1
|
Fan J, Zhang M, Qi B, Qiu H, Mi X, Zhou G, Zhang L, Liu X, Wang J, Wang X, Tu PF, Shi SP. Characterization and Synthesis of Alkaloidal Butenolides with Seed Germination Stimulating Properties from Angelica dahurica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7822-7832. [PMID: 40123068 DOI: 10.1021/acs.jafc.5c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Two novel alkaloids, dahurine G (1) and its epimer dahurine H (2) were isolated from the roots of Angelica dahurica. The planar structures of 1 and 2 were elucidated through a comprehensive analysis of their spectroscopic and spectrometric data, including nuclear magnetic resonance (NMR), infrared (IR), and high-resolution electrospray ionization mass spectrometry (HRESIMS). Biomimetic synthesis, initiated with (2S,3R,4S)-4-hydroxyisoleucine, enabled the unequivocal determination of the absolute configurations of 1 and 2, while also yielding an unnatural analogue (3) as a byproduct. Compounds 1, 2 and the synthetic analogue 3 all contain a distinctive butenolide moiety, which is commonly observed in plant signaling molecules such as strigolactones (SLs) and karrikins (KARs). Further experiments demonstrated that all three compounds significantly promote seed germination in both model plants (Arabidopsis thaliana and Nicotiana benthamiana) and vital crops (Zea mays and Oryza sativa), as well as radicle elongation in Z. mays and O. sativa. The findings suggest that compounds 1-3 may play a significant role in seedling germination and early root development, thereby demonstrating considerable potential for agricultural applications.
Collapse
Affiliation(s)
- Jiangping Fan
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Mingliang Zhang
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Bowen Qi
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Hailing Qiu
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Xinyu Mi
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Guangxin Zhou
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Lin Zhang
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Xiao Liu
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Juan Wang
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Xiaohui Wang
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Peng-Fei Tu
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, People's Republic of China
| | - She-Po Shi
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| |
Collapse
|
2
|
Shi H, Wang Q, Chang Y, Zheng Y, Zhang D, Zhao Y, Guo L. Screening of anti-inflammatory activities components of Angelica dahurica root based on spectrum-effect relationship analysis and NF-κB pathway. Front Pharmacol 2024; 15:1396001. [PMID: 39185311 PMCID: PMC11341442 DOI: 10.3389/fphar.2024.1396001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
Angelica dahurica root (ADR), a commonly utilized herbal medicine in China and other Asian nations, which has anti-inflammatory effects on diverse inflammatory ailments. However, the bioactive components and underlying mechanism responsible for the anti-inflammatory effect of ADR are still unclear. This work attempted to discover the anti-inflammatory bioactive compounds and explore their underlying mechanism in ADR based on spectrum-effect relationship analysis and NF-κB signaling pathway. Chromatographic fingerprints of ADR samples were established by high performance liquid chromatography with diode array detection (HPLC-DAD), and a total of eleven common peaks were selected. Then, high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (HPLC-Q/TOF-MS) was employed for identification of eleven common peaks in ADR Meanwhile, the anti-inflammatory activities of ADR samples were assessed by inhibition of NO, interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) production in LPS-induced RAW264.7 cells. The spectrum-effect relationships between the eleven common peaks in HPLC fingerprints and anti-inflammatory effects of ADR samples were investigated to identify the potential anti-inflammatory bioactive compounds by grey relational analysis (GRA) and partial least squares regression (PLSR). The spectrum-effect relationship analysis results indicated that six coumarin compounds, including bergapten, xanthotoxin, phellopterin, isoimperatorin, xanthotoxol and imperatorin could be potential anti-inflammatory bioactive compounds in ADR. The further validation experiments also showed that these six coumarins demonstrated significant inhibition of NO, IL-1β, IL-6, and TNF-α production in LPS-induced RAW264.7 cells. In addition, western blot analysis was conducted to explore the mechanisms of two potential anti-inflammatory bioactive compounds (phellopterin and isoimperatorin) by assessing the protein levels in the NF-κB signaling pathway. The western blot results illustrated that phellopterin and isoimperatorin could significantly down-regulate the phosphorylated NF-κB p65 (p-p65), phosphorylated IκBα (p-IκBα) and iNOS, and depress the pro-portion of p-p65/p65 and p-IκBα/IκBα, which indicated that these two coumarins in ADR could potentially exert anti-inflammatory effects by suppressing of NF-κB pathway.
Collapse
Affiliation(s)
- Huan Shi
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Qianqian Wang
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yaqing Chang
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yuguang Zheng
- Hebei Chemical and Pharmaceutical College, Shijiazhuang, China
| | - Dan Zhang
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yunsheng Zhao
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Long Guo
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
3
|
Lin Y, Yao G, Huang C, Chao Z, Tian E. Molecular evidence provides new insights into the evolutionary origin of an ancient traditional Chinese medicine, the domesticated "Baizhi". FRONTIERS IN PLANT SCIENCE 2024; 15:1388586. [PMID: 38779069 PMCID: PMC11110842 DOI: 10.3389/fpls.2024.1388586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
Introduction "Baizhi" is a famous herbal medicine in China, and it includes four landraces named as 'Hangbaizhi', 'Chuanbaizhi', 'Qibaizhi', and 'Yubaizhi'. Long-term artificial selection had caused serious degradation of these germplasms. Determining the wild progenitor of the landraces would be benefit for their breed improvements. Previous studies have suggested Angelica dahurica var. dahurica, A. dahurica var. formosana, or A. porphyrocaulis as potential candidates, but the conclusion remains uncertain, and their phylogenetic relationships are still in controversy. Methods In this study, the genetic variation and phylogenetic analyses of these species and four landraces were conducted on the basis of both the nrITS and plastome datasets. Results Genetic variation analysis showed that all 8 population of four landraces shared only one ITS haplotype, meanwhile extremely low variation occurred within 6 population at plastid genome level. Both datasets supported the four landraces might be originated from a single wild germplasm. Phylogenetic analyses with both datasets revealed largely consistent topology using Bayesian inference and Maximum likelihood methods. Samples of the four landraces and all wild A. dahurica var. dahurica formed a highly supported monophyletic clade, and then sister to the monophyly clade comprised by samples of A. porphyrocaulis, while four landraces were clustered into one clade, which further clustered with a mixed branches of A. porphyrocaulis and A. dahurica var. dahurica to form sister branches for plastid genomes. Furthermore, the monophyletic A. dahurica var. formosana was far distant from the A. dahurica var. dahurica-"Baizhi" clade in Angelica phylogeny. Such inferences was also supported by the evolutionary patterns of nrITS haplotype network and K2P genetic distances. The outcomes indicated A. dahurica var. dahurica is most likely the original plant of "Baizhi". Discussion Considering of phylogenetic inference and evolutionary history, the species-level status of A. dahurica var. formosana should be accepted, and the taxonomic level and phylgenetic position of A. porphyrocaulis should be further confirmed. This study preliminarily determined the wild progenitor of "Baizhi" and clarified the phylogenetic relationships among A. dahurica var. dahurica, A. dahurica var. formosana and A. porphyrocaulis, which will provide scientific guidance for wild resources protections and improvement of "Baizhi".
Collapse
Affiliation(s)
- Yingyu Lin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Gang Yao
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Chunxiu Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhi Chao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Enwei Tian
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, China
- Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Bartnik M. Methoxyfuranocoumarins of Natural Origin-Updating Biological Activity Research and Searching for New Directions-A Review. Curr Issues Mol Biol 2024; 46:856-883. [PMID: 38275669 PMCID: PMC10813879 DOI: 10.3390/cimb46010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Plant secondary metabolites, including furanocoumarins, have attracted attention for decades as active molecules with therapeutic potential, especially those occurring in a limited number of species as evolutionarily specific and chemotaxonomically important. The most famous methoxyfuranocoumarins (MFCs), bergapten, xanthotoxin, isopimpinellin, phellopterin, byakangelicol, byakangelicin, isobergapten, pimpinellin, sphondin, as well as rare ones such as peucedanin and 8-methoxypeucedanin, apaensin, cnidilin, moellendorffiline and dahuribiethrins, have recently been investigated for their various biological activities. The α-glucosidase inhibitory activity and antioxidant potential of moellendorffiline, the antiproliferative and proapoptotic properties of non-UV-activated bergapten and xanthotoxin, the effect of MFC on the activity of tyrosinase, acetyl- and butylcholinesterase, and the role of these compounds as adjuvants in anticancer and antibacterial tests have been confirmed. The anticonvulsant effects of halfordin, the antidepressant effects of xanthotoxin, and the antiadipogenic, neuroprotective, anti-amyloid-β, and anti-inflammatory (via increasing SIRT 1 protein expression) properties of phellopterin, as well as the activity of sphondin against hepatitis B virus, have also attracted interest. It is worth paying attention to the agonistic effect of xanthotoxin on bitter taste receptors (TAS2Rs) on cardiomyocytes, which may be important in the future treatment of tachycardia, as well as the significant anti-inflammatory activity of dahuribiethrins. It should be emphasized that MFCs, although in many cases isolated for the first time many years ago, are still of great interest as bioactive molecules. The aim of this review is to highlight key recent developments in the study of the diverse biological activities of MFCs and attempt to highlight promising directions for their further research. Where possible, descriptions of the mechanisms of action of MFC are provided, which is related to the constantly discovered therapeutic potential of these molecules. The review covers the results of experiments from the last ten years (2014-2023) conducted on isolated natural cMFCs and includes the activity of molecules that have not been activated by UV rays.
Collapse
Affiliation(s)
- Magdalena Bartnik
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Chodźki 1 Street, 20-093 Lublin, Poland
| |
Collapse
|
5
|
Subin P, Sabuhom P, Naladta A, Luecha P, Nualkaew S, Nualkaew N. An Evaluation of the Anti-Inflammatory Effects of a Thai Traditional Polyherbal Recipe TPDM6315 in LPS-Induced RAW264.7 Macrophages and TNF-α-Induced 3T3-L1 Adipocytes. Curr Issues Mol Biol 2023; 45:4891-4907. [PMID: 37367060 DOI: 10.3390/cimb45060311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
TPDM6315 is an antipyretic Thai herbal recipe that contains several herbs with anti-inflammatory and anti-obesity activities. This study aimed to investigate the anti-inflammatory effects of TPDM6315 extracts in lipopolysaccharide (LPS)-induced RAW264.7 macrophages and TNF-α-induced 3T3-L1 adipocytes, and the effects of TPDM6315 extracts on lipid accumulation in 3T3-L1 adipocytes. The results showed that the TPDM6315 extracts reduced the nitric oxide production and downregulated the iNOS, IL-6, PGE2, and TNF-α genes regulating fever in LPS-stimulated RAW264.7 macrophages. The treatment of 3T3-L1 pre-adipocytes with TPDM6315 extracts during a differentiation to the adipocytes resulted in the decreasing of the cellular lipid accumulation in adipocytes. The ethanolic extract (10 µg/mL) increased the mRNA level of adiponectin (the anti-inflammatory adipokine) and upregulated the PPAR-γ in the TNF-α induced adipocytes. These findings provide evidence-based support for the traditional use of TPDM6315 as an anti-pyretic for fever originating from inflammation. The anti-obesity and anti-inflammatory actions of TPDM6315 in TNF-α induced adipocytes suggest that this herbal recipe could be useful for the treatment of metabolic syndrome disorders caused by obesity. Further investigations into the modes of action of TPDM6315 are needed for developing health products to prevent or regulate disorders resulting from inflammation.
