, a gene that governed hyphal architecture, and a gene that mediated amino acid starvation resistance. These findings validate the power of our population-transcriptomic approach for inference of novel gene function, and we suggest that this strategy will be of broad utility for genome-scale annotation in many fungal systems. IMPORTANCE Some fungal species cause deadly infections in humans or crop plants, and other fungi are workhorses of industrial chemistry, including the production of biofuels. Advances in medical and industrial mycology require an understanding of the genes that control fungal traits. We developed a method to infer functions of uncharacterized genes by observing correlated expression of their mRNAs with those of known genes across wild fungal isolates. We applied this strategy to a filamentous fungus and predicted functions for thousands of unknown genes. In four cases, we experimentally validated the predictions from our method, discovering novel genes involved in the metabolism of nutrient sources relevant for biofuel production, as well as colony morphology and starvation resistance. Our strategy is straightforward, inexpensive, and applicable for predicting gene function in many fungal species.
Collapse
|
38
|
Fernandez J, Wilson RA. Cells in cells: morphogenetic and metabolic strategies conditioning rice infection by the blast fungus Magnaporthe oryzae. PROTOPLASMA 2014; 251:37-47. [PMID: 23990109 DOI: 10.1007/s00709-013-0541-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 08/13/2013] [Indexed: 06/02/2023]
Abstract
The rice blast fungus Magnaporthe oryzae is a global food security threat due to its destruction of cultivated rice. Of the world's rice harvest, 10-30 % is lost each year to this pathogen, and changing climates are likely to favor its spread into new areas. Insights into how the fungus might be contained could come from the wealth of molecular and cellular studies that have been undertaken in order to shed light on the biological underpinnings of blast disease, aspects of which we review herein. Infection begins when a three-celled spore lands on the surface of a leaf, germinates, and develops the specialized infection structure called the appressorium. The mature appressorium develops a high internal turgor that acts on a thin penetration peg, forcing it through the rice cuticle and into the underlying epidermal cells. Primary then invasive hyphae (IH) elaborate from the peg and grow asymptomatically from one living rice cell to another for the first few days of infection before host cells begin to die and characteristic necrotic lesions form on the surface of the leaf, from which spores are produced to continue the life cycle. To gain new insights into the biology of rice blast disease, we argue that, conceptually, the infection process can be viewed as two discrete phases occurring in markedly different environments and requiring distinct biochemical pathways and morphogenetic regulation: outside the host cell, where the appressorium develops in a nutrient-free environment, and inside the host cell, where filamentous growth occurs in a glucose-rich, nitrogen-poor environment, at least from the perspective of the fungus. Here, we review the physiological and metabolic changes that occur in M. oryzae as it transitions from the surface to the interior of the host, thus enabling us to draw lessons about the strategies that allow M. oryzae cells to thrive in rice cells.
Collapse
Affiliation(s)
- Jessie Fernandez
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | | |
Collapse
|
39
|
Fernandez J, Marroquin-Guzman M, Wilson RA. Mechanisms of nutrient acquisition and utilization during fungal infections of leaves. ANNUAL REVIEW OF PHYTOPATHOLOGY 2014; 52:155-74. [PMID: 24848414 DOI: 10.1146/annurev-phyto-102313-050135] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Foliar fungal pathogens challenge global food security, but how they optimize growth and development during infection is understudied. Despite adopting several lifestyles to facilitate nutrient acquisition from colonized cells, little is known about the genetic underpinnings governing pathogen adaption to host-derived nutrients. Homologs of common global and pathway-specific gene regulatory elements are likely to be involved, but their contribution to pathogenicity, and how they are connected to broader genetic networks, is largely unspecified. Here, we focus on carbon and nitrogen metabolism in foliar pathogens and consider what is known, and what is not known, about fungal exploitation of host nutrient and ask how common metabolic regulators have been co-opted to the plant-pathogenic lifestyle as well as how nutrients are utilized to drive infection.
