1
|
Frenț OD, Stefan L, Morgovan CM, Duteanu N, Dejeu IL, Marian E, Vicaș L, Manole F. A Systematic Review: Quercetin-Secondary Metabolite of the Flavonol Class, with Multiple Health Benefits and Low Bioavailability. Int J Mol Sci 2024; 25:12091. [PMID: 39596162 PMCID: PMC11594109 DOI: 10.3390/ijms252212091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
The main goal of this systematic review on the flavonol class secondary metabolite quercetin is to evaluate and summarize the existing research on quercetin's potential health benefits, therapeutic properties, and effectiveness in disease prevention and treatment. In addition to evaluating quercetin's potential for drug development with fewer side effects and lower toxicity, this type of review attempts to collect scientific evidence addressing quercetin's roles as an antioxidant, anti-inflammatory, antibacterial, and anticancer agent. In the first part, we analyze various flavonoid compounds, focusing on their chemical structure, classification, and natural sources. We highlight their most recent biological activities as reported in the literature. Among these compounds, we pay special attention to quercetin, detailing its chemical structure, physicochemical properties, and process of biosynthesis in plants. We also present natural sources of quercetin and emphasize its health benefits, such as its antioxidant and anti-inflammatory effects. Additionally, we discuss methods to enhance its bioavailability, analyzing the latest and most effective delivery systems based on quercetin.
Collapse
Affiliation(s)
- Olimpia-Daniela Frenț
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, No. 29 Nicolae Jiga Street, 410028 Oradea, Romania; (O.-D.F.); (E.M.); (L.V.)
| | - Liana Stefan
- Department of Surgical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Claudia Mona Morgovan
- Department of Chemistry, Faculty of Informatics and Sciences, University of Oradea, No 1 University Street, 410087 Oradea, Romania
| | - Narcis Duteanu
- Faculty of Chemical Engineering, Biotechnologies, and Environmental Protection, Politehnica University of Timisoara, No. 2 Victoriei Square, 300006 Timişoara, Romania
- National Institute of Research and Development for Electrochemistry and Condensed Matter, 144 Dr. A. P. Podeanu, 300569 Timisoara, Romania
| | - Ioana Lavinia Dejeu
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, No. 29 Nicolae Jiga Street, 410028 Oradea, Romania; (O.-D.F.); (E.M.); (L.V.)
| | - Eleonora Marian
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, No. 29 Nicolae Jiga Street, 410028 Oradea, Romania; (O.-D.F.); (E.M.); (L.V.)
| | - Laura Vicaș
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, No. 29 Nicolae Jiga Street, 410028 Oradea, Romania; (O.-D.F.); (E.M.); (L.V.)
| | - Felicia Manole
- Department of Surgical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
2
|
Baljak J, Bogavac M, Karaman M, Srđenović Čonić B, Vučković B, Anačkov G, Kladar N. Chemical Composition and Biological Activity of Hypericum Species- H. hirsutum, H. barbatum, H. rochelii. PLANTS (BASEL, SWITZERLAND) 2024; 13:2905. [PMID: 39458851 PMCID: PMC11511483 DOI: 10.3390/plants13202905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
St. John's wort (Hypericum perforatum, Hypericaceae) is the most well-known species in the genus Hypericum, which comprises several hundred species. This study investigates the biological and phytochemical potential of the under-researched Hypericum species, H. hirsutum, H. barbatum, and H. rochelii. A high level of similarity between the chemical profiles of H. hirsutum and H. barbatum and the official source of the herbal drug (H. perforatum) was shown, but a higher content of quercetin and rutin was also found in all three evaluated species (116-230 µg/g dry herb). The highest amount of phenolics (195 mg GAE/g) was recorded in H. hirsutum extract, while the highest amount of flavonoids (47 mg QE/g) was recorded in H. barbatum extract. The evaluated species were excellent scavengers of DPPH, OH, and NO radicals, as well as strong ferric ion reducers in the FRAP test. Prominent monoamine oxidase A and α-glucosidase inhibition was observed, compared to modest inhibition of monoamine oxidase B, α-amylase, and acetylcholinesterase. High activity against Gram-positive MRSA S. aureus was demonstrated for the tested species, with MIC/MBC values recorded at 12.5 µg/mL. Antifungal activity against Candida strains was not observed. The obtained results emphasize the need for further investigation of species of the genus Hypericum to discover potentially new sources of biologically active compounds.
Collapse
Affiliation(s)
- Jovan Baljak
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (J.B.); (B.S.Č.); (N.K.)
- Center for Medical and Pharmaceutical Investigations and Quality Control, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Mirjana Bogavac
- Clinical Center of Vojvodina, Department of Obstetrics and Gynecology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Maja Karaman
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 2, 21000 Novi Sad, Serbia; (M.K.); (G.A.)
| | - Branislava Srđenović Čonić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (J.B.); (B.S.Č.); (N.K.)
- Center for Medical and Pharmaceutical Investigations and Quality Control, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Biljana Vučković
- Department of Pathophysiology and Laboratory Medicine, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia;
| | - Goran Anačkov
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 2, 21000 Novi Sad, Serbia; (M.K.); (G.A.)
| | - Nebojša Kladar
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (J.B.); (B.S.Č.); (N.K.)
- Center for Medical and Pharmaceutical Investigations and Quality Control, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| |
Collapse
|
3
|
Dong Q, Hu N, Yue H, Wang H, Wei Y. Rapid screening of α-glucosidase inhibitors in Hypericum perforatum L. using bio-affinity chromatography coupled with UPLC/MS. Biomed Chromatogr 2023; 37:e5536. [PMID: 36264709 DOI: 10.1002/bmc.5536] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 01/18/2023]
Abstract
α-glucosidase inhibitors (AGIs) are widely used for the treatment of type 2 diabetes, but their side effects have made it to develop novel and alternative AGIs immediately. In this study, the extract of Hypericum perforatum L. (HPE) has been confirmed to have α-glucosidase inhibitory activity in vitro and in vivo. Seven active compounds, rutin, hyperoside, isoquercitrin, avicularin, quercitrin, quercetin, and biapigenin, were screened based on a bio-affinity chromatography column with α-glucosidase enzyme-conjugated solid phase and UPLC/MS, which exhibited excellent α-glycosidase inhibitory effects by the determined IC50 values. The mechanism of α-glycosidase inhibitory activity of biapigenin was studied for the first time. The results showed that biapigenin was a high-potential, reversible, and mixed enzyme inhibitor. Analysis by molecular docking further revealed that hydrophobic interactions were generated by interactions between biapigenin and amino acid residues LYS156, PHE303, PHE314, and LEU313. In addition, hydrogen bonding occurred between biapigenin and α-glucosidase amino acid residues ASP307, SER241, and LYS156. This research identified that biapigenin could be a novel AGI and further applied to the development of potential anti-diabetic drugs. Furthermore, our studies established a rapid in vitro screening method for AGIs from plants.