Collapse
Affiliation(s)
- Phetpawi Subin
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pattraporn Sabuhom
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Alisa Naladta
- Department of Biochemistry, Faculty of Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Prathan Luecha
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somsak Nualkaew
- Pharmaceutical Chemistry and Natural Product Research Unit, Faculty of Pharmacy, Mahasarakham University, Mahasarakham 44150, Thailand
| | - Natsajee Nualkaew
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
6
|
Yu W, Jiang Z, Zhang Z, Jiang L, Liu C, Lu C, Liang Z, Wang G, Yan J. The Wu-Shi-Cha formula protects against ulcerative colitis by orchestrating immunity and microbiota homeostasis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:116075. [PMID: 36572328 DOI: 10.1016/j.jep.2022.116075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC) has become a healthy burden worldwide due to its insidious onset and repetitive relapse, with a rather complex etiology, including inappropriate immune response, dysbiosis, genetic susceptibility, and unhealthy diets. The Wu-Shi-Cha (WSC) formula is a widely utilized drug to protect against gastrointestinal disorders. AIM OF THE STUDY The study aspired to dissect the pertinent mechanisms of the WSC to treat UC. MATERIALS AND METHODS Network pharmacology and weighted gene co-expression network analysis (WGCNA) were performed to predict the targets of WSC in the context of UC and colorectal cancer. Dextran sodium sulfate (DSS) was used to construct murine models of experimental colitis, and the WSC was given to colitis mice for 14 days. Feces and colon samples were subjected to 16S rRNA gene sequencing combined with liquid chromatography-mass spectrometry (LC-MS) and biochemical experiments, respectively. RESULTS Network pharmacology analysis predicted that the WSC formula could orchestrate inflammation, infection, and tumorigenesis, and WGCNA based on The Cancer Genome Atlas (TCGA) database showed a potent anti-neoplastic effect of the WSC therapy for colorectal cancer. The WSC therapy rescued bursts of pro-inflammatory cytokines and colonic epithelial collapse in DSS-induced colitis mice. Moreover, the high dose of WSC treatment facilitated the alternative activation of peritoneal macrophages (Mφs) and these Mφs were conducive to the survival of intestinal stem cells (ISCs), and the disturbed homeostasis of gut microbiota was re-established after WSC treatment, as evidenced by the decreased colonization of pathological taxa in the fecal samples. CONCLUSION The WSC formula suppresses inflammation and re-establishes the homeostasis of gut microbiota, thereby ameliorating colitis progression.
Collapse
Affiliation(s)
- Wei Yu
- Department of Physiology, Jining Medical University, Jining city, Shandong province, China.
| | - Zizheng Jiang
- Department of Physiology, Jining Medical University, Jining city, Shandong province, China.
| | - Zhiqiang Zhang
- Department of Physiology, Jining Medical University, Jining city, Shandong province, China.
| | - Lu Jiang
- Department of Physiology, Jining Medical University, Jining city, Shandong province, China.
| | - Chen Liu
- Department of Physiology, Jining Medical University, Jining city, Shandong province, China.
| | - Chang Lu
- Department of Physiology, Jining Medical University, Jining city, Shandong province, China.
| | - Zhenghao Liang
- Department of Physiology, Jining Medical University, Jining city, Shandong province, China.
| | - Guoliang Wang
- Department of Physiology, Jining Medical University, Jining city, Shandong province, China.
| | - Jing Yan
- Department of Physiology, Jining Medical University, Jining city, Shandong province, China.
| |
Collapse
|
7
|
Wang Y, Shi F, Lu Z, Zhang M, Zhang Z, Jia F, Zhang B, Ouyang L, Zhu Z, Shi S. Seven new 3,4-dihydro-furanocoumarin derivatives from Angelica dahurica. CHINESE HERBAL MEDICINES 2023. [PMID: 37538857 PMCID: PMC10394322 DOI: 10.1016/j.chmed.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023] Open
Abstract
Objective To study the chemical constituents of the roots of Angelica dahurica, a well-known Chinese herbal medicine named Baizhi in Chinese. Methods Compounds were separated by various chromatographies, and the structures of new compounds were elucidated based on the analysis of their spectroscopic and spectrometric data (1D, 2D NMR, HRESI MS, IR, and UV). The absolute configurations of new compounds were determined by the calculated electronic circular dichroism and chemical derivatization. The inhibitory activities of all isolates against nitric oxide (NO) production were evaluated using lipopolysaccharide-activated RAW 264.7 macrophage cells. Results Seven new 3,4-dihydro-furanocoumarin derivatives (1a/1b, 2a/2b, 3a/3b, 4) together with a known furanocoumarin (5) were isolated from the roots of A. dahurica. The new compounds included three pairs of enantiomers, (4S, 2''R)-angelicadin A (1a)/(4R, 2''S)-angelicadin A (1b), (4S, 2''S)-angelicadin A (2a)/(4R, 2''R)-angelicadin A (2b), and (4S, 2''S)-secoangelicadin A (3a)/(4R, 2''R)-secoangelicadin A (3b), together with (4R, 2''R)-secoangelicadin A methyl ester (4). The known xanthotoxol (5) inhibited the NO production with the half-maximal inhibitory concentration (IC50) value of (32.8 ± 0.8) µmol/L, but all the new compounds showed no inhibitory activities at the concentration of 100 µmol/L. Conclusion This is the first report of the discovery of 3,4-dihydro-furanocoumarins from A. dahurica. The results are not only meaningful for the understanding of the chemical constituents of A. dahurica, but also enrich the reservoir of natural products.
Collapse
|
8
|
Gao H, Li Q. Study on the spatial distribution of coumarins in Angelica dahurica root by MALDI-TOF-MSI. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:139-148. [PMID: 36376257 DOI: 10.1002/pca.3186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
INTRODUCTION The main chemical components of Angelica dahurica (Hoffm.) Benth. & Hook.f. ex Franch. & Sav. are coumarins and volatile oils, and coumarins are regarded as the representative constituents with various pharmacological effects. OBJECTIVE Based on matrix-assisted laser desorption/ionization time of flight mass spectrometry imaging (MALDI-TOF-MSI), a method for spatial distribution analysis of coumarins in primary root and lateral root of A. dahurica was established. Also, spatial visualization of coumarins in the roots of A. dahurica was realized. MATERIALS AND METHODS α-Cyano-4-hydroxycinnamic acid (CHCA), 2,5-dihydroxybenzoic acid, and 9-aminoacridine were used as matrices. MALDI-TOF-MSI was employed to analyze the standards of imperatorin, oxypeucedanin, and osthole. Based on the higher sensitivity and repeatability of MALDI-TOF-MSI, the CHCA matrix was selected. The matrix was used for MALDI-TOF-MSI in positive mode to analyze the distribution of coumarins in primary root and lateral root of A. dahurica. RESULTS In total, 37 coumarins were detected in primary root and 36 coumarins were detected in lateral root by MALDI-TOF-MSI. The results showed that the coumarin content in primary root was higher than that in lateral root. Coumarins in primary root of A. dahurica were concentrated in the periderm, cortex, and phloem, whereas coumarins in lateral roots were concentrated in the phloem. CONCLUSION The coumarins in primary root and lateral root of A. dahurica were directly analyzed without extraction and isolation, and the spatial distribution of coumarins was comprehensively visualized for the first time by MALDI-TOF-MSI, which provided a basis for distinguishing primary root and lateral root.
Collapse
Affiliation(s)
- Hui Gao
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Qian Li
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
9
|
Zhang Y, Li Z, Wei J, Kong L, Song M, Zhang Y, Xiao X, Cao H, Jin Y. Network pharmacology and molecular docking reveal the mechanism of Angelica dahurica against Osteosarcoma. Medicine (Baltimore) 2022; 101:e31055. [PMID: 36343039 PMCID: PMC9646661 DOI: 10.1097/md.0000000000031055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Osteosarcoma (OS) is a malignant bone tumor of mesenchymal origin. Angelica dahurica is a typical traditional Chinese herb. Angelica dahurica is used in the treatment of a variety of tumors. However, the studies of Angelica dahurica for OS have not been reported. To investigate Angelica dahurica's potential mechanism of action in the treatment of OS, we used network pharmacology and molecular docking methods in this study. Of which the network pharmacology includes the collection of active ingredients of Angelica dahurica, the collection of predicted targets of Angelica dahurica and predicted targets of OS, the analysis of therapeutic targets of Angelica dahurica, gene ontology (GO) enrichment, and Kyoto encyclopedia of genes and genomes (KEGG) enrichment. The Venn plot performance showed that there were 225 predicted targets of Angelica dahurica for the treatment of OS. The therapeutic targets enrichment analysis results showed that Angelica dahurica treated OS through multiple targets and pathways. Angelica dahurica could affect OS's proliferation, apoptosis, migration, infiltration, and angiogenesis through a signaling network formed by pivotal genes crosstalking numerous signaling pathways. In addition, molecular docking results showed that sen-byakangelicol, beta-sitosterol, and Prangenin, have a relatively high potential to become a treatment for patients with OS and improve 5-year survival in OS patients. We used network pharmacology and molecular docking methods to predict the active ingredients and significant targets of Angelica dahurica for the treatment of OS and, to a certain extent, elucidated the potential molecular mechanism of Angelica dahurica in the treatment of OS. This study provided a theoretical basis for Angelica dahurica in the treatment of OS.
