1
|
de Souza Silva AP, de Camargo AC, Lazarini JG, Carvalho GR, de Alencar SM. How does in vitro gastrointestinal digestion affect the biological activities and phenolic profile of açaí (Euterpe oleracea) and inajá (Maximiliana maripa) by-products? Food Chem 2025; 484:144364. [PMID: 40252452 DOI: 10.1016/j.foodchem.2025.144364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/08/2025] [Accepted: 04/15/2025] [Indexed: 04/21/2025]
Abstract
This study investigates the bioactive potential and acute toxicity of açaí (Euterpe oleracea) and inajá (Maximiliana maripa) pomace extracts. The bioaccessible fraction (intestinal fraction, IF) of açaí pomace contained protocatechuic, ferulic, and vanillic acids, while inajá pomace had caffeic acid, glabridin, and an eriodictyol derivative. Both extracts showed similar total phenolic content and peroxyl radical scavenging capacity, with hypochlorous acid scavenging activity. Açaí pomace inhibited nuclear factor-κB (NF-κB) activation (85 % to 50 %) compared to inajá (33 % to 98 %), and both extracts reduced tumor necrosis factor-α (TNF-α) levels by over 81 % at 100 μg/mL, indicating anti-inflammatory properties. Acute toxicity tests in Galleria mellonella larvae showed no harmful effects at concentrations effective for antioxidant and anti-inflammatory activity. These findings suggest that açaí and inajá pomaces are promising natural sources of phenolic compounds for use in pharmaceuticals, cosmetics, and food industries.
Collapse
Affiliation(s)
- Anna Paula de Souza Silva
- Department of Food Science and Technology, "Luiz de Queiroz" College of Agriculture, ESALQ/USP, Piracicaba, São Paulo, Brazil..
| | | | - Josy Goldoni Lazarini
- Department of Food Science and Technology, "Luiz de Queiroz" College of Agriculture, ESALQ/USP, Piracicaba, São Paulo, Brazil
| | - Gisandro Reis Carvalho
- Department of Food Science and Technology, "Luiz de Queiroz" College of Agriculture, ESALQ/USP, Piracicaba, São Paulo, Brazil.; Federal Institute of Education, Science and Technology of São Paulo, IFSP, Barretos, São Paulo, Brazil
| | - Severino Matias de Alencar
- Department of Food Science and Technology, "Luiz de Queiroz" College of Agriculture, ESALQ/USP, Piracicaba, São Paulo, Brazil..
| |
Collapse
|
2
|
Lei X, Wang F, Zhang X, Huang J, Huang Y. The potential mechanisms by which Xiaoyao Powder may exert therapeutic effects on thyroid cancer were examined at various levels. Comput Biol Chem 2025; 117:108412. [PMID: 40056710 DOI: 10.1016/j.compbiolchem.2025.108412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/10/2025]
Abstract
BACKGROUND Thyroid cancer (TC) is the most prevalent endocrine malignancy, with a rising incidence necessitating safer treatment strategies to reduce overtreatment and its side effects. Xiaoyao Powder (XYP), a widely used herbal formula, shows promise in treating TC. This study aims to investigate the mechanisms by which XYP may affect TC. METHODS The components of XYP were identified through database retrieval, and targets related to TC were collected to construct a target network for key screening. GEO dataset samples analyzed immune cells and identified significantly differentially expressed core genes (SDECGs). Based on SDECG expression and clustering, samples were classified for comparison. WGCNA was employed to identify gene modules linked to clinical characteristics. ML models screened characteristic genes and constructed a nomogram validated using another GEO dataset. MR methods explored causal relationships between genes and TC. RESULTS The top ten active components of XYP were identified, along with 27 SDECGs that exhibited significant differences in immune cell infiltration between TC patients and normal controls. The nomogram effectively predicted TC risk, validated through ROC curves. Key characteristic genes included SMIM1, PPP1R16A, KIAA1462, DNAJC22, and EFNA5. CONCLUSION XYP may treat TC by regulating SMIM1, PPP1R16A, KIAA1462, DNAJC22, EFNA5, and associated immune pathways; this provides theoretical support for its potential mechanisms.
Collapse
Affiliation(s)
- Xiaoli Lei
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Feifei Wang
- Department of Quality Control, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng, China
| | - Xinying Zhang
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiaxi Huang
- Department of Pharmacy, Huoqiu County First People's Hospital, Liuan, China
| | - Yanqin Huang
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
3
|
Ji Y, Wang C, Lai H, Li X, Zhang Z, Wang X, Chen H, Tan C. Repurposing fenticonazole nitrate to restore colistin susceptibility in multidrug-resistant bacteria. Life Sci 2025; 370:123511. [PMID: 40037503 DOI: 10.1016/j.lfs.2025.123511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025]
Abstract
AIMS To explore the synergistic effect of the combination of FN and colistin on Escherichia coli and further elucidate the mechanism of this effect. MAIN METHODS Antimicrobial efficacy of the combination of fenticonazole nitrate and colistin against Escherichia coli in vitro using MIC assays, checkerboard assays, growth curves, and time-kill curves. Crystalline violet staining for detection of biofilm. Mechanisms analysis using fluorescence detection, SEM. Analysis of fenticonazole nitrate and MCR-1 interaction using molecular docking and ITC. Finally, the efficacy of combination therapy for MCR-1-positive Escherichia coli was assessed in vivo. KEY FINDINGS Fenticonazole nitrate significantly enhanced the ability of colistin to combat mcr-1-positive E. coli 42 in vitro. The combination could effectively inhibit biofilm formation and eradicate established biofilms. Fenticonazole nitrate and colistin could increase the outer membrane permeability of E. coli 42, disrupting the membrane potential and impairing PMF synthesis, which in turn led to a reduction in ATP levels and cell death. Further, we found that the outer membrane barrier of Gram-negative bacteria and the innate resistance mechanism mediated by efflux pumps can impair the antimicrobial activity of fenticonazole nitrate. Finally, the combination demonstrated strong synergistic effects in a mouse model of infection with mcr-1-positive E. coli 42. Compared to the colistin only group, the survival rate increased by 40 %. CONCLUSION Fenticonazole nitrate is a promising antibiotic adjuvant against infections caused by MCR-1-positive multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Yueyue Ji
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chenchen Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hongjiang Lai
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaodan Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhaoran Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Hongshan Laboratory, Wuhan 430000, Hubei, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430000, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan 430000, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430000, Hubei, China
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Hongshan Laboratory, Wuhan 430000, Hubei, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430000, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan 430000, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430000, Hubei, China.
| |
Collapse
|
4
|
Achary ST, Gupta P, Rajput A, Sohkhia W, Bonam SR, Sahu BD. Phytochemicals Targeting Inflammatory Pathways in Alcohol-Induced Liver Disease: A Mechanistic Review. Pharmaceuticals (Basel) 2025; 18:710. [PMID: 40430529 PMCID: PMC12115344 DOI: 10.3390/ph18050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Revised: 05/06/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Alcoholic beverages play a significant role in social engagement worldwide. Excessive alcohol causes a variety of health complications. Alcohol-induced liver disease (ALD) is responsible for the bulk of linked fatalities. The activation of immune mechanisms has a crucial role in developing ALD. No effective medication promotes liver function, shields the liver from harm, or aids in hepatic cell regeneration. Alcohol withdrawal is one of the most beneficial therapies for ALD patients, which improves the patient's chances of survival. There is a crucial demand for safe and reasonably priced approaches to treating it. Exploring naturally derived phytochemicals has been a fascinating path, and it has drawn attention in recent years to modulators of inflammatory pathways for the prevention and management of ALD. In this review, we have discussed the roles of various immune mechanisms in ALD, highlighting the importance of intestinal barrier integrity and gut microbiota, as well as the roles of immune cells and hepatic inflammation, and other pathways, including cGAS-STING, NLRP3, MAPK, JAK-STAT, and NF-kB. Further, this review also outlines the possible role of phytochemicals in targeting these inflammatory pathways to safeguard the liver from alcohol-induced injury. We highlighted that targeting immunological mechanisms using phytochemicals or herbal medicine may find a place to counteract ALD. Preclinical in vitro and in vivo investigations have shown promising results; nonetheless, more extensive work is required to properly understand these compounds' mechanisms of action. Clinical investigations are very crucial in transferring laboratory knowledge into effective patient therapy.
Collapse
Affiliation(s)
- Swati Tirunal Achary
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, India
| | - Prerna Gupta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, India
| | - Apoorva Rajput
- Vaccine Immunology Laboratory, Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Wanphidabet Sohkhia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, India
| | - Srinivasa Reddy Bonam
- Vaccine Immunology Laboratory, Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Bidya Dhar Sahu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, India
| |
Collapse
|
5
|
Çevik D, Masullo M, Lauro G, Napolitano A, Martucciello S, Paolella G, Polcaro LM, Bifulco G, Kırmızıbekmez H, Piacente S. Dihydroaurones and Isoflavan Derivatives from the Roots of Glycyrrhiza asymmetrica. JOURNAL OF NATURAL PRODUCTS 2025; 88:294-305. [PMID: 39871796 DOI: 10.1021/acs.jnatprod.4c00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
As a continuation of our pharmacognostic studies on different Glycyrrhiza species growing in Türkiye, the phytochemical investigation of the roots of Glycyrrhiza asymmetrica Hub.-Mor., a licorice species endemic to Türkiye, was carried out. This study yielded twenty-three secondary metabolites (1-23) including nine previously unreported compounds: two dihydroaurone-3-enoic acids, licoaurone A (1) and licoaurone B (2), isoflavan hydroxypreglabridin (3), isoflavanone cyclodeoxykievitone (4), flavanone-3-ol glycyasymmetrol (5), and four bi-isoflavans, glycyasymmetrica A-D (6-9). The structures of isolated compounds were established by NMR and MS experiments. The relative configurations (6-9) were assigned by a combined quantum mechanical/NMR approach, comparing the experimental 13C/1H NMR chemical shift data and the related predicted values. The absolute configurations of compounds 1-9 were assigned by comparison of their experimental electronic circular dichroism curves with the TDDFT-predicted curves. All isolated compounds were also evaluated for their cytotoxic activity against MCF-7, HeLa, HepG2, and A549 cancer cell lines by using MTT assay.
Collapse
Affiliation(s)
- Dicle Çevik
- Department of Pharmacognosy, Faculty of Pharmacy, Trakya University, TR-22030 Balkan Campus, Edirne, Türkiye
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, IT-84084 Fisciano, Salerno, Italy
| | - Milena Masullo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, IT-84084 Fisciano, Salerno, Italy
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, IT-84084 Fisciano, Salerno, Italy
| | - Assunta Napolitano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, IT-84084 Fisciano, Salerno, Italy
| | - Stefania Martucciello
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, IT-84084 Fisciano, Salerno, Italy
| | - Gaetana Paolella
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, IT-84084 Fisciano, Salerno, Italy
| | - Luciana Maria Polcaro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, IT-84084 Fisciano, Salerno, Italy
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, IT-84084 Fisciano, Salerno, Italy
| | - Hasan Kırmızıbekmez
- Department of Pharmacognosy, Faculty of Pharmacy, Yeditepe University, TR-34755 Kayışdağı, İstanbul, Türkiye
| | - Sonia Piacente
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, IT-84084 Fisciano, Salerno, Italy
| |
Collapse
|
6
|
Qiu Y, Wang W, Wang Q, Lin H, Bai Y, Zhang J. Effect of the flavonoid compound glabridin on tachyzoites and bradyzoites of Toxoplasma gondii. Parasit Vectors 2025; 18:56. [PMID: 39962518 PMCID: PMC11834506 DOI: 10.1186/s13071-025-06695-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/29/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Toxoplasma gondii (T. gondii) is one of the most prevalent parasites worldwide. At present, the majority of drugs used for the treatment of toxoplasmosis target the tachyzoite stage of T. gondii and are largely ineffective against bradyzoites. Furthermore, these treatments are typically accompanied by adverse events. Consequently, there is an urgent need for the development of novel drugs that are both safe and effective against T. gondii. METHODS A total of 20 flavonoids were preliminarily screened for their anti-T. gondii activity using microscopy. Next, the cell counting kit (CCK)-8 method was employed to assess the toxicity of glabridin (GLA) to host cells, while the RH strain of T.0gondii, which expresses β-galactosidase, was utilized to evaluate the inhibitory, anti-invasive, and antiproliferative effects of GLA on T. gondii. In addition, the Prugniaud (PRU) strain was employed to investigate the impact of GLA on the bradyzoites of T. gondii. Subsequently, the effect of GLA on the ultrastructure of T. gondii was examined via transmission electron microscopy (TEM), followed by an assessment of the influence of GLA on the autophagy and mitochondria of T. gondii through monodansylcadaverine (MDC), MitoTracker™ red CMXRos, and CM-HDCFDA and MitoSOX Red staining. RESULTS Among the 20 flavonoids assessed, GLA exhibited the most potent anti-T. gondii activity. Indeed, it significantly inhibited both the invasive and proliferative abilities of T. gondii, thereby disrupting its lytic cycle. Moreover, GLA markedly reduced the number of bradyzoites and concurrently inhibited cyst growth. Meanwhile, ultrastructural analysis revealed that GLA induced mitochondrial swelling, membrane rupture, and autophagy in T. gondii. Finally, fluorescent probe staining provided further evidence that GLA triggers mitochondrial dysfunction and autophagy in this parasite. CONCLUSIONS Our findings collectively indicate that the flavonoid compound GLA exhibits significant activity against both T. gondii tachyzoites and bradyzoites. The underlying mechanism of action potentially involves the induction of autophagy and mitochondrial dysfunction and the disruption of the membrane of T. gondii, thereby offering new avenues for treating toxoplasmosis and establishing a theoretical reference for future research.
Collapse
Affiliation(s)
- Yanhua Qiu
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weiwei Wang
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qing Wang
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hongling Lin
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yubin Bai
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China.
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou, China.
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| | - Jiyu Zhang
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China.
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou, China.