Collapse
Affiliation(s)
- Qi Dong
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai, China
| | - Na Hu
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai, China
| | - Huilan Yue
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai, China
| | - Honglun Wang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai, China
| | - Yue Wei
- Henan Natural Product Biotechnology, Co., LTD., Henan, China
| |
Collapse
|
4
|
Metabolomic Study of Dactylis glomerata Growing on Aeolian Archipelago (Italy). Metabolites 2022; 12:metabo12060533. [PMID: 35736466 PMCID: PMC9229457 DOI: 10.3390/metabo12060533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
The Aeolian Islands (Italy) are a volcanic archipelago in the Tyrrhenian Sea comprising seven main islands, among which are two active volcanoes. The peculiar geological features and the wide variety of environments and soils have an important impact on native plants, and in particular, the Aeolian populations of Dactylis glomerata (a perennial cool-season bunchgrass) exhibit remarkable phenotypic variability. Considering that environmental drivers also strongly affect the production of plant metabolites, this work aimed at comparing the metabolomic profiles of D. glomerata (leaves) harvested at different altitudes on four islands of the Aeolian archipelago, namely: Lipari, Vulcano, Stromboli and Panarea. Samples were analyzed by 1H NMR profiling, and data were treated by PCA. Samples collected on Stromboli were very different from each other and from the samples collected in the other islands. Through an Orthogonal Partial Least Squares (OPLS) model, using altitude as the y variable, it emerged that the concentration of proline, glycine betaine, sucrose, glucose and chlorogenic acid of D. glomerata growing on Stromboli decreased at increasing altitude. Conversely, increasing altitude was associated with an increment in valine, asparagine, fumaric acid and phenylalanine.
Collapse
|
5
|
Abstract
The Hypericum genus contains one of the few genera of flowering plants that contains a species with authorization for marketing as a traditional medicine, H. perforatum. Due to the fact that this is a large genus, comprising numerous species, a large amount of interest has been shown over the years in the study of its various pharmacological activities. The chemical composition of these species is quite similar, containing compounds belonging to the class of phloroglucinol derivatives, naphthodianthrones, phenols, flavonoids and essential oils. Taking all of this into consideration, the present study aims to offer an overview of the species of the genus from the point of view of their extraction techniques and analysis methods. An extensive study on the scientific literature was performed, and it revealed a wide range of solvents and extraction methods, among which ethanol and methanol, together with maceration and ultrasonication, are the most frequent. Regarding analysis methods, separation and spectral techniques are the most employed. Therefore, the present study provides necessary data for future studies on the species of the genus, offering a complete overview and a possible basis for their development.
Collapse
|
6
|
Dirir AM, Daou M, Yousef AF, Yousef LF. A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 21:1049-1079. [PMID: 34421444 PMCID: PMC8364835 DOI: 10.1007/s11101-021-09773-1] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 07/27/2021] [Indexed: 05/02/2023]
Abstract
UNLABELLED Diabetes mellitus is a multifactorial global health disorder that is rising at an alarming rate. Cardiovascular diseases, kidney damage and neuropathy are the main cause of high mortality rates among individuals with diabetes. One effective therapeutic approach for controlling hyperglycemia associated with type-2 diabetes is to target alpha-amylase and alpha-glucosidase, enzymes that catalyzes starch hydrolysis in the intestine. At present, approved inhibitors for these enzymes are restricted to acarbose, miglitol and voglibose. Although these inhibitors retard glucose absorption, undesirable gastrointestinal side effects impede their application. Therefore, research efforts continue to seek novel inhibitors with improved efficacy and minimal side effects. Natural products of plant origin have been a valuable source of therapeutic agents with lesser toxicity and side effects. The anti-diabetic potential through alpha-glucosidase inhibition of plant-derived molecules are summarized in this review. Eight molecules (Taxumariene F, Akebonoic acid, Morusin, Rhaponticin, Procyanidin A2, Alaternin, Mulberrofuran K and Psoralidin) were selected as promising drug candidates and their pharmacokinetic properties and toxicity were discussed where available. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11101-021-09773-1.