Collapse
Affiliation(s)
- Yafang Zhang
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Zhehong Li
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Junqiang Wei
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Lingwei Kong
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Mingze Song
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Yange Zhang
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Xiangyu Xiao
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Haiying Cao
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Yu Jin
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
- *Correspondence: Yu Jin, Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical College, Chengde 067000, China (e-mail: )
| |
Collapse
|
10
|
Zhao H, Feng YL, Wang M, Wang JJ, Liu T, Yu J. The Angelica dahurica: A Review of Traditional Uses, Phytochemistry and Pharmacology. Front Pharmacol 2022; 13:896637. [PMID: 35847034 PMCID: PMC9283917 DOI: 10.3389/fphar.2022.896637] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Angelica dahurica (A. dahurica) root is a famous edible medicinal herb that has been used in China for thousands of years. To date, more than 300 chemical constituents have been discovered from A. dahurica. Among these ingredients, coumarins and volatile oils are the major active compounds. Moreover, a few other compounds have also been isolated from the root of A. dahurica, such as alkaloids, phenols, sterols, benzofurans, polyacetylenes and polysaccharides. Modern pharmacological studies demonstrated that the root of A. dahurica and its active components displayed various bioactivities such as anti-inflammation, anti-tumor, anti-oxidation, analgesic activity, antiviral and anti-microbial effects, effects on the cardiovascular system, neuroprotective function, hepatoprotective activity, effects on skin diseases and so on. Based on these studies, this review focused on the research publications of A. dahurica and aimed to summarize the advances in the traditional uses, phytochemistry and pharmacology which will provide reference for the further studies and applications of A. dahurica.
Collapse
Affiliation(s)
- Hui Zhao
- Clinical Experimental Center, Xi’an International Medical Center Hospital, Xi’an, China
- Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, Xi’an, China
| | - Ya-Long Feng
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, China
| | - Ming Wang
- College of Food Science and Engineering, Northwest University, Xi’an, China
| | - Jing-Jing Wang
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Science, Northwest University, Xi’an, China
| | - Tian Liu
- Clinical Experimental Center, Xi’an International Medical Center Hospital, Xi’an, China
- Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, Xi’an, China
| | - Jun Yu
- Clinical Experimental Center, Xi’an International Medical Center Hospital, Xi’an, China
- Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, Xi’an, China
- *Correspondence: Jun Yu,
| |
Collapse
|
11
|
Maki P, Itharat A, Thongdeeying P, Tuy-On T, Kuropakornpong P, Pipatrattanaseree W, Mingmalairak C, Davies NM. Ethnopharmacological nexus between the traditional Thai medicine theory and biologically based cancer treatment. JOURNAL OF ETHNOPHARMACOLOGY 2022; 287:114932. [PMID: 34953977 DOI: 10.1016/j.jep.2021.114932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The two major theories utilized for diagnosis and treatment in Traditional Thai Medicine (TTM) are the Four Element Theory and the Herbal Flavor Theory. A TTM "Poh-Pu" Remedy has been effectively utilized in Thailand for cancer therapy for centuries. AIMS OF STUDY To investigate anti-inflammatory activity and liver cancer cytotoxicity of Poh-Pu remedy. To determine relationships between the TTM Herbal Flavor theory and the Four Element theory and total flavonoid content and biological activities of Poh-Pu Remedy plant extracts. MATERIALS AND METHODS Each plant ingredient was macerated with 95% ethanol. The extracts were investigated for cytotoxic activity against liver cancer using a sulforhodamine B assay, and anti-inflammatory activity was evaluated by inhibition of nitric oxide production. The total flavonoid content was determined by an aluminum chloride colorimetric assay. The relationships between the TTM theories, total flavonoid content, and biological activities were evaluated by correlation and cluster analysis. RESULTS Mammea siamensis exerted potent cytotoxicity against hepatocellular carcinoma (HepG2) cell lines with an IC50 of 3.15 ± 0.16 μg/mL and low cytotoxicity to the non-cancerous cells (HaCat) with an IC50 33.39 ± 0.40 μg/mL (Selective index (SI) = 10.6). Tiliacora triandra was selectively cytotoxic to cholangiocarcinama (KKU-M156) cells with an IC50 of 12.65 ± 0.92 μg/mL (SI = 6.4). Curcuma comosa was the most potent anti-inflammatory inhibitor of nitric oxide production with an IC50 of 2.75 ± 0.34 μg/mL. Campomanesia aromatica exhibited the highest total flavonoid content of 259.7 ± 3.21 mg quercetin equivalent/g. Pungent plants were most prevalent in the TTM remedy. CONCLUSION Pungent, fragrant, bitter and nauseating plants utilized in TTM cancer remedy were successfully investigated and identified several lead plants and components with cytotoxic and antiinflammatory activity that require further study. The TTM wind element theory appeared to be aligned with cancer-related activity. Biological activity results of taste from herbs related with The TTM Herbal Flavor theory. The extra-oral locations of flavor receptors are a promising target for biological activity of TTM which require further scrutiny and identified several lead plants and components with cytotoxic and antiinflammatory activities that also require further study.
Collapse
Affiliation(s)
- Ponlawat Maki
- Student of Doctor of Philosophy (Applied Thai Traditional Medicine), Faculty of Medicine, Thammasat University (Rangsit Campus), Pathumthani, 12120, Thailand.
| | - Arunporn Itharat
- Faculty of Medicine, Thammasat University (Rangsit Campus), Department of Applied Thai Traditional Medicine, Pathumthani, 12120, Thailand; Center of Excellence in Applied Thai Traditional Medicine Research, Thammasat University (Rangsit Campus), Pathumthani, 12120, Thailand.
| | - Pakakrong Thongdeeying
- Faculty of Medicine, Thammasat University (Rangsit Campus), Department of Applied Thai Traditional Medicine, Pathumthani, 12120, Thailand; Center of Excellence in Applied Thai Traditional Medicine Research, Thammasat University (Rangsit Campus), Pathumthani, 12120, Thailand.
| | - Thammarat Tuy-On
- Center of Excellence in Applied Thai Traditional Medicine Research, Thammasat University (Rangsit Campus), Pathumthani, 12120, Thailand.
| | - Pranporn Kuropakornpong
- Center of Excellence in Applied Thai Traditional Medicine Research, Thammasat University (Rangsit Campus), Pathumthani, 12120, Thailand.
| | - Weerachai Pipatrattanaseree
- Regional Medical Science Center 12 Songkhla, Department of Medical Sciences, Ministry of Public Health, Songkhla, 90100, Thailand.
| | - Chatchai Mingmalairak
- Faculty of Medicine, Thammasat University (Rangsit Campus), Department of Surgery and Research Group in Thai Herbs and Traditional Remedy for Cancer Patients, Pathumthani, 12120, Thailand.
| | - Neal M Davies
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Canada.
| |
Collapse
|
12
|
Deng AP, Kang CZ, Kang LP, Lyu CG, Zhang WJ, Wang S, Wang HY, Nan TG, Zhou L, Huang LQ, Zhan ZL, Guo LP. Practical Protocol for Comprehensively Evaluating Sulfur-Fumigation of Baizhi Based on Metabolomics, Pharmacology, and Cytotoxicity. Front Pharmacol 2022; 12:799504. [PMID: 35145404 PMCID: PMC8822044 DOI: 10.3389/fphar.2021.799504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/29/2021] [Indexed: 12/03/2022] Open
Abstract
Sulfur Angelicae Dahuricae Radix (Baizhi) is a common medicinal herb in Asian countries. A practical protocol combining metabolomics, pharmacology, and cytotoxicity was developed to comprehensively evaluate the influence of sulfur-fumigation on the quality of Baizhi. Furocoumarins could be transformed into sulfur-containing compounds during the sulfuring process, among which 1 and 3 were purified with relatively high abundance and identified as 3,4-dihydrobyakangelicin-4-sulfonic acid and (4R,12S)-3,4-dihydrooxypeucedanin hydrate-4-sulfonic acid (OXH-S), respectively. OXH-S was found to be an addition product of sulfite and oxypeucedanin hydrate (OXH-N). Then, the cytotoxicity and anti-inflammatory activity of OXH-N, OXH-S, and water extracts of sulfured (extraction-S), and unsulfured Baizhi (extraction-N) were evaluated. OXH-S and extraction-S were less toxic than OXH-N and extraction-N, respectively. A comparison of OXH-N with OXH-S and extraction-N with extraction-S showed no significant differences in anti-inflammatory activity. These results suggest that sulfur fumigation can reduce toxicity and does not influence the anti-inflammatory activity of Baizhi, even after chemical composition changes. The proposed protocol based on marker screening, pharmacology, and safety evaluation provides a scientific basis for the standardization and regulation of sulfured Baizhi and other medical materials.
Collapse
Affiliation(s)
- Ai-Ping Deng
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chuan-Zhi Kang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li-Ping Kang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chao-Geng Lyu
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wen-Jin Zhang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Sheng Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hong-Yang Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tie-Gui Nan
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Zhou
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lu-Qi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhi-Lai Zhan
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lan-Ping Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Lu Q, Li R, Yang Y, Zhang Y, Zhao Q, Li J. Ingredients with anti-inflammatory effect from medicine food homology plants. Food Chem 2022; 368:130610. [PMID: 34419798 DOI: 10.1016/j.foodchem.2021.130610] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/18/2021] [Accepted: 07/13/2021] [Indexed: 02/09/2023]
Abstract
Inflammation occurs when the immune system responses to external harmful stimuli and infection. Chronic inflammation induces various diseases. A variety of foods are prescribed in the traditional medicines of many countries all over the world, which gave birth to the concept of medicine food homology. Over the past few decades, a number of secondary metabolites from medicine food homology plants have been demonstrated to have anti-inflammatory effects. In the present review, the effects and mechanisms of the medicine food homology plants-derived active components on relieving inflammation and inflammation-mediated diseases were summarized and discussed. The information provided in this review is valuable to future studies on anti-inflammatory ingredients derived from medicine food homology plants as drugs or food supplements.
Collapse
Affiliation(s)
- Qiuxia Lu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu 610106, China
| | - Rui Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu 610106, China
| | - Yixi Yang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu 610106, China
| | - Yujin Zhang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Qi Zhao
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jian Li
- School of Medicine, Chengdu University, Chengdu 610106, China; Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
14
|
Singh N, Rajotiya K, Lamba N, Singh HL, Ameta KL, Singh S. Versatile approach for the synthesis of furo-coumarin derivatives. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220126155703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Owing to useful physio-chemical properties of furo-coumarin derivatives, their synthetic and mechanistic investigation has been reported here. We have demonstrated a range of synthetic approach to access furan-fused coumarin derivatives. Many metal mediated, base and acid catalyzed approach have been revealed for the construction of thiscoumarin based fused heterocycles of biological importance. In addition to this, microwave assisted synthetic routes have been also revealed. The last and useful approach for the synthesis of these heterocycles includes use of purely solvent as a reaction media for synthesizing these interesting classes of heterocycles.