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
7
|
Hou SM, Yang CM, Huang WC, Cheng SW, Yen TL, Hsia CW, Hsieh CY, Hsia CH. Glabridin Suppresses Macrophage Activation by Lipoteichoic Acid In Vitro: The Crucial Role of MAPKs-IL-1β-iNOS Axis Signals in Peritoneal and Alveolar Macrophages. Biomolecules 2025; 15:174. [PMID: 40001477 PMCID: PMC11853366 DOI: 10.3390/biom15020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/12/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Inflammation, a fundamental response to infection and injury, involves interactions among immune cells and signaling molecules. Dysregulated inflammation contributes to diseases such as autoimmune disorders and cancer. Interleukin-1 beta (IL-1β), produced by macrophages in response to lipoteichoic acid (LTA) from Gram-positive bacteria, is a key inflammatory mediator. Glabridin (GBD), a bioactive compound from licorice root, exhibits anti-inflammatory properties. This study investigates GBD's effects on LTA-induced proinflammatory signaling in RAW 264.7 murine macrophages and alveolar macrophages, MH-S, focusing on IL-1β expression and signaling pathways. Cell viability assays confirmed that 20 μM GBD was non-cytotoxic. Confocal microscopy and quantitative PCR showed that GBD significantly reduced IL-1β fluorescence intensity, mRNA, and protein levels. GBD also inhibited inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production. Further analysis revealed that GBD suppressed NF-κB p65 nuclear translocation and selectively modulated MAPK pathway activation by reducing JNK and p38 MAPK phosphorylation without affecting ERK. Studies using specific inhibitors demonstrated that IL-1β production reduction was mechanistically linked to MAPK pathway inhibition. These findings highlight GBD's potential as a therapeutic agent for inflammatory diseases through its ability to modulate critical inflammatory mediators and signaling pathways.
Collapse
Affiliation(s)
- Shaw-Min Hou
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (S.-M.H.); (C.-M.Y.); (W.-C.H.)
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Department of Cardiovascular Center, Cathay General Hospital, Taipei 106, Taiwan
| | - Chun-Ming Yang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (S.-M.H.); (C.-M.Y.); (W.-C.H.)
- Department of Neurology, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Wei-Chieh Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (S.-M.H.); (C.-M.Y.); (W.-C.H.)
| | - Ssu-Wei Cheng
- Department of Pharmacy, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan;
| | - Ting-Lin Yen
- Department of Medical Research, Cathay General Hospital, Taipei 106, Taiwan;
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chih-Wei Hsia
- Department of Medical Research, Taipei Medical University Hospital, Taipei 110, Taiwan;
| | - Cheng-Ying Hsieh
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chih-Hsuan Hsia
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (S.-M.H.); (C.-M.Y.); (W.-C.H.)
- Translational Medicine Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan
| |
Collapse
|
8
|
Gupta M, Gupta K, Imran Ahmad M, Khanka S, Sarfraz A, Dixit S, Konwar R, Khan F, Singh D, Gupta A. Uncovering the Potential of O-Prenylated 3-Aryl-benzopyran Derivatives as Osteogenic and Cancer Cell Growth Inhibitory Agents. Chem Biodivers 2025; 22:e202401730. [PMID: 39318267 DOI: 10.1002/cbdv.202401730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 09/26/2024]
Abstract
Naturally, O-prenylation of 3-aryl-benzopyrans enhances the biological activities of these compounds. In this study, substituted O-prenylated 3-aryl-benzopyrans (21a-c, 22a-c, 23a-c, 24a-c 25a-c, 27 and 28) were synthesized and evaluated for osteogenic and cancer cell growth inhibitory potentials using cell-based in-vitro models. Amongst the target compounds, 21a, 22b, 23c, and 24c showed good osteogenic activity at 1 pM concentration, whereas 26 and 27 showed osteogenic activity at 100 pM and 10 nM, respectively. Compounds 21a, 22b, and 23c showed good cancer cell growth inhibitory activity against breast cancer cells (MCF-7 and MBA-231). Amongst active compounds, 27 presented the best anticancer activity against MDAMB-231 cells with selectivity towards non-cancerous cells [IC50 3.76 μM with SI 13.3]. The in-silico study of compounds showed their structural complementarities with the LBD of estrogen receptors and compliance with dragability parameters.
Collapse
Affiliation(s)
- Mini Gupta
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P. O. CIMAP, Kukrail Road, Lucknow, 226015, India
| | - Kratika Gupta
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P. O. CIMAP, Kukrail Road, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohd Imran Ahmad
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P. O. CIMAP, Kukrail Road, Lucknow, 226015, India
| | - Sonu Khanka
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram extension, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aqib Sarfraz
- Technology Dissemination and Computational Biology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P. O. CIMAP, Kukrail Road, Lucknow, 226015, India
| | - Shivani Dixit
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram extension, Lucknow, 226031, India
| | - Rituraj Konwar
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram extension, Lucknow, 226031, India
- CSIR-North East Institute of Science and Technology, Pulibor, Jorhat, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Feroz Khan
- Technology Dissemination and Computational Biology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P. O. CIMAP, Kukrail Road, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Divya Singh
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram extension, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Atul Gupta
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P. O. CIMAP, Kukrail Road, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
9
|
Li C, Wang Y, Zhang W, Yang X, Wang Y, Hou G, Wang D, Han B, Zhang Y. The antitumor mechanisms of glabridin and drug delivery strategies for enhancing its bioavailability. Front Oncol 2024; 14:1506588. [PMID: 39723390 PMCID: PMC11668808 DOI: 10.3389/fonc.2024.1506588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Glabridin, a flavonoid derived from the plant Glycyrrhiza glabra, has garnered significant attention due to its diverse pharmacological effects, including antioxidant, antibacterial, anti-inflammatory, hypolipidemic, and hypoglycemic activities. Studies have shown that glabridin exhibits substantial antitumor activity by modulating the proliferation, apoptosis, metastasis, and invasion of cancer cells through the targeting of various signaling pathways, thus indicating its potential as a therapeutic agent for malignant tumors. To enhance its solubility, stability, and bioavailability, several drug delivery systems have been developed, including liposomes, cyclodextrin inclusion complexes, nanoparticles, and polymeric micelles. These de.livery systems have shown promise in preclinical studies but face challenges in clinical translation, such as issues with biocompatibility, delivery efficiency, and long-term stability. A comprehensive analysis of the antitumor mechanism of glabridin and its novel drug delivery system is still lacking. Therefore, the authors performed a comprehensive review of recent literature on the antitumor effects of glabridin and its novel drug delivery systems, covering the antitumor mechanism, action targets, and novel drug delivery systems, offering new theoretical insights and development directions for its further advancement and clinical application.
Collapse
Affiliation(s)
- Chong Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yu Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wenjing Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiaoman Yang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yufang Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Guanqun Hou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Dongli Wang
- Department of Spleen and Stomach, Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bingbing Han
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yimin Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
10
|
Sangkaew W, Sianglum W, Wunnoo S, Voravuthikunchai SP, Joycharat N. Bioactive substance contents and therapeutic potential for skin inflammation of an herbal gel containing Derris reticulata and Glycyrrhiza glabra. PHARMACEUTICAL BIOLOGY 2024; 62:648-658. [PMID: 39150231 PMCID: PMC11332287 DOI: 10.1080/13880209.2024.2385456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/09/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024]
Abstract
CONTEXT Derris reticulata Craib. and Glycyrrhiza glabra L., of the Fabaceae, have been used as active components in Thai herbal formulas for the treatment of fever and skin diseases. OBJECTIVE To evaluate the physicochemical and pharmacological properties of the developed herbal gel formulation containing the combined extract from D. reticulata stem wood and G. glabra root (RGF). MATERIALS AND METHODS The potential of the herbal gel formulation containing RGF (8% w/w) as the active ingredient was studied by evaluating the anti-inflammatory, antioxidant, and anti-Staphylococcus aureus activities using quantitative reverse transcription-polymerase chain reaction assay, spectrophotometric method, and broth microdilution technique, respectively. The reference standards for the biological testing included Nω-nitro-L-arginine (L-NA), ascorbic acid, catechin, and penicillin G. The stability study of the RGF herbal gel was performed by a heating-cooling test (at 45 °C for 24 h and at 4 °C for 24 h/1 cycle; for 6 cycles), and the bioactive marker compounds in the herbal gel were investigated by the HPLC technique. RESULTS RGF showed promising pharmacological effects, particularly on its anti-inflammatory property (IC50 73.86 µg/mL), compared to L-NA (IC50 47.10 µg/mL). The RGF-containing gel demonstrated anti-inflammatory (IC50 3.59 mg/mL) and free radical scavenging effects (IC50 0.05-4.39 mg/mL), whereas it had no anti-S. aureus activity (MIC > 10 mg/mL). The active ingredient in the developed herbal gel significantly inhibited lipopolysaccharide-induced nitric oxide production by downregulating iNOS mRNA levels. The contents of the bioactive markers in the RGF gel (lupinifolin and glabridin) did not change significantly after stability testing. DISCUSSION AND CONCLUSIONS The RGF-containing gel has potential to be further developed as an herbal product for the treatment of skin inflammation.
Collapse
Affiliation(s)
- Warissara Sangkaew
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Wipawadee Sianglum
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Suttiwan Wunnoo
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | | | - Nantiya Joycharat
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
11
|
Belofsky G, Cruz C, Schultz T, Zapata M, Wilcox D, Wasmund B, Salomon CE, Spiegel PC. Antimicrobial isoflavans and other metabolites of Dalea nana. PHYTOCHEMISTRY 2024; 226:114224. [PMID: 39032794 DOI: 10.1016/j.phytochem.2024.114224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
The phytochemical investigation of extracts from Dalea nana roots and aerial parts led to the isolation of thirteen phenolic compounds. Three previously undescribed isoflavans, named verdeans A-C (1, 3, and 7), were characterized. Two additional isoflavans (2 and 5) were previously undescribed enantiomers of known compounds. A previously undescribed isoflavone (verdean D, 10) was found, and the known specialized metabolites, isoflavans 4, 6, 8, and 9, isoflavone 11, flavone 12, and a 2-arylbenzofuran 13, were also isolated. All but one (7) of the isoflavans were prenylated. The structures of the previously undescribed compounds were deduced by NMR spectroscopy, supported by HRESI mass spectrometry. The absolute configurations of 1-3, 5, and 7-9 were determined by ECD. Compounds 1, 3, 4, 6, and 8 exhibited in vitro antimicrobial activities, causing complete growth inhibition (MIC) at concentrations between 6.7 and 37.0 μM against Cryptococcus neoformans and between 8.9 and 25.0 μM against methicillin resistant Staphylococcus aureus (MRSA). The most broadly active previously undescribed compound was verdean A (1), with MIC values of 6.7 and 12.9 μM toward C. neoformans and MRSA, respectively, and an MIC of 10.0 μM against the often-intractable C. albicans.
Collapse
Affiliation(s)
- Gil Belofsky
- Department of Chemistry, Central Washington University, Ellensburg, WA, 98926, United States.
| | - Caroline Cruz
- Department of Chemistry, Central Washington University, Ellensburg, WA, 98926, United States
| | - Trevor Schultz
- Department of Chemistry, Central Washington University, Ellensburg, WA, 98926, United States
| | - Maxwell Zapata
- Department of Chemistry, Central Washington University, Ellensburg, WA, 98926, United States
| | - Dominique Wilcox
- Department of Chemistry, Central Washington University, Ellensburg, WA, 98926, United States
| | - Brendan Wasmund
- Department of Chemistry, Central Washington University, Ellensburg, WA, 98926, United States
| | - Christine E Salomon
- Center for Drug Design, University of Minnesota, Minneapolis, MN, 55455, United States
| | - P Clint Spiegel
- Department of Chemistry, Western Washington University, Bellingham, WA, 98225, United States
| |
Collapse
|
12
|
Khan AQ, Agha MV, Ahmad F, Anver R, Sheikhan KSAM, Mateo J, Alam M, Buddenkotte J, Uddin S, Steinhoff M. Metabolomics analyses reveal the crucial role of ERK in regulating metabolic pathways associated with the proliferation of human cutaneous T-cell lymphoma cells treated with Glabridin. Cell Prolif 2024; 57:e13701. [PMID: 38946222 PMCID: PMC11503255 DOI: 10.1111/cpr.13701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Cutaneous T-cell lymphomas (CTC) are a heterogeneous group of T-cell lymphoproliferative malignancies of the skin with limited treatment options, increased resistance and remission. Metabolic reprogramming is vital in orchestrating the uncontrolled growth and proliferation of cancer cells. Importantly, deregulated signalling plays a significant role in metabolic reprogramming. Considering the crucial role of metabolic reprogramming in cancer-cell growth and proliferation, target identification and the development of novel and multi-targeting agents are imperative. The present study explores the underlying mechanisms and metabolic signalling pathways associated with Glabridin mediated anti-cancer actions in CTCL. Our results show that Glabridin significantly inhibits the growth of CTCL cells through induction of programmed cell death (PCD) such as apoptosis, autophagy and necrosis. Interestingly, results further show that Glabridin induces PCD in CTCL cells by targeting MAPK signalling pathways, particularly the activation of ERK. Further, Glabridin also sensitized CTCL cells to the anti-cancer drug, bortezomib. Importantly, LC-MS-based metabolomics analyses further showed that Glabridin targeted multiple metabolites and metabolic pathways intricately involved in cancer cell growth and proliferation in an ERK-dependent fashion. Overall, our findings revealed that Glabridin induces PCD and attenuates the expression of regulatory proteins and metabolites involved in orchestrating the uncontrolled proliferation of CTCL cells through ERK activation. Therefore, Glabridin possesses important features of an ideal anti-cancer agent.