Collapse
Affiliation(s)
- Amina M. Dirir
- Department of Chemistry, Khalifa University, Abu Dhabi, UAE
| | - Marianne Daou
- Department of Chemistry, Khalifa University, Abu Dhabi, UAE
| | - Ahmed F. Yousef
- Department of Chemistry, Khalifa University, Abu Dhabi, UAE
- Center for Membranes and Advances Water Technology, Khalifa University, Abu Dhabi, UAE
| | - Lina F. Yousef
- Department of Chemistry, Khalifa University, Abu Dhabi, UAE
| |
Collapse
|
7
|
Riyaphan J, Pham DC, Leong MK, Weng CF. In Silico Approaches to Identify Polyphenol Compounds as α-Glucosidase and α-Amylase Inhibitors against Type-II Diabetes. Biomolecules 2021; 11:1877. [PMID: 34944521 PMCID: PMC8699780 DOI: 10.3390/biom11121877] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 01/01/2023] Open
Abstract
Type-II diabetes mellitus (T2DM) results from a combination of genetic and lifestyle factors, and the prevalence of T2DM is increasing worldwide. Clinically, both α-glucosidase and α-amylase enzymes inhibitors can suppress peaks of postprandial glucose with surplus adverse effects, leading to efforts devoted to urgently seeking new anti-diabetes drugs from natural sources for delayed starch digestion. This review attempts to explore 10 families e.g., Bignoniaceae, Ericaceae, Dryopteridaceae, Campanulaceae, Geraniaceae, Euphorbiaceae, Rubiaceae, Acanthaceae, Rutaceae, and Moraceae as medicinal plants, and folk and herb medicines for lowering blood glucose level, or alternative anti-diabetic natural products. Many natural products have been studied in silico, in vitro, and in vivo assays to restrain hyperglycemia. In addition, natural products, and particularly polyphenols, possess diverse structures for exploring them as inhibitors of α-glucosidase and α-amylase. Interestingly, an in silico discovery approach using natural compounds via virtual screening could directly target α-glucosidase and α-amylase enzymes through Monte Carto molecular modeling. Autodock, MOE-Dock, Biovia Discovery Studio, PyMOL, and Accelrys have been used to discover new candidates as inhibitors or activators. While docking score, binding energy (Kcal/mol), the number of hydrogen bonds, or interactions with critical amino acid residues have been taken into concerning the reliability of software for validation of enzymatic analysis, in vitro cell assay and in vivo animal tests are required to obtain leads, hits, and candidates in drug discovery and development.
Collapse
Affiliation(s)
| | - Dinh-Chuong Pham
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
| | - Max K. Leong
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan
| | - Ching-Feng Weng
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, China
| |
Collapse
|
8
|
Mandrone M, Marincich L, Chiocchio I, Petroli A, Gođevac D, Maresca I, Poli F. NMR-based metabolomics for frauds detection and quality control of oregano samples. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Jin DX, He JF, Zhang KQ, Luo XG, Zhang TC. α-Glucosidase inhibition action of major flavonoids identified from Hypericum attenuatum Choisy and their synergistic effects. Chem Biodivers 2021; 18:e2100244. [PMID: 34310845 DOI: 10.1002/cbdv.202100244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/23/2021] [Indexed: 11/07/2022]
Abstract
Hypericum attenuatum Choisy is a traditional Chinese herbal plant with multiple therapeutic effects. In this study, bioactivity-guided fractionation of Hypericum attenuatum Choisy extracts afforded three major flavonoids (including astragalin, guaijaverin and quercetin), which possessed α-glucosidase inhibitory activity with IC 50 values of 33.90 ± 0.68 μM, 17.23 ± 0.75 μM and 31.90 ± 0.34 μM, respectively. Circular dichroism analysis revealed that all the three compounds could interact with α-glucosidase by inducing conformational changes of the enzyme. Molecular docking results indicated that they could bind to the active site in α-glucosidase, and the binding force was driven mainly by hydrogen bond. Additionally, isobolographic analysis of the interactions between two compounds showed that all the combinations presented a synergistic α-glucosidase inhibitory effect at lower concentrations, and the combination between quercetin and guaijaverin or astragalin exhibited the best synergistic effect. This research might provide a theoretical basis for the application of Hypericum attenuatum Choisy in treating hyperglycemia.
Collapse
Affiliation(s)
- Du-Xin Jin
- Yangzhou University College of Food Science and Technology, Department of Food science, No. 196, Huayang west road, Hanjiang district, Yangzhou city, Jiangsu province, 225000, Yangzhou, CHINA
| | - Jun-Fang He
- Tianjin University of Science and Technology, College of Biotechnology, 300457, No. 9, the 13th road, Economic and technological development zone, Tianjin, CHINA
| | - Ke-Qin Zhang
- Jilin college of Agricultural Science and Technology, School of Animal Sciences, No. 77, Hanlin Road, Economic and Technological Development Zone, Jilin, CHINA
| | - Xue-Gang Luo
- Tianjin University of Science and Technology Downtown Campus: Tianjin University of Science and Technology, College of Biotechnology, No. 9, the 13th Road, Economic and Technological Development Zone, Tianjin, CHINA
| | - Tong-Cun Zhang
- Tianjin University of Science and Technology, College of Biotechnology, No. 9, the 13th Road, Economic and Technological Development Zone, Tianjin, CHINA
| |
Collapse
|
10
|
Bruňáková K, Bálintová M, Henzelyová J, Kolarčik V, Kimáková A, Petijová L, Čellárová E. Phytochemical profiling of several Hypericum species identified using genetic markers. PHYTOCHEMISTRY 2021; 187:112742. [PMID: 33965834 DOI: 10.1016/j.phytochem.2021.112742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
In the present study, we performed phytochemical profiling of several under-exploited Hypericum representatives taxonomically belonging to the sections Ascyreia, Androsaemum, Inodora, Hypericum, Coridium, Myriandra, and Adenosepalum. The authenticity of the starting plant material was confirmed using the nuclear ribosomal internal transcribed spacer as a molecular marker, DNA content and chromosome number. Phenolic constituents were analyzed using high-performance liquid chromatography to complement species-specific metabolic profiles. In several Hypericum representatives, the pharmacologically important compounds, including naphthodianthrones; phloroglucinol derivatives; chlorogenic acid; and some classes of flavonoids, particularly the flavonols rutin and hyperoside, flavanol catechin, and flavanones naringenin and naringin, were reported for the first time. Comparative multivariate analysis of chemometric data for seedlings cultured in vitro and acclimated to the outdoor conditions revealed a strong genetically predetermined interspecific variability in phenolic compound content. In addition to hypericins, which are the most abundant chemomarkers for the genus Hypericum, rarely employed phenolic metabolites, including phloroglucinol derivatives, chlorogenic acid, catechin, naringenin, naringin, and kaempferol-3-O-glucoside, were shown to be useful for discriminating between closely related species. Given the increasing interest in natural products of the genus Hypericum, knowledge of the spectrum of phenolic compounds in shoot cultures is a prerequisite for future biotechnological applications. In addition, phytochemical profiling should be considered as an additional part of the integrated plant authentication system, which predominantly relies upon genetic markers.