Collapse
Affiliation(s)
- Nidhi Singh
- Department of Chemistry, University of Allahabad, Allahabad, UP, India
| | - Krishna Rajotiya
- Mody University of Science and Technology, Lakshmangarh-Rajasthan 332311, India
| | - Nikita Lamba
- Mody University of Science and Technology, Lakshmangarh-Rajasthan 332311, India
| | - H. L. Singh
- Mody University of Science and Technology, Lakshmangarh-Rajasthan 332311, India
| | - K. L. Ameta
- Mody University of Science and Technology, Lakshmangarh-Rajasthan 332311, India
| | - Shivendra Singh
- Mody University of Science and Technology, Lakshmangarh-Rajasthan 332311, India
| |
Collapse
|
15
|
Hu Q, Jia L, Zhang X, Zhu A, Wang S, Xie X. Accurate construction of cell membrane biomimetic graphene nanodecoys via purposeful surface engineering to improve screening efficiency of active components of traditional Chinese medicine. Acta Pharm Sin B 2022; 12:394-405. [PMID: 35127394 PMCID: PMC8799996 DOI: 10.1016/j.apsb.2021.05.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Biomimetic nanoengineering presents great potential in biomedical research by integrating cell membrane (CM) with functional nanoparticles. However, preparation of CM biomimetic nanomaterials for custom applications that can avoid the aggregation of nanocarriers while maintaining the biological activity of CM remains a challenge. Herein, a high-performance CM biomimetic graphene nanodecoy was fabricated via purposeful surface engineering, where polyethylene glycol (PEG) was used to modifying magnetic graphene oxide (MGO) to improve its stability in physiological solution, so as to improve the screening efficiency to active components of traditional Chinese medicine (TCM). With this strategy, the constructed PEGylated MGO (PMGO) could keep stable at least 10 days, thus improving the CM coating efficiency. Meanwhile, by taking advantage of the inherent ability of HeLa cell membrane (HM) to interact with specific ligands, HM-camouflaged PMGO showed satisfied adsorption capacity (116.2 mg/g) and selectivity. Finally, three potential active components, byakangelicol, imperatorin, and isoimperatorin, were screened from Angelica dahurica, whose potential antiproliferative activity were further validated by pharmacological studies. These results demonstrated that the purposeful surface engineering is a promising strategy for the design of efficient CM biomimetic nanomaterials, which will promote the development of active components screening in TCM.
Collapse
Affiliation(s)
- Qi Hu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Lanlan Jia
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Xiaolin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Aihong Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Sicen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Xiaoyu Xie
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
- Corresponding author. Tel./fax: +86 29 82656788.
| |
Collapse
|
16
|
Gao FY, Chen HY, Luo YS, Chen JK, Yan L, Zhu JB, Fan GR, Zhou TT. "Q-markers targeted screening" strategy for comprehensive qualitative and quantitative analysis in fingerprints of Angelica dahurica with chemometric methods. Food Chem X 2021; 12:100162. [PMID: 34825171 PMCID: PMC8604777 DOI: 10.1016/j.fochx.2021.100162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/29/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022] Open
Abstract
Angelica dahurica is a famous functional food and herb. To guarantee quality of A. dahurica, a strategy “Q-markers targeted screening” was successfully developed by sufficient extraction of compounds and the targeted screening of qualitative and quantitative markers calculated through chemometric methods based fingerprints. Accelerated solvent extraction was selected due to its prominent advantages exhibiting the maximum extraction yields and varieties of compounds and especially excellent reproducibility (RSD < 1). After extraction, the fingerprints of A. dahuricae samples were established. For the preliminary herb authenticity, the targeted screening of 23 quantitative markers were performed by similarity analysis and hierarchical cluster analysis based on the fingerprints, which were identified by liquid chromatography tandem mass spectrometry (LC-MS). Subsequently, for further quality control, the targeted screening of nine quantitative markers were done by similarity analysis & linear discriminant analysis, which were determined by LC. Lastly, the strategy was successfully applied to quality assessment of A. dahurica samples.
Collapse
Key Words
- ANOVA, analysis of variance
- ASE, accelerated solvent extraction
- Accelerated solvent extraction
- Angelica dahurica
- BBD, Box-Bohnken Design
- CID, collision-induced-dissociation
- Chemometric analysis
- HCA, hierarchical cluster analysis
- HPLC-PDA-ESI-ITMSn, high performance liquid chromatography-photo diode array-electrospray ionization ion trap mass spectrometry
- HRE, heated reflux extraction
- IS, internal standard
- LDA, linear discriminant analysis
- LOD, limits of detection
- LOQ, limits of quantification
- Liquid chromatography tandem mass spectrometry
- MAE, microwave-assisted extraction
- Q-markers targeted screening
- Qualitative markers
- Quantitative markers
- RSD, relative standard deviation
- RSM, response surface methodology
- S/N, signal-to-noise ratios
- SA, similarity analysis
- TOF, time of fight
- UAME, ultrasonic-assisted microwave extraction
- UE, ultrasonic extraction
- UV, ultra violet
- bergapten (PubChem CID: 2355)
- estazolam (PubChem CID: 3261)
- hydrate oxypeucedanin (PubChem CID: 17536)
- imperatorin (PubChem CID: 10212)
- isoimperatorin (PubChem CID: 68081)
- oxypeucedanin (PubChem CID: 160544)
- phellopterin (PubChem CID: 98608)
- prangenin hydrate (PubChem CID: 129710912)
- xanthotoxin (PubChem CID: 4114)
- xanthotoxol (PubChem CID: 65090)
Collapse
Affiliation(s)
- Fang-Yuan Gao
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, No. 800 Xiangyin Road, Shanghai 200433, China
| | - Hai-Yan Chen
- Department of Endocrinology, Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, Shanghai 200003, China
| | - Yu-Sha Luo
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Ji-Kuai Chen
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, No. 800 Xiangyin Road, Shanghai 200433, China
| | - Lang Yan
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, No. 800 Xiangyin Road, Shanghai 200433, China
| | - Jiang-Bo Zhu
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, No. 800 Xiangyin Road, Shanghai 200433, China
| | - Guo-Rong Fan
- Department of Clinical Pharmacy, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, No. 100 Haining Road, Shanghai 200025, China.,School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Ting-Ting Zhou
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
17
|
Andriolo CV, Novaes FJM, Pereira HMG, Sardela VF, Rezende CM. Metabolic study of cafestol using in silico approach, zebrafish water tank experiments and liquid chromatography high-resolution mass spectrometry analyses. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1186:123028. [PMID: 34801941 DOI: 10.1016/j.jchromb.2021.123028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 10/09/2021] [Accepted: 11/06/2021] [Indexed: 12/19/2022]
Abstract
Coffee is one of the most consumed beverages worldwide. Cafestol is an endogenous coffee diterpene present in raw coffee beans and also found in hot beverages, with several biological activities. However, there is still little information on this molecule after ingestion of coffee infusion. Zebrafish (Danio rerio) is a promising in vivo model for metabolic studies due to the annotation of mammalian orthologs to encode enzymes related to drug metabolism. Experiments using Zebrafish Water Tank (ZWT) model produce more significant number of metabolites for molecular investigation in a cleaner matrix than other classical models, such as purified hepatocytes. This work aimed to investigate the biotransformation of cafestol by the ZWT model using ultra-performance liquid chromatography coupled to hybrid quadrupole-orbitrap high-resolution mass spectrometry equipped with electrospray ionization (UPLC-HRMS) supported by in silico approach using SMARTCyp, Way2Drug and XenoSite Softwares. Twenty-five metabolites of cafestol were proposed by in silico analysis, in which 5 phase I metabolites were confirmed in the ZWT by UPLC and MS/HRMS investigation: 6-hydroxy-cafestol, 6,12-dihydroxy-cafestol, 2-oxo-cafestol, 6-oxo-cafestol and one isomer whose position in the carboxyl group was not determined. These metabolites were observed during 9 h of the experiment, whose contents were associated with the behavioral responses of the fish.
Collapse
Affiliation(s)
- Cyrus Veiga Andriolo
- Universidade Federal do Rio de Janeiro, Instituto de Química, Laboratório de Análise de Aromas, Avenida Athos da Silveira Ramos, 149, Bloco A, Instituto de Química, Sala 626A, Rio de Janeiro, RJ 21941-895, Brazil
| | - Fábio Junior M Novaes
- Universidade Federal do Rio de Janeiro, Instituto de Química, Laboratório de Análise de Aromas, Avenida Athos da Silveira Ramos, 149, Bloco A, Instituto de Química, Sala 626A, Rio de Janeiro, RJ 21941-895, Brazil; Universidade Federal de Viçosa, Departamento de Química, Avenida Peter Henry Rolfs, s/n, Campus Universitário, Viçosa, MG 36570-900, Brazil
| | - Henrique Marcelo Gualberto Pereira
- Universidade Federal do Rio de Janeiro, Instituto de Química, Laboratório Brasileiro de Controle de Dopagem (LBCD-LADETEC), Avenida Horácio Macedo, 1281, Pólo de Química, Bloco C, Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil
| | - Vinícius Figueiredo Sardela
- Universidade Federal do Rio de Janeiro, Instituto de Química, Laboratório Brasileiro de Controle de Dopagem (LBCD-LADETEC), Avenida Horácio Macedo, 1281, Pólo de Química, Bloco C, Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil
| | - Claudia Moraes Rezende
- Universidade Federal do Rio de Janeiro, Instituto de Química, Laboratório de Análise de Aromas, Avenida Athos da Silveira Ramos, 149, Bloco A, Instituto de Química, Sala 626A, Rio de Janeiro, RJ 21941-895, Brazil.
| |
Collapse
|
18
|
Chen SY, Chen QW, Shou LM, Pan H, Ruan SM, Liang ZH, Shu QJ. Stevens-Johnson syndrome/toxic epidermal necrolysis successfully treated with Chinese herbal medicine Pi-Yan-Ning: A case report. JOURNAL OF INTEGRATIVE MEDICINE 2021; 19:555-560. [PMID: 34696996 DOI: 10.1016/j.joim.2021.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 09/18/2021] [Indexed: 12/27/2022]
Abstract
Stevens-Johnson syndrome/toxic epidermal necrolysis (SJS/TEN) is a rare adverse cutaneous reaction with a low incidence and high mortality. Despite posing a serious threat to patients' health and lives, there is no high-quality evidence for a standard treatment regimen. Here we report the case of a 62-year-old man with stage IV pancreatic cancer who experienced immunotherapy-induced SJS/TEN. After consensus-based regular treatments at a local hospital, his symptoms became worse. Thus, he consented to receive Chinese herbal medicine (CHM) therapy. The affected parts of the patient were treated with the CHM Pi-Yan-Ning which was applied externally for 20 min twice a day. After 7 days of treatment, the dead skin began peeling away from the former lesions that had covered his hands, feet, and lips, indicating that skin had regenerated. After 12 days of treatment, the patient's skin was completely recovered. In this case, SJS/TEN was successfully treated with Pi-Yan-Ning, suggesting that there might be tremendous potential for the use of Pi-Yan-Ning in the treatment of severe skin reactions to drug treatments. Further basic investigations and clinical trials to explore the mechanism and efficacy are needed.