Collapse
Affiliation(s)
- Abdul Q. Khan
- Translational Research InstituteAcademic Health System, Hamad Medical CorporationDohaQatar
| | - Maha Victor Agha
- Translational Research InstituteAcademic Health System, Hamad Medical CorporationDohaQatar
| | - Fareed Ahmad
- Dermatology Institute, Academic Health SystemHamad Medical CorporationDohaQatar
- Department of Dermatology and VenereologyRumailah Hospital, Hamad Medical CorporationDohaQatar
| | - Rasheeda Anver
- Translational Research InstituteAcademic Health System, Hamad Medical CorporationDohaQatar
| | | | - Jericha Mateo
- Translational Research InstituteAcademic Health System, Hamad Medical CorporationDohaQatar
| | - Majid Alam
- Translational Research InstituteAcademic Health System, Hamad Medical CorporationDohaQatar
- Dermatology Institute, Academic Health SystemHamad Medical CorporationDohaQatar
- Department of Dermatology and VenereologyRumailah Hospital, Hamad Medical CorporationDohaQatar
| | - Joerg Buddenkotte
- Dermatology Institute, Academic Health SystemHamad Medical CorporationDohaQatar
- Department of Dermatology and VenereologyRumailah Hospital, Hamad Medical CorporationDohaQatar
| | - Shahab Uddin
- Translational Research InstituteAcademic Health System, Hamad Medical CorporationDohaQatar
- Dermatology Institute, Academic Health SystemHamad Medical CorporationDohaQatar
- Laboratory Animal Research CenterQatar UniversityDohaQatar
| | - Martin Steinhoff
- Translational Research InstituteAcademic Health System, Hamad Medical CorporationDohaQatar
- Dermatology Institute, Academic Health SystemHamad Medical CorporationDohaQatar
- Department of Dermatology and VenereologyRumailah Hospital, Hamad Medical CorporationDohaQatar
- Department of MedicineWeill Cornell Medicine Qatar, Qatar Foundation‐Education CityDohaQatar
- Department of MedicineWeill Cornell MedicineNew YorkNew YorkUSA
- College of MedicineQatar UniversityDohaQatar
| |
Collapse
|
13
|
Li X, Jiang H, Guo D, Huang W, Ren H, Zhang Q. Toxic Features and Metabolomic Intervention of Glabrene, an Impurity Found in the Pharmaceutical Product of Glabridin. Int J Mol Sci 2024; 25:8985. [PMID: 39201673 PMCID: PMC11354706 DOI: 10.3390/ijms25168985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/30/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Glabridin is a widely used product in the cosmetics and pharmaceutical industry, which is generally isolated and purified from Licorice (Glycyrrhiza glabra) extract in industrial production. It has wide clinical applications, but significant toxicity has also been reported. The purity of glabridin raw material is generally between 90% and 98%. We have identified a toxic impurity, glabrene, in the industrial product glabridin. Our investigation using an AB wild-type zebrafish toxicity test showed that glabrene has a significant lethal effect with an LC10 of 2.8 μM. Glabrene induced obvious malformation and disrupted cartilage development in zebrafish larvae. Furthermore, the compound significantly reduced larval mobility and caused damage to brain neural tissues. Metabolic pathway analysis and neurotransmitter quantification via ELISA indicated abnormal activation of the phenylalanine metabolic pathway, resulting in elevated dopamine and acetylcholine levels in vivo. These findings provide insights into the potential risks of glabrene contamination and offer a new reference point for enhancing safety measures and quality controls in licorice-derived products.
Collapse
Affiliation(s)
- Xue Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China; (X.L.); (H.J.); (D.G.); (W.H.)
| | - Haixin Jiang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China; (X.L.); (H.J.); (D.G.); (W.H.)
| | - Dongxue Guo
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China; (X.L.); (H.J.); (D.G.); (W.H.)
| | - Wen Huang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China; (X.L.); (H.J.); (D.G.); (W.H.)
| | - Houpu Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China;
| | - Qiang Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China; (X.L.); (H.J.); (D.G.); (W.H.)
| |
Collapse
|
14
|
Liao C, Yu C, Guo J, Guan M. Subinhibitory concentrations of glabridin from Glycyrrhiza glabra L. reduce Listeria monocytogenes motility and hemolytic activity but do not exhibit antimicrobial activity. Front Microbiol 2024; 15:1388388. [PMID: 39086651 PMCID: PMC11288822 DOI: 10.3389/fmicb.2024.1388388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024] Open
Abstract
Increases in the virulence and survival of some pathogens in the presence of subinhibitory concentrations of antibiotics have been reported. However, research on the effects of subinhibitory concentrations of antimicrobial substances derived from traditional Chinese medicine on pathogens is still insufficient. Glabridin is a well-known active isoflavone found in licorice roots that possesses a wide range of biological activities. Therefore, in this study, Listeria monocytogenes (L. monocytogenes) exposed to subinhibitory concentrations of glabridin was used as the research object. The minimum inhibitory concentration (MIC) was determined for L. monocytogenes. We investigated the impacts of subinhibitory concentrations of glabridin on the morphology, motility, biofilm formation, adherence, and survival of L. monocytogenes. The results indicated that the MIC of glabridin for L. monocytogenes was 31.25 μg/mL. At 1/8, 1/4, or 1/2 of the MIC, glabridin did not affect the growth, morphology, flagellar production, or biofilm formation of L. monocytogenes. However, subinhibitory concentrations of glabridin inhibited bacterial swimming and swarming motility and decreased the hemolytic activity of L. monocytogenes. Glabridin reduced the hemolytic activity of L. monocytogenes culture supernatants. The results also showed that subinhibitory concentrations of glabridin had no toxic effect on RAW264.7 cells but decreased the intracellular growth of L. monocytogenes in RAW264.7 cells. Furthermore, subinhibitory concentrations of glabridin triggered ROS production but did not induce MET formation in macrophages. In addition, glabridin did not enhance the capacity of L. monocytogenes to trigger METs or the extracellular killing of macrophages by METs. Thus, we conclude that subinhibitory concentrations of glabridin reduce L. monocytogenes motility and hemolytic activity but do not exhibit antimicrobial activity. Glabridin could be an interesting food additive as a bacteriostatic agent with anti-Listeria activity.
Collapse
Affiliation(s)
- Chengshui Liao
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China
| | - Chuan Yu
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, China
| | - Jinxiang Guo
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, China
| | - Mengxiang Guan
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, China
| |
Collapse
|
15
|
Wang L, Li C, Luo K. Biosynthesis and metabolic engineering of isoflavonoids in model plants and crops: a review. FRONTIERS IN PLANT SCIENCE 2024; 15:1384091. [PMID: 38984160 PMCID: PMC11231381 DOI: 10.3389/fpls.2024.1384091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024]
Abstract
Isoflavonoids, the major secondary metabolites within the flavonoid biosynthetic pathway, play important roles in plant defense and exhibit free radical scavenging properties in mammals. Recent advancements in understanding the synthesis, transport, and regulation of isoflavonoids have identified their biosynthetic pathways as promising targets for metabolic engineering, offering potential benefits such as enhanced plant resistance, improved biomass, and restoration of soil fertility. This review provides an overview of recent breakthroughs in isoflavonoid biosynthesis, encompassing key enzymes in the biosynthetic pathway, transporters influencing their subcellular localization, molecular mechanisms regulating the metabolic pathway (including transcriptional and post-transcriptional regulation, as well as epigenetic modifications). Metabolic engineering strategies aimed at boosting isoflavonoid content in both leguminous and non-leguminous plants. Additionally, we discuss emerging technologies and resources for precise isoflavonoid regulation. This comprehensive review primarily focuses on model plants and crops, offering insights for more effective and sustainable metabolic engineering approaches to enhance nutritional quality and stress tolerance.
Collapse
Affiliation(s)
- Lijun Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Chaofeng Li
- Maize Research Institute, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
16
|
Philipp-Dormston WG. Melasma: A Step-by-Step Approach Towards a Multimodal Combination Therapy. Clin Cosmet Investig Dermatol 2024; 17:1203-1216. [PMID: 38800358 PMCID: PMC11128260 DOI: 10.2147/ccid.s372456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024]
Abstract
Melasma is a common challenge in the field of pigmentary skin disorders, exerting a significant emotional and psychosocial burden on patients. The persistent and recurring nature of melasma complicates its management in routine clinical practice. This comprehensive review outlines a stepwise, practical approach encompassing diagnostic, preventive and therapeutic strategies for the management of melasma. A thorough exploration of aggravating and exacerbating factors, including sun exposure, hormonal imbalances, photosensitizing medication and cosmetics, is essential for a holistic assessment of the disease. With an emphasis on consistent and effective photoprotection, initial topical treatment modalities target the melanin production and/or the transfer of melanosomes to keratinocytes. Topical tyrosine inhibitors emerge as the first choice for reducing and preventing hyperpigmentation, with compounds such as thiamidol or tranexamic acid (TXA) being preferred for their safety profile over hydroquinone (HQ), kojic acid and arbutin. Combination with chemical peels can further enhance the therapeutic efficacy, even in cases with resistant melasma. In more severe cases, laser- and light-based interventions may be considered, but with the caveat of the likelihood of recurrence within 3-6 months. Assisted TXA delivery, via either fractional non-ablative laser or microneedling techniques, can further improve clinical outcomes. In conclusion, an optimal melasma management strategy is a multimodal approach, which includes effective photoprotection and a mix of different topical treatments targeting melanin synthesis, the anti-inflammatory environment, senescence and vascularity. Complementary procedures, such as chemical peels, and laser, light-based or microneedling procedures, with or without TXA, can further expedite melanin clearance in more severely affected instances. Individual discussions with patients regarding treatment expectations, recurrence likelihood and potential side effects are paramount to a comprehensive and successful therapeutic journey.
Collapse
Affiliation(s)
- Wolfgang G Philipp-Dormston
- Hautzentrum Köln/Cologne Dermatology, Cologne, Germany
- Faculty of Health, University of Witten/Herdecke, Witten, Germany
| |
Collapse
|
17
|
Esmaeili H, Mirjalili MH, Karami A, Nejad Ebrahimi S. Introducing the glycyrrhizic acid and glabridin rich genotypes from the cultivated Iranian licorice (Glycyrrhiza glabra L.) populations to exploit in production systems. Sci Rep 2024; 14:11034. [PMID: 38744977 PMCID: PMC11094143 DOI: 10.1038/s41598-024-61711-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
Currently, the stable, uniform, and highly efficient production of raw materials for pharmaceutical companies has received special attention. To meet these criteria and reduce harvesting pressure on the natural habitats of licorice (Glycyrrhiza glabra L.), cultivation of this valuable plant is inevitable. In the present study, to introduce the glycyrrhizic acid (GA)- and glabridin-rich genotypes from cultivated Iranian licorice, forty genotypes from eight high-potential wild populations were cultivated and evaluated under the same environmental conditions. The GA content varied from 5.00 ± 0.04 mg/g DW (TF2 genotype) to 23.13 ± 0.02 mg/g DW (I5 genotype). The highest and lowest glabridin content were found in the K2 (0.72 ± 0.021 mg/g DW) and M5 (0.02 ± 0.002 mg/g DW) genotypes, respectively. The rutin content in the leaves of the studied genotypes varied from 1.27 ± 0.02 mg/g DW in E4 to 3.24 ± 0.02 mg/g DW in BO5 genotypes. The genotypes from the Ilam population were characterized by higher vegetative growth and yield traits in the aerial parts and roots. The average root dry yield was 2.44 tons per hectare (t/ha) among the studied genotypes and a genotype from Ilam (I5) yielded the maximum value (3.08 ± 0.034 t/ha). The highest coefficient of variation among the genotypes was observed for leaf width (CV = 34.9%). The GA and glabridin-rich genotypes introduced in this study can be used in the future breeding programs to release new bred licorice cultivars.
Collapse
Affiliation(s)
- Hassan Esmaeili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Mohammad Hossein Mirjalili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran.
| | - Akbar Karami
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Samad Nejad Ebrahimi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| |
Collapse
|
18
|
Abdalla Ahmed MA, Ssemmondo E, Mark-Wagstaff C, Sathyapalan T. Advancements in the management of obesity: a review of current evidence and emerging therapies. Expert Rev Endocrinol Metab 2024; 19:257-268. [PMID: 38685693 DOI: 10.1080/17446651.2024.2347258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION Obesity is the modern world's current epidemic, with substantial health and economic impact. This study aimed to provide a narrative overview of the past, currently available, and future treatment options that offer therapeutic and preventive advantages for obesity management. AREAS COVERED Historically, rimonabant, and lorcaserin, were approved and used for managing non-syndromic obesity. Currently, orlistat, naltrexone/bupropion, glucagon-like peptide-1 receptor agonist (GLP-1 RA), and a few promising therapeutic agents are under investigation, including retatrutide, cagrilintide and orforglipron, which show promising weight reduction effects. We have developed a search string of the Medical Subject Headings (MeSH), including the terms GLP-1 RAs, obesity, and weight loss. This string was then used to perform a systematic literature search in the database including PubMed, EMBASE, MEDLINE, and Scopus up to January 31st, 2024. EXPERT OPINION Managing obesity often requires medical interventions, particularly in cases of severe obesity or obesity-related comorbidities. Thus, it is important to approach obesity management holistically, considering individual needs and circumstances. In our opinion, consulting with healthcare professionals is crucial to developing a personalized plan that addresses both weight loss and overall health improvement.