Collapse
Affiliation(s)
- Katarína Bruňáková
- Department of Genetics, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Mánesova 23, 04154, Košice, Slovakia.
| | - Miroslava Bálintová
- Department of Genetics, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Mánesova 23, 04154, Košice, Slovakia.
| | - Jana Henzelyová
- Department of Genetics, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Mánesova 23, 04154, Košice, Slovakia.
| | - Vladislav Kolarčik
- Department of Botany, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Mánesova 23, 04154, Košice, Slovakia.
| | - Andrea Kimáková
- Department of Genetics, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Mánesova 23, 04154, Košice, Slovakia; Present Address: Department of Epizootiology and Parasitology, Institute of Parasitology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181, Košice, Slovakia.
| | - Linda Petijová
- Department of Genetics, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Mánesova 23, 04154, Košice, Slovakia.
| | - Eva Čellárová
- Department of Genetics, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Mánesova 23, 04154, Košice, Slovakia.
| |
Collapse
|
11
|
Mandrone M, Chiocchio I, Barbanti L, Tomasi P, Tacchini M, Poli F. Metabolomic Study of Sorghum ( Sorghum bicolor) to Interpret Plant Behavior under Variable Field Conditions in View of Smart Agriculture Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1132-1145. [PMID: 33459558 PMCID: PMC8769377 DOI: 10.1021/acs.jafc.0c06533] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
To tackle the urgency of smarter crop management, the complex nature of agricultural ecosystems needs to be better understood, employing and combining different techniques and technologies. In this study, untargeted metabolomics and agro-meteorological survey were coupled to study the variation of Sorghum bicolor (L.) Moench metabolome during crop development, in response to environmental and anthropic factors. Twelve crop fields in the Emilia-Romagna region, Italy, were monitored and sampled at different stages, seedling (Ss), advanced vegetative (Sv), and ripening (Sr), and subjected to 1H NMR-based metabolomics. The analytical method developed resulted to be successful to quickly analyze different sorghum organs. Dhurrin, a cyanogenic glucoside, resulted to be a biomarker of crop quality and development, and several insights into its turnover and functions were obtained. In particular, p-glucosyloxy-2-hydroxyphenylacetic acid was identified, for the first time, as the main metabolite accumulated in sorghum at Sr, after gradual dhurrin neutralization. During plant life, fertilization and biotic and abiotic stress reflected peculiar metabolomic profiles. Water supply and soil features (i.e., clay content) were correlated to metabolomic variations, affecting dhurrin (and related metabolites), amino acids, organic acids, and carbohydrate content. Increase in chlorogenic acid was registered in consequence of predator attacks. Moreover, grain from three fields presented traces of dhurrin and the lowest antioxidant potential, which resulted in poor grain quality. Metabolomics turned out to be a promising tool in view of smart agriculture for monitoring plant growth status and applying appropriate agricultural practices since the early stage of crop development.
Collapse
Affiliation(s)
- Manuela Mandrone
- Department
of Pharmacy and Biotechnology, University
of Bologna, Via Irnerio, 42, 40126 Bologna, Italy
| | - Ilaria Chiocchio
- Department
of Pharmacy and Biotechnology, University
of Bologna, Via Irnerio, 42, 40126 Bologna, Italy
| | - Lorenzo Barbanti
- Department
of Agricultural and Food Sciences, University
of Bologna, Viale Fanìn 44, 40127 Bologna, Italy
| | - Paola Tomasi
- Department
of Pharmacy and Biotechnology, University
of Bologna, Via Irnerio, 42, 40126 Bologna, Italy
| | - Massimo Tacchini
- Department
of Life Sciences and Biotechnology (SVeB), University of Ferrara, Piazzale Luciano Chiappini 3, I-44123 Ferrara, Italy
| | - Ferruccio Poli
- Department
of Pharmacy and Biotechnology, University
of Bologna, Via Irnerio, 42, 40126 Bologna, Italy
| |
Collapse
|
12
|
Extraction, Characterization and Incorporation of Hypericum scruglii Extract in Ad Hoc Formulated Phospholipid Vesicles Designed for the Treatment of Skin Diseases Connected with Oxidative Stress. Pharmaceutics 2020; 12:pharmaceutics12111010. [PMID: 33113923 PMCID: PMC7690748 DOI: 10.3390/pharmaceutics12111010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 01/10/2023] Open
Abstract
An extract of Hypericum scruglii, an endangered endemic plant of Sardinia (Italy), was prepared and characterized. It was loaded in special phospholipid vesicles, glycerosomes, which were modified by adding maltodextrin (glucidex) and a polymer (gelatin or hyaluronan). The corresponding liposomes were also prepared and used as reference. The vesicles disclosed suitable physicochemical features for skin delivery. Indeed, their mean diameter ranged from 120 to 160 nm, they were homogeneously dispersed (polydispersity index ≤ 0.30), and their zeta potential was highly negative (~−45 mV). The vesicle dispersions maintained unchanged characteristics during 60 days of storage, were highly biocompatible, and were able to protect keratinocytes against damages due to oxidative stress induced by treating them with hydrogen peroxide. Vesicles were also capable of promoting cell proliferation and migration in vitro by means of a scratch wound assay. The results confirmed the fruitful delivery of the extract of H. scruglii in glycerosomes modified with glucidex and gelatin and their promising ability for skin protection and treatment.
Collapse
|
13
|
Chiocchio I, Prata C, Mandrone M, Ricciardiello F, Marrazzo P, Tomasi P, Angeloni C, Fiorentini D, Malaguti M, Poli F, Hrelia S. Leaves and Spiny Burs of Castanea Sativa from an Experimental Chestnut Grove: Metabolomic Analysis and Anti-Neuroinflammatory Activity. Metabolites 2020; 10:E408. [PMID: 33066101 PMCID: PMC7601974 DOI: 10.3390/metabo10100408] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 01/22/2023] Open
Abstract
Castanea sativa cultivation has been present in Mediterranean regions since ancient times. In order to promote a circular economy, it is of great importance to valorize chestnut groves' by-products. In this study, leaves and spiny burs from twenty-four Castanea trees were analyzed by 1H NMR metabolomics to provide an overview of their phytochemical profile. The Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) performed on these data allowed us to distinguish 'Marrone' from 'Castagna', since the latter were generally more enriched with secondary metabolites, in particular, flavonoids (astragalin, isorhamnetin glucoside, and myricitrin) were dominant. Knowing that microglia are involved in mediating the oxidative and inflammatory response of the central nervous system, the potential anti-inflammatory effects of extracts derived from leaves and spiny burs were evaluated in a neuroinflammatory cell model: BV-2 microglia cells. The tested extracts showed cytoprotective activity (at 0.1 and 0.5 mg/mL) after inflammation induction by 5 µg/mL lipopolysaccharide (LPS). In addition, the transcriptional levels of IL-1β, TNF-α, and NF-kB expression induced by LPS were significantly decreased by cell incubation with spiny burs and leaves extracts. Taken together, the obtained results are promising and represent an important step to encourage recycling and valorization of chestnut byproducts, usually considered "waste".