Collapse
Affiliation(s)
- Shu-Yi Chen
- Department of Oncology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| | - Qun-Wei Chen
- Department of Oncology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| | - Liu-Mei Shou
- Department of Oncology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| | - Hong Pan
- Department of Oncology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| | - Shan-Ming Ruan
- Department of Oncology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| | - Zhe-Hao Liang
- Department of Medical Ultrasonics, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| | - Qi-Jin Shu
- Department of Oncology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China.
| |
Collapse
|
19
|
Li CQ, Ma QY, Gao XZ, Wang X, Zhang BL. Research Progress in Anti-Inflammatory Bioactive Substances Derived from Marine Microorganisms, Sponges, Algae, and Corals. Mar Drugs 2021; 19:572. [PMID: 34677471 PMCID: PMC8538560 DOI: 10.3390/md19100572] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/04/2021] [Accepted: 10/10/2021] [Indexed: 12/24/2022] Open
Abstract
Inflammation is the body's defense reaction in response to stimulations and is the basis of various physiological and pathological processes. However, chronic inflammation is undesirable and closely related to the occurrence and development of diseases. The ocean gives birth to unique and diverse bioactive substances, which have gained special attention and been a focus for anti-inflammatory drug development. So far, numerous promising bioactive substances have been obtained from various marine organisms such as marine bacteria and fungi, sponges, algae, and coral. This review covers 71 bioactive substances described during 2015-2020, including the structures (65 of which), species sources, evaluation models and anti-inflammatory activities of these substances. This review aims to provide some reference for the research progress of marine-organism-derived anti-inflammatory metabolites and give more research impetus for their conversion to novel anti-inflammatory drugs.
Collapse
Affiliation(s)
- Chao-Qun Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China; (C.-Q.L.); (Q.-Y.M.); (X.-Z.G.)
| | - Qin-Yuan Ma
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China; (C.-Q.L.); (Q.-Y.M.); (X.-Z.G.)
| | - Xiu-Zhen Gao
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China; (C.-Q.L.); (Q.-Y.M.); (X.-Z.G.)
| | - Xuan Wang
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266003, China;
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, Qingdao 266003, China
| | - Bei-Li Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China; (C.-Q.L.); (Q.-Y.M.); (X.-Z.G.)
| |
Collapse
|
20
|
Zhao L, Zhang S, Shan C, Shi Y, Wu H, Wu J, Peng D. De novo transcriptome assembly of Angelica dahurica and characterization of coumarin biosynthesis pathway genes. Gene 2021; 791:145713. [PMID: 33979682 DOI: 10.1016/j.gene.2021.145713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/26/2021] [Accepted: 05/06/2021] [Indexed: 12/18/2022]
Abstract
Angelica dahurica (Hoffm.) Benth. & Hook.f. ex Franch. & Sav (A. dahurica) is a famous Chinese herb known for the production of coumarins, important secondary metabolites with wide-ranging pharmacological activities. In particular, the methoxylated coumarins like those produced by A. dahurica are known for their anti-inflammatory, anti-cancer, and anti-oxidant pharmacological effects. However, the molecular mechanism of coumarin biosynthesis in A. dahurica has not been studied. Such investigation could help scientists harness the biosynthesis potential of methoxylated coumarins. Here we present, three transcriptomes corresponding to leaf, root, and stem tissues of A. dahurica. A total of 114,310 unigenes with an average length of 1118 bp were de novo assembled, and 81,404 (71.21%) of those unigenes were annotated. Then, 181 unigenes encoding the seven key enzymes involved were identified, for which COMT (Caffeic acid 3-O-methyltransferase) was spatially used in a phylogenetic analysis, and some of these key enzyme genes were verified by qRT-PCR. Differentially expressed genes and root-specific-expressed genes were identified, by comparing genes' profile activity between roots and other tissues. Furthermore, multiple genes encoding key enzymes or transcription factors related to coumarin biosynthesis were identified and analyzed. This study is the first to report comprehensive gene information of A. dahurica at the transcriptional level, and to distinguish candidate genes related to its biosynthesis of coumarin, thus laying a foundation for this pathway's further exploration in A. dahurica.
Collapse
Affiliation(s)
- Liqiang Zhao
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Shengxiang Zhang
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Chunmiao Shan
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Yuanyuan Shi
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Huan Wu
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Jiawen Wu
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China; Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei 230012, China.
| | - Daiyin Peng
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China; Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei 230012, China.
| |
Collapse
|
21
|
Luo Y, Fang Q, Lai Y, Niu H, Wang R, Song C. High-throughput sequencing technology reveals polysaccharides from Angelica dahurica that affect gut microbiota in mice. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2022.2045216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Yu Luo
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China
| | - Qi Fang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China
| | - Yong Lai
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China
| | - Hong Niu
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China
| | - Rui Wang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China
| | - Can Song
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China
| |
Collapse
|
22
|
Guo J, Hu Z, Yan F, Lei S, Li T, Li X, Xu C, Sun B, Pan C, Chen L. Angelica dahurica promoted angiogenesis and accelerated wound healing in db/db mice via the HIF-1α/PDGF-β signaling pathway. Free Radic Biol Med 2020; 160:447-457. [PMID: 32853721 DOI: 10.1016/j.freeradbiomed.2020.08.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/28/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022]
Abstract
Impaired angiogenesis is crucial for impeding the wound healing process in diabetic foot ulcers (DFUs). In this study, we found that Angelica dahurica (A. dahurica) stimulated angiogenesis and benefited wound healing in genetic mouse models of diabetes. In HUVECs, A. dahurica promoted cell proliferation and tube formation, which was accompanied by increased nuclear translocation of HIF-1α under hypoxic conditions and led to elevated PDGF-β protein expression. A. dahurica activated the PI3K/AKT signaling pathway in human umbilical vein endothelial cells (HUVECs), which was abrogated by the PI3K inhibitor LY294002. Furthermore, the cellular expression of PDGF-β decreased significantly after treatment with a HIF-1α-siRNA, and PDGF-β expression was increased in HIF-1α-overexpressing cells. In a full-thickness cutaneous wound healing db/db mouse model, A. dahurica accelerated wound closure, which was reflected by a significantly reduced wound area and an increase in neovascularization, as well as by elevated PDGF-β expression and increased capillary formation. In addition, A. dahurica activated the PI3K/AKT signaling pathway and enhanced HIF-1α synthesis in wounds. In summary, A. dahurica promoted angiogenesis of HUVECs in vitro by promoting signaling via the HIF-1α/PDGF-β pathway, efficiently enhancing vascularization in regenerated tissue and facilitating wound healing in vivo. The results revealed that A. dahurica has potential as a therapy for vessel injury-related wounds.
Collapse
Affiliation(s)
- Jun Guo
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Zhibo Hu
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Fengjuan Yan
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Sisi Lei
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Ting Li
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Xiaoyu Li
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Chaofei Xu
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Bei Sun
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Congqing Pan
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
| | - Liming Chen
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
| |
Collapse
|
23
|
Jian X, Zhao Y, Wang Z, Li S, Li L, Luo J, Kong L. Two CYP71AJ enzymes function as psoralen synthase and angelicin synthase in the biosynthesis of furanocoumarins in Peucedanum praeruptorum Dunn. PLANT MOLECULAR BIOLOGY 2020; 104:327-337. [PMID: 32761540 DOI: 10.1007/s11103-020-01045-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Psoralen synthase and angelicin synthase responsible for the formation of psoralen and angelicin in Peucedanum praeruptorum Dunn were identified and functionally characterized, respectively. Furanocoumarins were reported to possess several activities such as anticancer, anti-inflammatory and neuroprotective, and function as phytotoxin and allelochemical in plants. Furanocoumarins are the main bioactive ingredient in P. praeruptorum which is a commonly used traditional Chinese medicine. Phenylalanine ammonia lyase (PAL), 4-coumarate: CoA ligase (4CL), p-coumaroyl CoA 2'-hyfroxylase (C2'H) were cloned previously to elucidate the biosynthetic mechanism of coumarin lactone ring. However, the genes involved in complex coumarins in P. praeruptorum have not been explored. Herein, putative psoralen synthase CYP71AJ49 and angelicin synthase CYP71AJ51 were cloned from P. praeruptorum. In vivo and in vitro yeast assays were conducted to confirm their activities. Furthermore, the results of High Performance Liquid Chromatography-Electrospray Ionization Mass Spectrometry (HPLC-ESI-MS) verified that CYP71AJ49 catalyzed the conversion of marmesin to psoralen, and CYP71AJ51 catalyzed columbianetin to angelicin. Subsequently, the expression profile showed that CYP71AJ49 and CYP71AJ51 were easily affected by environmental conditions, especially UV and temperature. The genes tissue-specific expression and compounds tissue-specific distribution pattern indicated the existence of substance transport in P. praeruptorum. Phylogenetic analysis was conducted with 27 CYP71AJs, CYP71AJ49 and CYP71AJ51 were classified in I-4 and I-2, respectively. These results provide further insight to understand the biosynthetic mechanism of complex coumarins.
Collapse
Affiliation(s)
- Xiangyun Jian
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, People's Republic of China
| | - Yucheng Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, People's Republic of China
| | - Ziwen Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, People's Republic of China
| | - Shan Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, People's Republic of China
| | - Li Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, People's Republic of China
| | - Jun Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, People's Republic of China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
24
|
Lee SH, Han AR, Kang U, Kim JB, Seo EK, Jung CH. Inhibitory Effects of Furanocoumarins From the Roots of Angelica dahuricaon Ionizing Radiation-Induced Migration of A549 Human Non-Small Cell Lung Cancer Cells. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20915036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Radiation therapy is a very effective tool for the treatment of advanced human lung cancers. However, as one of its malignancy-promoting behaviors, ionizing radiation (IR) increases cell migration and radiation resistance in several lung cancer cells, including non-small cell lung cancer (NSCLC) cells. As part of our ongoing search for potent radiotherapy enhancers from medicinal herbs, a chloroform-soluble fraction of the roots of Angelica dahurica was subjected to phytochemical investigation, leading to the isolation of 8 furanocoumarins. Of these, psoralen (1), xanthotoxin (2), and bergapten (3) inhibited IR-induced migration at a non-cytotoxic concentration (50 μM) in human NSCLC A549 cells. This study is the first to report on the inhibitory activities of these constituents of A. dahurica against IR-induced cancer metastasis.