Collapse
Affiliation(s)
- Mohammed Altigani Abdalla Ahmed
- Department of Translational Research, Dasman Diabetes Institute, Kuwait City, Kuwait
- Hull York Medical School, University of Hull, Hull, UK
| | - Emmanuel Ssemmondo
- Hull York Medical School, University of Hull, Hull, UK
- Allam Diabetes Centre, Hull University Teaching Hospital, NHS Trust, Hull, UK
| | - Charlotte Mark-Wagstaff
- Hull York Medical School, University of Hull, Hull, UK
- Allam Diabetes Centre, Hull University Teaching Hospital, NHS Trust, Hull, UK
| | - Thozhukat Sathyapalan
- Hull York Medical School, University of Hull, Hull, UK
- Allam Diabetes Centre, Hull University Teaching Hospital, NHS Trust, Hull, UK
| |
Collapse
|
19
|
Eltahir AOE, Lategan KL, David OM, Pool EJ, Luckay RC, Hussein AA. Green Synthesis of Gold Nanoparticles Using Liquiritin and Other Phenolics from Glycyrrhiza glabra and Their Anti-Inflammatory Activity. J Funct Biomater 2024; 15:95. [PMID: 38667552 PMCID: PMC11051159 DOI: 10.3390/jfb15040095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Phenolic compounds are the main phytochemical constituents of many higher plants. They play an important role in synthesizing metal nanoparticles using green technology due to their ability to reduce metal salts and stabilize them through physical interaction/conjugation to the metal surface. Six pure phenolic compounds were isolated from licorice (Glycyrrhiza glabra) and employed in synthesizing gold nanoparticles (AuNPs). The isolated compounds were identified as liquiritin (1), isoliquiritin (2), neoisoliquiritin (3), isoliquiritin apioside (4), liquiritin apioside (5), and glabridin (6). The synthesized AuNPs were characterized using UV, zeta sizer, HRTEM, and IR and tested for their stability in different biological media. The phenolic isolates and their corresponding synthesized NP conjugates were tested for their potential in vitro cytotoxicity. The anti-inflammatory effects were investigated in both normal and inflammation-induced settings, where inflammatory biomarkers were stimulated using lipopolysaccharides (LPSs) in the RAW 264.7 macrophage cell line. LPS, functioning as a mitogen, promotes cell growth by reducing apoptosis, potentially contributing to observed outcomes. Results indicated that all six pure phenolic isolates inhibited cell proliferation. The AuNP conjugates of all the phenolic isolates, except liquiritin apioside (5), inhibited cell viability. LPS initiates inflammatory markers by binding to cell receptors and setting off a cascade of events leading to inflammation. All the pure phenolic isolates, except isoliquiritin, neoisoliquiritin, and isoliquiritin apioside inhibited the inflammatory activity of RAW cells in vitro.
Collapse
Affiliation(s)
- Ali O. E. Eltahir
- Chemistry Department, Cape Peninsula University of Technology, Bellville 7535, South Africa;
| | - Kim L. Lategan
- Department of Medical Bioscience, University of Western the Cape, Bellville 7535, South Africa; (K.L.L.); (O.M.D.); (E.J.P.)
| | - Oladipupo M. David
- Department of Medical Bioscience, University of Western the Cape, Bellville 7535, South Africa; (K.L.L.); (O.M.D.); (E.J.P.)
| | - Edmund J. Pool
- Department of Medical Bioscience, University of Western the Cape, Bellville 7535, South Africa; (K.L.L.); (O.M.D.); (E.J.P.)
| | - Robert C. Luckay
- Department of Chemistry and Polymer Science, Stellenbosch University, Matieland, Stellenbosch 7602, South Africa;
| | - Ahmed A. Hussein
- Chemistry Department, Cape Peninsula University of Technology, Bellville 7535, South Africa;
| |
Collapse
|
20
|
Weng J, Wang Y, Tan Z, Yuan Y, Huang S, Li Z, Li Y, Zhang L, Du Z. Glabridin reduces neuroinflammation by modulating inflammatory signals in LPS-induced in vitro and in vivo models. Inflammopharmacology 2024; 32:1159-1169. [PMID: 38372849 DOI: 10.1007/s10787-023-01424-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/23/2023] [Indexed: 02/20/2024]
Abstract
OBJECTIVES Chronic neuroinflammation has become one of the important causes of common neurodegeneration disease. Therefore, the target of this study was to explore the protective action of glabridin on lipopolysaccharide (LPS)-induced neuroinflammation in vivo and in vitro and its mechanism. METHODS The neuroinflammation model was established by LPS-induced BV2 cells. The cell viability with various concentrations of glabridin was determined by MTT assay, and the content of NO in each group was detected. A neuroinflammatory model was established in male C57BL/6J mice for a water maze test. Subsequently, NF-κB and SOD indices were measured by ELISA, GFAP and IBA-1 indices were measured by immunofluorescence, and Nissl staining was used to explore the Nissl bodies in the hippocampus of mice. RESULTS In vitro experiments, our results expressed that glabridin could markedly increase the cell activity of LPS-induced BV2 cells and reduce the NO expression in cells. It indicated that glabridin had a remarkable impact on the neuroinflammation of LPS-induced BV2 cell protection. In vivo neuroinflammation experiments, mice treated with different doses of glabridin showed significantly improved ability of memory compared with the LPS group in the Morris water maze test. The levels of NF-κB, GFAP, and the number of positive cells in Nissl staining were decreased. High-dose glabridin significantly increased the SOD content in the brain tissue and decreased the IBA-1 levels. CONCLUSION Glabridin can significantly reduce or even reverse LPS-induced neuroinflammation, which may be related to the fact that glabridin can reduce the NO expression, NF-κB, IBA-1, GFAP, and other inflammatory mediators, upregulate the expression of SOD to relieve oxidative stress of brain and inhibit the activation of gliocyte in brain tissue.
Collapse
Affiliation(s)
- Jiyu Weng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ying Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zekai Tan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanghe Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shiyuan Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zexi Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yiming Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China
| | - Lanyue Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Zhiyun Du
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
21
|
Rodríguez-Negrete EV, Morales-González Á, Madrigal-Santillán EO, Sánchez-Reyes K, Álvarez-González I, Madrigal-Bujaidar E, Valadez-Vega C, Chamorro-Cevallos G, Garcia-Melo LF, Morales-González JA. Phytochemicals and Their Usefulness in the Maintenance of Health. PLANTS (BASEL, SWITZERLAND) 2024; 13:523. [PMID: 38498532 PMCID: PMC10892216 DOI: 10.3390/plants13040523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
Inflammation is the immune system's first biological response to infection, injury, or irritation. Evidence suggests that the anti-inflammatory effect is mediated by the regulation of various inflammatory cytokines, such as nitric oxide, interleukins, tumor necrosis factor alpha-α, interferon gamma-γ, as well as the non-cytokine mediator, prostaglandin E2. Currently, the mechanism of action and clinical usefulness of phytochemicals is known; their action on the activity of cytokines, free radicals, and oxidative stress. The latter are of great relevance in the development of diseases, such that the evidence collected demonstrates the beneficial effects of phytochemicals in maintaining health. Epidemiological evidence indicates that regular consumption of fruits and vegetables is related to a low risk of developing cancer and other chronic diseases.
Collapse
Affiliation(s)
- Elda Victoria Rodríguez-Negrete
- Servicio de Gastroenterología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Mexico City 06720, Mexico;
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City C.P. 11340, Mexico;
| | - Ángel Morales-González
- Escuela Superior de Cómputo, Instituto Politécnico Nacional, Unidad Profesional ”A. López Mateos”, Ciudad de México 07738, Mexico
| | - Eduardo Osiris Madrigal-Santillán
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City C.P. 11340, Mexico;
| | - Karina Sánchez-Reyes
- Servicio de Cirugía General, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Mexico City 06720, Mexico;
| | - Isela Álvarez-González
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Zacatenco, Gustavo A. Madero, Mexico City 07738, Mexico; (I.Á.-G.); (E.M.-B.)
| | - Eduardo Madrigal-Bujaidar
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Zacatenco, Gustavo A. Madero, Mexico City 07738, Mexico; (I.Á.-G.); (E.M.-B.)
| | - Carmen Valadez-Vega
- Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, San Agustín Tlaxiaca 42080, Mexico;
| | - German Chamorro-Cevallos
- Laboratorio de Toxicología Preclínica, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City C.P. 07738, Mexico;
| | - Luis Fernando Garcia-Melo
- Laboratorio de Nanotecnología e Ingeniería Molecular, Área Electroquímica, Departamento de Química, CBI, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico;
| | - José A. Morales-González
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City C.P. 11340, Mexico;
| |
Collapse
|
22
|
Li D, Fan J, Du L, Ren G. Prenylated flavonoid fractions from Glycyrrhiza glabra alleviate insulin resistance in HepG2 cells by regulating the ERK/IRS-1 and PI3K/Akt signaling pathways. Arch Pharm Res 2024; 47:127-145. [PMID: 38267702 DOI: 10.1007/s12272-024-01485-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
Insulin resistance (IR) is a key factor in the pathogenesis of disrupted glucose metabolism. Although the extract of Glycyrrhiza glabra has shown significant hypoglycemic activity, its bioactive components remain to be identified, and their mechanisms of action, especially on hepatocyte glucose metabolism, are yet to be explored. In the present study, the primary compounds from Glycyrrhiza glabra [named prenylated flavonoid fractions (PFFs)] have been identified and their chemical structures have been elucidated. The therapeutic effects of PFFs extracted from G. glabra on glucose metabolism disorders and IR in high insulin-induced insulin-resistant HepG2 (IR-HepG2) cells have been determined. Glabridin (GLD) was used as a control. The results indicated that, similar to GLD, PFFs increased glucose consumption, glucose uptake, and translocation of glucose transporter 4 to the plasma membrane in IR-HepG2 cells. In addition, they enhanced the activities of glycogen synthase, glucokinase, and pyruvate kinase, while reducing the activities of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase. Furthermore, they activated the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway and suppressed the extracellular signal-regulated kinase/insulin receptor substrate-1 (ERK/IRS-1) pathway. These findings suggest that, similar to GLD, PFFs can alleviate impaired glucose metabolism and alleviate IR in IR-HepG2 cells.Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary.The authors and their affiliations have been confirmed as correct.
Collapse
Affiliation(s)
- Defeng Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Jinling Fan
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Lin Du
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Guoyan Ren
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
23
|
Islam MR, Osman OI, Hassan WMI. Identifying novel therapeutic inhibitors to target FMS-like tyrosine kinase-3 (FLT3) against acute myeloid leukemia: a molecular docking, molecular dynamics, and DFT study. J Biomol Struct Dyn 2024; 42:82-100. [PMID: 36995071 DOI: 10.1080/07391102.2023.2192798] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/10/2023] [Indexed: 03/31/2023]
Abstract
Around 30% of acute myeloid leukemia (AML) patients have triggering mutations in Feline McDonough Sarcoma (FMS)-like tyrosine kinase 3 (FLT3), which has been suggested as a possible therapeutic candidate for AML therapy. Many tyrosine kinase inhibitors are available and have a wide variety of applications in the treatment of cancer by inhibiting subsequent steps of cell proliferation. Therefore, our study aims to identify effective antileukemic agents against FLT3 gene. Initially, well-known antileukemic drug candidates have been chosen to generate a structure-based pharmacophore model to assist the virtual screening of 217,77,093 compounds from the Zinc database. The final hits compounds were retrieved and evaluated by docking against the target protein, where the top four compounds have been selected for the analysis of ADMET. Based on the density functional theory (DFT), the geometry optimization, frontier molecular orbital (FMO), HOMO-LUMO, and global reactivity descriptor values have been evaluated that confirming a satisfactory profile and reactivity order for the selected candidates. In comparison to control compounds, the docking results revealed that the four compounds had substantial binding energies (-11.1 to -11.5 kcal/mol) with FLT3. The physicochemical and ADMET (adsorption, distribution, metabolism, excretion, toxicity) prediction results corresponded to the bioactive and safe candidates. Molecular dynamics (MD) confirmed the better binding affinity and stability compared to gilteritinib as a potential FLT3 inhibitor. In this study, a computational approach has been performed that found a better docking and dynamics score against target proteins, indicating potent and safe antileukemic agents, furthermore in-vivo and in-vitro investigations are recommended.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Md Rashedul Islam
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Advanced Biological Invention Centre (Bioinventics), Rajshahi, Bangladesh
| | - Osman I Osman
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Chemistry, Faculty of Science, University of Khartoum, Khartoum, Sudan
| | - Walid M I Hassan
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
24
|
Wang R, Mao Y, Yu C, Rong Z, Wang R, Wang Y, Lv L, Gao Y, Wang Z, Zhang H. Research Progress of Natural Products with the Activity of Anti-nonalcoholic Steatohepatitis. Mini Rev Med Chem 2024; 24:1894-1929. [PMID: 38752645 DOI: 10.2174/0113895575306598240503054317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 10/16/2024]
Abstract
Nonalcoholic steatohepatitis (NASH), a multi-target disease, is becoming a global epidemic. Although several anti-NASH drug candidates are being evaluated in late-stage clinical trials, none have been approved by the FDA to date. Given the global prevalence of the disease, the lack of effective drugs, and the very limited therapeutic efficacy of most of the existing synthetic drugs focusing on a single target, there is an urgent need to continue to develop new therapeutic agents. In contrast, many natural products, including pure compounds and crude extracts, possess hepatoprotective activities. Usually, these natural components are characterized by multi-targeting and low side effects. Therefore, natural products are important resources for the development of new anti- NASH drugs. In this paper, we focus on reviewing the anti-NASH potential, structure, and some of the side effects of natural products based on structural classification. We hope this mini-review will help researchers design and develop new anti-NASH drugs, especially based on the structure of natural products.