Collapse
Affiliation(s)
- Ilaria Chiocchio
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (I.C.); (C.P.); (P.T.); (D.F.); (F.P.)
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (I.C.); (C.P.); (P.T.); (D.F.); (F.P.)
| | - Manuela Mandrone
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (I.C.); (C.P.); (P.T.); (D.F.); (F.P.)
| | - Fortuna Ricciardiello
- Department for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (F.R.); (P.M.); (M.M.); (S.H.)
| | - Pasquale Marrazzo
- Department for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (F.R.); (P.M.); (M.M.); (S.H.)
| | - Paola Tomasi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (I.C.); (C.P.); (P.T.); (D.F.); (F.P.)
| | - Cristina Angeloni
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy;
| | - Diana Fiorentini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (I.C.); (C.P.); (P.T.); (D.F.); (F.P.)
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (F.R.); (P.M.); (M.M.); (S.H.)
| | - Ferruccio Poli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (I.C.); (C.P.); (P.T.); (D.F.); (F.P.)
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (F.R.); (P.M.); (M.M.); (S.H.)
| |
Collapse
|
14
|
Sanna C, Maxia A, Fenu G, Loi MC. So Uncommon and so Singular, but Underexplored: An Updated Overview on Ethnobotanical Uses, Biological Properties and Phytoconstituents of Sardinian Endemic Plants. PLANTS (BASEL, SWITZERLAND) 2020; 9:E958. [PMID: 32751394 PMCID: PMC7465485 DOI: 10.3390/plants9080958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
The last decades have recorded an increase of plant-based drug discovery processes. Indeed, natural products possess a superior chemical diversity as compared to synthetic ones, leading to a renewal in searching for new therapeutic agents from the plant kingdom. In particular, since the structural variety of natural compounds reflects the biodiversity of their source organisms, regions of the world with high biodiversity and endemism deserve particular interest. In this context, Sardinia Island (Italy), with 290 endemic taxa (12% of the total flora), is expected to provide unique and structurally diverse phytochemicals for drug development. Several research groups built up a large program dedicated to the analysis of Sardinian endemic species, highlighting their peculiar features, both in respect of phytochemical and biological profiles. On this basis, the aim of this review is to provide an up-to-date and comprehensive overview on ethnobotanical uses, biological properties and phytoconstituents of Sardinian endemic plants in order to support their beneficial potential and to provide input for future investigations. We documented 152 articles published from 1965 to June 2020 in which a broad range of biological activities and the identification of previously undescribed compounds have been reported, supporting their great value as sources of therapeutic agents.
Collapse
Affiliation(s)
- Cinzia Sanna
- Department of Life and Environmental Sciences, University of Cagliari, Via Sant’Ignazio da Laconi 13, 09123 Cagliari, Italy; (A.M.); (G.F.); (M.C.L.)
- Co.S.Me.Se—Consorzio per lo Studio dei Metaboliti Secondari, Via Sant’Ignazio da Laconi 13, 09123 Cagliari, Italy
| | - Andrea Maxia
- Department of Life and Environmental Sciences, University of Cagliari, Via Sant’Ignazio da Laconi 13, 09123 Cagliari, Italy; (A.M.); (G.F.); (M.C.L.)
- Co.S.Me.Se—Consorzio per lo Studio dei Metaboliti Secondari, Via Sant’Ignazio da Laconi 13, 09123 Cagliari, Italy
| | - Giuseppe Fenu
- Department of Life and Environmental Sciences, University of Cagliari, Via Sant’Ignazio da Laconi 13, 09123 Cagliari, Italy; (A.M.); (G.F.); (M.C.L.)
| | - Maria Cecilia Loi
- Department of Life and Environmental Sciences, University of Cagliari, Via Sant’Ignazio da Laconi 13, 09123 Cagliari, Italy; (A.M.); (G.F.); (M.C.L.)
| |
Collapse
|
15
|
Plant Complexity and Cosmetic Innovation. iScience 2020; 23:101358. [PMID: 32738608 PMCID: PMC7394851 DOI: 10.1016/j.isci.2020.101358] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/25/2020] [Accepted: 07/08/2020] [Indexed: 01/06/2023] Open
Abstract
Plants have been used in cosmetic products since ancient times and are the subject of scientific investigation even nowadays. During the years, a deeper understanding of both the behavior of skin and of plants have become available drawing increasingly complex pictures. Plants are complex organisms that produce different metabolites responding to the environment they live in. Applied to the skin, phytomolecules interact with skin cells and affect the skin well-being and appearance. Ethnobotanical studies on the one hand and physico-chemical analyses on the other have pictured a rich inventory of plants with potential to enrich modern cosmetic products.