Collapse
Affiliation(s)
- Jessie Fernandez
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583; , ,
| | | | | |
Collapse
|
40
|
Δ(1)-pyrroline-5-carboxylate/glutamate biogenesis is required for fungal virulence and sporulation. PLoS One 2013; 8:e73483. [PMID: 24039956 PMCID: PMC3767830 DOI: 10.1371/journal.pone.0073483] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 07/22/2013] [Indexed: 11/19/2022] Open
Abstract
Proline dehydrogenase (Prodh) and Δ1-pyrroline-5-carboxylate dehydrogenase (P5Cdh) are two key enzymes in the cellular biogenesis of glutamate. Recombinant Prodh and P5Cdh proteins of the chestnut blight fungus Cryphonectria parasitica were investigated and showed activity in in vitro assays. Additionally, the C. parasitica Prodh and P5Cdh genes were able to complement the Saccharomyces cerevisiae put1 and put2 null mutants, respectively, to allow these proline auxotrophic yeast mutants to grow on media with proline as the sole source of nitrogen. Deletion of the Prodh gene in C. parasitica resulted in hypovirulence and a lower level of sporulation, whereas deletion of P5Cdh resulted in hypovirulence though no effect on sporulation; both Δprodh and Δp5cdh mutants were unable to grow on minimal medium with proline as the sole nitrogen source. In a wild-type strain, the intracellular level of proline and the activity of Prodh and P5Cdh increased after supplementation of exogenous proline, though the intracellular Δ1-pyrroline-5-carboxylate (P5C) content remained unchanged. Prodh and P5Cdh were both transcriptionally down-regulated in cells infected with hypovirus. The disruption of other genes with products involved in the conversion of arginine to ornithine, ornithine and glutamate to P5C, and P5C to proline in the cytosol did not appear to affect virulence; however, asexual sporulation was reduced in the Δpro1 and Δpro2 mutants. Taken together, our results showed that Prodh, P5Cdh and related mitochondrial functions are essential for virulence and that proline/glutamate pathway components may represent down-stream targets of hypovirus regulation in C. parasitica.
Collapse
|
41
|
Franck WL, Gokce E, Oh Y, Muddiman DC, Dean RA. Temporal analysis of the magnaporthe oryzae proteome during conidial germination and cyclic AMP (cAMP)-mediated appressorium formation. Mol Cell Proteomics 2013; 12:2249-65. [PMID: 23665591 PMCID: PMC3734583 DOI: 10.1074/mcp.m112.025874] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 04/09/2013] [Indexed: 11/06/2022] Open
Abstract
Rice blast disease caused by Magnaporthe oryzae is one of the most serious threats to global rice production. During the earliest stages of rice infection, M. oryzae conidia germinate on the leaf surface and form a specialized infection structure termed the appressorium. The development of the appressorium represents the first critical stage of infectious development. A total of 3200 unique proteins were identified by nanoLC-MS/MS in a temporal study of conidial germination and cAMP-induced appressorium formation in M. oryzae. Using spectral counting based label free quantification, observed changes in relative protein abundance during the developmental process revealed changes in the cell wall biosynthetic machinery, transport functions, and production of extracellular proteins in developing appressoria. One hundred and sixty-six up-regulated and 208 down-regulated proteins were identified in response to cAMP treatment. Proteomic analysis of a cAMP-dependent protein kinase A mutant that is compromised in the ability to form appressoria identified proteins whose developmental regulation is dependent on cAMP signaling. Selected reaction monitoring was used for absolute quantification of four regulated proteins to validate the global proteomics data and confirmed the germination or appressorium specific regulation of these proteins. Finally, a comparison of the proteome and transcriptome was performed and revealed little correlation between transcript and protein regulation. A subset of regulated proteins were identified whose transcripts show similar regulation patterns and include many of the most strongly regulated proteins indicating a central role in appressorium formation. A temporal quantitative RT-PCR analysis confirmed a strong correlation between transcript and protein abundance for some but not all genes. Collectively, the data presented here provide the first comprehensive view of the M. oryzae proteome during early infection-related development and highlight biological processes important for pathogenicity.