Collapse
Affiliation(s)
- Rui Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuheng Mao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Chunping Yu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhenji Rong
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ruyue Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yixin Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Linjin Lv
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yang Gao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhigang Wang
- Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Hailong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
25
|
Poustforoosh A, Faramarz S, Negahdaripour M, Tüzün B, Hashemipour H. Tracing the pathways and mechanisms involved in the anti-breast cancer activity of glycyrrhizin using bioinformatics tools and computational methods. J Biomol Struct Dyn 2024; 42:819-833. [PMID: 37042955 DOI: 10.1080/07391102.2023.2196347] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/22/2023] [Indexed: 04/13/2023]
Abstract
A complete investigation to understand the pathways that could be affected by glycyrrhizin (licorice), as anti-breast cancer (BC) agent, has not been performed to date. This study aims to investigate the pathways involved in the anti-cancer activity of glycyrrhizin against BC. For this purpose, the target genes of glycyrrhizin were obtained from the ChEMBL database. The BC-associated genes for three types of BC (breast carcinoma, malignant neoplasm of breast, and triple-negative breast neoplasms) were retrieved from DisGeNET. The target genes of glycyrrhizin and the BC-associated genes were compared, and the genes with disease specificity index (DSI) > 0.6 were selected for further evaluation using in silico methods. The protein-protein interaction (PPI) network was constructed, and the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed. The potential complexes were further evaluated using molecular dynamics (MD) simulation. The results revealed that among 80 common genes, ten genes had DSI greater than 0.6, which included POLK, TACR2, MC3R, TBXAS1, HH1R, SLCO4A1, NPY2R, ADRA2C, ADRA1A, and SLCO2B1. The binding affinity of glycyrrhizin to the cognate proteins and binding characteristics were assessed using molecular docking and binding free energy calculations (MM/GBSA). POLK, TBXAS1, and ADRA1A showed the highest binding affinity with -8.9, -9.3, and -9.6 kcal/mol, respectively. The final targets had an association with BC at several stages of tumor growth. By affecting these targets, glycyrrhizin could influence and control BC efficiently. MD simulation suggested the pathways triggered by the complex glycyrrhizin-ADRA1A were more likely to happen.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Alireza Poustforoosh
- Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Faramarz
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas, Turkey
| | - Hassan Hashemipour
- Chemical Engineering Department, Faculty of Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
26
|
Liu C, Wang W, Gu J. Targeting ferroptosis: New perspectives of Chinese herbal medicine in the treatment of diabetes and its complications. Heliyon 2023; 9:e22250. [PMID: 38076182 PMCID: PMC10709212 DOI: 10.1016/j.heliyon.2023.e22250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 12/28/2024] Open
Abstract
Ferroptosis is a non-apoptotic mode of cell death. A large number of studies have confirmed that ferroptosis plays a vital role in the occurrence and development of diabetes and diabetic complications. Previous studies have found that Chinese herbal medicines have very promising results in the prevention and treatment of diabetes and diabetic complications, and some of these herbs or herbal natural compounds may act via the inhibition of ferroptosis. In this review, we summarized the relationship between ferroptosis and diabetes and diabetic complications, and discussed its molecular mechanisms. We also reviewed the published studies of herbal medicines or herbal natural compounds that improved diabetes or diabetic complications via the ferroptosis pathway. In addition, we are trying to provide new insights for better treatment of diabetes and diabetic complications with Chinese herbal medicine and its herbal compounds.
Collapse
Affiliation(s)
- Cuiping Liu
- Department of Endocrinology, The Second People's Hospital of Yibin City-West China Yibin Hospital, Sichuan University, Yibin, Sichuan, PR China
- Clinical Research and Translation Center, Second People's Hospital of Yibin City-West China Yibin Hospital, Sichuan University, Yibin, Sichuan, PR China
| | - Wuxi Wang
- Community Health Service Center of Tongyuanju, Chongqing, PR China
| | - Junling Gu
- Department of Endocrinology, The Second People's Hospital of Yibin City-West China Yibin Hospital, Sichuan University, Yibin, Sichuan, PR China
- Clinical Research and Translation Center, Second People's Hospital of Yibin City-West China Yibin Hospital, Sichuan University, Yibin, Sichuan, PR China
| |
Collapse
|
27
|
Ding K, Jiang W, Zhangwang J, Wang Y, Zhang J, Lei M. The potential of traditional herbal active ingredients in the treatment of sarcopenia animal models: focus on therapeutic effects and mechanisms. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3483-3501. [PMID: 37526688 DOI: 10.1007/s00210-023-02639-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
Sarcopenia is a major global public health problem that harms individual physical function. In 2018, the European Working Group on Sarcopenia in the Elderly 2 classified sarcopenia into primary and secondary sarcopenia. However, information on the pathogenesis and effective treatment of primary and secondary sarcopenia is limited. Traditional herbal active ingredients have biological activities that promote skeletal muscle health, showing potential preventive and therapeutic effects on sarcopenia. Therefore, this narrative review aims to provide a comprehensive overview of global traditional herbal active ingredients' beneficial therapeutic effects and molecular mechanisms on sarcopenia-related animal models. For this purpose, we conducted a literature search in three databases, PubMed, Web of Science, and Embase, consistent with the review objectives. After the screening, 12 animal studies met the review themes. The review results showed that the pathological mechanisms in sarcopenia-related animal models include imbalanced protein metabolism, oxidative stress, inflammation, apoptosis, insulin resistance, endoplasmic reticulum stress, impaired mitochondrial biogenesis, and autophagy-lysosome system aggravation. Eleven traditional herbal active ingredients exerted positive anti-sarcopenic effects by ameliorating these pathological mechanisms. This narrative review will provide meaningful insight into future studies regarding traditional herbal active ingredients for treating sarcopenia.
Collapse
Affiliation(s)
- Kaixi Ding
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Wei Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Juejue Zhangwang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yu Wang
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, 210029, China
| | - Jing Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Ming Lei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
28
|
Sharma R, Singla RK, Banerjee S, Sharma R. Revisiting Licorice as a functional food in the management of neurological disorders: Bench to trend. Neurosci Biobehav Rev 2023; 155:105452. [PMID: 37925093 DOI: 10.1016/j.neubiorev.2023.105452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/16/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023]
Abstract
Traditional and scientific evidence attribute numerous bioactivities of Licorice (Glycyrrhiza glabra Linn.) in aging-related disorders. In this state-of-art review, an extensive search in several databases was conducted to collect all relevant literature and comprehensively analyze Licorice's pharmacological attributes, neuroprotective properties, safety, and its mechanistic role in treating various neurological conditions. Network pharmacology was employed for the first time exploring the mechanistic role of Licorice in neurological disorders. Its neuroprotective role is attributed to phytoconstituents, including liquiritin, glycyrrhizic acid, liquiritigenin, glabridin, 18ß-glycyrrhetinic acid, quercetin, isoliquiritigenin, paratocarpin B, glycyglabrone, and hispaglabridin B, as evident from in vitro and in vivo studies. Network pharmacology analysis reveals that these compounds protect against long-term depression, aging-associated diseases, Alzheimer's disease, and other addictions through interactions with cholinergic, dopaminergic, and serotonergic proteins, validated in animal studies only. Future clinical trials are warranted as Licorice administration has a limiting factor of mild hypertension and hypokalemia. Hopefully, scientific updates on Licorice will propagate a paradigm shift in medicine, research propagation, and development of the central nervous system phytopharmaceuticals.
Collapse
Affiliation(s)
- Ruchi Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, BHU, Varanasi, Uttar Pradesh 221005, India
| | - Rajeev K Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Subhadip Banerjee
- Medicinal Plant Innovation Centre, Mae Fah Luang University, Chiang Rai, Thailand
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, BHU, Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
29
|
Magri M, Bouricha EM, Hakmi M, Jaoudi REL, Belyamani L, Ibrahimi A. In Silico Identification of Natural Food Compounds as Potential Quorum-Sensing Inhibitors Targeting the LasR Receptor of Pseudomonas aeruginosa. Bioinform Biol Insights 2023; 17:11779322231212755. [PMID: 38020496 PMCID: PMC10664429 DOI: 10.1177/11779322231212755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023] Open
Abstract
Pseudomonas aeruginosa is a major cause of nosocomial infections and is often associated with biofilm-mediated antibiotic resistance. The LasR protein is a key component of the quorum system in P. aeruginosa, allowing it to regulate its biofilm-induced pathogenicity. When the bacterial population reaches a sufficient density, the accumulation of N-(3-oxododecanoyl) acyl homoserine lactone (3O-C12-HSL) leads to the activation of the LasR receptor, which then acts as a transcriptional activator of target genes involved in biofilm formation and virulence, thereby increasing the bacteria's antibiotic resistance and enhancing its virulence. In this study, we performed a structure-based virtual screening of a natural food database of 10 997 compounds against the crystal structure of the ligand-binding domain of the LasR receptor (PDB ID: 3IX4). This allowed us to identify four molecules, namely ZINC000001580795, ZINC000014819517, ZINC000014708292, and ZINC000004098719, that exhibited a favorable binding mode and docking scores greater than -13 kcal/mol. Furthermore, the molecular dynamics simulation showed that these four molecules formed stable complexes with LasR during the 150-ns molecular dynamics (MD) simulation, indicating their potential for use as inhibitors of the LasR receptor in P. aeruginosa. However, further experimental validation is needed to confirm their activity.
Collapse
Affiliation(s)
- Meryam Magri
- Medical Biotechnology Laboratory (MedBiotech), Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
- Mohammed VI Center for Research & Innovation, Rabat, Morocco
| | - El Mehdi Bouricha
- Medical Biotechnology Laboratory (MedBiotech), Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
- Mohammed VI Center for Research & Innovation, Rabat, Morocco
| | - Mohammed Hakmi
- Medical Biotechnology Laboratory (MedBiotech), Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
- Mohammed VI Center for Research & Innovation, Rabat, Morocco
| | - Rachid EL Jaoudi
- Medical Biotechnology Laboratory (MedBiotech), Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
- Mohammed VI Center for Research & Innovation, Rabat, Morocco
- Emergency Department, Military Hospital Mohammed V, Rabat, Morocco
| | - Lahcen Belyamani
- Mohammed VI Center for Research & Innovation, Rabat, Morocco
- Emergency Department, Military Hospital Mohammed V, Rabat, Morocco
- Mohammed VI University of Sciences and Health, Casablanca, Morocco
| | - Azeddine Ibrahimi
- Medical Biotechnology Laboratory (MedBiotech), Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
- Mohammed VI Center for Research & Innovation, Rabat, Morocco
- Mohammed VI University of Sciences and Health, Casablanca, Morocco
| |
Collapse
|
30
|
Akash S, Bayıl I, Mahmood S, Mukerjee N, Mili TA, Dhama K, Rahman MA, Maitra S, Mohany M, Al-Rejaie SS, Ali N, Semwal P, Sharma R. Mechanistic inhibition of gastric cancer-associated bacteria Helicobacter pylori by selected phytocompounds: A new cutting-edge computational approach. Heliyon 2023; 9:e20670. [PMID: 37876433 PMCID: PMC10590806 DOI: 10.1016/j.heliyon.2023.e20670] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/09/2023] [Accepted: 10/04/2023] [Indexed: 10/26/2023] Open
Abstract
Background Helicobacter pylori (H. pylori) is a persistent bacterial inhabitant in the stomachs of approximately half the global populace. This bacterium is directly linked to chronic gastritis, leading to a heightened risk of duodenal and gastric ulcer diseases, and is the predominant risk factor for gastric cancer - the second most common cause of cancer-related deaths globally. The increasing prevalence of antibiotic resistance necessitates the exploration of innovative treatment alternatives to mitigate the H. pylori menace. Methods Initiating our study, we curated a list of thirty phytochemicals based on previous literature and subjected them to molecular docking studies. Subsequently, eight phytocompounds-Glabridin, Isoliquiritin, Sanguinarine, Liquiritin, Glycyrrhetic acid, Beta-carotin, Diosgenin, and Sarsasapogenin-were meticulously chosen based on superior binding scores. These were further subjected to an extensive computational analysis encompassing ADMET profiling, drug-likeness evaluation, principal component analysis (PCA), and molecular dynamic simulations (MDs) in comparison with the conventional drug, Mitomycin. Results The natural compounds investigated demonstrated superior docking affinities to H. pylori targets compared to the standard Mitomycin. Notably, the phytocompounds Diosgenin and Sarsasapogenin stood out due to their exceptional binding affinities and pharmacokinetic properties, including favorable ADMET profiles. Conclusion Our comprehensive and technologically-advanced approach showcases the potential of identified phytocompounds as pioneering therapeutic agents against H. pylori-induced gastric malignancies. In light of our promising in silico results, we recommend these natural compounds as potential candidates for advancing H. pylori-targeted drug development. Given their potential, we strongly advocate for subsequent in vitro and in vivo studies to validate their therapeutic efficacy against this formidable gastrointestinal bacterium.
Collapse
Affiliation(s)
- Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Birulia, 1216, Ashulia, Dhaka, Bangladesh
| | - Imren Bayıl
- Department of Bioinformatics and Computational Biology, Gaziantep University, Turkey
| | - Sajjat Mahmood
- Department of Microbiology, Jagannath University, Chittaranjan Avenue in Sadarghat, Dhaka, 1100, Bangladesh
| | - Nobendu Mukerjee
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute Of Medical and Technical Sciences, Chennai, India
- Department of Microbiology, West Bengal State University, West Bengal, Kolkata, 700126, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Tamanna Akter Mili
- Department of Pharmacy, University of Asia Pacific, 74/A Green Rd, Dhaka, 1205, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, 243122, Bareilly, Uttar Pradesh, India
| | | | - Swastika Maitra
- Department of Microbiology, Adamas University, West Bengal, Kolkata, 700126, India
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh, 1145, Saudi Arabia
| | - Salim S. Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh, 1145, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh, 1145, Saudi Arabia
| | - Prabhakar Semwal
- Department of Biotechnology, Graphic Era University, Dehradun, Uttarakhand, 248002, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
31
|
Burenjargal M, Narangerel T, Batmunkh T, Dong A, Idesh S. A review of the bioactive properties of Mongolian plants, with a focus on their potential as natural food preservatives. Food Sci Nutr 2023; 11:5736-5752. [PMID: 37823130 PMCID: PMC10563759 DOI: 10.1002/fsn3.3529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 10/13/2023] Open
Abstract
Consumers have recently preferred food that is easy to make and of excellent quality, as well as food that is safe, natural, and minimally processed, but has a longer shelf life. Food deteriorates over time as a result of microbiological, chemical, or physical changes. Phytochemicals derived from medicinal and food plants have long been recognized for their biological activity to protect plants. These bioactivities are designed to increase the shelf life of food while inhibiting the growth of microorganisms. The use of natural plant food preservatives containing bioactive compounds as health-promoting agents is particularly intriguing. Furthermore, due to their effectiveness against food spoilage and foodborne pathogens, natural plant-origin antimicrobial compounds have been investigated as alternatives to synthetic antimicrobial compounds for preserving food quality. This review focused on the plant composition and properties that can be utilized as a natural food preservative, as well as the possibilities of using Mongolian medicinal plants.