Collapse
|
16
|
Valentino G, Graziani V, D’Abrosca B, Pacifico S, Fiorentino A, Scognamiglio M. NMR-Based Plant Metabolomics in Nutraceutical Research: An Overview. Molecules 2020; 25:E1444. [PMID: 32210071 PMCID: PMC7145309 DOI: 10.3390/molecules25061444] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/15/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Abstract
Few topics are able to channel the interest of researchers, the public, and industries, like nutraceuticals. The ever-increasing demand of new compounds or new sources of known active compounds, along with the need of a better knowledge about their effectiveness, mode of action, safety, etc., led to a significant effort towards the development of analytical approaches able to answer the many questions related to this topic. Therefore, the application of cutting edges approaches to this area has been observed. Among these approaches, metabolomics is a key player. Herewith, the applications of NMR-based metabolomics to nutraceutical research are discussed: after a brief overview of the analytical workflow, the use of NMR-based metabolomics to the search for new compounds or new sources of known nutraceuticals are reviewed. Then, possible applications for quality control and nutraceutical optimization are suggested. Finally, the use of NMR-based metabolomics to study the impact of nutraceuticals on human metabolism is discussed.
Collapse
Affiliation(s)
- Giovanna Valentino
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche-DiSTABiF, Università degli Studi della Campania Luigi Vanvitelli, via Vivaldi 43, I-81100 Caserta, Italy; (G.V.); (B.D.); (S.P.)
| | - Vittoria Graziani
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, 17165 Stockholm, Sweden;
| | - Brigida D’Abrosca
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche-DiSTABiF, Università degli Studi della Campania Luigi Vanvitelli, via Vivaldi 43, I-81100 Caserta, Italy; (G.V.); (B.D.); (S.P.)
- Dipartimento di Biotecnologia Marina, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Severina Pacifico
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche-DiSTABiF, Università degli Studi della Campania Luigi Vanvitelli, via Vivaldi 43, I-81100 Caserta, Italy; (G.V.); (B.D.); (S.P.)
| | - Antonio Fiorentino
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche-DiSTABiF, Università degli Studi della Campania Luigi Vanvitelli, via Vivaldi 43, I-81100 Caserta, Italy; (G.V.); (B.D.); (S.P.)
- Dipartimento di Biotecnologia Marina, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Monica Scognamiglio
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche-DiSTABiF, Università degli Studi della Campania Luigi Vanvitelli, via Vivaldi 43, I-81100 Caserta, Italy; (G.V.); (B.D.); (S.P.)
| |
Collapse
|
17
|
Marrelli M, Statti G, Conforti F. Hypericum spp.: An Update on the Biological Activities and Metabolic Profiles. Mini Rev Med Chem 2020; 20:66-87. [PMID: 31556858 DOI: 10.2174/1389557519666190926120211] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/18/2019] [Accepted: 09/06/2019] [Indexed: 11/22/2022]
Abstract
Plants from the genus Hypericum, one genus of the Hypericaceae family, have attracted a lot of attention for their potential pharmaceutical applications. Most of the studies in the literature focus on H. perforatum L. (common St. John's wort), whose complex spectrum of bioactive compounds makes this species one of the top herbal remedies and supplements in the world. It is also important to compare the studies on other Hypericum species, both from the phytochemical and biological point of view. The aim of this review was to provide an update of most recent studies about biological investigations of plants belonging to Hypericum genus. The metabolic profiles of Hypericum spp. were also discussed in order to present a spectrum of secondary metabolites not previously identified in this genus.
Collapse
Affiliation(s)
- Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Rende, (CS), Italy
| | - Giancarlo Statti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Rende, (CS), Italy
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Rende, (CS), Italy
| |
Collapse
|
18
|
Cappadone C, Mandrone M, Chiocchio I, Sanna C, Malucelli E, Bassi V, Picone G, Poli F. Antitumor Potential and Phytochemical Profile of Plants from Sardinia (Italy), a Hotspot for Biodiversity in the Mediterranean Basin. PLANTS (BASEL, SWITZERLAND) 2019; 9:E26. [PMID: 31878127 PMCID: PMC7020228 DOI: 10.3390/plants9010026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/21/2019] [Accepted: 12/22/2019] [Indexed: 12/15/2022]
Abstract
Sardinia (Italy), with its wide range of habitats and high degree of endemism, is an important area for plant-based drug discovery studies. In this work, the antitumor activity of 35 samples from Sardinian plants was evaluated on human osteosarcoma cells U2OS. The results showed that five plants were strongly antiproliferative: Arbutus unedo (AuL), Cynara cardunculus (CyaA), Centaurea calcitrapa (CcA), Smilax aspera (SaA), and Tanacetum audibertii (TaA), the latter endemic to Sardinia and Corsica. Thus, their ability to induce cell cycle arrest and apoptosis was tested. All extracts determined cell cycle block in G2/M phase. Nevertheless, the p53 expression levels were increased only by TaA. The effector caspases were activated mainly by CycA, TaA, and CcA, while AuL and SaA did not induce apoptosis. The antiproliferative effects were also tested on human umbilical vein endothelial cells (HUVEC). Except for AuL, all the extracts were able to reduce significantly cell population, suggesting a potential antiangiogenic activity. The phytochemical composition was first explored by 1H NMR profiling, followed by further purifications to confirm the structure of the most abundant metabolites, such as phenolic compounds and sesquiterpene lactones, which might play a role in the measured bioactivity.
Collapse
Affiliation(s)
- Concettina Cappadone
- Department of Pharmacy and Biotechnology, University of Bologna, via San Donato 19/2, 40127 Bologna, Italy; (C.C.); (E.M.); (V.B.); (G.P.)
| | - Manuela Mandrone
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio, 42, 40126 Bologna, Italy; (I.C.); (F.P.)
| | - Ilaria Chiocchio
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio, 42, 40126 Bologna, Italy; (I.C.); (F.P.)
| | - Cinzia Sanna
- Department of Life and Environmental Sciences, University of Cagliari, Via Sant’Ignazio da Laconi 13, 09123 Cagliari, Italy;
| | - Emil Malucelli
- Department of Pharmacy and Biotechnology, University of Bologna, via San Donato 19/2, 40127 Bologna, Italy; (C.C.); (E.M.); (V.B.); (G.P.)
| | - Vincenza Bassi
- Department of Pharmacy and Biotechnology, University of Bologna, via San Donato 19/2, 40127 Bologna, Italy; (C.C.); (E.M.); (V.B.); (G.P.)
| | - Giovanna Picone
- Department of Pharmacy and Biotechnology, University of Bologna, via San Donato 19/2, 40127 Bologna, Italy; (C.C.); (E.M.); (V.B.); (G.P.)