Collapse
Affiliation(s)
- Sang Hoon Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, Republic of Korea
| | - Ah-Reum Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Unwoo Kang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Eun Kyoung Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Chan-Hun Jung
- Jeonju AgroBio-Materials Institute, Jeonju-si, Jeollabuk-do, Republic of Korea
| |
Collapse
|
25
|
Shi B, Liu J, Zhang Q, Wang S, Jia P, Bian L, Zheng X. Effect of co-administration of Acori Tatarinowii Rhizoma volatile oil on pharmacokinetic fate of xanthotoxol, oxypeucedanin hydrate, and byakangelicin from Angelicae Dahuricae Radix in rat. J Sep Sci 2020; 43:2349-2362. [PMID: 32222035 DOI: 10.1002/jssc.201901250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/29/2022]
Abstract
A combination of Angelicae Dahuricae Radix and Acori Tatarinowii Rhizoma has been widely used as the herb pair in traditional Chinese medicine to treat stroke, migraine, and epilepsy. However, the underlying synergistic mechanism of the herb pair remains unknown. This study was aimed at investigating the effects of Acori Tatarinowii Rhizoma volatile oil on the pharmacokinetic parameters of xanthotoxol, oxypeucedanin hydrate, and byakangelicin from Angelicae Dahuricae Radix in rat, and in vitro absorption behavior of the three compounds using rat everted gut sac, in situ single-pass intestinal perfusion, and Caco-2 cell monolayer models. The pharmacokinetic study exhibited clear changes in the key pharmacokinetic parameters of the three main coumarins through co-administering with Acori Tatarinowii Rhizoma volatile oil (50 mg/kg), the area under curve and the maximum plasma concentration of xanthotoxol increased 1.36 and 1.31 times; the area under curve, the maximum plasma concentration, mean residence time, half-life of elimination, and the time to reach peak concentration of oxypeucedanin hydrate increased by 1.35, 1.18, 1.24, 1.19 and 1.49 times, respectively; the area under curve, mean residence time, half-life of elimination, and time to reach peak concentration of byakangelicin climbed 1.29, 1.27, 1.37, and 1.28 times, respectively. The three coumarin components were absorbed well in the jejunum and ileum in the intestinal perfusion model, when co-administered with Acori Tatarinowii Rhizoma volatile oil (100 μg/mL). The in vivo and in vitro experiments showed good relevance and consistency. The results demonstrated that the three coumarin compounds from Angelicae Dahuricae Radix were absorbed through the active transportation, and Acori Tatarinowii Rhizoma volatile oil could promote the intestinal absorption and transport of these compounds by inhibiting P-glycoprotein (P-gp)-mediated efflux.
Collapse
Affiliation(s)
- Baimei Shi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, 710069, P. R. China
| | - Jianghong Liu
- Shenzhen Longhua District Central Hospital, Shenzhen, 518110, P. R. China
| | - Qian Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, 710069, P. R. China.,District Traditional Chinese Medicine Hospital of Xi'an, Shaanxi Province, Xi'an, 710100, P. R. China
| | - Shixiang Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, 710069, P. R. China
| | - Pu Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, 710069, P. R. China
| | - Liujiao Bian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, 710069, P. R. China
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, 710069, P. R. China
| |
Collapse
|
26
|
Hwangbo H, Choi EO, Kim MY, Kwon DH, Ji SY, Lee H, Hong SH, Kim GY, Hwang HJ, Hong SH, Choi YH. Suppression of tumor growth and metastasis by ethanol extract of Angelica dahurica Radix in murine melanoma B16F10 cells. Biosci Trends 2020; 14:23-34. [PMID: 32092745 DOI: 10.5582/bst.2019.01230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The roots of Angelica dahurica have long been used as a traditional medicine in Korea to treat various diseases such as toothache and cold. In this study, we investigated the effect of ethanol extract from the roots of this plant on metastatic melanoma, a highly aggressive skin cancer, in B16F10 melanoma cells and B16F10 cell inoculated-C57BL/6 mice. Our results showed that the ethanol extracts of Angelicae dahuricae Radix (EEAD) suppressed cell growth and induced apoptotic cell death in B16F10 cells. EEAD also activated the mitochondria-mediated intrinsic apoptosis pathway, with decreased mitochondrial membrane potential, and increased production of intracellular reactive oxygen species and ration of Bax/Bcl-2 expression. Furthermore, EEAD reduced the migration, invasion, and colony formation of B16F10 cells through the reduced expression and activity of matrix metalloproteinase (MMP)-2 and -9. In addition, in vivo results demonstrated that oral administration of EEAD inhibited lactate dehydrogenase activity, hepatotoxicity, and nephrotoxicity without weight loss in B16F10 cell inoculated-mice. Importantly, EEAD was able to markedly suppress lung hypertrophy, the incidence of B16F10 cells lung metastasis, and the expression of tumor necrosis factor-alpha in lung tissue. Taken together, our findings suggest that EEAD may be useful for managing metastasis and growth of malignant cancers, including melanoma.
Collapse
Affiliation(s)
- Hyun Hwangbo
- Anti-Aging Research Center, Dong-eui University, Busan, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Korea
| | - Eun Ok Choi
- Anti-Aging Research Center, Dong-eui University, Busan, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Korea
| | - Min Yeong Kim
- Anti-Aging Research Center, Dong-eui University, Busan, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Korea
| | - Da Hye Kwon
- Anti-Aging Research Center, Dong-eui University, Busan, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Korea
| | - Seon Yeong Ji
- Anti-Aging Research Center, Dong-eui University, Busan, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Korea
| | - Hyesook Lee
- Anti-Aging Research Center, Dong-eui University, Busan, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Korea
| | - Sang Hoon Hong
- Department of Internal Medicine, Dong-eui University College of Korean Medicine, Busan, Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju, Korea
| | - Hye Jin Hwang
- Department of Food and Nutrition, Dong-eui University, Busan, Korea
| | - Su Hyun Hong
- Anti-Aging Research Center, Dong-eui University, Busan, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Korea
| |
Collapse
|
27
|
Isolation, structure elucidation, tyrosinase inhibitory, and antioxidant evaluation of the constituents from Angelica dahurica roots. J Nat Med 2019; 74:456-462. [DOI: 10.1007/s11418-019-01375-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/16/2019] [Indexed: 10/25/2022]
|
28
|
Menezes JC, Diederich MF. Natural dimers of coumarin, chalcones, and resveratrol and the link between structure and pharmacology. Eur J Med Chem 2019; 182:111637. [DOI: 10.1016/j.ejmech.2019.111637] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023]
|
29
|
Qi B, Yang W, Ding N, Luo Y, Jia F, Liu X, Wang J, Wang X, Tu P, Shi S. Pyrrole 2-carbaldehyde derived alkaloids from the roots of Angelica dahurica. J Nat Med 2019; 73:769-776. [DOI: 10.1007/s11418-019-01328-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 06/06/2019] [Indexed: 01/25/2023]
|
30
|
Li F, Song Y, Wu J, Chen X, Hu S, Zhao H, Bai X. Hollow fibre cell fishing and hollow fibre liquid phase microextraction research on the anticancer coumarins of Radix Angelicae dahuricae in vitro and in vivo. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1576141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Feixue Li
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Yanhong Song
- Shanxi Institute of Veterinary Feed and Drug Control, Taiyuan, China
| | - Jinxiao Wu
- Shanxi Institute of Veterinary Feed and Drug Control, Taiyuan, China
| | - Xuan Chen
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Shuang Hu
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Hongxing Zhao
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Xiaohong Bai
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
31
|
Noh P, Kim WJ, Yang S, Park I, Moon BC. Authentication of the Herbal Medicine Angelicae Dahuricae Radix Using an ITS Sequence-Based Multiplex SCAR Assay. Molecules 2018; 23:E2134. [PMID: 30149558 PMCID: PMC6225120 DOI: 10.3390/molecules23092134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 01/13/2023] Open
Abstract
The accurate identification of plant species is of great concern for the quality control of herbal medicines. The Korean Pharmacopoeia and the Pharmacopoeia of the People's Republic of China define Angelicae Dahuricae Radix (Baek-Ji in Korean and Bai-zhi in Chinese) as the dried roots of Angelica dahurica or A. dahurica var. formosana belonging to the family Apiaceae. Discrimination among Angelica species on the basis of morphological characteristics is difficult due to their extremely polymorphic traits and controversial taxonomic history. Furthermore, dried roots processed for medicinal applications are indistinguishable using conventional methods. DNA barcoding is a useful and reliable method for the identification of species. In this study, we sequenced the internal transcribed spacer (ITS) region of nuclear ribosomal RNA genes in A. dahurica, A. dahurica var. formosana, and the related species A. anomala and A. japonica. Using these sequences, we designed species-specific primers, and developed and optimized a multiplex sequence-characterized amplified region (SCAR) assay that can simply and rapidly identify respective species, and verify the contamination of adulterant depending on the polymerase chain reaction (PCR) amplification without sequencing analysis in a single PCR reaction. This assay successfully identified commercial samples of Angelicae Dahuricae Radix collected from Korean and Chinese herbal markets, and distinguished them from adulterants. This multiplex SCAR assay shows a great potential in reducing the time and cost involved in the identification of genuine Angelicae Dahuricae Radix and adulterant contamination.