Collapse
Affiliation(s)
| | - Tuya Narangerel
- Department of ChemistryNational University of MongoliaUlaanbaatarMongolia
| | - Tuyagerel Batmunkh
- Department of Chemical and Biological EngineeringNational University of MongoliaUlaanbaatarMongolia
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of EducationInner Mongolia UniversityHohhotChina
| | - Saruul Idesh
- Department of ChemistryNational University of MongoliaUlaanbaatarMongolia
| |
Collapse
|
32
|
Kim M, Sung JS, Atchudan R, Syed A, Nadda AK, Kim DY, Ghodake GS. A rapid, high-yield and bioinspired synthesis of colloidal silver nanoparticles using Glycyrrhiza glabra root extract and assessment of antibacterial and phytostimulatory activity. Microsc Res Tech 2023; 86:1154-1168. [PMID: 37421302 DOI: 10.1002/jemt.24389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/15/2023] [Accepted: 06/24/2023] [Indexed: 07/10/2023]
Abstract
Silver nanoparticles (AgNPs) have emerged as highly effective antimicrobial agents against multidrug-resistant (MDR) pathogens. This study aims to employ green chemistry principles for AgNP synthesis involving phytochemical-rich extract from Glycyrrhiza glabra roots. The approach highlights using renewable feedstocks, safer chemicals, minimum byproducts, and process scale-up. The synthesis of AgNPs was assessed using a surface plasmon resonance band at 420 nm, and structural properties were characterized using TEM, x-ray diffraction, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. This method enables the production of high-yield dispersions of AgNPs with desired physicochemical characteristics, including dark yellow solution, size (~20 nm), spherical to an oval shape, crystal structure, and stable colloidal properties. The antimicrobial activity of AgNPs was investigated against the MDR bacteria strains of gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli). This work reveals that the antimicrobial activity of AgNPs can be influenced by bacterial cell wall components. The results demonstrate the strong interaction between AgNPs and E. coli, exhibiting a dose-dependent antibacterial response. The green approach facilitated the safer, facile, and rapid synthesis of colloidal dispersions of AgNPs, providing a sustainable and promising alternative to conventional chemical and physical methods. Furthermore, the effect of AgNPs on various growth parameters, including seed germination, root and shoot elongation, and dry weight biomass, was assessed for mung bean seedlings. The results revealed phytostimulatory effects, suggesting the promising prospects of AgNPs in the nano-priming of agronomic seeds. RESEARCH HIGHLIGHTS: Glycyrrhiza glabra root extract enabled rapid, high-yield, and eco-friendly synthesis of silver nanoparticles (AgNPs). Spectrophotometric analysis examined the optical properties, scalability, and stability of AgNPs. Transmission electron microscopy provided insights into the size, shape, and dispersity of AgNPs. Scanning electron microscopy revealed significant damage to gram-negative bacterial cell morphology and membrane integrity. AgNPs were found to enhance seed germination, seedling growth, and biomass yield of Vigna radiata.
Collapse
Affiliation(s)
- Min Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Gyeonggi, South Korea
| | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Goyang, Gyeonggi, South Korea
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Dae-Young Kim
- Department of Biological and Environmental Science, Dongguk University-Seoul, Goyang, Gyeonggi, South Korea
| | - Gajanan Sampatrao Ghodake
- Department of Biological and Environmental Science, Dongguk University-Seoul, Goyang, Gyeonggi, South Korea
| |
Collapse
|
33
|
Lin H, Zhou C, Yu KH, Lin YS, Wang LB, Zhang Y, Liu SX, Xu WY, Sun Y, Zhou TL, Cao JM, Ye JZ. Glabridin Functions as a Quorum Sensing Inhibitor to Inhibit Biofilm Formation and Swarming Motility of Multidrug-Resistant Acinetobacter baumannii. Infect Drug Resist 2023; 16:5697-5705. [PMID: 37667809 PMCID: PMC10475287 DOI: 10.2147/idr.s417751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023] Open
Abstract
Objective Acinetobacter baumannii is a hazardous bacterium that causes hospital-acquired nosocomial infections, and the advent of multidrug-resistant A. baumannii (MDR-AB) strains is concerning. Novel antibacterial therapeutic strategies must be developed. The biological effects of glabridin on MDR-AB were investigated in this study. Methods The minimum inhibitory concentrations (MICs) of glabridin against eight clinical MDR-AB strains were determined using the broth microdilution technique. Crystal violet staining was used to assess biofilm development, which has significant contribution to bacterial resistance. Swarming motility was measured according to surface growth zone of MDR-AB on LB agar medium. qRT-PCR was used to evaluate the expression of quorum sensing genes abaI and abaR. Glabridin and routinely used therapeutic antimicrobial agents were tested for synergistic action using the checkerboard method. Results According to our findings, glabridin suppressed MDR-AB growth at high doses (512-1024 μg/mL). The 1/4 MIC of glabridin significantly decreased MDR-AB biofilm formation by 19.98% (P < 0.05), inhibited MDR-AB motility by 44.27% (P < 0.05), whereas the 1/2 MIC of glabridin dramatically reduced MDR-AB biofilm development by 27.43% (P < 0.01), suppressed MDR-AB motility by 50.64% (P < 0.05). Mechanistically, glabridin substantially downregulated the expression of quorum sensing-related genes abaI and abaR by up to 39.12% (P < 0.001) and 25.19% (P < 0.01), respectively. However, no synergistic effect between glabridin and antibacterial drugs was found. Conclusion Glabridin might be a quorum sensing inhibitor that inhibits MDR-AB biofilm development and swarming motility.
Collapse
Affiliation(s)
- Hang Lin
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
- School of the First Clinical Medical Sciences, Wenhzou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Cui Zhou
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Kai-Hang Yu
- Pathology Department, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Yi-Shuai Lin
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Ling-Bo Wang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Ying Zhang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Shi-Xing Liu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Wen-Ya Xu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Yao Sun
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Tie-Li Zhou
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Jian-Ming Cao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Jian-Zhong Ye
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
34
|
Yan C, Xing M, Zhang S, Gao Y. Clinical Development and Evaluation of a Multi-Component Dissolving Microneedle Patch for Skin Pigmentation Disorders. Polymers (Basel) 2023; 15:3296. [PMID: 37571190 PMCID: PMC10422440 DOI: 10.3390/polym15153296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Excessive melanin deposition in the skin leads to various skin pigmentation diseases, such as chloasma and age spots. The deposition is induced by several factors, including tyrosinase activities and ultraviolet-induced oxidative stress. Herein, we propose a multi-component, multi-pathway drug combination, with glabridin, 3-O-ethyl-L-ascorbic acid, and tranexamic acid employed as, respectively, a tyrosinase inhibitor, an antioxidant, and a melanin transmission inhibitor. Considering the poor skin permeability associated with topical application, dissolving microneedles (MNs) prepared with hyaluronic acid/poly(vinyl alcohol)/poly(vinylpyrrolidone) were developed to load the drug combination. The drug-loaded microneedles (DMNs) presented outstanding skin insertion, dissolution, and drug delivery properties. In vitro experiments confirmed that DMNs loaded with active ingredients had significant antioxidant and inhibitory effects on tyrosinase activity. Furthermore, the production of melanin both in melanoma cells (B16-F10) and in zebrafish was directly reduced after using DMNs. Clinical studies demonstrated the DMNs' safety and showed that they have the ability to effectively reduce chloasma and age spots. This study indicated that a complex DMN based on a multifunctional combination is a valuable depigmentation product worthy of clinical application.
Collapse
Affiliation(s)
- Chenxin Yan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengzhen Xing
- Key Laboratory of New Material Research Institute, Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Suohui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
- Beijing CAS Microneedle Technology Ltd., Beijing 102609, China
| | - Yunhua Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing CAS Microneedle Technology Ltd., Beijing 102609, China
| |
Collapse
|
35
|
Lim HJ, Park JE, Han JS. HM-chromanone alleviates hyperglycemia and inflammation in mice with endotoxin-induced insulin resistance. Toxicol Res (Camb) 2023; 12:665-674. [PMID: 37663814 PMCID: PMC10470335 DOI: 10.1093/toxres/tfad057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 09/05/2023] Open
Abstract
This study was designed to investigate whether (E)-5-hydroxy-7-methoxy-3-(2'-hydroxybenzyl)-4-chromanone alleviates inflammation and hyperglycemia in mice with endotoxin-induced insulin resistance. (E)-5-hydroxy-7-methoxy-3-(2'-hydroxybenzyl)-4-chromanone (10, 30, and 50 mg/kg bodyweight) was orally pre-administered to C57BL/6 J mice. An hour later, lipopolysaccharides (20 mg/kg bodyweight) was administered intraperitoneally to induce endotoxins. Blood samples were collected from the tail vein of the mice every 0, 30, and 90 min. The results indicated that (E)-5-hydroxy-7-methoxy-3-(2'-hydroxybenzyl)-4-chromanone effectively regulated blood glucose levels in mice with endotoxin-induced insulin resistance. Furthermore, (E)-5-hydroxy-7-methoxy-3-(2'-hydroxybenzyl)-4-chromanone significantly reduced the phosphorylation of mammalian target of rapamycin, ribosomal protein S6 kinase 1, and protein kinase C θ. Additionally, (E)-5-hydroxy-7-methoxy-3-(2'-hydroxybenzyl)-4-chromanone suppressed the phosphorylation of c-Jun-NH2-terminal kinase and IkB kinase β, thereby decreasing the phosphorylation of inhibitor of nuclear factor kappa-B α and activating the nuclear factor-κB and activator protein-1 in the liver. Therefore, the expression of tumor necrosis factor-α, interleukin-6, and interleukin-1β was significantly reduced by suppressing the nuclear factor-κB and activator protein 1 activity. Suppression of mammalian target of rapamycin, S6 kinase 1, protein kinase C θ, c-Jun-NH2-terminal kinase, and IkB kinase β also ameliorated insulin resistance by reducing the phosphorylation of insulin receptor substrate-1 serine 307, thereby decreasing hyperglycemia. These findings suggest that (E)-5-hydroxy-7-methoxy-3-(2'-hydroxybenzyl)-4-chromanone can alleviate hyperglycemia and inflammation in mice with endotoxin-induced insulin resistance.
Collapse
Affiliation(s)
- Ha J Lim
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, The Republic of Korea
| | - Jae E Park
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, The Republic of Korea
| | - Ji S Han
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, The Republic of Korea
| |
Collapse
|
36
|
Bahadori Ganjabadi P, Farzaneh M, Mirjalili MH. Development and Optimization of Culture Medium for the Production of Glabridin by Aspergillus eucalypticola: An Endophytic Fungus Isolated from Glycyrrhiza glabra L. (Fabaceae). MYCOBIOLOGY 2023; 51:230-238. [PMID: 37711984 PMCID: PMC10498790 DOI: 10.1080/12298093.2023.2225253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/11/2023] [Accepted: 06/09/2023] [Indexed: 09/16/2023]
Abstract
Glabridin is a well-known active isoflavone found in the root of licorice (Glycyrrhiza glabra L.) that possess a wide range of biological activity. Plant cells, hairy roots, and fungal endophytes cultures are the most important alternative methods for plant resources conservation and sustainable production of natural compounds, which has received much attention in recent decades. In the present study, an efficient culture condition was optimized for the biomass accumulation and glabridin production from fungal endophyte Aspergillus eucalypticola SBU-11AE isolated from licorice root. Type of culture medium, range of pH, and licorice root extract (as an elicitor) were tested. The results showed that the highest and lowest biomass production was observed on PCB medium (6.43 ± 0.32 g/l) and peptone malt (5.85 + 0.11 g/l), respectively. The medium culture PCB was produced the highest level of glabridin (7.26 ± 0.44 mg/l), while the lowest level (4.47 ± 0.02 mg/l) was obtained from the medium peptone malt. The highest biomass (8.51 ± 0.43 g/l) and glabridin (8.30 ± 0.51 mg/l) production were observed from the PCB medium adjusted with pH = 6, while the lowest value of both traits was obtained from the same medium with pH = 7. The highest production of total glabridin (10.85 ± 0.84 mg/l) was also obtained from the culture medium treated with 100 mg/l of the plant root extract. This information can be interestingly used for the commercialization of glabridin production for further industrial applications.
Collapse
Affiliation(s)
- Parisa Bahadori Ganjabadi
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Mohsen Farzaneh
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Hossein Mirjalili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
37
|
Wang M, Zhang F, Zhou J, Gong K, Chen S, Zhu X, Zhang M, Duan Y, Liao C, Han J, Yin Z. Glabridin Ameliorates Alcohol-Caused Liver Damage by Reducing Oxidative Stress and Inflammation via p38 MAPK/Nrf2/NF-κB Pathway. Nutrients 2023; 15:2157. [PMID: 37432306 PMCID: PMC10180694 DOI: 10.3390/nu15092157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 07/12/2023] Open
Abstract
Licorice is a traditional and versatile herbal medicine and food. Glabridin (Gla) is a kind of isoflavone extracted from the licorice root, which has anti-obesity, anti-atherosclerotic, and antioxidative effects. Alcoholic liver disease (ALD) is a widespread liver disease induced by chronic alcohol consumption. However, studies demonstrating the effect of Gla on ALD are rare. The research explored the positive effect of Gla in C57BL/6J mice fed by the Lieber-DeCarli ethanol mice diet and HepG2 cells treated with ethanol. Gla alleviated ethanol-induced liver injury, including reducing liver vacuolation and lipid accumulation. The serum levels of inflammatory cytokines were decreased in the Gla-treated mice. The reactive oxygen species and apoptosis levels were attenuated and antioxidant enzyme activity levels were restored in ethanol-induced mice by Gla treatment. In vitro, Gla reduced ethanol-induced cytotoxicity, nuclear factor kappa B (NF-κB) nuclear translocation, and enhanced nuclear factor (erythroid-derived 2)-like 2 (Nrf2) nuclear translocation. Anisomycin (an agonist of p38 MAPK) eliminated the positive role of Gla on ethanol-caused oxidative stress and inflammation. On the whole, Gla can alleviate alcoholic liver damage via the p38 MAPK/Nrf2/NF-κB pathway and may be used as a novel health product or drug to potentially alleviate ALD.