Collapse
Affiliation(s)
| | - Emine Gokce
- §W.M. Keck Fourier Transform-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27606
| | - Yeonyee Oh
- From the ‡Center for Integrated Fungal Research
| | - David C. Muddiman
- §W.M. Keck Fourier Transform-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27606
| | | |
Collapse
|
42
|
Park SY, Choi J, Lim SE, Lee GW, Park J, Kim Y, Kong S, Kim SR, Rho HS, Jeon J, Chi MH, Kim S, Khang CH, Kang S, Lee YH. Global expression profiling of transcription factor genes provides new insights into pathogenicity and stress responses in the rice blast fungus. PLoS Pathog 2013; 9:e1003350. [PMID: 23762023 PMCID: PMC3675110 DOI: 10.1371/journal.ppat.1003350] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 03/25/2013] [Indexed: 11/19/2022] Open
Abstract
Because most efforts to understand the molecular mechanisms underpinning fungal pathogenicity have focused on studying the function and role of individual genes, relatively little is known about how transcriptional machineries globally regulate and coordinate the expression of a large group of genes involved in pathogenesis. Using quantitative real-time PCR, we analyzed the expression patterns of 206 transcription factor (TF) genes in the rice blast fungus Magnaporthe oryzae under 32 conditions, including multiple infection-related developmental stages and various abiotic stresses. The resulting data, which are publicly available via an online platform, provided new insights into how these TFs are regulated and potentially work together to control cellular responses to a diverse array of stimuli. High degrees of differential TF expression were observed under the conditions tested. More than 50% of the 206 TF genes were up-regulated during conidiation and/or in conidia. Mutations in ten conidiation-specific TF genes caused defects in conidiation. Expression patterns in planta were similar to those under oxidative stress conditions. Mutants of in planta inducible genes not only exhibited sensitive to oxidative stress but also failed to infect rice. These experimental validations clearly demonstrated the value of TF expression patterns in predicting the function of individual TF genes. The regulatory network of TF genes revealed by this study provides a solid foundation for elucidating how M. oryzae regulates its pathogenesis, development, and stress responses.
Collapse
Affiliation(s)
- Sook-Young Park
- Department of Agricultural Biotechnology, Fungal Bioinformatics Laboratory, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Seoul National University, Seoul, Korea
| | - Jaeyoung Choi
- Department of Agricultural Biotechnology, Fungal Bioinformatics Laboratory, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Seoul National University, Seoul, Korea
| | - Se-Eun Lim
- Department of Agricultural Biotechnology, Fungal Bioinformatics Laboratory, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Seoul National University, Seoul, Korea
| | - Gir-Won Lee
- Department of Agricultural Biotechnology, Fungal Bioinformatics Laboratory, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Seoul National University, Seoul, Korea
| | - Jongsun Park
- Department of Agricultural Biotechnology, Fungal Bioinformatics Laboratory, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Seoul National University, Seoul, Korea
| | - Yang Kim
- Center for Food and Bioconvergence, Seoul National University, Seoul, Korea
| | - Sunghyung Kong
- Department of Agricultural Biotechnology, Fungal Bioinformatics Laboratory, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Seoul National University, Seoul, Korea
| | - Se Ryun Kim
- Department of Agricultural Biotechnology, Fungal Bioinformatics Laboratory, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Seoul National University, Seoul, Korea
| | - Hee-Sool Rho
- Department of Agricultural Biotechnology, Fungal Bioinformatics Laboratory, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Seoul National University, Seoul, Korea
| | - Junhyun Jeon
- Department of Agricultural Biotechnology, Fungal Bioinformatics Laboratory, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Seoul National University, Seoul, Korea
| | - Myung-Hwan Chi
- Department of Agricultural Biotechnology, Fungal Bioinformatics Laboratory, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Seoul National University, Seoul, Korea
| | - Soonok Kim
- National Institute of Biological Resources, Ministry of Environment, Incheon, Korea
| | - Chang Hyun Khang
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Seogchan Kang
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Fungal Bioinformatics Laboratory, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Seoul National University, Seoul, Korea
- * E-mail:
| |
Collapse
|
43
|
Raman V, Simon SA, Romag A, Demirci F, Mathioni SM, Zhai J, Meyers BC, Donofrio NM. Physiological stressors and invasive plant infections alter the small RNA transcriptome of the rice blast fungus, Magnaporthe oryzae. BMC Genomics 2013; 14:326. [PMID: 23663523 PMCID: PMC3658920 DOI: 10.1186/1471-2164-14-326] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 05/02/2013] [Indexed: 11/21/2022] Open
Abstract
Background The rice blast fungus, Magnaporthe oryzae is a destructive pathogen of rice and other related crops, causing significant yield losses worldwide. Endogenous small RNAs (sRNAs), including small interfering RNAs (siRNAs) and microRNAs (miRNAs) are critical components of gene regulation in many eukaryotic organisms. Recently several new species of sRNAs have been identified in fungi. This fact along with the availability of genome sequence makes M. oryzae a compelling target for sRNA profiling. We have examined sRNA species and their biosynthetic genes in M. oryzae, and the degree to which these elements regulate fungal stress responses. To this end, we have characterized sRNAs under different physiological stress conditions, which had not yet been examined in this fungus. Results The resulting libraries are composed of more than 37 million total genome matched reads mapping to intergenic regions, coding sequences, retrotransposons, inverted, tandem, and other repeated regions of the genome with more than half of the small RNAs arising from intergenic regions. The 24 nucleotide (nt) size class of sRNAs was predominant. A comparison to transcriptional data of M. oryzae undergoing the same physiological stresses indicates that sRNAs play a role in transcriptional regulation for a small subset of genes. Support for this idea comes from generation and characterization of mutants putatively involved in sRNAs biogenesis; our results indicate that the deletion of Dicer-like genes and an RNA-Dependent RNA Polymerase gene increases the transcriptional regulation of this subset of genes, including one involved in virulence. Conclusions Various physiological stressors and in planta conditions alter the small RNA profile of the rice blast fungus. Characterization of sRNA biosynthetic mutants helps to clarify the role of sRNAs in transcriptional control.