Collapse
Affiliation(s)
- Pureum Noh
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Wook Jin Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Sungyu Yang
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Inkyu Park
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Byeong Cheol Moon
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| |
Collapse
|
32
|
Su C, Qi B, Wang J, Ding N, Wu Y, Shi XP, Zhu ZX, Liu X, Wang XH, Zheng J, Tu PF, Shi SP. Megastigmane glycosides from Urena lobata. Fitoterapia 2018; 127:123-128. [DOI: 10.1016/j.fitote.2018.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 02/05/2018] [Accepted: 02/10/2018] [Indexed: 11/30/2022]
|
33
|
Chen L, Yang H, Yu C, Yuan M, Li H. High hepatic exposure of furanocoumarins in Radix Angelica dahuricae is associated with transporter mediated active uptake. JOURNAL OF ETHNOPHARMACOLOGY 2018; 212:74-85. [PMID: 29055720 DOI: 10.1016/j.jep.2017.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 05/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Radix Angelica dahuricae (RAD), the roots of Angelica dahurica (Hoffm.) Benth. & Hook.f. ex Franch. & Sav, is a well-known traditional Chinese medicine (TCM) and has been used for centuries to treat headaches, toothaches, nose congestion, abscesses, furunculoses, and acne. This herb is also one of frequently reported TCMs showing the herb-drug interaction potential. Furanocoumarins are main bioactive components of RAD. AIM OF THE STUDY This study is designed to characterize the tissue distribution profiles of furanocoumarins after oral administration of RAD extract in rats and to explore the mechanism underlying the high hepatic exposure of the major furanocoumarins. MATERIALS AND METHODS The tissue distribution of nine furanocoumarins was determined in rats after an oral dose of 0.46g/kg RAD extract using high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Unbound fractions (ƒu) of major furanocoumarins, including imperatorin (IM), isoimperatorin (IIM), bergapten (BER) and oxypeucedanin hydrate (OXYH), were measured in rat plasma and selected tissue homogenates (liver, kidney, lung and brain) with Rapid Equilibrium Dialysis (RED) method. The temperature dependent hepatic uptake of IM, IIM, BER and OXYH were evaluated in suspended rat primary hepatocytes at 4°C or 37°C by the oil-spin method. The uptake kinetics was conducted in the cells over a wide concentration range. The furanocoumarins were co-incubated with a panel of transporter inhibitors to investigate the involvement of uptake transporters in the hepatic uptake. The transcellular transport characteristics of IM, IIM, BER and OXYH were further assessed using Caco-2 cell monolayer model. RESULTS IM, IIM, BER and OXYH were found to be the major bioactive furanocoumarins in rat plasma and tissues, representing more than 90% exposure for all the detected furanocoumarins. The most concentrative organ of major furanocoumarins was the liver, with liver-to-plasma exposure ratio (Kp,AUC) of 5.1, 6.5 and 4.7 for IM, IIM and BER, and 2.3 for OXYH, respectively. IM, IIM and BER also showed higher concentrations in the kidney with Kp above 2.2. The higher protein binding of the furanocoumarins partially contributed to their higher tissue exposure. In suspended rat primary hepatocyte, the hepatic uptake of IM, IIM, BER and OXYH was temperature-dependent, with considerably higher uptake at 37°C than at 4°C. Uptake kinetics indicated that the hepatic uptake of IM, IIM, BER and OXYH involved both active transport and passive diffusion processes. For IM, IIM and BER, the contribution of the active transport was greater than the passive process, with the CLactive/CLuptake > 72%. Ritonavir (RTN) and cyclosporine A (CsA), the known inhibitors of organic anion transporting polypeptide (Oatp) significantly inhibited the hepatic uptake of IM and BER, while the inhibitor of the organic anion transporters (Oat) probenecid (PBC) remarkably reduced IIM uptake. In the Caco-2 cell model, the furanocoumarins were highly permeable in the apical to basolateral direction without notable active efflux. CONCLUSION The furanocoumarins rapidly and widely distributed into various tissues after oral dose of the RAD extract. IM, IIM, BER and OXYH were the major components detected in both plasma and tissues. Liver was the most distributed tissue of the total and free furanocoumarins. Non-specific protein binding contributed partially to the higher tissue exposures of these bioactive components. The Oatp and Oat mediated active uptake played the primal role in the high hepatic exposure of the furanocoumarins.
Collapse
Affiliation(s)
- Lin Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, 100850 Beijing, China; Beijing Institute of Pharmacology and Toxicology, 100850 Beijing, China.
| | - Haiying Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, 100850 Beijing, China; Beijing Institute of Pharmacology and Toxicology, 100850 Beijing, China.
| | - Chenchen Yu
- State Key Laboratory of Toxicology and Medical Countermeasures, 100850 Beijing, China; Beijing Institute of Pharmacology and Toxicology, 100850 Beijing, China.
| | - Mei Yuan
- State Key Laboratory of Toxicology and Medical Countermeasures, 100850 Beijing, China; Beijing Institute of Pharmacology and Toxicology, 100850 Beijing, China.
| | - Hua Li
- State Key Laboratory of Toxicology and Medical Countermeasures, 100850 Beijing, China; Beijing Institute of Pharmacology and Toxicology, 100850 Beijing, China.
| |
Collapse
|
34
|
Qi B, Liu X, Mo T, Zhu Z, Li J, Wang J, Shi X, Zeng K, Wang X, Tu P, Abe I, Shi S. 3,5-Dimethylorsellinic Acid Derived Meroterpenoids from Penicillium chrysogenum MT-12, an Endophytic Fungus Isolated from Huperzia serrata. JOURNAL OF NATURAL PRODUCTS 2017; 80:2699-2707. [PMID: 28960979 DOI: 10.1021/acs.jnatprod.7b00438] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Eight new chrysogenolides (A-H (1-8)) and seven known (9-15) 3,5-dimethylorsellinic acid derived meroterpenoids were isolated from the solid substrate fermentation cultures of a Huperzia serrata endophytic fungus, Penicillium chrysogenum MT-12. The structures of the new compounds were elucidated by interpretation of spectroscopic and spectrometric data (1D and 2D NMR, IR, and HRESIMS). The absolute configurations of 1-4 were determined by single-crystal X-ray crystallographic analysis, and those of 5-8 were assigned on the basis of experimental and calculated electronic circular dichroism spectra. Compounds 3, 4, 6, 11, and 12 showed inhibition of nitric oxide production in lipopolysaccharide-activated RAW 264.7 macrophage cells with IC50 values in the range of 4.3-78.2 μM (positive control, indomethacin, IC50 = 33.6 ± 1.4 μM).
Collapse
Affiliation(s)
- Bowen Qi
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing 100029, People's Republic of China
| | - Xiao Liu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing 100029, People's Republic of China
| | - Ting Mo
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing 100029, People's Republic of China
| | - Zhixiang Zhu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing 100029, People's Republic of China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing 100029, People's Republic of China
| | - Juan Wang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing 100029, People's Republic of China
| | - Xiaoping Shi
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing 100029, People's Republic of China
| | - Kewu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University , Beijing 100191, People's Republic of China
| | - Xiaohui Wang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing 100029, People's Republic of China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing 100029, People's Republic of China
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shepo Shi
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing 100029, People's Republic of China
| |
Collapse
|
35
|
Effects of Angelica dahurica and Rheum officinale Extracts on Excisional Wound Healing in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:1583031. [PMID: 28900458 PMCID: PMC5576423 DOI: 10.1155/2017/1583031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/04/2017] [Accepted: 07/13/2017] [Indexed: 12/31/2022]
Abstract
The main objective of wound treatments is to restore the functional skin properties and prevent infection. Traditional Chinese medicine provides alternative anti-inflammatory, antimicrobial, and wound healing therapies. Both Angelica dahurica extract (AE) and Rheum officinale extract (RE) possess antimicrobial activity. In this study, AE and RE were applied in wound treatment to investigate their healing effects. Thirty Sprague-Dawley rats with dorsal full-thickness skin excision were divided into normal saline (NS), AE, RE, AE plus RE (ARE), and Biomycin (BM) groups. The treatment and area measurement of wounds were applied daily for 21 days. Wound biopsies and blood samples were obtained for histology examinations and cytokine analysis. Results showed that wound contraction in ARE group was significantly higher than that in NS and BM groups (P < 0.05). Histological analysis showed that more inflammatory cell infiltration, collagen fibers, and myofibroblasts were observed in ARE treated group than those in NS group on days 3–5. In ARE group, plasma IL-6 levels were elevated during days 3–5 (P > 0.05), and plasma TGF-β1 levels were significantly lower than those in the NS group on days 3-4 (P < 0.05). In conclusion, ARE accelerates wound healing during inflammation and proliferation phases.
Collapse
|
36
|
Lee HJ, Lee H, Kim MH, Choi YY, Ahn KS, Um JY, Lee SG, Yang WM. Angelica dahurica ameliorates the inflammation of gingival tissue via regulation of pro-inflammatory mediators in experimental model for periodontitis. JOURNAL OF ETHNOPHARMACOLOGY 2017; 205:16-21. [PMID: 28455165 DOI: 10.1016/j.jep.2017.04.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/17/2017] [Accepted: 04/20/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anti-inflammatory effects of Angelica dahurica (AD) have been reported in previous studies. In this study, we investigated the anti-inflammatory effects of AD on periodontitis. MATERIALS AND METHODS Male Sprague-Dawley rats aged 7 weeks (n=7) were subjected to ligature around bilateral mandibular first molars. 1 and 100mg/mL of AD were topically applied to first molars for 14 days. Histological changes were observed in gingival epithelial layer, and the thickness of the gingival epithelial layer as well as the number of epithelial cells were quantified. To investigate the mRNA expression of pro-inflammatory cytokines in gingival tissues, reverse transcriptase polymerase chain reaction was performed. To confirm the anti-inflammatory effects of AD, pro-inflammatory mediators including cytokines and NF-kB, COX-2, and iNOS were analyzed in LPS-stimulated Raw 264.7 cells. RESULTS Topical application of AD attenuated not only the thickness of epithelial layer, also the number of epithelial cells in gingival tissue. The expressions of IL-1β, IL-6, IL-8, and IFN-γ in gingiva were significantly reduced by AD treatment. Additionally, the expressions of IL-1β, IL-6, IL-8 and IFN-γ mRNA were inhibited by AD in LPS-treated RAW264.7 macrophage cells. Furthermore, AD treatment decreased LPS-induced elevation of NF-κB, COX-2 and iNOS protein levels in RAW264.7 cells. CONCLUSION Taken together, AD application ameliorated the hyperplasia of gingival epithelial layer by down-regulating pro-inflammatory mediators. AD might have therapeutic potentials for periodontal diseases.
Collapse
Affiliation(s)
- Hye Ji Lee
- College of Korean Medicine, Basic Research Laboratory for Comorbidity Regulation, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Haesu Lee
- College of Korean Medicine, Basic Research Laboratory for Comorbidity Regulation, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Mi Hye Kim
- College of Korean Medicine, Basic Research Laboratory for Comorbidity Regulation, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - You Yeon Choi
- College of Korean Medicine, Basic Research Laboratory for Comorbidity Regulation, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Kwang Seok Ahn
- College of Korean Medicine, Basic Research Laboratory for Comorbidity Regulation, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Jae-Young Um
- College of Korean Medicine, Basic Research Laboratory for Comorbidity Regulation, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Seok-Geun Lee
- College of Korean Medicine, Basic Research Laboratory for Comorbidity Regulation, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Woong Mo Yang
- College of Korean Medicine, Basic Research Laboratory for Comorbidity Regulation, Graduate School, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
37
|
Li D, Wu L. Coumarins from the roots of Angelica dahurica cause anti-allergic inflammation. Exp Ther Med 2017; 14:874-880. [PMID: 28673013 DOI: 10.3892/etm.2017.4569] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 03/17/2017] [Indexed: 11/06/2022] Open
Abstract
Allergic inflammation is induced by allergens and leads to various allergic diseases, including rhinitis, asthma and conjunctivitis. Histamine is important in the pathogenesis of an immunoglobulin E-dependent allergic reaction and results in the secretion of cytokines associated with inflammation. Angelica dahurica (A. dahurica) is a medicinal plant widely used in China for the treatment of symptoms related to allergic inflammation. The present study investigated the chemical constituents from A. dahurica and evaluated their reductive effect on allergic inflammation. As a result, 15 compounds including 13 coumarins have been identified as isoimperatorin (1), imperatorin (2), oxypeucedanin (3), oxypeucedanin hydrate (4), bergapten (5), byakangelicin (6), phellopterin (7), byakangelicol (8), isopimpinellin (9), xanthotoxol (10), xanthotoxin (11), pimpinellin (12), scopoletin (13), β-sitosterol (14) and daucosterol (15). Compounds 1-13 were able to reduce the release of histamine, with compounds 4-6 exhibiting the most potent activity. Furthermore, compounds 1-12 were able to inhibit the secretion of tumor necrosis factor-α, interleukin (IL)-1β and IL-4, with compounds 5 and 7 exhibiting the strongest inhibitory effects. These compounds implemented the inhibitory effects on the expression of inflammatory cytokine genes through the inhibition of nuclear factor-κB activation. Virtual screening by a docking program indicated that compound 3 is a potent histamine H1 receptor antagonist. Additionally, the calculated physicochemical properties of these compounds support most furanocoumarins to be delivered to binding sites and permeate the cell membrane. The present findings contribute to understanding how A. dahurica attenuates allergic inflammation.