Collapse
Affiliation(s)
- Mengyao Wang
- College of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Feng Zhang
- College of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jie Zhou
- College of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ke Gong
- College of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shasha Chen
- College of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xinran Zhu
- College of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Mengxue Zhang
- College of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yajun Duan
- Department of Cardiology, The First Affiliated Hospital of University of Science and Technology of China, Hefei 230001, China
| | - Chenzhong Liao
- College of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jihong Han
- College of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zequn Yin
- Department of Cardiology, The First Affiliated Hospital of University of Science and Technology of China, Hefei 230001, China
| |
Collapse
|
38
|
Sulaiman D, Choi LS, Lee HM, Shin J, Kim DH, Lee KW, Eftekhari P, Quartier A, Park HS, Reddy ST. Vutiglabridin Modulates Paraoxonase 1 and Ameliorates Diet-Induced Obesity in Hyperlipidemic Mice. Biomolecules 2023; 13:687. [PMID: 37189434 PMCID: PMC10135725 DOI: 10.3390/biom13040687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Vutiglabridin is a clinical-stage synthetic small molecule that is being developed for the treatment of obesity and its target proteins have not been fully identified. Paraoxonase-1 (PON1) is an HDL-associated plasma enzyme that hydrolyzes diverse substrates including oxidized low-density lipoprotein (LDL). Furthermore, PON1 harbors anti-inflammatory and antioxidant capacities and has been implicated as a potential therapeutic target for treating various metabolic diseases. In this study, we performed a non-biased target deconvolution of vutiglabridin using Nematic Protein Organisation Technique (NPOT) and identified PON1 as an interacting protein. We examined this interaction in detail and demonstrate that vutiglabridin binds to PON1 with high affinity and protects PON1 against oxidative damage. Vutiglabridin treatment significantly increased plasma PON1 levels and enzyme activity but not PON1 mRNA in wild-type C57BL/6J mice, suggesting that vutiglabridin modulates PON1 post-transcriptionally. We further investigated the effects of vutiglabridin in obese and hyperlipidemic LDLR-/- mice and found that it significantly increases plasma PON1 levels, while decreasing body weight, total fat mass, and plasma cholesterol levels. Overall, our results demonstrate that PON1 is a direct, interacting target of vutiglabridin, and that the modulation of PON1 by vutiglabridin may provide benefits for the treatment of hyperlipidemia and obesity.
Collapse
Affiliation(s)
- Dawoud Sulaiman
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of CA Los Angeles, Los Angeles, CA 90095, USA
| | | | - Hyeong Min Lee
- Glaceum Incorporation, Suwon 16675, Republic of Korea (J.S.)
| | - Jaejin Shin
- Glaceum Incorporation, Suwon 16675, Republic of Korea (J.S.)
| | - Dong Hwan Kim
- Department of Bio & Medical Big Data, Division of Life Science, Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Keun Woo Lee
- Department of Bio & Medical Big Data, Division of Life Science, Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | | | | | - Hyung Soon Park
- Glaceum Incorporation, Suwon 16675, Republic of Korea (J.S.)
| | - Srinivasa T. Reddy
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of CA Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
39
|
Estrogenic flavonoids and their molecular mechanisms of action. J Nutr Biochem 2023; 114:109250. [PMID: 36509337 DOI: 10.1016/j.jnutbio.2022.109250] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Flavonoids are a major group of phytoestrogens associated with physiological effects, and ecological and social impacts. Although the estrogenic activity of flavonoids was reported by researchers in the fields of medical, environmental and food studies, their molecular mechanisms of action have not been comprehensively reviewed. The estrogenic activity of the respective classes of flavonoids, anthocyanidins/anthocyanins, 2-arylbenzofurans/3-arylcoumarins/α-methyldeoxybenzoins, aurones/chalcones/dihydrochalcones, coumaronochromones, coumestans, flavans/flavan-3-ols/flavan-4-ols, flavanones/dihydroflavonols, flavones/flavonols, homoisoflavonoids, isoflavans, isoflavanones, isoflavenes, isoflavones, neoflavonoids, oligoflavonoids, pterocarpans/pterocarpenes, and rotenone/rotenoids, was summarized through a comprehensive literature search, and their structure-activity relationship, biological activities, signaling pathways, and applications were discussed. Although the respective classes of flavonoids contained at least one chemical mimicking estrogen, the mechanisms varied, such as those with estrogenic, anti-estrogenic, non-estrogenic, and biphasic activities, and additional activities through crosstalk/bypassing, which exert biological activities through cell signaling pathways. Such mechanistic variations of estrogen action are not limited to flavonoids and are observed among other broad categories of chemicals, thus this group of chemicals can be termed as the "estrogenome". This review article focuses on the connection of estrogen action mainly between the outer and the inner environments, which represent variations of chemicals and biological activities/signaling pathways, respectively, and form the basis to understand their applications. The applications of chemicals will markedly progress due to emerging technologies, such as artificial intelligence for precision medicine, which is also true of the study of the estrogenome including estrogenic flavonoids.
Collapse
|
40
|
Chen J, Tang Z, Chen Z, Wei Y, Liang H, Zhang X, Gao Z, Zhu H. MicroRNA-218-5p regulates inflammation response via targeting TLR4 in atherosclerosis. BMC Cardiovasc Disord 2023; 23:122. [PMID: 36890438 PMCID: PMC9996974 DOI: 10.1186/s12872-023-03124-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/15/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND To investigate the expression of miR-218-5p in atherosclerosis patients and its effect on ox-LDL induced THP-1-derived macrophage inflammatory response. METHODS RT-qPCR detected the expression of serum miR-218-5p, and the diagnostic value of miR-218-5p was analyzed by ROC curve. Pearson correlation coefficient was used to evaluate the correlation between miR-218-5p and CIMT and CRP. THP-1 cells were treated with ox-LDL to construct foam cell model. The expression of miR-218-5p was regulated by in vitro transfection technique, and the effects of miR-218-5p on cell viability, apoptosis and inflammation were investigated. Luciferase reporter genes were used to analyze target genes of miR-218-5p in cell models. RESULTS The expression of miR-218-5p in the atherosclerosis cohort was significantly reduced, and miR-218-5p showed a good ability to distinguish patients from healthy people. Correlation analysis showed that the level of miR-218-5p was negatively correlated with the levels of CIMT and CRP. Cytological studies showed that the expression of miR-218-5p in macrophages decreased after ox-LDL induction. ox-LDL treatment on macrophages resulted in decreased cell viability, increased cell apoptosis and production of inflammatory cytokines, which contributed to the exacerbation of plaque formation. However, the above situation was reversed after upregulation of miR-218-5p. Bioinformatics analysis showed that TLR4 may be the target gene of miR-218-5p, and this hypothesis was proved by luciferase reporter gene assay. CONCLUSIONS The expression of miR-218-5p is reduced in atherosclerosis, and it may regulate the inflammatory response of atherosclerotic foam cells by targeting TLR4, suggesting that miR-218-5p may be a promising target for clinical atherosclerosis therapy.
Collapse
Affiliation(s)
- Jiajuan Chen
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, No. 32 Renminnan Road, Shiyan, 442000, Hubei, China
| | - Zusheng Tang
- Department of General Practitioner, Taihe Hospital, Hubei University of Medicine, No. 32 Renminnan Road, Shiyan, 442000, Hubei, China
| | - Zhen Chen
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, No. 32 Renminnan Road, Shiyan, 442000, Hubei, China
| | - Yunjie Wei
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, No. 32 Renminnan Road, Shiyan, 442000, Hubei, China
| | - Hui Liang
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Xiaoqiao Zhang
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Zhen Gao
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, No. 32 Renminnan Road, Shiyan, 442000, Hubei, China.
| | - Hezhong Zhu
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
41
|
Yang Z, Bi Y, Xu W, Guo R, Hao M, Liang Y, Shen Z, Yin L, Yu C, Wang S, Wang J, Li J, Zhang J, Cheng R, Zhai Q, Wang H. Glabridin inhibits urothelial bladder carcinoma cell growth in vitro and in vivo by inducing cell apoptosis and cell cycle arrest. Chem Biol Drug Des 2023; 101:581-592. [PMID: 36098706 DOI: 10.1111/cbdd.14147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/20/2022] [Accepted: 09/11/2022] [Indexed: 11/28/2022]
Abstract
Glabridin (GLA) has a variety of biological activities and therapeutic effects in cancers. Whereas the effect of GLA on urothelial bladder carcinoma (UBC) cells and its underlying mechanisms remain unknown. The study revealed the effect of GLA on UBC and the potential mechanism of inducing cell apoptosis in vivo and in vitro. After treated with different concentrations of GLA, the cell activity decreased in a time- and dose-dependent manner. The IC50 values of BIU-87 and EJ cells at 48 h were 6.02 μg/ml (18.6 μm) and 4.36 μg/ml (13.4 μm), respectively. Additionally, GLA-induced apoptosis and cycle arrest of BIU-87 and EJ cells in G2 phase. Furthermore, wound healing experiments showed that GLA significantly reduced the migration activities of BIU-87 and EJ cells. Mechanically, GLA obviously increased the expression of BIM, BAK1, and CYCS in both mRNA and protein levels, which led to the activation of the endogenous apoptotic pathway. Finally, GLA remarkably inhibited the growth of UBC tumors in vivo. In summary, GLA inhibited UBC cells growth in vitro and in vivo by inducing cell apoptosis and cell cycle arrest, highlighting that GLA could be utilized as a component to design a novel anti-UBC drug.
Collapse
Affiliation(s)
- Zhao Yang
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China.,College of Life Science and Technology, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Alar, Xinjiang, China
| | - Ying Bi
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Wenkai Xu
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China.,Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Rui Guo
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Mingxuan Hao
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Youfeng Liang
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Zongyi Shen
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Liqi Yin
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Changyuan Yu
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Shihui Wang
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Jiansong Wang
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Jinmei Li
- Department of Pathology, Key Laboratory of Molecular Pathology and Early Diagnosis of Tumor in Hebei Province, First Central Hospital of Baoding City, Baoding, Hebei, China
| | - Jinku Zhang
- Department of Pathology, Key Laboratory of Molecular Pathology and Early Diagnosis of Tumor in Hebei Province, First Central Hospital of Baoding City, Baoding, Hebei, China
| | - Runfen Cheng
- Department of Pathology, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qiongli Zhai
- Department of Pathology, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Haifeng Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
42
|
Shin J, Choi LS, Jeon HJ, Lee HM, Kim SH, Kim KW, Ko W, Oh H, Park HS. Synthetic Glabridin Derivatives Inhibit LPS-Induced Inflammation via MAPKs and NF-κB Pathways in RAW264.7 Macrophages. Molecules 2023; 28:molecules28052135. [PMID: 36903379 PMCID: PMC10004008 DOI: 10.3390/molecules28052135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Glabridin is a polyphenolic compound with reported anti-inflammatory and anti-oxidative effects. In the previous study, we synthesized glabridin derivatives-HSG4112, (S)-HSG4112, and HGR4113-based on the structure-activity relationship study of glabridin to improve its biological efficacy and chemical stability. In the present study, we investigated the anti-inflammatory effects of the glabridin derivatives in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. We found that the synthetic glabridin derivatives significantly and dose-dependently suppressed the production of nitric oxide (NO) and prostaglandin E2 (PGE2), and decreased the level of inducible nitric oxygen synthase (iNOS) and cyclooxygenase-2 (COX-2) and the expression of pro-inflammatory cytokines interleukin-1β (IL-1β), IL-6, and tumor necrosis factor alpha (TNF-α). The synthetic glabridin derivatives inhibited the nuclear translocation of the NF-κB by inhibiting phosphorylation of the inhibitor of κB alpha (IκB-α), and distinctively inhibited the phosphorylation of ERK, JNK, and p38 MAPKs. In addition, the compounds increased the expression of antioxidant protein heme oxygenase (HO-1) by inducing nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) through ERK and p38 MAPKs. Taken together, these results indicate that the synthetic glabridin derivatives exert strong anti-inflammatory effects in LPS-stimulated macrophages through MAPKs and NF-κB pathways, and support their development as potential therapeutics against inflammatory diseases.
Collapse
Affiliation(s)
- Jaejin Shin
- Glaceum Inc., Suwon 16675, Republic of Korea
| | | | | | - Hyeong Min Lee
- Glaceum Inc., Suwon 16675, Republic of Korea
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin 17104, Republic of Korea
| | | | - Kwan-Woo Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea
| | - Wonmin Ko
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Hyuncheol Oh
- College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea
| | | |
Collapse
|
43
|
Leite CDS, Bonafé GA, Pires OC, dos Santos TW, Pereira GP, Pereira JA, Rocha T, Martinez CAR, Ortega MM, Ribeiro ML. Dipotassium Glycyrrhizininate Improves Skin Wound Healing by Modulating Inflammatory Process. Int J Mol Sci 2023; 24:ijms24043839. [PMID: 36835248 PMCID: PMC9965141 DOI: 10.3390/ijms24043839] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Wound healing is characterized by a systemic and complex process of cellular and molecular activities. Dipotassium Glycyrrhizinate (DPG), a side product derived from glycyrrhizic acid, has several biological effects, such as being antiallergic, antioxidant, antibacterial, antiviral, gastroprotective, antitumoral, and anti-inflammatory. This study aimed to evaluate the anti-inflammatory effect of topical DPG on the healing of cutaneous wounds by secondary intention in an in vivo experimental model. Twenty-four male Wistar rats were used in the experiment, and were randomly divided into six groups of four. Circular excisions were performed and topically treated for 14 days after wound induction. Macroscopic and histopathological analyses were performed. Gene expression was evaluated by real-time qPCR. Our results showed that treatment with DPG caused a decrease in the inflammatory exudate as well as an absence of active hyperemia. Increases in granulation tissue, tissue reepithelization, and total collagen were also observed. Furthermore, DPG treatment reduced the expression of pro-inflammatory cytokines (Tnf-α, Cox-2, Il-8, Irak-2, Nf-kB, and Il-1) while increasing the expression of Il-10, demonstrating anti-inflammatory effects across all three treatment periods. Based on our results, we conclude that DPG attenuates the inflammatory process by promoting skin wound healing through the modulation of distinct mechanisms and signaling pathways, including anti-inflammatory ones. This involves modulation of the expression of pro- and anti-inflammatory cytokine expression; promotion of new granulation tissue; angiogenesis; and tissue re-epithelialization, all of which contribute to tissue remodeling.