Collapse
Affiliation(s)
- Vidhyavathi Raman
- Department of Plant & Soil Sciences, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Kim SG, Wang Y, Lee KH, Park ZY, Park J, Wu J, Kwon SJ, Lee YH, Agrawal GK, Rakwal R, Kim ST, Kang KY. In-depth insight into in vivo apoplastic secretome of rice-Magnaporthe oryzae interaction. J Proteomics 2013; 78:58-71. [DOI: 10.1016/j.jprot.2012.10.029] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 10/04/2012] [Accepted: 10/26/2012] [Indexed: 12/22/2022]
|
45
|
|
46
|
Oliver R. Genomic tillage and the harvest of fungal phytopathogens. THE NEW PHYTOLOGIST 2012; 196:1015-1023. [PMID: 22998436 DOI: 10.1111/j.1469-8137.2012.04330.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/06/2012] [Indexed: 06/01/2023]
Abstract
Genome sequencing has been carried out on a small selection of major fungal ascomycete pathogens. These studies show that simple models whereby pathogens evolved from phylogenetically related saprobes by the acquisition or modification of a small number of key genes cannot be sustained.The genomes show that pathogens cannot be divided into three clearly delineated classes (biotrophs, hemibiotrophs and necrotrophs) but rather into a complex matrix of categories each with subtly different properties. It is clear that the evolution of pathogenicity is ancient, rapid and ongoing. Fungal pathogens have undergone substantial genomic rearrangements that can be appropriately described as 'genomic tillage'. Genomic tillage underpins the evolution and expression of large families of genes - known as effectors - that manipulate and exploit metabolic and defence processes of plants so as to allow the proliferation of pathogens.
Collapse
Affiliation(s)
- Richard Oliver
- Australian Centre for Necrotrophic Fungal Pathogens, Department of Environment and Agriculture, Curtin University, Bentley, WA, 6845, Australia
| |
Collapse
|
47
|
Towards defining nutrient conditions encountered by the rice blast fungus during host infection. PLoS One 2012; 7:e47392. [PMID: 23071797 PMCID: PMC3468542 DOI: 10.1371/journal.pone.0047392] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 09/13/2012] [Indexed: 11/29/2022] Open
Abstract
Fungal diseases cause enormous crop losses, but defining the nutrient conditions encountered by the pathogen remains elusive. Here, we generated a mutant strain of the devastating rice pathogen Magnaporthe oryzae impaired for de novo methionine biosynthesis. The resulting methionine-requiring strain grew strongly on synthetic minimal media supplemented with methionine, aspartate or complex mixtures of partially digested proteins, but could not establish disease in rice leaves. Live-cell-imaging showed the mutant could produce normal appressoria and enter host cells but failed to develop, indicating the availability or accessibility of aspartate and methionine is limited in the plant. This is the first report to demonstrate the utility of combining biochemical genetics, plate growth tests and live-cell-imaging to indicate what nutrients might not be readily available to the fungal pathogen in rice host cells.