Collapse
Affiliation(s)
- Dong Li
- Ear, Nose and Throat Department, The First People's Hospital of Jingmen, Jingmen, Hubei 448000, P.R. China
| | - Li Wu
- Clinical Laboratory, The First People's Hospital of Jingmen, Jingmen, Hubei 448000, P.R. China
| |
Collapse
|
38
|
Simultaneous Quantification of Nine New Furanocoumarins in Angelicae Dahuricae Radix Using Ultra-Fast Liquid Chromatography with Tandem Mass Spectrometry. Molecules 2017; 22:molecules22020322. [PMID: 28230757 PMCID: PMC6155589 DOI: 10.3390/molecules22020322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/26/2017] [Accepted: 02/13/2017] [Indexed: 02/01/2023] Open
Abstract
A series of new furanocoumarins with long-chain hydrophobic groups, namely andafocoumarins A–H and J, have been isolated from the dried roots of Angelica dahurica cv. Hangbaizhi (Angelicae Dahuricae radix) in our previous study, among which andafocoumarins A and B were demonstrated to have better anti-inflammatory activity than the positive controls. In this work, a sensitive, accurate, and efficient ultra-fast liquid chromatography coupled with triple quadrupole mass spectrometer (UFLC-MS/MS) method was developed and validated for simultaneous quantification of above-mentioned nine compounds in four cultivars of Angelicae Dahuricae Radix. Chromatographic separation was performed on a Kinetex 2.6u C18 100 Å column (100 × 2.1 mm, 2.6 µm). The mobile phases were comprised of acetonitrile and water with a flow rate of 0.5 mL/min. Using the established method, all components could be easily separated within 12 min. With the multiple reaction monitor mode, all components were detected in positive electrospray ionization. The method was validated with injection precision, linearity, lower limit of detection, lower limit of quantification, precision, recovery, and stability, respectively. The final results demonstrated that the method was accurate and efficient, which could be used to simultaneously quantify the nine andafocoumarins in Angelicae Dahuricae Radix. The results also indicated that in different batches of Angelicae Dahuricae Radix, some of the andafocoumarins were significantly different in terms of content.
Collapse
|
39
|
Sarker SD, Nahar L. Progress in the Chemistry of Naturally Occurring Coumarins. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2017; 106:241-304. [PMID: 28762091 DOI: 10.1007/978-3-319-59542-9_3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Coumarins are the largest group of 1-benzopyran derivatives found in plants. The initial member of this group of compounds, coumarin (2H-1-benzopyran-2-one), a fragrant colorless compound, was first isolated from the Tonka bean (Dipteryx odorata, family Fabaceae) in 1820. The name coumarin comes from a French term for the tonka bean, coumarou. Since the discovery of coumarin, several of its derivatives, with umbelliferone (7-hydroxycoumarin) being the most common one, have been reported from various natural sources. The families Apiaceae, Asteraceae, and Rutaceae are the three major plant sources of coumarins.Generally, these plant secondary metabolites may be classified into simple, simple prenylated, simple geranylated, furano, pyrano, sesquiterpenyl and oligomeric coumarins. Using this standard classification, this chapter aims to present an account on the advances of the chemistry of naturally occurring coumarins, as reported in the literature during the period 2013-2015.In Sect. 1, the coumarins are introduced and their generic biosynthetic route discussed briefly. In Sect. 2, the largest of the three sections, various classes of natural coumarins are detailed, with their relevant structures and the citation of appropriate references. In a concluding section, it is highlighted that during the last 3 years, more than 400 coumarins have been reported in the literature. Many of these coumarins have been re-isolations of known compounds from known or new sources, most often associated with various biological activities. However, a substantial number of coumarins bearing new skeletons, especially dimers, prenylated furanocoumarins, sesquiterpenyl, and some unusual coumarins were also reported during the period of 2013-2015.Coumarin chemistry remains one of the major interest areas of phytochemists, especially because of their structural diversity and medicinal properties, along with the wide-ranging bioactivities of these compounds, inclusive of analgesic, anticoagulant anti-HIV, anti-inflammatory, antimicrobial, antineoplastic, antioxidant, and immunomodulatory effects. Despite significant advancements in the extraction, isolation, structure elucidation and bioactivity testing of naturally occurring coumarins, only a marginal advancement has been observed recently in relation to the study of their biosynthesis.
Collapse
Affiliation(s)
- Satyajit D Sarker
- Medicinal Chemistry and Natural Products Research Group, School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK.
| | - Lutfun Nahar
- Medicinal Chemistry and Natural Products Research Group, School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| |
Collapse
|
40
|
Yang WQ, Zhu ZX, Song YL, Qi BW, Wang J, Su C, Tu PF, Shi SP. Dimeric furanocoumarins from the roots of Angelica dahurica. Nat Prod Res 2016; 31:870-877. [DOI: 10.1080/14786419.2016.1250090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Wan-Qing Yang
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhi-Xiang Zhu
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yue-Lin Song
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Bo-Wen Qi
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Juan Wang
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Cong Su
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Peng-Fei Tu
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - She-Po Shi
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
41
|
Kirsch G, Abdelwahab AB, Chaimbault P. Natural and Synthetic Coumarins with Effects on Inflammation. Molecules 2016; 21:molecules21101322. [PMID: 27706093 PMCID: PMC6273422 DOI: 10.3390/molecules21101322] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/12/2016] [Accepted: 09/26/2016] [Indexed: 12/14/2022] Open
Abstract
In this review, we will present the different aspects of coumarins and derivatives, from natural origins or synthetically prepared, and their action on inflammation. Coumarins and also furo- and pyranocoumarins are found in many different plants. These compounds are very often investigated for antioxidant properties. Other biological properties are also possible and anti-inflammation activity is one of these. As coumarins are also available quite easily via synthesis, natural ones can be prepared this way but derivatives with special substituents are also feasible. A review on the same topic appeared in 2004 and our contribution will take into account everything published since then.
Collapse
Affiliation(s)
- Gilbert Kirsch
- SRSMC, UMR 7565, Groupe HeCRIN, ICPM, 1 boulevard Arago, 57070 Metz, France.
| | - Ahmed Bakr Abdelwahab
- SRSMC, UMR 7565, Groupe HeCRIN, ICPM, 1 boulevard Arago, 57070 Metz, France.
- Chemistry of Natural Compounds Department, National Research Centre, El-Behoos St. 33, 12622 Dokki-Cairo, Egypt.
| | - Patrick Chaimbault
- SRSMC, UMR 7565, Groupe HeCRIN, ICPM, 1 boulevard Arago, 57070 Metz, France.
| |
Collapse
|
42
|
Wei WL, Zeng R, Gu CM, Qu Y, Huang LF. Angelica sinensis in China-A review of botanical profile, ethnopharmacology, phytochemistry and chemical analysis. JOURNAL OF ETHNOPHARMACOLOGY 2016; 190:116-141. [PMID: 27211015 DOI: 10.1016/j.jep.2016.05.023] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 05/07/2016] [Accepted: 05/10/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Angelica sinensis (Oliv.) Diels, known as Dang Gui (in Chinese), is a traditional medicinal and edible plant that has long been used for tonifying, replenishing, and invigorating blood as well as relieving pain, lubricating the intestines, and treating female irregular menstruation and amenorrhea. A. sinensis has also been used as a health product and become increasingly popular in China, Japan, and Korea. AIM OF THE REVIEW This paper aims to provide a systemic review of traditional uses of A. sinensis and its recent advances in the fields of phytochemistry, analytical methods and toxicology. In addition, possible trends, therapeutic potentials, and perspectives for future research of this plant are also briefly discussed. MATERIALS AND METHODS An extensive review of the literature was conducted, and electronic databases including China National Knowledge Infrastructure, PubMed, Google Scholar, Science Direct, and Reaxys were used to assemble the data. Ethnopharmacological literature and digitalised sources of academic libraries were also systematically searched. In addition, information was obtained from local books and The Plant List (TPL, www.theplantlist.org). RESULT This study reviews the progress in chemical analysis of A. sinensis and its preparations. Previously and newly established methods, including spectroscopy, thin-layer chromatography (TLC), gas chromatography (GC), high-performance liquid chromatography (HPLC), ultra-performance liquid chromatography(UPLC), and nuclear magnetic resonance analysis (NMR), are summarized. Moreover, identified bioactive components such as polysaccharides, ligustilide and ferulic acid were reviewed, along with analytical methods for quantitative and qualitative determination of target analytes, and fingerprinting authentication, quality evaluation of A. sinensis, and toxicology and pharmacodynamic studies. Scientific reports on crude extracts and pure compounds and formulations revealed a wide range of pharmacological activities, including anti-inflammatory activity, antifibrotic action, antispasmodic activity, antioxidant activities, and neuroprotective action, as well as cardio- and cerebrovascular effects. CONCLUSIONS Within the published scientific literature are numerous reports regarding analytical methods that use various chromatographic and spectrophotometric technologies to monitor various types of components with different physicochemical properties simultaneously. This review discusses the reasonable selection of marker compounds based on high concentrations, analytical methods, and commercial availabilities with the goal of developing quick, accurate, and applicable analytical approaches for quality evaluation and establishing harmonised criteria for the analysis of A. sinensis and its finished products. Compounds isolated from A. sinensis are abundant sources of chemical diversity, from which we can discover active molecules. Thus, more studies on the pharmacological mechanisms of the predominant active compounds of A. sinensis are needed. In addition, given that A. sinensis is one of the most popular traditional herbal medicines, its main therapeutic aspects, toxicity, and adverse effects warrant further investigation in the future.
Collapse
Affiliation(s)
- Wen-Long Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Rui Zeng
- College of Pharmacy, Southwest University for Nationalities, Chengdu 610041, China
| | - Cai-Mei Gu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Yan Qu
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Lin-Fang Huang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
43
|
Marine natural products with anti-inflammatory activity. Appl Microbiol Biotechnol 2015; 100:1645-1666. [DOI: 10.1007/s00253-015-7244-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/07/2015] [Accepted: 12/09/2015] [Indexed: 12/14/2022]
|