Collapse
Affiliation(s)
- Camila dos Santos Leite
- Laboratory of Immunopharmacology and Molecular Biology, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Gabriel Alves Bonafé
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Oscar César Pires
- Laboratory of Pharmacology, Taubaté University (UNITAU), Taubaté, São Paulo 12030-180, Brazil
| | - Tanila Wood dos Santos
- Laboratory of Immunopharmacology and Molecular Biology, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Geovanna Pacciulli Pereira
- Department of Surgery and Proctology, São Francisco University (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - José Aires Pereira
- Department of Surgery and Proctology, São Francisco University (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Thalita Rocha
- Postgraduate Program in Biomaterials and Regenerative Medicine, Faculty of Medical Sciences and Health, Pontifical Catholic University of São Paulo, São Paulo 05014-901, Brazil
| | - Carlos Augusto Real Martinez
- Department of Surgery and Proctology, São Francisco University (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Manoela Marques Ortega
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Marcelo Lima Ribeiro
- Laboratory of Immunopharmacology and Molecular Biology, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
- Correspondence:
| |
Collapse
|
44
|
Xie L, Diao Z, Xia J, Zhang J, Xu Y, Wu Y, Liu Z, Jiang C, Peng Y, Song Z, Wang G, Zhu J, Sun J. Comprehensive Evaluation of Metabolism and the Contribution of the Hepatic First-Pass Effect in the Bioavailability of Glabridin in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1944-1956. [PMID: 36649475 DOI: 10.1021/acs.jafc.2c06460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Glabridin is a bioactive isoflavan, which has a wide range of biological properties and is widely used in the market of health products and dietary supplements. However, the transformation pathway of glabridin in vivo is unclear, and the bioavailability is controversial among different studies. Therefore, a new HPLC-Q-TOF method was developed to analyze and identify the prototype and metabolites of glabridin in rats. A total of 63 compounds were identified, including hydroxylation, demethylation, acetylation, demethylation to carboxylation, glucuronidation, and sulfate conjugation, and 43 of which were new metabolites that had not been reported. Additionally, our study verified that the oral bioavailability of glabridin was 6.63 ± 2.29% in rats. Furthermore, we found that the hepatic first-pass effect was 62.12 ± 15.7% for glabridin. These results indicated that a high hepatic first-pass effect and extensive metabolism of glabridin in vivo may lead to its limited oral bioavailability.
Collapse
Affiliation(s)
- Like Xie
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu210009, China
| | - Zhipeng Diao
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu210009, China
| | - Jing Xia
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu210009, China
| | - Jing Zhang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu210009, China
| | - Yao Xu
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu210009, China
| | - Yapeng Wu
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu210009, China
| | - Zihou Liu
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu210009, China
| | - Chengwen Jiang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu210009, China
| | - Ying Peng
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu210009, China
| | - Zhe Song
- Instrumental Analysis Center, China Pharmaceutical University, Nanjing, Jiangsu210009, China
| | - Guangji Wang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu210009, China
| | - Junrong Zhu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu210009, China
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu210009, China
| | - Jianguo Sun
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu210009, China
| |
Collapse
|
45
|
Zhang J, Wu X, Zhong B, Liao Q, Wang X, Xie Y, He X. Review on the Diverse Biological Effects of Glabridin. Drug Des Devel Ther 2023; 17:15-37. [PMID: 36647530 PMCID: PMC9840373 DOI: 10.2147/dddt.s385981] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Glabridin is a prenylated isoflavan from the roots of Glycyrrhiza glabra Linne and has posed great impact on the areas of drug development and medicine, due to various biological properties such as anti-inflammation, anti-oxidation, anti-tumor, anti-microorganism, bone protection, cardiovascular protection, neuroprotection, hepatoprotection, anti-obesity, and anti-diabetes. Many signaling pathways, including NF-κB, MAPK, Wnt/β-catenin, ERα/SRC-1, PI3K/AKT, and AMPK, have been implicated in the regulatory activities of glabridin. Interestingly, glabridin has been considered as an inhibitor of tyrosinase, P-glycoprotein (P-gp), and CYP2E1 and an activator of peroxisome proliferator-activated receptor γ (PPARγ), although their molecular regulating mechanisms still need further investigation. However, poor water solubility and low bioavailability have greatly limited the clinical applications of glabridin. Hopefully, several effective strategies, such as nanoemulsions, microneedles, and smartPearls formulation, have been developed for improvement.
Collapse
Affiliation(s)
- Jianhong Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China,Ganzhou Key Laboratory of Hepatocellular Carcinoma, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Xinhui Wu
- Department of General Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Baiyin Zhong
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Qicheng Liao
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Xin Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Yuankang Xie
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Xiao He
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China,Correspondence: Xiao He, Email
| |
Collapse
|
46
|
The mechanisms of melanogenesis inhibition by glabridin: molecular docking, PKA/MITF and MAPK/MITF pathways. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Umashankar M, Sahoo M. Metabolite fingerprinting and profiling of selected medicinal plants using nuclear magnetic resonance. ASIAN JOURNAL OF PHARMACEUTICAL RESEARCH AND HEALTH CARE 2023. [DOI: 10.4103/ajprhc.ajprhc_93_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
48
|
Egbuna C, Patrick-Iwuanyanwu KC, Onyeike EN, Khan J, Alshehri B. FMS-like tyrosine kinase-3 (FLT3) inhibitors with better binding affinity and ADMET properties than sorafenib and gilteritinib against acute myeloid leukemia: in silico studies. J Biomol Struct Dyn 2022; 40:12248-12259. [PMID: 34486940 DOI: 10.1080/07391102.2021.1969286] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Over 30-35% of patients down with AML are caused by mutations of FLT3-ITD and FLT3-TKD which keeps the protein activated while it activates other signaling proteins downstream that are involved in cell proliferation, differentiation, and survival. As drug targets, many inhibitors are already in clinical practice. Unfortunately, the average overall survival rate for patients on medication suffering from AML is 5 years despite the huge efforts in this field. To perform docking simulation and ADMET studies on selected phytochemicals against FLT3 protein receptor for drug discovery against FLT3 induced AML, molecular docking simulation was performed using human FLT3 protein target (PDB ID: 6JQR) and 313 phytochemicals with standard anticancer drugs (Sorafenib and Gilteritinib in addition to other anticancer drugs). The crystal structure of the protein was downloaded from the protein data bank and prepared using Biovia Discovery Studio. The chemical structures of the phytochemicals were downloaded from the NCBI PubChem database and prepared using Open Babel and VConf softwares. Molecular docking was performed using PyRx on Autodock Vina. The ADMET properties of the best performing compounds were calculated using SwissADME and pkCMS web servers. The results obtained showed that glabridin, ellipticine and derivatives (elliptinium and 9-methoxyellipticine), mezerein, ursolic acid, formononetin, cycloartocarpesin, hypericin, silymarin, and indirubin are the best performing compounds better than sorafenib and gilteritinib based on their binding affinities. The top-performing compounds which had better binding and ADMET properties than sorafenib and gilteritinib could serve as scaffolds or leads for new drug discovery against FLT3 induced AML.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Chukwuebuka Egbuna
- Africa Centre of Excellence in Public Health and Toxicological Research (ACE-PUTOR), University of Port-Harcourt, Port Harcourt, Rivers State, Nigeria.,Department of Biochemistry, Faculty of Science, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria.,Department of Biochemistry, Faculty of Natural Sciences, Chukwuemeka Odumegwu Ojukwu University, Uli, Anambra State, Nigeria
| | - Kingsley C Patrick-Iwuanyanwu
- Africa Centre of Excellence in Public Health and Toxicological Research (ACE-PUTOR), University of Port-Harcourt, Port Harcourt, Rivers State, Nigeria.,Department of Biochemistry, Faculty of Science, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
| | - Eugene N Onyeike
- Africa Centre of Excellence in Public Health and Toxicological Research (ACE-PUTOR), University of Port-Harcourt, Port Harcourt, Rivers State, Nigeria.,Department of Biochemistry, Faculty of Science, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudia Arabia.,Health and Basic Sciences Research Center, Majmaah University, Majmaah, Saudi Arabia
| | - Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudia Arabia.,Health and Basic Sciences Research Center, Majmaah University, Majmaah, Saudi Arabia
| |
Collapse
|
49
|
Zhang F, Wang F, Li W, Liang L, Sang X. The toxicity mechanism of glabridin in prostate cancer cells is involved in reactive oxygen species-dependent PI3K/Akt pathway: Integrated utilization of bioinformatic analysis and in vitro test validation. ENVIRONMENTAL TOXICOLOGY 2022; 37:2937-2946. [PMID: 36029289 DOI: 10.1002/tox.23649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/03/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Glabridin is a prenylated isoflavonoid with considerable anticancer property. Reactive oxygen species (ROS) have evolved as regulators of many cellular signaling pathways in prostate cancer (PC). However, the role of ROS signaling in the anticancer activity of glabridin has not been investigated. Here, we attempted to evaluate the effect of glabridin on PC and the involvement of ROS signaling. Intracellular ROS and mitochondrial ROS (mitoROS) production in PC cell lines, DU-145 and LNCaP, were measured by H2DCFDA and MitoSOX Red staining, respectively. MTT assay was used to analyze the cellular viability. EdU staining assay was conducted to analyze the cell proliferation. To analyze apoptotic rate, TUNEL assay was performed. Caspase-3 activity was detected to reflect cell apoptosis. Western blot was carried out to detect the expression levels of Akt and p-Akt. We found that intracellular ROS and mitoROS levels were dose-dependently upregulated after glabridin treatment in both DU-145 and LNCaP cells, which was reversed by the treatment of ROS inhibitor, N-acetyl-L-cysteine (NAC). Glabridin inhibited the cell viability and reduced the number of EdU-positive DU-145 and LNCaP cells, which were respectively proved by MTT assay and EdU staining assay. Glabridin promoted cell death with increased apoptotic rate and caspase-3 activity in DU-145 and LNCaP cells. The effects of glabridin on cell proliferation and apoptosis were reversed by NAC. Moreover, glabridin suppressed the ratio of p-Akt/Akt, while NAC mitigated the decreased p-Akt/Akt ratio. In addition, the effects of glabridin on cell proliferation and apoptosis were also attenuated by Akt activator, SC79. Collectively, our results demonstrated that glabridin suppressed proliferation and induced apoptosis in PC cells via regulating ROS-mediated PI3K/Akt pathway. These findings suggested that glabridin might hold a promising prospective as a therapeutic agent against PC.
Collapse
Affiliation(s)
- Fengyan Zhang
- Food Department, Qingdao Institute for Food and Drug Control, Qingdao, China
| | - Fufang Wang
- Research and Development Department, Henan Hongzhu Taizhijia Medical Service Co. Ltd, Zhengzhou, China
| | - Wenjie Li
- Department of Pharmacy, Qingdao Chengyang People's Hospital, Qingdao, China
| | | | - Xicheng Sang
- Research and Development Department, Qingdao Hongzhu Biotechnology Co., Ltd, Qingdao, China
| |
Collapse
|
50
|
Zhang H, Yang Q, Zhao J, Chen J, Wang S, Ma M, Liu H, Zhang Q, Zhao H, Zhou D, Wang X, Gao J, Zhao H. Metabolites from Bacillus subtilis J-15 Affect Seedling Growth of Arabidopsis thaliana and Cotton Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:3205. [PMID: 36501248 PMCID: PMC9739671 DOI: 10.3390/plants11233205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Bacillus subtilis J-15 is a plant growth-promoting rhizobacteria isolated from the soil rhizosphere of cotton and is resistant to cotton verticillium wilt. This study evaluated the effects of metabolites of J-15 (J-15-Ms), including mycosubtilin, on plant growth using Arabidopsis and cotton plants. The results showed that J-15-Ms promoted Arabidopsis seeding growth at lower concentrations of 0.2 μg/mL but inhibited the growth at higher concentrations, such as 20 μg/mL. Similar results were obtained in cotton. Thus, J-15-Ms-treated plants showed low-concentration-induced growth promotion and high-concentration-induced growth inhibition. The J-15-Ms components were analyzed by liquid chromatography-mass spectrometry. Correlation analysis using the J-15 genomic databases suggested that J-15 may synthesize indoleacetic acid via the indole-3-pymvate pathway and indole-3-acetamide pathway. Treatment with mycosubtilin, a purified peptide from J-15-Ms, showed that the peptide promoted Arabidopsis growth at a low concentration (0.1 μg/mL) and inhibited plant growth at high concentrations (higher than 1 μg/mL), which also significantly increased plant lateral root number. Transcriptomic analysis showed that mycosubtilin might promote lateral root development and inhibit plant primary root growth by regulating the expression of the plant hormone signaling pathway. This study reveals the mechanism of Bacillus subtilis J-15 in affecting plant growth.
Collapse
Affiliation(s)
- Hui Zhang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi 830054, China
| | - Qilin Yang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi 830054, China
| | - Jingjing Zhao
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi 830054, China
| | - Jiayi Chen
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi 830054, China
| | - Shiqi Wang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi 830054, China
| | - Mingyue Ma
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi 830054, China
| | - Huan Liu
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi 830054, China
| | - Qi Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Dongyuan Zhou
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi 830054, China
| | - Xianxian Wang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi 830054, China
| | - Jie Gao
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi 830054, China
| | - Huixin Zhao
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi 830054, China
| |
Collapse
|