Collapse
|
48
|
Fernandez J, Wilson RA. Why no feeding frenzy? Mechanisms of nutrient acquisition and utilization during infection by the rice blast fungus Magnaporthe oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1286-93. [PMID: 22947213 DOI: 10.1094/mpmi-12-11-0326] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Magnaporthe oryzae is a devastating pathogen of rice and wheat. It is a hemibiotroph that exhibits symptomless biotrophic growth for the first 4 to 5 days of infection of susceptible cultivars before becoming necrotrophic. Here, we review recent advances in our understanding of how M. oryzae is able to grow, acquire nutrients, and interact with the plant cell during infection. In particular, we describe direct mechanisms (such as the integration of carbon and nitrogen metabolism by trehalose-6-phosphate synthase 1) and indirect mechanisms (such as the suppression of host responses) that allow M. oryzae to utilize available host nutrient. We contrast the ability of M. oryzae to voraciously metabolize a wide range of carbon and nitrogen sources in vitro with the carefully orchestrated development it displays during the biotrophic phase of in planta growth and ask how the two observations can be reconciled. We also look at how nutrient acquisition and effector biology might be linked in order to facilitate rapid colonization of the plant host.
Collapse
Affiliation(s)
- J Fernandez
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | |
Collapse
|
49
|
Liu XH, Gao HM, Xu F, Lu JP, Devenish RJ, Lin FC. Autophagy vitalizes the pathogenicity of pathogenic fungi. Autophagy 2012; 8:1415-25. [PMID: 22935638 DOI: 10.4161/auto.21274] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Plant pathogenic fungi utilize a series of complex infection structures, in particular the appressorium, to gain entry to and colonize plant tissue. As a consequence of the accumulation of huge quantities of glycerol in the cell the appressorium generates immense intracellular turgor pressure allowing the penetration peg of the appressorium to penetrate the leaf cuticle. Autophagic processes are ubiquitous in eukaryotic cells and facilitate the bulk degradation of macromolecules and organelles. The study of autophagic processes has been extended from the model yeast Saccharomyces cerevisiae to pathogenic fungi such as the rice blast fungus Magnaporthe oryzae. Significantly, null mutants for the expression of M. oryzae autophagy gene homologs lose their pathogenicity for infection of host plants. Clarification of the functions and network of interactions between the proteins expressed by M. oryzae autophagy genes will lead to a better understanding of the role of autophagy in fungal pathogenesis and help in the development of new strategies for disease control.
Collapse
Affiliation(s)
- Xiao-Hong Liu
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
50
|
Kim KS, Lee YH. Gene expression profiling during conidiation in the rice blast pathogen Magnaporthe oryzae. PLoS One 2012; 7:e43202. [PMID: 22927950 PMCID: PMC3424150 DOI: 10.1371/journal.pone.0043202] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 07/18/2012] [Indexed: 11/18/2022] Open
Abstract
Conidiation of phytopathogenic fungi is a key developmental process that plays a central role in their life cycles and in epidemics. However, there is little information on conidiation-induced molecular changes in the rice blast fungus Magnaporthe oryzae. As a first step to understand conidiogenesis in this fungus, we measured genome-wide gene expression profiles during conidiation using a whole genome oligonucleotide microarray. At a two-fold expression difference, approximately 4.42% and 4.08% of genes were upregulated and downregulated, respectively, during conidiation. The differentially expressed genes were functionally categorized by gene ontology (GO) term analysis, which demonstrated that the gene set encoded proteins that function in metabolism, cell wall biosynthesis, transcription, and molecule transport. To define the events of the complicated process of conidiogenesis, another set of microarray experiments was performed using a deletion mutant for MoHOX2, a stage-specific transcriptional regulator essential for conidial formation, which was expressed de novo in a conidiation-specific manner in M. oryzae. Gene expression profiles were compared between the wild-type and the ΔMohox2 mutant during conidiation. This analysis defined a common gene set that was upregulated in the wild-type and downregulated in the ΔMohox2 mutant during conidiation; this gene set is expected to include conidiation-related downstream genes of MoHOX2. We identified several hundred genes that are differentially-expressed during conidiation; our results serve as an important resource for understanding the conidiation, a process in M. oryzae, which is critical for disease development.
Collapse
Affiliation(s)
- Kyoung Su Kim
- Department of Applied Biology, College of Agriculture and Life Sciences, Research Institute for Agriculture and Life Sciences, Kangwon National University, Chuncheon, Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, Center for Fungal Pathogenesis, Center for Agricultural Biomaterials, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
- * E-mail:
| |
Collapse
|