| | - Ferruccio Poli
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio, 42, 40126 Bologna, Italy; (I.C.); (F.P.)
| |
Collapse
|
19
|
Cirak C, Radusiene J. Factors affecting the variation of bioactive compounds in Hypericum species. Biol Futur 2019; 70:198-209. [DOI: 10.1556/019.70.2019.25] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 07/19/2019] [Indexed: 01/24/2023]
Affiliation(s)
- Cuneyt Cirak
- Vocational High School of Bafra, Ondokuz Mayis University, Samsun, Turkey
| | | |
Collapse
|
20
|
Mandrone M, Antognoni F, Aloisi I, Potente G, Poli F, Cai G, Faleri C, Parrotta L, Del Duca S. Compatible and Incompatible Pollen-Styles Interaction in Pyrus communis L. Show Different Transglutaminase Features, Polyamine Pattern and Metabolomics Profiles. FRONTIERS IN PLANT SCIENCE 2019; 10:741. [PMID: 31249577 PMCID: PMC6584118 DOI: 10.3389/fpls.2019.00741] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/17/2019] [Indexed: 05/25/2023]
Abstract
Pollen-stigma interaction is a highly selective process, which leads to compatible or incompatible pollination, in the latter case, affecting quantitative and qualitative aspects of productivity in species of agronomic interest. While the genes and the corresponding protein partners involved in this highly specific pollen-stigma recognition have been studied, providing important insights into pollen-stigma recognition in self-incompatible (SI), many other factors involved in the SI response are not understood yet. This work concerns the study of transglutaminase (TGase), polyamines (PAs) pattern and metabolomic profiles following the pollination of Pyrus communis L. pistils with compatible and SI pollen in order to deepen their possible involvement in the reproduction of plants. Immunolocalization, abundance and activity of TGase as well as the content of free, soluble-conjugated and insoluble-bound PAs have been investigated. 1H NMR-profiling coupled with multivariate data treatment (PCA and PLS-DA) allowed to compare, for the first time, the metabolic patterns of not-pollinated and pollinated styles. Results clearly indicate that during the SI response TGase activity increases, resulting in the accumulation of PAs conjugated to hydroxycinnamic acids and other small molecules. Metabolomic analysis showed a remarkable differences between pollinated and not-pollinated styles, where, except for glucose, all the other metabolites where less concentrated. Moreover, styles pollinated with compatible pollen showed the highest amount of sucrose than SI pollinated ones, which, in turn, contained highest amount of all the other metabolites, including aromatic compounds, such as flavonoids and a cynnamoil derivative.
Collapse
Affiliation(s)
- Manuela Mandrone
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Fabiana Antognoni
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Iris Aloisi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Giulia Potente
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Ferruccio Poli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Claudia Faleri
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Luigi Parrotta
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Stefano Del Duca
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
21
|
Daino GL, Frau A, Sanna C, Rigano D, Distinto S, Madau V, Esposito F, Fanunza E, Bianco G, Taglialatela-Scafati O, Zinzula L, Maccioni E, Corona A, Tramontano E. Identification of Myricetin as an Ebola Virus VP35-Double-Stranded RNA Interaction Inhibitor through a Novel Fluorescence-Based Assay. Biochemistry 2018; 57:6367-6378. [PMID: 30298725 DOI: 10.1021/acs.biochem.8b00892] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ebola virus (EBOV) is a filovirus that causes a severe and rapidly progressing hemorrhagic syndrome; a recent epidemic illustrated the urgent need for novel therapeutic agents because no drugs have been approved for treatment of Ebola virus. A key contribution to the high lethality observed during EBOV outbreaks comes from viral evasion of the host antiviral innate immune response in which viral protein VP35 plays a crucial role, blocking interferon type I production, first by masking the viral double-stranded RNA (dsRNA) and preventing its detection by the pattern recognition receptor RIG-I. Aiming to identify inhibitors of the interaction of VP35 with the viral dsRNA, counteracting the VP35 viral innate immune evasion, we established a new methodology for high-yield recombinant VP35 (rVP35) expression and purification and a novel and robust fluorescence-based rVP35-RNA interaction assay ( Z' factor of 0.69). Taking advantage of such newly established methods, we screened a small library of Sardinian natural extracts, identifying Limonium morisianum as the most potent inhibitor extract. A bioguided fractionation led to the identification of myricetin as the component that can inhibit rVP35-dsRNA interaction with an IC50 value of 2.7 μM. Molecular docking studies showed that myricetin interacts with the highly conserved region of the VP35 RNA binding domain, laying the basis for further structural optimization of potent inhibitors of VP35-dsRNA interaction.
Collapse
Affiliation(s)
- Gian Luca Daino
- Department of Life and Environmental Sciences , University of Cagliari , Cagliari 09042 , Italy
| | - Aldo Frau
- Department of Life and Environmental Sciences , University of Cagliari , Cagliari 09042 , Italy
| | - Cinzia Sanna
- Department of Life and Environmental Sciences , University of Cagliari , Cagliari 09042 , Italy
| | - Daniela Rigano
- Department of Pharmacy, School of Medicine and Surgery , University of Naples Federico II , Naples 80131 , Italy
| | - Simona Distinto
- Department of Life and Environmental Sciences , University of Cagliari , Cagliari 09042 , Italy
| | - Veronica Madau
- Department of Life and Environmental Sciences , University of Cagliari , Cagliari 09042 , Italy
| | - Francesca Esposito
- Department of Life and Environmental Sciences , University of Cagliari , Cagliari 09042 , Italy
| | - Elisa Fanunza
- Department of Life and Environmental Sciences , University of Cagliari , Cagliari 09042 , Italy
| | - Giulia Bianco
- Department of Life and Environmental Sciences , University of Cagliari , Cagliari 09042 , Italy
| | - Orazio Taglialatela-Scafati
- Department of Pharmacy, School of Medicine and Surgery , University of Naples Federico II , Naples 80131 , Italy
| | - Luca Zinzula
- The Max-Planck Institute of Biochemistry , Department of Molecular Structural Biology , Martinsried 82152 , Germany
| | - Elias Maccioni
- Department of Life and Environmental Sciences , University of Cagliari , Cagliari 09042 , Italy
| | - Angela Corona
- Department of Life and Environmental Sciences , University of Cagliari , Cagliari 09042 , Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences , University of Cagliari , Cagliari 09042 , Italy.,Istituto di Ricerca Genetica e Biomedica , Consiglio Nazionale delle Ricerche (CNR) , Monserrato 09042 , Italy
| |
Collapse
|
22
|
Sanna C, Scognamiglio M, Fiorentino A, Corona A, Graziani V, Caredda A, Cortis P, Montisci M, Ceresola ER, Canducci F, Poli F, Tramontano E, Esposito F. Prenylated phloroglucinols from Hypericum scruglii, an endemic species of Sardinia (Italy), as new dual HIV-1 inhibitors effective on HIV-1 replication. PLoS One 2018; 13:e0195168. [PMID: 29601601 PMCID: PMC5877874 DOI: 10.1371/journal.pone.0195168] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/16/2018] [Indexed: 12/20/2022] Open
Abstract
In a search for new potential multitarget anti-HIV compounds from natural products, we have identified in Hypericum scruglii, an endemic and exclusive species of Sardinia (Italy), a potent plant lead. The phytochemical study of the hydroalcoholic extract obtained from its leaves led to the isolation of its most abundant secondary metabolites, belonging to different chemical classes. In particular, three phloroglucinols derivatives were identified, confirming their significance as chemotaxonomic markers of the Hypericum genus. Among them, the 3-(13-hydroxygeranyl)-1-(2'-methylbutanoyl)phloroglucinol was reported here for the first time. All six isolated compounds have been evaluated firstly for the inhibition of both Human Immunodeficiency Virus type 1 (HIV-1) Reverse Transcriptase (RT)-associated DNA Polymerase (RDDP) and Ribonuclease H (RNase H) activities, for the inhibition of HIV-1 integrase (IN) in biochemical assays, and also for their effect on viral replication. Among the isolated metabolites, three phloroglucinol derivatives and quercitrin were effective on both RT-associated RDDP and RNase H activities in biochemical assays. The same active compounds affected also HIV-1 IN strand transfer function, suggesting the involvement of the RNase H active site. Furthermore, phloroglucinols compounds, included the newly identified compound, were able to inhibit the HIV-1 replication in cell based assays.
Collapse
Affiliation(s)
- Cinzia Sanna
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
- * E-mail:
| | | | - Antonio Fiorentino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania, Caserta, Italy
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Vittoria Graziani
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania, Caserta, Italy
| | - Alessia Caredda
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Pierluigi Cortis
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Mariofilippo Montisci
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Elisa Rita Ceresola
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Filippo Canducci
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Laboratory of Microbiology, San Raffaele Hospital, IRCCS, Milan, Italy
| | - Ferruccio Poli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
23
|
Sanna C, Rigano D, Corona A, Piano D, Formisano C, Farci D, Franzini G, Ballero M, Chianese G, Tramontano E, Taglialatela-Scafati O, Esposito F. Dual HIV-1 reverse transcriptase and integrase inhibitors from Limonium morisianum Arrigoni, an endemic species of Sardinia (Italy). Nat Prod Res 2018; 33:1798-1803. [PMID: 29397771 DOI: 10.1080/14786419.2018.1434649] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
During our search for potential templates of HIV-1 reverse transcriptase (RT) and integrase (IN) dual inhibitors, the methanolic extract obtained from aerial parts of Limonium morisianum was investigated. Repeated bioassay-guided chromatographic purifications led to the isolation of the following secondary metabolites: myricetin, myricetin 3-O-rutinoside, myricetin-3-O-(6″-O-galloyl)-β-d-galactopyranoside, (-)-epigallocatechin 3-O-gallate, tryptamine, ferulic and phloretic acids. The isolated compounds were tested on both HIV-1 RT-associated RNase H and IN activities. Interestingly, (-)-epigallocatechin-3-O-gallate and myricetin-3-O-(6″-O-galloyl)-β-d-galactopyranoside potently inhibited both enzyme activities with IC50 values ranging from 0.21 to 10.9 μM. Differently, tryptamine and ferulic acid exhibited a significant inhibition only on the IN strand transfer reaction, showing a selectivity for this viral enzyme. Taken together these results strongly support the potential of this plant as a valuable anti HIV-1 drugs source worthy of further investigations.
Collapse
Affiliation(s)
- Cinzia Sanna
- a Department of Life and Environmental Sciences , University of Cagliari , Cagliari , Italy
| | - Daniela Rigano
- b Department of Pharmacy, School of Medicine and Surgery , University of Naples Federico II , Naples , Italy
| | - Angela Corona
- a Department of Life and Environmental Sciences , University of Cagliari , Cagliari , Italy
| | - Dario Piano
- a Department of Life and Environmental Sciences , University of Cagliari , Cagliari , Italy
| | - Carmen Formisano
- b Department of Pharmacy, School of Medicine and Surgery , University of Naples Federico II , Naples , Italy
| | - Domenica Farci
- a Department of Life and Environmental Sciences , University of Cagliari , Cagliari , Italy
| | - Genni Franzini
- a Department of Life and Environmental Sciences , University of Cagliari , Cagliari , Italy
| | - Mauro Ballero
- c Cosmese, Consorzio per lo Studio dei Metaboliti Secondari , University of Cagliari , Cagliari , Italy
| | - Giuseppina Chianese
- b Department of Pharmacy, School of Medicine and Surgery , University of Naples Federico II , Naples , Italy
| | - Enzo Tramontano
- a Department of Life and Environmental Sciences , University of Cagliari , Cagliari , Italy.,d Genetics and Biomedical Research Institute , National Research Council (CNR) , Cagliari , Italy
| | - Orazio Taglialatela-Scafati
- b Department of Pharmacy, School of Medicine and Surgery , University of Naples Federico II , Naples , Italy
| | - Francesca Esposito
- a Department of Life and Environmental Sciences , University of Cagliari , Cagliari , Italy
| |
Collapse
|